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Bayesian Deep Learning: Introduction

Introduction

3 of 54



With great power...

I Many engineering advances in ML

I Systems applied to toy data
→ deployed in real-life settings

I Control handed-over to automated
systems; w many scenarios which can
become life-threatening to humans

I Medical: automated decision making or
recommendation systems

I Automotive: autonomous control of drones
and self driving cars

I High frequency trading: ability to affect
economic markets on global scale

I But all of these can be quite dangerous...
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Example: Medical Diagnostics

I dAIbetes: an exciting new startup (not really)
I claims to automatically diagnose diabetic retinopathy
I accuracy 99% on their 4 train/test patients
I engineer trained two deep learning systems to predict probability y

given input fondus image x .

The engineer runs their system on your fondus image x∗ (RHS):

I Which model f1, f2 would you want the engineer to use for your
diagnosis?
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Example: Medical Diagnostics

I dAIbetes: an exciting new startup (not really)
I claims to automatically diagnose diabetic retinopathy
I accuracy 99% on their 4 train/test patients
I engineer trained two deep learning systems to predict probability y

given input fondus image x .

The engineer runs their system on your fondus image x∗ (RHS):

I Which model f1, f2 would you want the engineer to use for your
diagnosis? None of these! (‘I don’t know’)

5 of 54



Example: Autonomous Driving

Autonomous systems

I Range from simple robotic vacuums to
self-driving cars

I Largely divided into systems which

I control behaviour w rule-based systems

I learn and adapt to environment

Both can use of ML tools

I ML for low-level feature extraction
(perception)

I reinforcement learning
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Example: Autonomous Driving (cnt)

Real-world example: assisted driving
I first fatality of assisted driving (June 2016)
I low-level system failed to distinguish white side of trailer from

bright sky
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Example: Autonomous Driving (cnt)

Real-world example: assisted driving
I first fatality of assisted driving (June 2016)
I low-level system failed to distinguish white side of trailer from

bright sky

If system had identified its own uncertainty:
I alert user to take control over steering
I propagate uncertainty to decision making
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Point estimates

In medical / robotics / science...

X can’t use ML models giving a
single point estimate (single
value) in prediction

V must use ML models giving an
answer that says ‘10 but I’m
uncertain’; or ‘10± 5’

I Give me a distribution over
possible outcomes!
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Example: Autonomous Driving (cnt)

ML pipeline in self-driving cars
I process raw sensory input w perception models

I eg image segmentation to find where other cars and pedestrians are
I output fed into prediction model

I eg where other car will go
I output fed into ‘higher-level’ decision making procedures

I eg rule based system (“cyclist to your left → do not steer left”)
I industry’s starting to use uncertainty for lots of components in the

pipeline
I eg pedestrian prediction models predict a distribution of

pedestrian locations in X timesteps
I or uncertainty in perception components
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Sources of uncertainty

I Above are some examples of uncertainty

I Many other sources of uncertainty

I Test data is very dissimilar to training data
I model trained on diabetes fondus photos of subpopulation A
I never saw subpopulation B

I “images are outside data distribution model was trained on”
I desired behaviour

I return a prediction (attempting to extrapolate)
I +information that image lies outside data distribution

I (model retrained w subpop. B labels → low uncertainty on these)
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Sources of uncertainty (cnt)

I Uncertainty in model parameters that best explain data

I large number of possible models can explain a dataset

I uncertain which model parameters to choose to predict with

I affects how we predict with new test points
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Sources of uncertainty (cnt)

I Training labels are noisy
I measurement imprecision

I expert mistakes

I crowd sourced labels

even infinity data → ambiguity inherent in data itself
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Deep learning models are deterministic

Deep learning does not capture uncertainty:

I regression models output a single scalar/vector

I classification models output a probability vector (erroneously
interpreted as model uncertainty)
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Deep learning models are deterministic

Deep learning does not capture uncertainty:

I regression models output a single scalar/vector

I classification models output a probability vector (erroneously
interpreted as model uncertainty)

But when combined with probability theory can capture uncertainty in
a principled way

→ known as Bayesian Deep Learning
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Teaser: Uncertainty in Autonomous Driving
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Teaser: Uncertainty in Autonomous Driving
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Teaser

Define model and train on data x train, y train:

