
Bayesian Deep Learning (MLSS 2019)

Yarin Gal

University of Oxford
yarin@cs.ox.ac.uk

Unless specified otherwise, photos are either original work or taken from Wikimedia, under Creative Commons license

mailto:yarin@cs.ox.ac.uk
https://creativecommons.org/licenses/by-sa/3.0/deed.en

Previous Lecture

Previously..

I Bayesian probabilistic modelling of functions

I Analytical inference of W (mean)

2 of 75

Contents

Today:

I Uncertainty over functions (and decomposing uncertainty)

I Scaling ideas up (approximate inference)

I Scaling up even more (stochastic approximate inference)

I Uncertainty in shallow classification models

I Stochastic approximate inference in deep NN

I Inference in very large deep models

I Real-world applications of model uncertainty

3 of 75

Bayesian deep learning

All resources (including these slides): bdl101.ml

4 of 75

http://bdl101.ml

Bayesian Deep Learning

Uncertainty over Functions

5 of 75

!

Reminder

Model

I prior
p(wk ,d) = N (wk ,d ; 0, s2); W ∈ RK×D

I likelihood

p(Y|X,W) =
∏

n

N (yn; f W (xn), σ2); f W (x) = W Tφ(x)

I with φ(x) a K dim feature vector

Posterior

p(W |X ,Y) = N (W ;µ′,Σ′)

Σ′ = (σ−2Φ(X)T Φ(X) + s−2IK)−1

µ′ = Σ′σ−2Φ(X)T Y

Predictive

p(y∗|x∗,X ,Y) = N (y∗;µ′Tφ(x∗), ?)

6 of 75

Reminder

Model

I prior
p(wk ,d) = N (wk ,d ; 0, s2); W ∈ RK×D

I likelihood

p(Y|X,W) =
∏

n

N (yn; f W (xn), σ2); f W (x) = W Tφ(x)

I with φ(x) a K dim feature vector

Posterior

p(W |X ,Y) = N (W ;µ′,Σ′)

Σ′ = (σ−2Φ(X)T Φ(X) + s−2IK)−1

µ′ = Σ′σ−2Φ(X)T Y

Predictive

p(y∗|x∗,X ,Y) = N (y∗;µ′Tφ(x∗), σ2 + φ(x∗)T Σ′φ(x∗))

6 of 75

Decomposing uncertainty

p(y∗|x∗,X ,Y) = N (y∗;µ′Tφ(x∗),

σ2 + φ(x∗)T Σ′φ(x∗))
Uncertainty has two components:

I σ2 – from likelihood

I φ(x∗)T Σ′φ(x∗) – from posterior

7 of 75

Decomposing uncertainty

p(y∗|x∗,X ,Y) = N (y∗;µ′Tφ(x∗),

σ2 + φ(x∗)T Σ′φ(x∗))
Uncertainty has two components:

I σ2 – from likelihood

I φ(x∗)T Σ′φ(x∗) – from posterior

7 of 75

Aleatoric uncertainty

I first term in predictive uncertainty
σ2 + φ(x∗)T Σ′φ(x∗)

I same as likelihood σ2 – obs noise /
corrupting additive noise eg measurement
error

I can be found via MLE rather than
assume known in advance (we’ll see later)

I from Latin aleator ‘dice player’, from alea
‘die’

I roll a pair of dice again and again – will
not reduce uncertainty

8 of 75

Epistemic uncertainty

I second term in predictive uncertainty σ2 + φ(x∗)T Σ′φ(x∗)

I uncertainty over function values before noise corruption

f ∗ = W Tφ(x∗)

Varp(f∗|x∗,X ,Y)[f ∗] = φ(x∗)T Σ′φ(x∗)

I high for x∗ “far away” from the data, even in noiseless case (ie
likelihood noise is zero)

I will diminish given label for x∗

I from Ancient Greek episteme ‘knowledge, understanding’

9 of 75

Bayesian Deep Learning

Approximate Inference

10 of 75

!

Approximate variational inference

I to evaluate predictive need to invert post cov matrix – a K by K
matrix

I difficult when K is large...

I instead, let’s try to approximate posterior w a simpler dist to allow
easier computations

I in approx inference we approx posterior p(W |X ,Y) w a different
dist qθ(W) param by theta

I q also called “variational distribution”
I θ also called “variational params”
I technique is also known as “variational inference (VI)”

I eg q Gaussian w params θ = {µVI,ΣVI}
I qθ(W) = N (W ;µVI,ΣVI)
I often omit θ from subscript to avoid clutter, write q(W) or q
I often swap θ for µ,Σ back and forth

11 of 75

Approximate variational inference

I to evaluate predictive need to invert post cov matrix – a K by K
matrix

I difficult when K is large...

I instead, let’s try to approximate posterior w a simpler dist to allow
easier computations

I in approx inference we approx posterior p(W |X ,Y) w a different
dist qθ(W) param by theta

I q also called “variational distribution”
I θ also called “variational params”
I technique is also known as “variational inference (VI)”

I eg q Gaussian w params θ = {µVI,ΣVI}
I qθ(W) = N (W ;µVI,ΣVI)
I often omit θ from subscript to avoid clutter, write q(W) or q
I often swap θ for µ,Σ back and forth

11 of 75

Approximate variational inference

I to evaluate predictive need to invert post cov matrix – a K by K
matrix

I difficult when K is large...

I instead, let’s try to approximate posterior w a simpler dist to allow
easier computations

I in approx inference we approx posterior p(W |X ,Y) w a different
dist qθ(W) param by theta

I q also called “variational distribution”
I θ also called “variational params”
I technique is also known as “variational inference (VI)”

I eg q Gaussian w params θ = {µVI,ΣVI}
I qθ(W) = N (W ;µVI,ΣVI)
I often omit θ from subscript to avoid clutter, write q(W) or q
I often swap θ for µ,Σ back and forth

11 of 75

Approximate variational inference

I to evaluate predictive need to invert post cov matrix – a K by K
matrix

I difficult when K is large...

I instead, let’s try to approximate posterior w a simpler dist to allow
easier computations

I in approx inference we approx posterior p(W |X ,Y) w a different
dist qθ(W) param by theta

I q also called “variational distribution”
I θ also called “variational params”
I technique is also known as “variational inference (VI)”

I eg q Gaussian w params θ = {µVI,ΣVI}
I qθ(W) = N (W ;µVI,ΣVI)
I often omit θ from subscript to avoid clutter, write q(W) or q
I often swap θ for µ,Σ back and forth

11 of 75

Underlying principle of VI

I eg: I have posterior p(W |X ,Y) = N (0,1); I give you 2 approx
dists

q1(W) = N (1,1), q2(W) = N (10,1)

I which would you choose?
I the one that gives best preds?
I will fail: best preds are at µ = µMLE,Σ = 0

I need some measure of how “similar” dists are to posterior...
I choose a measure of “similarity” between dists D̃ (not necessarily a

distance!)
I then min whatever measure we commit to
I ie if D̃(q1, posterior) < D̃(q2, posterior) then the core principle of VI

says that q1 should be chosen over q2

12 of 75

Underlying principle of VI

I eg: I have posterior p(W |X ,Y) = N (0,1); I give you 2 approx
dists

q1(W) = N (0,2), q2(W) = N (0,10)

I which would you choose? and now?
I the one that gives best preds?
I will fail: best preds are at µ = µMLE,Σ = 0

I need some measure of how “similar” dists are to posterior...
I choose a measure of “similarity” between dists D̃ (not necessarily a

distance!)
I then min whatever measure we commit to
I ie if D̃(q1, posterior) < D̃(q2, posterior) then the core principle of VI

says that q1 should be chosen over q2

12 of 75

Underlying principle of VI

I eg: I have posterior p(W |X ,Y) = N (0,1); I give you 2 approx
dists

q1(W) = N (10,1), q2(W) = N (0,10)

I which would you choose? and now? ... and now?
I the one that gives best preds?
I will fail: best preds are at µ = µMLE,Σ = 0

I need some measure of how “similar” dists are to posterior...
I choose a measure of “similarity” between dists D̃ (not necessarily a

distance!)
I then min whatever measure we commit to
I ie if D̃(q1, posterior) < D̃(q2, posterior) then the core principle of VI

says that q1 should be chosen over q2

12 of 75

Underlying principle of VI

I eg: I have posterior p(W |X ,Y) = N (0,1); I give you 2 approx
dists

q1(W) = N (10,1), q2(W) = N (0,10)

I which would you choose? and now? ... and now?
I the one that gives best preds?
I will fail: best preds are at µ = µMLE,Σ = 0

I need some measure of how “similar” dists are to posterior...
I choose a measure of “similarity” between dists D̃ (not necessarily a

distance!)
I then min whatever measure we commit to
I ie if D̃(q1, posterior) < D̃(q2, posterior) then the core principle of VI

says that q1 should be chosen over q2

12 of 75

Underlying principle of VI

I D̃(q1, posterior) < D̃(q2, posterior) → q1 should be chosen over
q2

I what if we have two divergences D̃1 and D̃2, one saying to select q1
and the other q2?

! a difference to full Bayesian inference... (where there’s only one way
of doing things ‘correctly’)

I “from dogmatic Bayes to pragmatic Bayes”;

I often choose D̃ that is mathematically convenient

I eg Kullback Leibler

KL(q,p) =

∫
q(x) log

q(x)

p(x)
dx

13 of 75

Underlying principle of VI

I D̃(q1, posterior) < D̃(q2, posterior) → q1 should be chosen over
q2

I what if we have two divergences D̃1 and D̃2, one saying to select q1
and the other q2?