1 from tensorflow.keras.layers import Input, Dense, Dropout
2

3 inputs = Input(shape=(1,))
4 x = Dense(512, activation="relu")(inputs)
5 x = Dropout(0.5)(x, training=True)
6 x = Dense(512, activation="relu")(x)
7 x = Dropout(0.5)(x, training=True)
8 outputs = Dense(1)(x)
9

10 model = tf.keras.Model(inputs, outputs)
11 model.compile(loss="mean_squared_error",
12 optimizer="adam")
13 model.fit(x_train, y_train)
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Teaser

1 # do stochastic forward passes on x_test:
2 samples = [model.predict(x_test) for _ in range(100)]
3 m = np.mean(samples, axis=0) # predictive mean
4 v = np.var(samples, axis=0) # predictive variance
5

6 # plot mean and uncertainty
7 plt.plot(x_test, m)
8 plt.fill_between(x_test, m - 2*v**0.5, m + 2*v**0.5,
9 alpha=0.1) # plot two std (95% confidence)

Playgroud (working code): bdl101.ml/play
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Bayesian deep learning

All resources (including these slides): bdl101.ml
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Bayesian deep learning

Today and tomorrow we’ll understand why this
code makes sense, and get a taste of

I the formal language of uncertainty
(Bayesian probability theory)

I tools to use this language in ML (Bayesian
prob. modelling)

I techniques to scale to real-world deep
learning systems (modern variational
inference)

I developing big deep learning systems
which convey uncertainty

I w real-world examples

19 of 54

!



Bayesian deep learning

Today and tomorrow we’ll understand why this
code makes sense, and get a taste of

I the formal language of uncertainty
(Bayesian probability theory)

I tools to use this language in ML (Bayesian
prob. modelling)

I techniques to scale to real-world deep
learning systems (modern variational
inference)

I developing big deep learning systems
which convey uncertainty

I w real-world examples

19 of 54

!



Bayesian deep learning

Today and tomorrow we’ll understand why this
code makes sense, and get a taste of

I the formal language of uncertainty
(Bayesian probability theory)

I tools to use this language in ML (Bayesian
prob. modelling)

I techniques to scale to real-world deep
learning systems (modern variational
inference)

I developing big deep learning systems
which convey uncertainty

I w real-world examples

19 of 54

!



Bayesian deep learning

Today and tomorrow we’ll understand why this
code makes sense, and get a taste of

I the formal language of uncertainty
(Bayesian probability theory)

I tools to use this language in ML (Bayesian
prob. modelling)

I techniques to scale to real-world deep
learning systems (modern variational
inference)

I developing big deep learning systems
which convey uncertainty

I w real-world examples

19 of 54

!



Bayesian deep learning

Today and tomorrow we’ll understand why this
code makes sense, and get a taste of

I the formal language of uncertainty
(Bayesian probability theory)

I tools to use this language in ML (Bayesian
prob. modelling)

I techniques to scale to real-world deep
learning systems (modern variational
inference)

I developing big deep learning systems
which convey uncertainty

I w real-world examples

Basic concepts marked green (if you want to use as tools); Advanced
topics marked amber (if you want to develop new stuff in BDL)
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Bayesian Probability Theory

Bayesian Probability Theory:
the Language of Uncertainty

Deriving the laws of probability theory from rational degrees of belief
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Betting game 1 (some philosophy for the soul)

1 import numpy as np
2 def toss():
3 if np.random.rand() < 0.5:
4 print(’Heads’)
5 else:
6 print(’Tails’)

I unit wager : a ‘promise note’ where seller commits to pay note
owner £1 if outcome of toss=‘heads’; a tradeable note; eg..
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I would you pay p=£0.01 for a unit wager on ‘heads’?
I pay a penny to buy a note where I commit to paying £1 if ‘heads’

I p=£0.99?
I pay 99 pence for a note where I commit to paying £1 if ‘heads’

I up to £0.05?, £0.95 or above?, ...
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Betting game 1b (some philosophy for the soul)

1 import numpy as np
2 def toss():
3 if np.random.rand() < 0.5:
4 print(’Heads’)
5 else:
6 print(’Tails’)

I Unit wager : note seller commits to paying £1 if outcome=‘heads’

I would you sell a unit wager at £p for ‘heads’?
I you get £p for the note, and have to pay £1 if heads

I up to £0.05?, £0.95 or above?, ...
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Betting game 1c (some philosophy for the soul)

1 import numpy as np
2 def toss():
3 if np.random.rand() < 0.5:
4 print(’Heads’)
5 else:
6 print(’Tails’)

I Unit wager : note seller commits to paying £1 if outcome=‘heads’

I what if you have to set price £p, and commit to either sell unit
wager at £p for ‘heads’, or buy one?

I I decide whether to sell to you, or buy from you
I I sell: you pay £p to buy note where I commit to paying £1 if heads
I I buy: you get £p for note, and have to pay me £1 if heads

I up to £0.05?, £0.95 or above?, ...
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Beliefs as willingness to wager

I A person with degree of belief p in event A is assumed to be
willing to pay ≤ £p for a unit wager on A

I and is willing to sell such a wager for any price ≥ £p

I This p captures our degree of belief about the event A taking
place (aka uncertainty, confidence)
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Rational beliefs

I Two notes (unit wagers):
I Note 1: ‘outcome=heads’
I Note 2: ‘outcome=tails’

you decide p for note 1 and q for note 2; I decide whether to buy
from you or sell you each note at the price you determined

I if p + q < 1 then I will buy from you note 1 for £p and also note
2 for £q

I whatever outcome you give me £1; but because I gave you
p + q < 1, you lost £1− p − q

I Dutch book: a set of unit wager notes where you decide the
odds (wager price) and I decide whether to buy or sell each
note ... and you are guaranteed to always lose money.
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from you or sell you each note at the price you determined

I if p + q < 1 then I will buy from you note 1 for £p and also note
2 for £q

I whatever outcome you give me £1; but because I gave you
p + q < 1, you lost £1− p − q

I Dutch book: a set of unit wager notes where you decide the
odds (wager price) and I decide whether to buy or sell each
note ... and you are guaranteed to always lose money.

Set of beliefs is called rational if no Dutch book exists.
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Formalism (rational beliefs = prob theory)

Setup
I Def sample space X of simple events (possible outcomes)

I e.g. experiment flipping two coins X={HH, HT, TH, TT}
I Let A be an event (a subset of X ). A holding true = at least one

of the outcomes in A happened
I e.g. “at least one heads” ↔ A={HH, HT, TH}

I Write pA for belief of event A (your wager on A happening,
assuming all wagers are unit wagers)
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of the outcomes in A happened
I e.g. “at least one heads” ↔ A={HH, HT, TH}

I Write pA for belief of event A (your wager on A happening,
assuming all wagers are unit wagers)

Can show that {pA}A⊆X are rational beliefs iff {pA}A⊆X satisfies laws
of probability theory

I Already showed that pA + pAc = 1
I Try to devise other betting games at home (bdl101.ml/betting)
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Setup
I Def sample space X of simple events (possible outcomes)

I e.g. experiment flipping two coins X={HH, HT, TH, TT}
I Let A be an event (a subset of X ). A holding true = at least one

of the outcomes in A happened
I e.g. “at least one heads” ↔ A={HH, HT, TH}

I Write pA for belief of event A (your wager on A happening,
assuming all wagers are unit wagers)

Can show that {pA}A⊆X are rational beliefs iff {pA}A⊆X satisfies laws
of probability theory

I Already showed that pA + pAc = 1
I Try to devise other betting games at home (bdl101.ml/betting)

Can derive the laws of prob theory from rational beliefs!

I → if you want to be rational, must follow laws of probability
(otherwise someone can take advatnge of your model)
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Probability as belief vs frequency

Above known as Bayesian prob theory

I forms an interpretation of the laws of
probability, and formalises our notion of
uncertainty in events

I vs ‘Frequency as probability’
I only applicable to repeatable events (eg,

try to answer ‘will Trump win 2020’)
I also other issues; eg p-hacking
I Psychology journal banning p values

(although there are problems w Bayesian
arguments as well)
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‘Real-world’ example

[https://xkcd.com/1132/]
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Bayesian Probabilistic Modelling

Bayesian Probabilistic
Modelling (an Introduction)

Simple idea: “If you’re doing something which doesn’t follow from the
laws of probability, then you’re doing it wrong”

28 of 54
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Bayesian Probabilistic Modelling