! a difference to full Bayesian inference... (where there’s only one way
of doing things ‘correctly’)

I “from dogmatic Bayes to pragmatic Bayes”;

I often choose D̃ that is mathematically convenient

I eg Kullback Leibler

KL(q,p) =

∫
q(x) log

q(x)

p(x)
dx

13 of 75

KL properties (eg w discrete distributions)

I K dim discrete prob vectors q, p: KL(q,p) =
∑

k qk log qk/pk

I when the two dists are the same we get exactly 0

I when the two dists are different the divergence is positive

I KL is not symmetric

I if qk is zero it is ignored in KL

I whenever qk > 0 it must be that pk > 0 for the KL to be finite

I Homework: find examples for all properties; eg
q = [1/8,3/8,4/8], p = [3/8,4/8,1/8];

14 of 75

KL properties (eg w discrete distributions)

I K dim discrete prob vectors q, p: KL(q,p) =
∑

k qk log qk/pk

I when the two dists are the same we get exactly 0

I when the two dists are different the divergence is positive

I KL is not symmetric

I if qk is zero it is ignored in KL

I whenever qk > 0 it must be that pk > 0 for the KL to be finite

I Homework: find examples for all properties; eg
q = [1/8,3/8,4/8], p = [3/8,4/8,1/8];

14 of 75

KL properties (eg w discrete distributions)

I K dim discrete prob vectors q, p: KL(q,p) =
∑

k qk log qk/pk

I when the two dists are the same we get exactly 0

I when the two dists are different the divergence is positive

I KL is not symmetric

I if qk is zero it is ignored in KL

I whenever qk > 0 it must be that pk > 0 for the KL to be finite

I Homework: find examples for all properties; eg
q = [1/8,3/8,4/8], p = [3/8,4/8,1/8];

14 of 75

KL properties (eg w discrete distributions)

I K dim discrete prob vectors q, p: KL(q,p) =
∑

k qk log qk/pk

I when the two dists are the same we get exactly 0

I when the two dists are different the divergence is positive

I KL is not symmetric

I if qk is zero it is ignored in KL

I whenever qk > 0 it must be that pk > 0 for the KL to be finite

I Homework: find examples for all properties; eg
q = [1/8,3/8,4/8], p = [3/8,4/8,1/8];

14 of 75

KL properties (eg w discrete distributions)

I K dim discrete prob vectors q, p: KL(q,p) =
∑

k qk log qk/pk

I when the two dists are the same we get exactly 0

I when the two dists are different the divergence is positive

I KL is not symmetric

I if qk is zero it is ignored in KL

I whenever qk > 0 it must be that pk > 0 for the KL to be finite

I Homework: find examples for all properties; eg
q = [1/8,3/8,4/8], p = [3/8,4/8,1/8];

14 of 75

KL properties (eg w discrete distributions)

I K dim discrete prob vectors q, p: KL(q,p) =
∑

k qk log qk/pk

I when the two dists are the same we get exactly 0

I when the two dists are different the divergence is positive

I KL is not symmetric

I if qk is zero it is ignored in KL

I whenever qk > 0 it must be that pk > 0 for the KL to be finite

I Homework: find examples for all properties; eg
q = [1/8,3/8,4/8], p = [3/8,4/8,1/8];

14 of 75

KL properties (eg w discrete distributions)

I K dim discrete prob vectors q, p: KL(q,p) =
∑

k qk log qk/pk

I when the two dists are the same we get exactly 0

I when the two dists are different the divergence is positive

I KL is not symmetric

I if qk is zero it is ignored in KL

I whenever qk > 0 it must be that pk > 0 for the KL to be finite

I Homework: find examples for all properties; eg
q = [1/8,3/8,4/8], p = [3/8,4/8,1/8];

14 of 75

KL for cnts rvs

What if we want to approx cnts rv like W ?

I q(x) = N(x ;µ0, s2
0), p(x) = N(x ;µ1, s2

1); KL for Gaussians:

KL(q,p) = 1/2(s−2
1 s2

0 + s−2
1 (µ1 − µ0)2 − 1 + log(s2

1/s
2
0))

I nice property: if X1 and X2 are independent under p and q then

KL(q(X1,X2),p(X1,X2)) = KL(q(X1),p(X1)) + KL(q(X2),p(X2))

I multivariate diagonal Gaussians (K dims):
write x = [x1, .., xK]

q(x) = N (x;µ0,S0) with S0 = diag([s2
01, ..., s

2
0K])

p(x) = N (x;µ1,S1) with S1 = diag([s2
11, ..., s

2
1K])

Then from indep of x1, .., xK :

KL(q,p) =
∑

k

1/2(s−2
1k s2

0k + s−2
1k (µ1k −µ0k)2−1 + log(s2

1k/s
2
0k))

15 of 75

KL for cnts rvs

What if we want to approx cnts rv like W ?

I q(x) = N(x ;µ0, s2
0), p(x) = N(x ;µ1, s2

1); KL for Gaussians:

KL(q,p) = 1/2(s−2
1 s2

0 + s−2
1 (µ1 − µ0)2 − 1 + log(s2

1/s
2
0))

I nice property: if X1 and X2 are independent under p and q then

KL(q(X1,X2),p(X1,X2)) = KL(q(X1),p(X1)) + KL(q(X2),p(X2))

I multivariate diagonal Gaussians (K dims):
write x = [x1, .., xK]

q(x) = N (x;µ0,S0) with S0 = diag([s2
01, ..., s

2
0K])

p(x) = N (x;µ1,S1) with S1 = diag([s2
11, ..., s

2
1K])

Then from indep of x1, .., xK :

KL(q,p) =
∑

k

1/2(s−2
1k s2

0k + s−2
1k (µ1k −µ0k)2−1 + log(s2

1k/s
2
0k))

15 of 75

KL for cnts rvs

What if we want to approx cnts rv like W ?

I q(x) = N(x ;µ0, s2
0), p(x) = N(x ;µ1, s2

1); KL for Gaussians:

KL(q,p) = 1/2(s−2
1 s2

0 + s−2
1 (µ1 − µ0)2 − 1 + log(s2

1/s
2
0))

I nice property: if X1 and X2 are independent under p and q then

KL(q(X1,X2),p(X1,X2)) = KL(q(X1),p(X1)) + KL(q(X2),p(X2))

I multivariate diagonal Gaussians (K dims):
write x = [x1, .., xK]

q(x) = N (x;µ0,S0) with S0 = diag([s2
01, ..., s

2
0K])

p(x) = N (x;µ1,S1) with S1 = diag([s2
11, ..., s

2
1K])

Then from indep of x1, .., xK :

KL(q,p) =
∑

k

1/2(s−2
1k s2

0k + s−2
1k (µ1k −µ0k)2−1 + log(s2

1k/s
2
0k))

15 of 75

KL for approx inference

I want to approx p(W |X ,Y) using some qθ(W)

I min
KL(qθ(W),p(W |X ,Y))

wrt θ (remember def KL(q,p) =
∫

q(x) log q(x)
p(x) dx)

16 of 75

KL for approx inference

17 of 75

!

KL for approx inference

17 of 75

!

KL for approx inference

17 of 75

!

KL for approx inference

17 of 75

!

KL for approx inference

17 of 75

!

KL for approx inference

17 of 75

!

KL for approx inference

I want to approx p(W |X ,Y) using some qθ(W)

I min
KL(qθ(W),p(W |X ,Y))

wrt θ (remember def KL(q,p) =
∫

q(x) log q(x)
p(x) dx)

I log p(Y |X) ≥
∫

q(W) log p(Y |X ,W)dW − KL(q(W),p(W))
I pops out a bound on evidence for free
I also called “evidence lower bound” (ELBO)
I min KL to posterior = max ELBO

I what does it mean to max ELBO?
I first term: how well we “explain the data”; if possible, q should

put all mass at MLE!
I second term: how close we are to the prior (get simplest q that

can still explain data well); if possible, q should be prior itself!

18 of 75

!

KL for approx inference

I want to approx p(W |X ,Y) using some qθ(W)

I min
KL(qθ(W),p(W |X ,Y))

wrt θ (remember def KL(q,p) =
∫

q(x) log q(x)
p(x) dx)

I log p(Y |X) ≥
∫

q(W) log p(Y |X ,W)dW − KL(q(W),p(W))
I pops out a bound on evidence for free
I also called “evidence lower bound” (ELBO)
I min KL to posterior = max ELBO

I what does it mean to max ELBO?
I first term: how well we “explain the data”; if possible, q should

put all mass at MLE!
I second term: how close we are to the prior (get simplest q that

can still explain data well); if possible, q should be prior itself!

18 of 75

!

KL for approx inference

I max ∫
qθ(W) log p(Y |X ,W)dW − KL(qθ(W),p(W))

wrt θ

I which terms can we compute?
I for Gaussian prior and q, can compute KL to prior
I for Gaussian lik can compute expected log lik as well (analytic – try

this at home using tools from earlier!)
I but in more complicated likelihoods (like in classification) can’t

eval above...
I for this we’ll look at stochastic approximate inference

19 of 75

KL for approx inference

I max ∫
qθ(W) log p(Y |X ,W)dW − KL(qθ(W),p(W))

wrt θ

I which terms can we compute?
I for Gaussian prior and q, can compute KL to prior
I for Gaussian lik can compute expected log lik as well (analytic – try

this at home using tools from earlier!)
I but in more complicated likelihoods (like in classification) can’t

eval above...
I for this we’ll look at stochastic approximate inference

19 of 75

Bayesian Deep Learning

Stochastic Approximate
Inference

20 of 75

!