I can’t do ML without assumptions
I must make some assumptions about how data was generated
I there always exists some underlying process that generated obs
I in Bayesian probabilistic modelling we make our assumptions about

underlying process explicit
I want to infer underlying process (find dist that generated data)
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I can’t do ML without assumptions
I must make some assumptions about how data was generated
I there always exists some underlying process that generated obs
I in Bayesian probabilistic modelling we make our assumptions about

underlying process explicit
I want to infer underlying process (find dist that generated data)

I eg – astrophysics: gravitational lensing
I there exists a physics process magnifying far

away galaxies

I Nature chose lensing coeff → gravitational
lensing mechanism → transform galaxy

I We observe transformed galaxies, want to
infer lensing ceoff
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Bayesian Probabilistic Modelling

I can’t do ML without assumptions
I must make some assumptions about how data was generated
I there always exists some underlying process that generated obs
I in Bayesian probabilistic modelling we make our assumptions about

underlying process explicit
I want to infer underlying process (find dist that generated data)

I eg – cats vs dogs classification
I there exist some underlying rules we don’t

know

I eg “if has pointy ears then cat”

I We observe pairs (image, “cat”/“no cat”),
and want to infer underlying mapping from
images to labels
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Bayesian Probabilistic Modelling

I can’t do ML without assumptions
I must make some assumptions about how data was generated
I there always exists some underlying process that generated obs
I in Bayesian probabilistic modelling we make our assumptions about

underlying process explicit
I want to infer underlying process (find dist that generated data)

I eg – Gaussian density estimation
I I tell you the process I used to generate data and give 5 data points

xn ∼ N (xn;µ, σ2), σ = 1

I you observe the points {x1, ..., x5}, and want to infer my µ
I Reminder: Gaussian density with mean µ and variance σ2

p(x |µ, σ) =
1√

2πσ2
e− (x−µ)2

2σ2
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Bayesian Probabilistic Modelling
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I there always exists some underlying process that generated obs
I in Bayesian probabilistic modelling we make our assumptions about

underlying process explicit
I want to infer underlying process (find dist that generated data)

I eg – Gaussian density estimation

X Which µ generated my data?
V What’s the probability that µ = 10 generated my data? (want to

infer distribution over µ!)
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Bayesian Probabilistic Modelling

I can’t do ML without assumptions
I must make some assumptions about how data was generated
I there always exists some underlying process that generated obs
I in Bayesian probabilistic modelling we make our assumptions about

underlying process explicit
I want to infer underlying process (find dist that generated data)

I eg – Gaussian density estimation

I These are the hypotheses we’ll play with

I I chose a Gaussian (one of those) from which I generated data
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Generative story / model

In Bayesian probabilistic modelling

I want to represent our beliefs / assumptions about how data was
generated explicitly

I eg via generative story [‘My assumptions are...’]:
I Someone (me / Nature / etc) selected parameters µ∗, σ∗
I Generated N data points xn ∼ N (µ∗, σ∗2)
I Gave us D = {x1, ..., xN}
I → how would you formalise this process?

I Bayesian probabilistic model:
I prior [what I believe params might look like]

µ ∼ N (0,10), σ = 1

I likelihood [how I believe data was generated given params]

xn | µ, σ ∼ N (µ, σ2)

I will update prior belief on µ conditioned on data you give me
(infer distribution over µ): µ | {x1, ..., xN}
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Can you find my Gaussian?

How can you infer µ? (find distribution)

Everything follows the laws of prob..

I Sum rule

p(X = x) =
∑

y

p(X = x ,Y = y) =

∫
p(X = x ,Y )dY

I Product rule

p(X = x ,Y = y) = p(X = x |Y = y)p(Y = y)

I Bayes rule

p(X = x |Y = y ,H) =
p(Y = y |X = x ,H)p(X = x |H)

p(Y = y |H)

Note: H is often omitted in conditional for brevity
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Can you find my Gaussian?

Remember: products, ratios, marginals, and conditionals of Gaussians
are Gaussian!

Summary (and playgroud) here: bdl101.ml/gauss
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Inference

Bayes rule:

p(X = x |Y = y ,H) =
p(Y = y |X = x ,H)p(X = x |H)

p(Y = y |H)
,

and in probabilistic modelling:

Posterior︷ ︸︸ ︷
p(µ|D, σ,H) =

Likelihood︷ ︸︸ ︷
p(D|µ, σ,H)

Prior︷ ︸︸ ︷
p(µ|σ,H)

p(D|σ,H)︸ ︷︷ ︸
Model evidence

with model evidence p(D|σ,H) =
∫

p(D|µ, σ,H)p(µ|σ,H)dµ (sum
rule).