Classification NN

Let’s try to do a classification task

I want to get notion of epistemic uncertainty in classification

I generative story
I Nature chose function p(x) : RQ → [0,1]C

I p(x) a prob vector as a function of x
I eg p softmax func
I for n = 1..N generate label yn ∼ Categorical(p(xn))

I encode yn as a one hot vector yn (eg [0,0,1,0] with C = 4
classes and yn = 2)

21 of 75

Classification NN

Let’s try to do a classification task
I want to get notion of epistemic uncertainty in classification
I generative story

I Nature chose function p(x) : RQ → [0,1]C

I p(x) a prob vector as a function of x
I eg p softmax func
I for n = 1..N generate label yn ∼ Categorical(p(xn))

I encode yn as a one hot vector yn (eg [0,0,1,0] with C = 4
classes and yn = 2)

21 of 75

Classification NN

Let’s try to do a classification task
I want to get notion of epistemic uncertainty in classification
I generative story

I Nature chose function p(x) : RQ → [0,1]C

I p(x) a prob vector as a function of x
I eg p softmax func
I for n = 1..N generate label yn ∼ Categorical(p(xn))

I encode yn as a one hot vector yn (eg [0,0,1,0] with C = 4
classes and yn = 2)

21 of 75

Classification NN

Model:
I likelihood

I model prob func by function pW (x) with W a
K by C matrix; then lik is def’d as elem c in
prob vec

p(y = c|x ,W) = pW (x)c ,

p(Y |X ,W) =
∏

n

pW (xn)yn=c

=
∏

n

yT
n pW (xn)

I prior over W
I vectorise W (still write W instead of vec(W))
I same prior as before:

p(W) = N (W ; 0CK , s2ICK)

22 of 75

Classification NN

Model:
I likelihood

I model prob func by function pW (x) with W a
K by C matrix; then lik is def’d as elem c in
prob vec

p(y = c|x ,W) = pW (x)c ,

p(Y |X ,W) =
∏

n

pW (xn)yn=c

=
∏

n

yT
n pW (xn)

I prior over W
I vectorise W (still write W instead of vec(W))
I same prior as before:

p(W) = N (W ; 0CK , s2ICK)

22 of 75

Classification NN

Model:

I to do predictions

p(y∗|x∗,X ,Y) =

∫
p(y∗|x∗,W)p(W |X ,Y)dW

I need posterior. But product of softmax and Gaussian is not
Gaussian, so can’t use tricks from before.. for posterior need
evidence:

p(Y |X) =

∫ ∏
n

[yT
n softmax(f W (xn)1, ..f W (xn)]N(W ; 0, s2I)dW

can’t integrate/sum explicitly.. will use VI instead to approx
posterior

23 of 75

Approx inference in classification NN

I For approx inf need log lik of softmax(f1, .., fC) = [ef1

ef1 +...+efC
, ...]

log p(y = c|x ,W) = fc − log(ef1 + ...+ efC)

with [f1, ..., fC] the logits vector [wT
1 φ(x), ..,wT

Cφ(x)]

I then expected log likelihood is

L(θ) =
∑

xn,yn=c

∫ [
f W (xn)c − log

(∑
c′

ef W (xn)c′

)]
N(W ;µVI,ΣVI)dW

− KL(q,p)

with f W (x)c = wT
c φ(x)

I can’t integrate analytically either (log sum exp); need new tools...

24 of 75

Approx inference in classification NN

I For approx inf need log lik of softmax(f1, .., fC) = [ef1

ef1 +...+efC
, ...]

log p(y = c|x ,W) = fc − log(ef1 + ...+ efC)

with [f1, ..., fC] the logits vector [wT
1 φ(x), ..,wT

Cφ(x)]

I then expected log likelihood is

L(θ) =
∑

xn,yn=c

∫ [
f W (xn)c − log

(∑
c′

ef W (xn)c′

)]
N(W ;µVI,ΣVI)dW

− KL(q,p)

with f W (x)c = wT
c φ(x)

I can’t integrate analytically either (log sum exp); need new tools...

24 of 75

Approx inference in classification NN

I For approx inf need log lik of softmax(f1, .., fC) = [ef1

ef1 +...+efC
, ...]

log p(y = c|x ,W) = fc − log(ef1 + ...+ efC)

with [f1, ..., fC] the logits vector [wT
1 φ(x), ..,wT

Cφ(x)]

I then expected log likelihood is

L(θ) =
∑

xn,yn=c

∫ [
f W (xn)c − log

(∑
c′

ef W (xn)c′

)]
N(W ;µVI,ΣVI)dW

− KL(q,p)

with f W (x)c = wT
c φ(x)

I can’t integrate analytically either (log sum exp); need new tools...

24 of 75

MC integration

Useful tool to estimate expectations

I let p(x) be some dist which is easy to sample from

I let f (x) be some function of x

I assume it to be difficult to eval E := Ep[f (x)]

I can use MC integration instead:

I generate x̂1, .., x̂T ∼ p(x)

I estimate Ê := 1/T
∑

t f (x̂t)

I an estimator Ê of E is called unbiased if in expectation equals E

I Ê is an unbiased estimator of E (prove at home!)

25 of 75

!

MC integration

Useful tool to estimate expectations

I let p(x) be some dist which is easy to sample from

I let f (x) be some function of x

I assume it to be difficult to eval E := Ep[f (x)]

I can use MC integration instead:

I generate x̂1, .., x̂T ∼ p(x)

I estimate Ê := 1/T
∑

t f (x̂t)

I an estimator Ê of E is called unbiased if in expectation equals E

I Ê is an unbiased estimator of E (prove at home!)

25 of 75

!

Integral derivative estimation

I We actually need an estimator of the derivative of an integral

I let G(θ) be the gradient of L(θ); will interchangeably use

I G (grad of L)

I (L(θ))′ = derivative of L wrt θ

I ∂
∂W (θ) L(W (θ)) = derivative of L wrt W (θ)

I if had unbiased derivative estimator Ĝ(θ) (estimator of G(θ)) can
use a stochastic iterative method to optimise L(θ):

θn+1 ← θn +
1
n

Ĝ(θ)

go in direction of steepest ascent, on average
I this is called stochastic gradient descent (well, ascent here)
I SGD

26 of 75

!

Integral derivative estimation

I We actually need an estimator of the derivative of an integral

I let G(θ) be the gradient of L(θ); will interchangeably use

I G (grad of L)

I (L(θ))′ = derivative of L wrt θ

I ∂
∂W (θ) L(W (θ)) = derivative of L wrt W (θ)

I if had unbiased derivative estimator Ĝ(θ) (estimator of G(θ)) can
use a stochastic iterative method to optimise L(θ):

θn+1 ← θn +
1
n

Ĝ(θ)

go in direction of steepest ascent, on average
I this is called stochastic gradient descent (well, ascent here)
I SGD

26 of 75

!

Example of integral derivative estimation

I L(µ, σ) =
∫

(W + W 2)N(W ;µ, σ2)dW
I can actually eval analytically as L = µ+ σ2 + µ2

I so integral derivative is G(µ) = 1 + 2µ; will write G(µ) := ∂L/∂µ

I Let’s try MC integration first – L̂(Ŵ ;µ, σ) = Ŵ + Ŵ 2 with
realisations (numbers) Ŵ ∼ N (µ, σ2), so

Ĝ(µ) = ∂(Ŵ + Ŵ 2)/∂µ
?
= 0

(no µ in L̂)

I but L̂ clearly depends on µ;
I eg increasing µ increases expectation of L̂
I doesn’t look correct... what’s going on?

27 of 75

!

Example of integral derivative estimation

I L(µ, σ) =
∫

(W + W 2)N(W ;µ, σ2)dW
I can actually eval analytically as L = µ+ σ2 + µ2

I so integral derivative is G(µ) = 1 + 2µ; will write G(µ) := ∂L/∂µ

I Let’s try MC integration first – L̂(Ŵ ;µ, σ) = Ŵ + Ŵ 2 with
realisations (numbers) Ŵ ∼ N (µ, σ2), so

Ĝ(µ) = ∂(Ŵ + Ŵ 2)/∂µ
?
= 0

(no µ in L̂)

I but L̂ clearly depends on µ;
I eg increasing µ increases expectation of L̂
I doesn’t look correct... what’s going on?

27 of 75

!

Example of integral derivative estimation

I L̂ deps on µ through Ŵ ; Ŵ is actually a function of µ as well as a
rv ε̂ indep of θ:

Ŵ ∼ N (µ, σ2) ↔ Ŵ = Ŵ (θ, ε̂) = µ+σε̂; ε̂ ∼ N (0,1)

I then can rewrite L̂ as

L̂(µ, σ, ε̂) = (µ+ σε̂) + (µ+ σε̂)2 = µ+ µ2 + 2µσε̂+ σε̂+ σ2ε̂2

and
Ĝ(µ) = 1 + 2µ+ 2σε̂

I check:
Ep(ε)[Ĝ] = 1 + 2µ = G

ie Ĝ is an unbiased estimator of G

28 of 75

!

Example of integral derivative estimation

I L̂ deps on µ through Ŵ ; Ŵ is actually a function of µ as well as a
rv ε̂ indep of θ:

Ŵ ∼ N (µ, σ2) ↔ Ŵ = Ŵ (θ, ε̂) = µ+σε̂; ε̂ ∼ N (0,1)

I then can rewrite L̂ as

L̂(µ, σ, ε̂) = (µ+ σε̂) + (µ+ σε̂)2 = µ+ µ2 + 2µσε̂+ σε̂+ σ2ε̂2

and
Ĝ(µ) = 1 + 2µ+ 2σε̂

I check:
Ep(ε)[Ĝ] = 1 + 2µ = G

ie Ĝ is an unbiased estimator of G

28 of 75

!

Example of integral derivative estimation

I L̂ deps on µ through Ŵ ; Ŵ is actually a function of µ as well as a
rv ε̂ indep of θ:

Ŵ ∼ N (µ, σ2) ↔ Ŵ = Ŵ (θ, ε̂) = µ+σε̂; ε̂ ∼ N (0,1)

I then can rewrite L̂ as

L̂(µ, σ, ε̂) = (µ+ σε̂) + (µ+ σε̂)2 = µ+ µ2 + 2µσε̂+ σε̂+ σ2ε̂2

and
Ĝ(µ) = 1 + 2µ+ 2σε̂

I check:
Ep(ε)[Ĝ] = 1 + 2µ = G

ie Ĝ is an unbiased estimator of G

28 of 75

!