Likelihood

I we explicitly assumed data comes iid from a Gaussian
I compute p(D|µ, σ) = multiply all p(xn|µ, σ) (product rule)
I prob of observing data points for given params
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The Likelihood in more detail

Likelihood

I we explicitly assumed data comes iid from a Gaussian
I compute p(D|µ, σ) = multiply all p(xn|µ, σ) (product rule)
I prob of observing data points for given params
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Likelihood as a function of parameters

Reducing dataset from 5 points to 1:

I What does the likelihood look like?
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Likelihood as a function of parameters

Reducing dataset from 5 points to 1:

I What does the likelihood look like?

and with smaller σ..

I Trying to max lik will get “absolutely certain that σ = 0 & µ = 0”
I Does this make sense? (I told you xn ∼ N !)
I MLE failure
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Likelihood as a function of parameters

Reducing dataset from 5 points to 1:

I What does the likelihood look like?

And with all data:

Likelihood function shows how well every value of µ, σ predicted what
would happen.
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The Posterior in more detail

Posterior︷ ︸︸ ︷
p(µ|D, σ,H) =

Likelihood︷ ︸︸ ︷
p(D|µ, σ,H)

Prior︷ ︸︸ ︷
p(µ|σ,H)

p(D|σ,H)︸ ︷︷ ︸
Model evidence

with model evidence p(D|σ,H) =
∫

p(D|µ, σ,H)p(µ|σ,H)dµ (sum
rule). In contrast to the likelihood, posterior would say

‘with the data you gave me, this is what I currently think µ could be,
and I might become more certain if you give me more data’

I normaliser = marginal likelihood = evidence = sum of likelihood *
prior

I (but often difficult to calculate... more in the next lecture)
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The Posterior in more detail

I Eg, inference w prior = ‘we believe data is equally likely to have
come from one of the 5 Gaussians w σ = 1’

p(µ = µi |σ,H) =
1
5

and p(µ 6= µi for all i |σ,H) = 0

then marginal likelihood is

p(D|σ,H) =
∑

i

p(D|µ = µi , σ,H)p(µ = µi |σ,H)

=
∑

i

p(D|µ = µi , σ,H)
1
5

and posterior is

p(µ = µi |σ,D,H) =
1/5p(D|µ = µi , σ,H)∑
i 1/5p(D|µ = µi , σ,H)
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The Posterior in more detail

where p(D|µ = µi , σ = 1,H) is given by

I marginal likelihood of sigma=1 = p(D|σ = 1,H) = ‘prob that
data came from single Gaussian with param σ = 1’

I similarly, marginal likelihood of hypothesis = p(D|H) = ‘prob that
data came from single Gaussian (with some µ, σ)’
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Bayesian Deep Learning

Bayesian Probabilistic
Modelling of Functions

39 of 54

!



Why uncertainty over functions

I Example going beyond beliefs over statements (‘heads happened’)
/ scalars (µ)

I Would want to know uncertainty (ie belief) of system in prediction

I Want to know distribution over outputs for each input x = dist
over functions

I First, some preliminaries.. (history, and notation)
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Linear regression

Linear regression [Gauss, 1809]

I Given a set of N input-output pairs {(x1,y1), ..., (xN ,yN)}
I eg average number of accidents for different driving speeds

I assumes exists linear func mapping vectors xi ∈ RQ to yi ∈ RD

(with yi potentially corrupted with observation noise)

I model is linear trans. of inputs: f (x) = Wx + b, w W some D by
Q matrix over reals, b real vector with D elements

I Different params W ,b define different linear trans
I aim: find params that (eg) minimise 1/N

∑
i ||yi − (Wxi + b)||2

I but relation between x and y need not be linear
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Linear basis function regression

Linear basis function regression [Gergonne, 1815; Smith, 1918]

I input x fed through K fixed scalar-valued non-linear trans. φk (x)

I collect into a feature vector φ(x) = [φ1(x), ..., φK (x)]

I do linear regression with φ(x) vector instead of x itself

I with scalar input x, trans. can be
I wavelets parametrised by k : cos(kπx)e−x2/2

I polynomials of degrees k : xk

I sinusoidals with various frequencies: sin(kx)

I When φk (x) := xk and K = Q, basis function regr. = linear regr.

I basis functions often assumed fixed and orthogonal to each other
(optimal combination is sought)

I but need not be fixed and mutually orth. → param. basis functions
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Parametrised basis functions

Parametrised basis functions [Bishop, 2006; many others]

I eg basis functions φwk ,bk
k where scalar-valued function φk is applied

to inner-product wT
k x + bk

I φk often def’d to be identical for all k (only params change)
I eg φk (·) = tanh(·) , giving φwk ,bk

k (x) = tanh(wT
k x + bk )

I feature vector = basis functions’ outputs = input to linear trans.

I in vector form:
I W1 a matrix of dimensions Q by K
I b1 a vector with K elements
I φW1,b1 (x) = φ(W1x + b1)
I W2 a matrix of dimensions K by D
I b2 a vector with D elements
I model output:

f W1,b1,W2,b2 (x) = φW1,b1 (x)W2 + b2
I want to find W1,b1,W2,b2 that minimise

1/N
∑

i ||yi − f W1,b1,W2,b2(xi)||2
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Hierarchy of parametrised basis functions

Hierarchy of parametrised basis functions [Rumelhart et al., 1985]
I called “NNs” for historical reasons

I layers
I =‘feature vectors’ in hierarchy
I linear trans. = ‘inner product’ layer = ‘fully

connected’ layer
I ‘input layer’, ‘output layer’, ‘hidden layers’
I trans. matrix = weight matrix = W ;

intercept = bias = b

I units
I elements in a layer

I feature vector (overloaded term)
I often refers to the penultimate layer (at top

of model just before softmax / last linear
trans.)

I denote feature vector
φ(x) = [φ1(x), .., φK (x)] with K units (a K
by 1 vector)

I denote feature matrix
Φ(X) = [φ(x1)T , ..., φ(xN)T ], N by K
matrix

44 of 54



Hierarchy of parametrised basis functions

Hierarchy of parametrised basis functions [Rumelhart et al., 1985]
I called “NNs” for historical reasons

I layers
I =‘feature vectors’ in hierarchy
I linear trans. = ‘inner product’ layer = ‘fully

connected’ layer
I ‘input layer’, ‘output layer’, ‘hidden layers’
I trans. matrix = weight matrix = W ;

intercept = bias = b

I units
I elements in a layer

I feature vector (overloaded term)
I often refers to the penultimate layer (at top

of model just before softmax / last linear
trans.)

I denote feature vector
φ(x) = [φ1(x), .., φK (x)] with K units (a K
by 1 vector)

I denote feature matrix
Φ(X) = [φ(x1)T , ..., φ(xN)T ], N by K
matrix

44 of 54



Hierarchy of parametrised basis functions

Hierarchy of parametrised basis functions [Rumelhart et al., 1985]
I called “NNs” for historical reasons

I layers
I =‘feature vectors’ in hierarchy
I linear trans. = ‘inner product’ layer = ‘fully

connected’ layer
I ‘input layer’, ‘output layer’, ‘hidden layers’
I trans. matrix = weight matrix = W ;

intercept = bias = b

I units
I elements in a layer

I feature vector (overloaded term)
I often refers to the penultimate layer (at top

of model just before softmax / last linear
trans.)

I denote feature vector
φ(x) = [φ1(x), .., φK (x)] with K units (a K
by 1 vector)

I denote feature matrix
Φ(X) = [φ(x1)T , ..., φ(xN)T ], N by K
matrix

44 of 54



Hierarchy of parametrised basis functions

Hierarchy of parametrised basis functions [Rumelhart et al., 1985]
I called “NNs” for historical reasons

I layers

I units

I feature vector (overloaded term)
I often refers to the penultimate layer (at top

of model just before softmax / last linear
trans.)