Reparametrisation trick

I technique known in literature as the re-parametrisation trick
I also known as a pathwise derivative estimator, infinitesimal

perturbation analysis, and stochastic backpropagation

I in general:
I given func f (W), dist qθ(W)
I want to estimate gradients of L(θ) =

∫
f (W)qθ(W)dW

I if W can be reparam as W = g(θ, ε) with ε not dependent on θ,
and g is differentiable wrt θ

I then Ĝ(θ, ε̂) = f ′(g(θ, ε̂)) · ∂g(θ, ε̂)/∂θ
I .. and plug into a stochastic optimiser

I eg, for Gaussian q...
I W = g([µ, σ], ε) = µ+ σε
I ∂g([µ, σ], ε)/∂µ = 1 and ∂g([µ, σ], ε)/∂σ = ε
I so Ĝ(ε̂;µ) = f ′(µ+ σε̂) · 1 and Ĝ(ε̂;σ) = f ′(µ+ σε̂)ε̂

I with ε̂ ∼ N (0, I)
I can substitute in Ŵ = µ+ σε̂: sample Ŵ ∼ qθ(W); then

Ĝ(Ŵ ;µ) = f ′(Ŵ) and Ĝ(Ŵ ;σ) = f ′(Ŵ)(Ŵ − µ)/σ.

29 of 75

!

Reparametrisation trick

I technique known in literature as the re-parametrisation trick
I also known as a pathwise derivative estimator, infinitesimal

perturbation analysis, and stochastic backpropagation

I in general:
I given func f (W), dist qθ(W)
I want to estimate gradients of L(θ) =

∫
f (W)qθ(W)dW

I if W can be reparam as W = g(θ, ε) with ε not dependent on θ,
and g is differentiable wrt θ

I then Ĝ(θ, ε̂) = f ′(g(θ, ε̂)) · ∂g(θ, ε̂)/∂θ
I .. and plug into a stochastic optimiser

I eg, for Gaussian q...
I W = g([µ, σ], ε) = µ+ σε
I ∂g([µ, σ], ε)/∂µ = 1 and ∂g([µ, σ], ε)/∂σ = ε
I so Ĝ(ε̂;µ) = f ′(µ+ σε̂) · 1 and Ĝ(ε̂;σ) = f ′(µ+ σε̂)ε̂

I with ε̂ ∼ N (0, I)
I can substitute in Ŵ = µ+ σε̂: sample Ŵ ∼ qθ(W); then

Ĝ(Ŵ ;µ) = f ′(Ŵ) and Ĝ(Ŵ ;σ) = f ′(Ŵ)(Ŵ − µ)/σ.

29 of 75

!

Reparametrisation trick

I technique known in literature as the re-parametrisation trick
I also known as a pathwise derivative estimator, infinitesimal

perturbation analysis, and stochastic backpropagation

I in general:
I given func f (W), dist qθ(W)
I want to estimate gradients of L(θ) =

∫
f (W)qθ(W)dW

I if W can be reparam as W = g(θ, ε) with ε not dependent on θ,
and g is differentiable wrt θ

I then Ĝ(θ, ε̂) = f ′(g(θ, ε̂)) · ∂g(θ, ε̂)/∂θ
I .. and plug into a stochastic optimiser

I eg, for Gaussian q...
I W = g([µ, σ], ε) = µ+ σε
I ∂g([µ, σ], ε)/∂µ = 1 and ∂g([µ, σ], ε)/∂σ = ε
I so Ĝ(ε̂;µ) = f ′(µ+ σε̂) · 1 and Ĝ(ε̂;σ) = f ′(µ+ σε̂)ε̂

I with ε̂ ∼ N (0, I)
I can substitute in Ŵ = µ+ σε̂: sample Ŵ ∼ qθ(W); then

Ĝ(Ŵ ;µ) = f ′(Ŵ) and Ĝ(Ŵ ;σ) = f ′(Ŵ)(Ŵ − µ)/σ.

29 of 75

!

Reparametrisation trick

I technique known in literature as the re-parametrisation trick
I also known as a pathwise derivative estimator, infinitesimal

perturbation analysis, and stochastic backpropagation

I in general:
I given func f (W), dist qθ(W)
I want to estimate gradients of L(θ) =

∫
f (W)qθ(W)dW

I if W can be reparam as W = g(θ, ε) with ε not dependent on θ,
and g is differentiable wrt θ

I then Ĝ(θ, ε̂) = f ′(g(θ, ε̂)) · ∂g(θ, ε̂)/∂θ
I .. and plug into a stochastic optimiser

I eg, for Gaussian q...
I W = g([µ, σ], ε) = µ+ σε
I ∂g([µ, σ], ε)/∂µ = 1 and ∂g([µ, σ], ε)/∂σ = ε
I so Ĝ(ε̂;µ) = f ′(µ+ σε̂) · 1 and Ĝ(ε̂;σ) = f ′(µ+ σε̂)ε̂

I with ε̂ ∼ N (0, I)
I can substitute in Ŵ = µ+ σε̂: sample Ŵ ∼ qθ(W); then

Ĝ(Ŵ ;µ) = f ′(Ŵ) and Ĝ(Ŵ ;σ) = f ′(Ŵ)(Ŵ − µ)/σ.

29 of 75

!

Reparametrisation trick

I technique known in literature as the re-parametrisation trick
I also known as a pathwise derivative estimator, infinitesimal

perturbation analysis, and stochastic backpropagation

I in general:
I given func f (W), dist qθ(W)
I want to estimate gradients of L(θ) =

∫
f (W)qθ(W)dW

I if W can be reparam as W = g(θ, ε) with ε not dependent on θ,
and g is differentiable wrt θ

I then Ĝ(θ, ε̂) = f ′(g(θ, ε̂)) · ∂g(θ, ε̂)/∂θ
I .. and plug into a stochastic optimiser

I eg, for Gaussian q...
I W = g([µ, σ], ε) = µ+ σε
I ∂g([µ, σ], ε)/∂µ = 1 and ∂g([µ, σ], ε)/∂σ = ε
I so Ĝ(ε̂;µ) = f ′(µ+ σε̂) · 1 and Ĝ(ε̂;σ) = f ′(µ+ σε̂)ε̂

I with ε̂ ∼ N (0, I)
I can substitute in Ŵ = µ+ σε̂: sample Ŵ ∼ qθ(W); then

Ĝ(Ŵ ;µ) = f ′(Ŵ) and Ĝ(Ŵ ;σ) = f ′(Ŵ)(Ŵ − µ)/σ.

29 of 75

!

Reparametrisation trick

I technique known in literature as the re-parametrisation trick
I also known as a pathwise derivative estimator, infinitesimal

perturbation analysis, and stochastic backpropagation

I in general:
I given func f (W), dist qθ(W)
I want to estimate gradients of L(θ) =

∫
f (W)qθ(W)dW

I if W can be reparam as W = g(θ, ε) with ε not dependent on θ,
and g is differentiable wrt θ

I then Ĝ(θ, ε̂) = f ′(g(θ, ε̂)) · ∂g(θ, ε̂)/∂θ
I .. and plug into a stochastic optimiser

I eg, for Gaussian q...
I W = g([µ, σ], ε) = µ+ σε
I ∂g([µ, σ], ε)/∂µ = 1 and ∂g([µ, σ], ε)/∂σ = ε
I so Ĝ(ε̂;µ) = f ′(µ+ σε̂) · 1 and Ĝ(ε̂;σ) = f ′(µ+ σε̂)ε̂

I with ε̂ ∼ N (0, I)
I can substitute in Ŵ = µ+ σε̂: sample Ŵ ∼ qθ(W); then

Ĝ(Ŵ ;µ) = f ′(Ŵ) and Ĝ(Ŵ ;σ) = f ′(Ŵ)(Ŵ − µ)/σ.

29 of 75

!

Reparametrisation trick

I technique known in literature as the re-parametrisation trick
I also known as a pathwise derivative estimator, infinitesimal

perturbation analysis, and stochastic backpropagation

I in general:
I given func f (W), dist qθ(W)
I want to estimate gradients of L(θ) =

∫
f (W)qθ(W)dW

I if W can be reparam as W = g(θ, ε) with ε not dependent on θ,
and g is differentiable wrt θ

I then Ĝ(θ, ε̂) = f ′(g(θ, ε̂)) · ∂g(θ, ε̂)/∂θ
I .. and plug into a stochastic optimiser

I eg, for Gaussian q...
I W = g([µ, σ], ε) = µ+ σε
I ∂g([µ, σ], ε)/∂µ = 1 and ∂g([µ, σ], ε)/∂σ = ε
I so Ĝ(ε̂;µ) = f ′(µ+ σε̂) · 1 and Ĝ(ε̂;σ) = f ′(µ+ σε̂)ε̂

I with ε̂ ∼ N (0, I)
I can substitute in Ŵ = µ+ σε̂: sample Ŵ ∼ qθ(W); then

Ĝ(Ŵ ;µ) = f ′(Ŵ) and Ĝ(Ŵ ;σ) = f ′(Ŵ)(Ŵ − µ)/σ.

29 of 75

!

Back to approx inference in classification NN

Remember prev ELBO which we couldn’t eval

L(θ) =
∑

xn,yn=c

∫ [
f W (xn)c − log

(∑
c′

ef W (xn)c′

)]
N(W ;µVI,ΣVI)dW

− KL(q,p)

W vectorised w dim CK by 1, so is µVI, and assume ΣVI is diagonal w
dim CK by CK

I using MC integration
I sample ε̂ ∼ N (0, ICK)
I write vecŴ (θ, ε̂) = µVI + Σ

1/2
VI ε̂

I reshape vecŴ to K by C: Ŵ (θ, ε̂)
I write f θ,ε̂(x) = f Ŵ (θ,ε̂)(x)
I giving

L̂(θ, ε̂) =
∑

xn,yn=c

f θ,ε̂(xn)c − log
(∑

c′
ef θ,ε̂(xn)c′

)
− KL(q,p)

I with Ep(ε)[L̂(θ, ε)] = L(θ), Ep(ε)[Ĝ(θ, ε)] = G(θ)

30 of 75

!