I denote feature vector
φ(x) = [φ1(x), .., φK (x)] with K units (a K
by 1 vector)

I denote feature matrix
Φ(X) = [φ(x1)T , ..., φ(xN)T ], N by K
matrix

44 of 54



Hierarchy of parametrised basis functions

I regression
I compose multiple basis function layers

into a regression model

I result of last trans. also called “model
output”; often no non-linearity here

I classification
I further compose a softmax function at the end; also called

“logistic” for 2 classes
I “squashes” its input → probability vector; prob vector also called

model output / softmax vector / softmax layer

I “building blocks”
I layers are simple
I modularity in layer composition → versatility of deep models
I many engineers work in field → lots of tools that scale well
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output”; often no non-linearity here

I classification
I further compose a softmax function at the end; also called

“logistic” for 2 classes
I “squashes” its input → probability vector; prob vector also called
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Assumptions for the moment

I we’ll use deep nets, and denote W to be the weight matrix of the
last layer and b the bias of last layer

I (for the moment) look only at last layer W , everything else fixed –
ie weights other than W do not change

I later we’ll worry about other layers

I assume that y is scalar
I so W is K by 1
I write wk for the k ’th elem

I assume that output layer’s b is zero (or, obs y ’s are normalised)
I both will simplify derivations here (but pose no difficulty otherwise)

I then f W (x) =
∑

wkφk (x) = W Tφ(x) with φ(x) a ‘frozen’ feature
vec for some NN

I some notation you’ll need to remember...
X, x ,N,xn,Q,D,K ,D = {(x1, y1), .., (xN , yN)} = X,Y
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Generative story

Want to put dist over functions..

I difficult to put belief over funcs., but
easy to put over NN params

I assumptions for the moment: our
data was generated from the fixed φ
(NN) using some W (which we want
to infer)

47 of 54



Generative story

Want to put dist over functions..

I difficult to put belief over funcs., but
easy to put over NN params

I assumptions for the moment: our
data was generated from the fixed φ
(NN) using some W (which we want
to infer)

Generative story [what we assume about the data]

I Nature chose W which def’s a func: f W (x) := W Tφ(x)

I generated func. values with inputs x1, .., xN : fn := f W (xn)

I corrupted func. values with noise [also called ”obs noise”]
yn := fn + εn, εn ∼ N (0, σ2) [additive Gaussian noise w param σ]

I we’re given observations {(x1, y1), ..., (xN , yN)} and σ = 1
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Model

I qs
I how can we find function value f ∗ for a new x∗?
I how can we find our confidence in this prediction?
I → ‘everything follows from the laws of probability theory’

I we build a model:
I put prior dist over params W

p(W ) = N (W ; 0K , s2IK )

I likelihood [conditioned on W generate obs by adding gaussian noise]

p(y |W , x) = N (y ; W Tφ(x), σ2)

I prior belief “wk is more likely to be in interval [−1,1] than in
[100,200]” means that the func. values are likely to be more
smooth than erratic (we’ll see later why)

I we want to infer W (find dist over W given D)
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Analytic inference w functions [new technique!]
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Analytic inference w functions [new technique!]

I posterior variance

Σ′ = (σ−2
∑

n

(φ(xn)φ(xn)T ) + s−2IK )−1

and in vector form: (σ−2Φ(X)T Φ(X) + s−2IK )−1

I posterior mean

µ′ = Σ′σ−2
∑

n

(ynφ(xn))

and in vector form: Σ′σ−2Φ(X)T Y
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Analytic predictions with functions

How do we predict function values y∗ for new x∗?

I use prob theory to perform preds!

p(y∗|x∗,X ,Y )

=

∫
p(y∗,W |x∗,X ,Y )dW sum rule

=

∫
p(y∗|x∗,W ,X ,Y )p(W |X ,Y )dW product rule

=

∫
p(y∗|x∗,W )p(W |X ,Y )dW model assumptions

I how to eval? [a new technique!]
I likelihood p(y∗|x∗,W ) is Gaussian
I posterior p(W |X ,Y ) is Gaussian (from above)
I so predictive p(y∗|x∗,X ,Y ) is Gaussian..
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Analytic predictions with functions

I Homework: Predictive variance
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What you should be able to do now

I perform density estimation with scalars

I know when MLE fails (and why)

I use Bayes law to make more informed decisions in your life

I win against your friends in a series of bets

I argue with frequentists about how to interpret the laws of
probability

I argue with philosophers about the nature of subjective beliefs

I use Bayesian probability in ML correctly

I perform predictions in Bayesian probabilistic modelling correctly
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What we will cover next

In the next lecture we’ll

I decompose uncertainty into epistemic and aleatoric components

I use uncertainty in regression correctly

I develop tools to scale the ideas above to large deep models

I develop big deep learning systems which convey uncertainty
I w real-world examples
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Bayesian deep learning

All resources (including these slides): bdl101.ml

54 of 54

http://bdl101.ml