Back to approx inference in classification NN

Remember prev ELBO which we couldn’t eval

L(θ) =
∑

xn,yn=c

∫ [
f W (xn)c − log

(∑
c′

ef W (xn)c′

)]
N(W ;µVI,ΣVI)dW

− KL(q,p)

W vectorised w dim CK by 1, so is µVI, and assume ΣVI is diagonal w
dim CK by CK

I using MC integration
I sample ε̂ ∼ N (0, ICK)
I write vecŴ (θ, ε̂) = µVI + Σ

1/2
VI ε̂

I reshape vecŴ to K by C: Ŵ (θ, ε̂)
I write f θ,ε̂(x) = f Ŵ (θ,ε̂)(x)
I giving

L̂(θ, ε̂) =
∑

xn,yn=c

f θ,ε̂(xn)c − log
(∑

c′
ef θ,ε̂(xn)c′

)
− KL(q,p)

I with Ep(ε)[L̂(θ, ε)] = L(θ), Ep(ε)[Ĝ(θ, ε)] = G(θ)

30 of 75

!

Back to approx inference in classification NN

Remember prev ELBO which we couldn’t eval

L(θ) =
∑

xn,yn=c

∫ [
f W (xn)c − log

(∑
c′

ef W (xn)c′

)]
N(W ;µVI,ΣVI)dW

− KL(q,p)

W vectorised w dim CK by 1, so is µVI, and assume ΣVI is diagonal w
dim CK by CK

I using MC integration
I sample ε̂ ∼ N (0, ICK)
I write vecŴ (θ, ε̂) = µVI + Σ

1/2
VI ε̂

I reshape vecŴ to K by C: Ŵ (θ, ε̂)
I write f θ,ε̂(x) = f Ŵ (θ,ε̂)(x)
I giving

L̂(θ, ε̂) =
∑

xn,yn=c

f θ,ε̂(xn)c − log
(∑

c′
ef θ,ε̂(xn)c′

)
− KL(q,p)

I with Ep(ε)[L̂(θ, ε)] = L(θ), Ep(ε)[Ĝ(θ, ε)] = G(θ)

30 of 75

!

Back to approx inference in classification NN

31 of 75

Bayesian Deep Learning

Uncertainty in Classification

32 of 75

!

Uncertainty in classification NN

Epistemic uncertainty in classification (vs regression)

I finally have tools to get epistemic uncertainty for classification

I but quantifying uncertainty in classification is not as
straightforward as in regression...

I use various measures of uncertainty from the field of Information
Theory, which have different properties

I each capturing different uncertainty desiderata

Useful tools

I Entropy Hp(X)[X] = −
∑

outcomes x p(X = x) log p(X = x)
I high when p is uniform, 0 when one outcome is certain

I Mutual information of rvs X and Y

MI(X ,Y) = Hp(X)[X]− Ep(Y)[Hp(X |Y)[X]]

I “how much information on X we would get if we had observed Y”

33 of 75

Uncertainty in classification NN

Epistemic uncertainty in classification (vs regression)

I finally have tools to get epistemic uncertainty for classification

I but quantifying uncertainty in classification is not as
straightforward as in regression...

I use various measures of uncertainty from the field of Information
Theory, which have different properties

I each capturing different uncertainty desiderata

Useful tools

I Entropy Hp(X)[X] = −
∑

outcomes x p(X = x) log p(X = x)
I high when p is uniform, 0 when one outcome is certain

I Mutual information of rvs X and Y

MI(X ,Y) = Hp(X)[X]− Ep(Y)[Hp(X |Y)[X]]

I “how much information on X we would get if we had observed Y”

33 of 75

Uncertainty in classification NN

Epistemic uncertainty in classification (vs regression)

I finally have tools to get epistemic uncertainty for classification

I but quantifying uncertainty in classification is not as
straightforward as in regression...

I use various measures of uncertainty from the field of Information
Theory, which have different properties

I each capturing different uncertainty desiderata

Useful tools

I Entropy Hp(X)[X] = −
∑

outcomes x p(X = x) log p(X = x)
I high when p is uniform, 0 when one outcome is certain

I Mutual information of rvs X and Y

MI(X ,Y) = Hp(X)[X]− Ep(Y)[Hp(X |Y)[X]]

I “how much information on X we would get if we had observed Y”

33 of 75

Uncertainty in classification NN

A quick overview:

I Predictive Entropy
I entropy of predictive distribution p(y = y∗|x∗,D)

Hp(y∗|x∗,D)[y∗] = −
∑
y∗=c

p(y∗ = c|x∗,D) log p(y∗ = c|x∗,D)

I Mutual Information (MI)
I between model params rv W and model output rv y∗ on input x∗

MI(y∗,W |D, x∗) = Hp(y∗|x∗,D)[y∗]− Ep(W |D)[Hp(y∗|x∗,W)[y∗]]

I satisfies
0 ≤ MI[x∗] ≤ H[x∗]

34 of 75

Uncertainty in classification NN

A quick overview:

I Predictive Entropy
I entropy of predictive distribution p(y = y∗|x∗,D)

Hp(y∗|x∗,D)[y∗] = −
∑
y∗=c

p(y∗ = c|x∗,D) log p(y∗ = c|x∗,D)

I Mutual Information (MI)
I between model params rv W and model output rv y∗ on input x∗

MI(y∗,W |D, x∗) = Hp(y∗|x∗,D)[y∗]− Ep(W |D)[Hp(y∗|x∗,W)[y∗]]

I satisfies
0 ≤ MI[x∗] ≤ H[x∗]

34 of 75

Uncertainty in classification NN

Predictive entropy

Hp(y∗|x∗,D)[y∗] = −
∑
y∗=c

p(y∗ = c|x∗,D) log p(y∗ = c|x∗,D)

I MC approximation

p(y∗ = c|x∗,D) ≈ 1
T

∑
t

pŴt (x∗)c

with Ŵt ∼ qθ(W) and pŴt (x∗) = softmax(f Ŵt (x∗))

I high when predictive is near uniform

I so, high either when we have inherent ambiguity
I eg when a point x has training labels both 0 and 1
I for ambiguous input x loss is log p(x) + log(1− p(x))
I cross entropy loss minimiser (=ELBO miximiser) is to predict p = .5
I all func draws will go through (.5,.5) (ie high entropy)

I or when far away from data: eg half draws=1 and half draws=0
35 of 75

Uncertainty in classification NN

Predictive entropy

Hp(y∗|x∗,D)[y∗] = −
∑
y∗=c

p(y∗ = c|x∗,D) log p(y∗ = c|x∗,D)

I MC approximation

p(y∗ = c|x∗,D) ≈ 1
T

∑
t

pŴt (x∗)c

with Ŵt ∼ qθ(W) and pŴt (x∗) = softmax(f Ŵt (x∗))

I high when predictive is near uniform

I so, high either when we have inherent ambiguity
I eg when a point x has training labels both 0 and 1
I for ambiguous input x loss is log p(x) + log(1− p(x))
I cross entropy loss minimiser (=ELBO miximiser) is to predict p = .5
I all func draws will go through (.5,.5) (ie high entropy)

I or when far away from data: eg half draws=1 and half draws=0
35 of 75

Uncertainty in classification NN

Predictive entropy

Hp(y∗|x∗,D)[y∗] = −
∑
y∗=c

p(y∗ = c|x∗,D) log p(y∗ = c|x∗,D)

I MC approximation

p(y∗ = c|x∗,D) ≈ 1
T

∑
t

pŴt (x∗)c

with Ŵt ∼ qθ(W) and pŴt (x∗) = softmax(f Ŵt (x∗))

I high when predictive is near uniform

I so, high either when we have inherent ambiguity
I eg when a point x has training labels both 0 and 1
I for ambiguous input x loss is log p(x) + log(1− p(x))
I cross entropy loss minimiser (=ELBO miximiser) is to predict p = .5
I all func draws will go through (.5,.5) (ie high entropy)

I or when far away from data: eg half draws=1 and half draws=0
35 of 75

Uncertainty in classification NN

Mutual information

MI(y∗,W |D, x∗) = Hp(y∗|x∗,D)[y∗]− Ep(W |D)[Hp(y∗|x∗,W)[y∗]]

I MI MC approx (second term)∫
p(W |D)

∑
y∗=c

p(y∗ = c|x∗,W) log p(y∗ = c|x∗,W)dW

≈ 1
T

∑
t ,y∗=c

pŴt (x∗)c log pŴt (x∗)c

with Ŵt ∼ qθ(W)

I high only when we are far away from data
I has “second term = first term” if all func draws same for input x
I “second term = 0” when func preds are confident and all over the

place

I ie, capturing only epistemic uncertainty (vs pred ent capturing
epistemic and aleatoric uncertainty)

36 of 75

Uncertainty in classification NN

Mutual information

MI(y∗,W |D, x∗) = Hp(y∗|x∗,D)[y∗]− Ep(W |D)[Hp(y∗|x∗,W)[y∗]]

I MI MC approx (second term)∫
p(W |D)

∑
y∗=c

p(y∗ = c|x∗,W) log p(y∗ = c|x∗,W)dW

≈ 1
T

∑
t ,y∗=c

pŴt (x∗)c log pŴt (x∗)c

with Ŵt ∼ qθ(W)

I high only when we are far away from data
I has “second term = first term” if all func draws same for input x
I “second term = 0” when func preds are confident and all over the

place

I ie, capturing only epistemic uncertainty (vs pred ent capturing
epistemic and aleatoric uncertainty)

36 of 75

Uncertainty in classification NN

Predictive: p(y∗ = c|x∗,D) ≈ 1
T
∑

t pŴt (x∗)c
MI: MI(y∗,W |D, x∗) = Hp(y∗|x∗,D)[y∗]− Ep(W |D)[Hp(y∗|x∗,W)[y∗]]

37 of 75

Bayesian Deep Learning

Stochastic Approximate
Inference in Deep NN

38 of 75

!

Summary so far

I Model for regression (D outputs) / classification

I ELBO L(θ) =
∫

qθ(W)log p(Y |X ,W)dW − KL(q, prior)

I log likelihood eg
log p(Y |X ,W) = − 1

2σ2

∑
||yn − f W (xn)||22 −

N
2 log 2πσ2

I approx post eg qθ(wkd) = N(wkd ; mkd , σ
2
kd)

I KL(q, prior) =
∑

kd 1/2(s−2σ2
kd + s−2mkd

2 − 1 + log(s2/σ2
kd))

I MC integration:
I sample ε̂kd ∼ N (0,1) and write ŵkd = mkd + σkd ε̂kd , ε̂ = {ε̂kd}
I giving a K by D stochastic weight matrix: Ŵ (θ, ε̂)
I write f θ,ε̂(x) = Ŵ (θ, ε̂)Tφ(x)
I giving

L̂(θ, {ε̂n}) = − 1
2σ2

∑
xn,yn

||yn − f θ,ε̂n (xn)||22 −
N
2

log 2πσ2− 1
2s2 ||M||

2
2..

39 of 75

Summary so far

I Model for regression (D outputs) / classification

I ELBO L(θ) =
∫

qθ(W)log p(Y |X ,W)dW − KL(q, prior)

I log likelihood eg
log p(Y |X ,W) = − 1

2σ2

∑
||yn − f W (xn)||22 −

N
2 log 2πσ2

I approx post eg qθ(wkd) = N(wkd ; mkd , σ
2
kd)

I KL(q, prior) =
∑

kd 1/2(s−2σ2
kd + s−2mkd

2 − 1 + log(s2/σ2
kd))

I MC integration:
I sample ε̂kd ∼ N (0,1) and write ŵkd = mkd + σkd ε̂kd , ε̂ = {ε̂kd}
I giving a K by D stochastic weight matrix: Ŵ (θ, ε̂)
I write f θ,ε̂(x) = Ŵ (θ, ε̂)Tφ(x)
I giving

L̂(θ, {ε̂n}) = − 1
2σ2

∑
xn,yn

||yn − f θ,ε̂n (xn)||22 −
N
2

log 2πσ2− 1
2s2 ||M||

2
2..

39 of 75

Summary so far

I Model for regression (D outputs) / classification

I ELBO L(θ) =
∫

qθ(W)log p(Y |X ,W)dW − KL(q, prior)

I log likelihood eg
log p(Y |X ,W) = − 1

2σ2

∑
||yn − f W (xn)||22 −

N
2 log 2πσ2

I approx post eg qθ(wkd) = N(wkd ; mkd , σ
2
kd)

I KL(q, prior) =
∑

kd 1/2(s−2σ2
kd + s−2mkd

2 − 1 + log(s2/σ2
kd))

I MC integration:
I sample ε̂kd ∼ N (0,1) and write ŵkd = mkd + σkd ε̂kd , ε̂ = {ε̂kd}
I giving a K by D stochastic weight matrix: Ŵ (θ, ε̂)
I write f θ,ε̂(x) = Ŵ (θ, ε̂)Tφ(x)
I giving

L̂(θ, {ε̂n}) = − 1
2σ2

∑
xn,yn

||yn − f θ,ε̂n (xn)||22 −
N
2

log 2πσ2− 1
2s2 ||M||

2
2..

39 of 75

Summary so far

I Model for regression (D outputs) / classification

I ELBO L(θ) =
∫

qθ(W)log p(Y |X ,W)dW − KL(q, prior)

I log likelihood eg
log p(Y |X ,W) = − 1

2σ2

∑
||yn − f W (xn)||22 −

N
2 log 2πσ2

I approx post eg qθ(wkd) = N(wkd ; mkd , σ
2
kd)

I KL(q, prior) =
∑

kd 1/2(s−2σ2
kd + s−2mkd

2 − 1 + log(s2/σ2
kd))

I MC integration:
I sample ε̂kd ∼ N (0,1) and write ŵkd = mkd + σkd ε̂kd , ε̂ = {ε̂kd}
I giving a K by D stochastic weight matrix: Ŵ (θ, ε̂)
I write f θ,ε̂(x) = Ŵ (θ, ε̂)Tφ(x)
I giving

L̂(θ, {ε̂n}) = − 1
2σ2

∑
xn,yn

||yn − f θ,ε̂n (xn)||22 −
N
2

log 2πσ2− 1
2s2 ||M||

2
2..

39 of 75

Summary so far

I Model for regression (D outputs) / classification

I ELBO L(θ) =
∫

qθ(W)log p(Y |X ,W)dW − KL(q, prior)

I log likelihood eg
log p(Y |X ,W) = − 1

2σ2

∑
||yn − f W (xn)||22 −

N
2 log 2πσ2

I approx post eg qθ(wkd) = N(wkd ; mkd , σ
2
kd)

I KL(q, prior) =
∑

kd 1/2(s−2σ2
kd + s−2mkd

2 − 1 + log(s2/σ2
kd))

I MC integration:
I sample ε̂kd ∼ N (0,1) and write ŵkd = mkd + σkd ε̂kd , ε̂ = {ε̂kd}
I giving a K by D stochastic weight matrix: Ŵ (θ, ε̂)
I write f θ,ε̂(x) = Ŵ (θ, ε̂)Tφ(x)
I giving

L̂(θ, {ε̂n}) = − 1
2σ2

∑
xn,yn

||yn − f θ,ε̂n (xn)||22 −
N
2

log 2πσ2− 1
2s2 ||M||

2
2..

39 of 75

Stochastic VI in deep models

I until now we only did inference over W (last layer weights)

I because doing inference on preceding layers was too challenging
(intractable / non-conjugate)

I but with our new techniques we can easily extend to W ,b of all
layers in model (denoted ω)

I these models (where all layers have dists over) are known as
Bayesian neural networks (BNNs)

I X of dim N by Q (and Y of dim N by D)
I W 1 of dim Q by K, b1 dim K
I W 2 of dim K by D, b2 dim D
I φ elem-wise non-linearity
I ω = {W 1,W 2,b1,b2}
I fω(x) = φ(xT W 1 + b1)W 2 + b2

note: could be a deep net with thousands of layers
I Long history (Hopfield [1987] → LeCun [1991] → MacKay [1992]
→ Hinton [1993] → Neal [1995] → Barber and Bishop [1998])

40 of 75

Stochastic VI in deep models

I until now we only did inference over W (last layer weights)

I because doing inference on preceding layers was too challenging
(intractable / non-conjugate)

I but with our new techniques we can easily extend to W ,b of all
layers in model (denoted ω)

I these models (where all layers have dists over) are known as
Bayesian neural networks (BNNs)

I X of dim N by Q (and Y of dim N by D)
I W 1 of dim Q by K, b1 dim K
I W 2 of dim K by D, b2 dim D
I φ elem-wise non-linearity
I ω = {W 1,W 2,b1,b2}
I fω(x) = φ(xT W 1 + b1)W 2 + b2

note: could be a deep net with thousands of layers
I Long history (Hopfield [1987] → LeCun [1991] → MacKay [1992]
→ Hinton [1993] → Neal [1995] → Barber and Bishop [1998])

40 of 75

Stochastic VI in deep models

I until now we only did inference over W (last layer weights)

I because doing inference on preceding layers was too challenging
(intractable / non-conjugate)

I but with our new techniques we can easily extend to W ,b of all
layers in model (denoted ω)

I these models (where all layers have dists over) are known as
Bayesian neural networks (BNNs)

I X of dim N by Q (and Y of dim N by D)
I W 1 of dim Q by K, b1 dim K
I W 2 of dim K by D, b2 dim D
I φ elem-wise non-linearity
I ω = {W 1,W 2,b1,b2}
I fω(x) = φ(xT W 1 + b1)W 2 + b2

note: could be a deep net with thousands of layers
I Long history (Hopfield [1987] → LeCun [1991] → MacKay [1992]
→ Hinton [1993] → Neal [1995] → Barber and Bishop [1998])

40 of 75

Stochastic VI in deep models

BNNs
I model

I as before, but swap W 1,W 2, fω instead of W and f W

I approx inference
I log likelihood – same
I approx post – Gaussians w means {m1

qk ,m
2
kd} and stds {σ1

qk , σ
2
kd}

KL to prior KL(q(W 1,W 2),p) = KL(q(W 1),p) + KL(q(W 2),p)
I ELBO

Ŵ 1
qk = m1

qk + σ1
qk ε̂

1
qk

Ŵ 2
kd = m2

kd + σ2
kd ε̂

2
kd

with ε̂1qk , ε̂
2
kd ∼ N (0,1) and ε̂ = {ε̂1qk , ε̂

2
kd}

I swap f θ,ε̂(x) = Ŵ (θ, ε̂)Tφ(x) with

f θ,ε̂(x) = φ(xT Ŵ 1(θ, ε̂) + b1)Ŵ 2(θ, ε̂) + b2

and plug into L̂(θ, {ε̂n}).
I Proposed as MDL from compression literature [Graves, 2011], in

Bayesian modelling known as mean-field variational inference
(MFVI); Also referred to as Bayes by Backprop [Blundell, 2015].

41 of 75

Stochastic VI in deep models

BNNs
I model

I as before, but swap W 1,W 2, fω instead of W and f W

I approx inference
I log likelihood – same
I approx post – Gaussians w means {m1

qk ,m
2
kd} and stds {σ1

qk , σ
2
kd}

KL to prior KL(q(W 1,W 2),p) = KL(q(W 1),p) + KL(q(W 2),p)
I ELBO

Ŵ 1
qk = m1

qk + σ1
qk ε̂

1
qk

Ŵ 2
kd = m2

kd + σ2
kd ε̂

2
kd

with ε̂1qk , ε̂
2
kd ∼ N (0,1) and ε̂ = {ε̂1qk , ε̂

2
kd}

I swap f θ,ε̂(x) = Ŵ (θ, ε̂)Tφ(x) with

f θ,ε̂(x) = φ(xT Ŵ 1(θ, ε̂) + b1)Ŵ 2(θ, ε̂) + b2

and plug into L̂(θ, {ε̂n}).
I Proposed as MDL from compression literature [Graves, 2011], in

Bayesian modelling known as mean-field variational inference
(MFVI); Also referred to as Bayes by Backprop [Blundell, 2015].

41 of 75

Stochastic VI in deep models

BNNs
I model

I as before, but swap W 1,W 2, fω instead of W and f W

I approx inference
I log likelihood – same
I approx post – Gaussians w means {m1

qk ,m
2
kd} and stds {σ1

qk , σ
2
kd}

KL to prior KL(q(W 1,W 2),p) = KL(q(W 1),p) + KL(q(W 2),p)
I ELBO

Ŵ 1
qk = m1

qk + σ1
qk ε̂

1
qk

Ŵ 2
kd = m2

kd + σ2
kd ε̂

2
kd

with ε̂1qk , ε̂
2
kd ∼ N (0,1) and ε̂ = {ε̂1qk , ε̂

2
kd}

I swap f θ,ε̂(x) = Ŵ (θ, ε̂)Tφ(x) with

f θ,ε̂(x) = φ(xT Ŵ 1(θ, ε̂) + b1)Ŵ 2(θ, ε̂) + b2

and plug into L̂(θ, {ε̂n}).
I Proposed as MDL from compression literature [Graves, 2011], in

Bayesian modelling known as mean-field variational inference
(MFVI); Also referred to as Bayes by Backprop [Blundell, 2015].

41 of 75

Stochastic VI in deep models

BNNs
I model

I as before, but swap W 1,W 2, fω instead of W and f W

I approx inference
I log likelihood – same
I approx post – Gaussians w means {m1

qk ,m
2
kd} and stds {σ1

qk , σ
2
kd}

KL to prior KL(q(W 1,W 2),p) = KL(q(W 1),p) + KL(q(W 2),p)
I ELBO

Ŵ 1
qk = m1

qk + σ1
qk ε̂

1
qk

Ŵ 2
kd = m2

kd + σ2
kd ε̂

2
kd

with ε̂1qk , ε̂
2
kd ∼ N (0,1) and ε̂ = {ε̂1qk , ε̂

2
kd}

I swap f θ,ε̂(x) = Ŵ (θ, ε̂)Tφ(x) with

f θ,ε̂(x) = φ(xT Ŵ 1(θ, ε̂) + b1)Ŵ 2(θ, ε̂) + b2

and plug into L̂(θ, {ε̂n}).
I Proposed as MDL from compression literature [Graves, 2011], in

Bayesian modelling known as mean-field variational inference
(MFVI); Also referred to as Bayes by Backprop [Blundell, 2015].

41 of 75

Stochastic VI in deep models

BNNs
I model

I as before, but swap W 1,W 2, fω instead of W and f W

I approx inference
I log likelihood – same
I approx post – Gaussians w means {m1

qk ,m
2
kd} and stds {σ1

qk , σ
2
kd}

KL to prior KL(q(W 1,W 2),p) = KL(q(W 1),p) + KL(q(W 2),p)
I ELBO

Ŵ 1
qk = m1

qk + σ1
qk ε̂

1
qk

Ŵ 2
kd = m2

kd + σ2
kd ε̂

2
kd

with ε̂1qk , ε̂
2
kd ∼ N (0,1) and ε̂ = {ε̂1qk , ε̂

2
kd}

I swap f θ,ε̂(x) = Ŵ (θ, ε̂)Tφ(x) with

f θ,ε̂(x) = φ(xT Ŵ 1(θ, ε̂) + b1)Ŵ 2(θ, ε̂) + b2

and plug into L̂(θ, {ε̂n}).
I Proposed as MDL from compression literature [Graves, 2011], in

Bayesian modelling known as mean-field variational inference
(MFVI); Also referred to as Bayes by Backprop [Blundell, 2015].

41 of 75

Inference in Very Large Deep Models

Issue with above...

I when we use large models we usually use 10s-100s of millions of
params – models as big as can fit on GPU

I when using Gaussian approx we need at least two params for each
NN weight

I doubling num of params... so having to reduce model size by 2!

I can we scale the ideas above to very large models?

42 of 75

Bayesian Deep Learning

Inference in Very Large
Deep Models

43 of 75

!

Stochastic regularisation as approx inference

Stochastic regularisation

I lots of techniques in deep learning inject noise into large models to
help with regularisation

I eg dropout (but lots of others which mostly work the same)
I at training time, randomly set network

units to zero with prob p (Bern)

I call this “stochastic forward pass”

I at test time multiply each unit by
1/(1− p) and do not drop

I call this “deterministic forward pass”

I noise is added to units (feature space)

I implemented in every deep learning
framework (from TF/PyTorch to
TensorRT for embedded devices)

44 of 75

Stochastic regularisation as approx inference

Stochastic regularisation

I lots of techniques in deep learning inject noise into large models to
help with regularisation

I eg dropout (but lots of others which mostly work the same)
I at training time, randomly set network

units to zero with prob p (Bern)

I call this “stochastic forward pass”

I at test time multiply each unit by
1/(1− p) and do not drop

I call this “deterministic forward pass”

I noise is added to units (feature space)

I implemented in every deep learning
framework (from TF/PyTorch to
TensorRT for embedded devices)

44 of 75

Stochastic regularisation as approx inference

Stochastic regularisation

I lots of techniques in deep learning inject noise into large models to
help with regularisation

I eg dropout (but lots of others which mostly work the same)
I at training time, randomly set network

units to zero with prob p (Bern)

I call this “stochastic forward pass”

I at test time multiply each unit by
1/(1− p) and do not drop

I call this “deterministic forward pass”

I noise is added to units (feature space)

I implemented in every deep learning
framework (from TF/PyTorch to
TensorRT for embedded devices)

44 of 75

Stochastic regularisation as approx inference

Stochastic regularisation

I lots of techniques in deep learning inject noise into large models to
help with regularisation

I eg dropout (but lots of others which mostly work the same)
I at training time, randomly set network

units to zero with prob p (Bern)

I call this “stochastic forward pass”

I at test time multiply each unit by
1/(1− p) and do not drop

I call this “deterministic forward pass”

I noise is added to units (feature space)

I implemented in every deep learning
framework (from TF/PyTorch to
TensorRT for embedded devices)

44 of 75

Stochastic regularisation as approx inference

Stochastic regularisation

I lots of techniques in deep learning inject noise into large models to
help with regularisation

I eg dropout (but lots of others which mostly work the same)
I at training time, randomly set network

units to zero with prob p (Bern)

I call this “stochastic forward pass”

I at test time multiply each unit by
1/(1− p) and do not drop

I call this “deterministic forward pass”

I noise is added to units (feature space)

I implemented in every deep learning
framework (from TF/PyTorch to
TensorRT for embedded devices)

44 of 75

Stochastic VI in deep models

45 of 75

Feature space noise to weight space

I Can transform noise to param (weight) space

ŷ =

(
φ
[
(x ε̂1)M1 + b1]ε̂2)M2 + b2

= φ
[
x(ε̂1M1) + b1](ε̂2M2) + b2

writing Ŵ 1 := ε̂1M1 and Ŵ 2 := ε̂2M2 gives

ŷ = φ(xŴ 1 + b1)Ŵ 2 + b2 = f ω̂(x)

with ω̂ = {Ŵ 1, Ŵ 2}

I so at training time dropout samples weights matrices... looks v
familiar!

I let’s see if we can make this connection more formal

I develop approx inf in BNNs with a new approx dist...

46 of 75

Feature space noise to weight space

I Can transform noise to param (weight) space

ŷ =

(
φ
[
(x ε̂1)M1 + b1]ε̂2)M2 + b2

= φ
[
x(ε̂1M1) + b1](ε̂2M2) + b2

writing Ŵ 1 := ε̂1M1 and Ŵ 2 := ε̂2M2 gives

ŷ = φ(xŴ 1 + b1)Ŵ 2 + b2 = f ω̂(x)

with ω̂ = {Ŵ 1, Ŵ 2}

I so at training time dropout samples weights matrices... looks v
familiar!

I let’s see if we can make this connection more formal

I develop approx inf in BNNs with a new approx dist...

46 of 75

Feature space noise to weight space

I model
I prior - same
I lik - same

I approx inference
I approx dist qθ(W 1) = M1ε with εqq = Bernoulli(p1) and zero

otherwise, and θ = {M1,p1,M2,p2}

KL(q,p) ≈ 1− p1

2s2 ||M
1||22−QH(p1)+

1− p2

2s2 ||M
2||22−KH(p2)+const

I ELBO

L̂(θ, {ε̂n}) = − 1
2σ2

∑
xn,yn

||yn − f θ,ε̂n (xn)||22 −
N
2

log 2πσ2−1− p1

2s2 ||M
1||22..

with f θ,ε̂n (xn) a dropout stochastic forward pass
I can rewrite as min obj (multiply by −2σ2/N)

J =
1
N

∑
n

||yn − ŷn||22 + λ1||M1||22 + λ2||M2||22 + const

with ŷn = f θ,ε̂n (xn) and defining λ1 = σ2 1−p1

s2N ..

47 of 75

Feature space noise to weight space

I model
I prior - same
I lik - same

I approx inference
I approx dist qθ(W 1) = M1ε with εqq = Bernoulli(p1) and zero

otherwise, and θ = {M1,p1,M2,p2}

KL(q,p) ≈ 1− p1

2s2 ||M
1||22−QH(p1)+

1− p2

2s2 ||M
2||22−KH(p2)+const

I ELBO

L̂(θ, {ε̂n}) = − 1
2σ2

∑
xn,yn

||yn − f θ,ε̂n (xn)||22 −
N
2

log 2πσ2−1− p1

2s2 ||M
1||22..

with f θ,ε̂n (xn) a dropout stochastic forward pass
I can rewrite as min obj (multiply by −2σ2/N)

J =
1
N

∑
n

||yn − ŷn||22 + λ1||M1||22 + λ2||M2||22 + const

with ŷn = f θ,ε̂n (xn) and defining λ1 = σ2 1−p1

s2N ..

47 of 75

Feature space noise to weight space

I model
I prior - same
I lik - same

I approx inference
I approx dist qθ(W 1) = M1ε with εqq = Bernoulli(p1) and zero

otherwise, and θ = {M1,p1,M2,p2}

KL(q,p) ≈ 1− p1

2s2 ||M
1||22−QH(p1)+

1− p2

2s2 ||M
2||22−KH(p2)+const

I ELBO

L̂(θ, {ε̂n}) = − 1
2σ2

∑
xn,yn

||yn − f θ,ε̂n (xn)||22 −
N
2

log 2πσ2−1− p1

2s2 ||M
1||22..

with f θ,ε̂n (xn) a dropout stochastic forward pass
I can rewrite as min obj (multiply by −2σ2/N)

J =
1
N

∑
n

||yn − ŷn||22 + λ1||M1||22 + λ2||M2||22 + const

with ŷn = f θ,ε̂n (xn) and defining λ1 = σ2 1−p1

s2N ..

47 of 75

Feature space noise to weight space

I model
I prior - same
I lik - same

I approx inference
I approx dist qθ(W 1) = M1ε with εqq = Bernoulli(p1) and zero

otherwise, and θ = {M1,p1,M2,p2}

KL(q,p) ≈ 1− p1

2s2 ||M
1||22−QH(p1)+

1− p2

2s2 ||M
2||22−KH(p2)+const

I ELBO

L̂(θ, {ε̂n}) = − 1
2σ2

∑
xn,yn

||yn − f θ,ε̂n (xn)||22 −
N
2

log 2πσ2−1− p1

2s2 ||M
1||22..

with f θ,ε̂n (xn) a dropout stochastic forward pass
I can rewrite as min obj (multiply by −2σ2/N)

J =
1
N

∑
n

||yn − ŷn||22 + λ1||M1||22 + λ2||M2||22 + const

with ŷn = f θ,ε̂n (xn) and defining λ1 = σ2 1−p1

s2N ..

47 of 75

Feature space noise to weight space

I This is the standard dropout objective

I ie any standard NN in which you use dropout, you can view as a
BNN

I note: need to tune p as a variational param
I can’t diff wrt p (used in Bern in obj; can’t use reparam trick..)
I but when you do grid search over p on a validation set, use

L̂(θ, {ε̂n}) to select p which max ELBO or validation log predictive
I Can also use continuous relaxation for dropout (see Concrete

Dropout, 2017)

I Example:

48 of 75

Feature space noise to weight space

I This is the standard dropout objective

I ie any standard NN in which you use dropout, you can view as a
BNN

I note: need to tune p as a variational param
I can’t diff wrt p (used in Bern in obj; can’t use reparam trick..)
I but when you do grid search over p on a validation set, use

L̂(θ, {ε̂n}) to select p which max ELBO or validation log predictive
I Can also use continuous relaxation for dropout (see Concrete

Dropout, 2017)

I Example:

48 of 75

Feature space noise to weight space

I This is the standard dropout objective

I ie any standard NN in which you use dropout, you can view as a
BNN

I note: need to tune p as a variational param
I can’t diff wrt p (used in Bern in obj; can’t use reparam trick..)
I but when you do grid search over p on a validation set, use

L̂(θ, {ε̂n}) to select p which max ELBO or validation log predictive
I Can also use continuous relaxation for dropout (see Concrete

Dropout, 2017)

I Example:

48 of 75

Feature space noise to weight space

I This is the standard dropout objective

I ie any standard NN in which you use dropout, you can view as a
BNN

I note: need to tune p as a variational param
I can’t diff wrt p (used in Bern in obj; can’t use reparam trick..)
I but when you do grid search over p on a validation set, use

L̂(θ, {ε̂n}) to select p which max ELBO or validation log predictive
I Can also use continuous relaxation for dropout (see Concrete

Dropout, 2017)

I Example:

48 of 75

Dropout uncertainty example

Define model and train on data x train, y train:

1 from tensorflow.keras.layers import Input, Dense, Dropout
2 from tf.keras.regularizers import l2
3

4 reg = sigma**2 * (1-p) / (s**2 * N)
5

6 inputs = Input(shape=(512,))
7 x = Dense(1024, activation="relu",
8 kernel_regularizer=l2(reg))(inputs)
9 x = Dropout(p)(x, training=True)

10 x = Dense(1024, activation="relu",
11 kernel_regularizer=l2(reg))(x)
12 x = Dropout(p)(x, training=True)
13 outputs = Dense(1, kernel_regularizer=l2(reg))(x)
14

15 model = tf.keras.Model(inputs, outputs)
16 model.compile(loss="mean_squared_error",
17 optimizer="adam")
18 model.fit(x_train, y_train)

49 of 75

!

Epistemic uncertainty in regression BNNs

Using MC estimators can estimate epistemic uncertainty in BNNs
almost trivially...

I predictive mean
I

Ep(y∗|x∗,D)[y∗] ≈
1
T

∑
t

f ω̂t (x)

with ω̂t ∼ qθ(ω).
ie, average multiple stochastic forward passes

I predictive variance
I again, collect some stochastic forward passes...

Varp(y∗|x∗,D)[y∗] = Ep(y∗|x∗,D)[(y∗)2]− Ep(y∗|x∗,D)[y∗]2

≈ σ2 +
1
T

∑
t

f ω̂t (x)2 −
(

1
T

∑
t

f ω̂t (x)

)2

50 of 75

!

Epistemic uncertainty in regression BNNs

Using MC estimators can estimate epistemic uncertainty in BNNs
almost trivially...

I predictive mean
I

Ep(y∗|x∗,D)[y∗] ≈
1
T

∑
t

f ω̂t (x)

with ω̂t ∼ qθ(ω).
ie, average multiple stochastic forward passes

I predictive variance
I again, collect some stochastic forward passes...

Varp(y∗|x∗,D)[y∗] = Ep(y∗|x∗,D)[(y∗)2]− Ep(y∗|x∗,D)[y∗]2

≈ σ2 +
1
T

∑
t

f ω̂t (x)2 −
(

1
T

∑
t

f ω̂t (x)

)2

50 of 75

!

Epistemic uncertainty in regression BNNs

51 of 75

!

Epistemic uncertainty in regression BNNs

51 of 75

!

Example

Do stochastic forward passes on x test:

1 num_MC_samples = 100
2 MC_samples = [model.predict(x_test)
3 for _ in range(num_MC_samples)]

Predictive mean

1 np.mean(MC_samples, axis=0)

Predictive variance

1 sigma**2 + np.var(MC_samples, axis=0)

52 of 75

!

How to visualise BNNs?

A useful tool for debugging

I sample from weights ω ∼ p(ω|D) = function sample fω(·)

I evaluate over interval [−10,10]

I eg:
I sample ω and def fω(·)
I for each xi in {−10,−9.95,−9.9, ...,9.9,9.95,10}

I evaluate yi = fω(xi) and plot (xi , yi)

I note: if using dropout inference, use same dropout mask for all
inputs x

I Visualisation: bdl101.ml/vis

53 of 75

!

http://bdl101.ml/vis

How to visualise BNNs?

A useful tool for debugging

I sample from weights ω ∼ p(ω|D) = function sample fω(·)

I evaluate over interval [−10,10]

I eg:
I sample ω and def fω(·)
I for each xi in {−10,−9.95,−9.9, ...,9.9,9.95,10}

I evaluate yi = fω(xi) and plot (xi , yi)

I note: if using dropout inference, use same dropout mask for all
inputs x

I Visualisation: bdl101.ml/vis

53 of 75

!

http://bdl101.ml/vis

How to visualise BNNs?

A useful tool for debugging

I sample from weights ω ∼ p(ω|D) = function sample fω(·)

I evaluate over interval [−10,10]

I eg:
I sample ω and def fω(·)
I for each xi in {−10,−9.95,−9.9, ...,9.9,9.95,10}

I evaluate yi = fω(xi) and plot (xi , yi)

I note: if using dropout inference, use same dropout mask for all
inputs x

I Visualisation: bdl101.ml/vis

53 of 75

!

http://bdl101.ml/vis

Bayesian Deep Learning

Real-world Applications of
Model Uncertainty

54 of 75

!

Small data big models

I we use machine learning to aid experts working
in laborious fields

I automate small parts of the expert’s work
I eg melanoma (cancer) diagnosis based on

lesion images

I but deep learning often requires large amounts
of labelled data

I increases with the complexity of problem
I complexity of the input data
I eg image inputs require large models
I hundreds of gigabytes in ImageNet

I sometimes can’t afford to label huge data...
I eg automating lesion image analysis
I would require expert to spend expensive time

annotating large number of lesion images (for
every cancer type of interest)

I instead, could use active learning
55 of 75

Small data big models

I we use machine learning to aid experts working
in laborious fields

I automate small parts of the expert’s work
I eg melanoma (cancer) diagnosis based on

lesion images

I but deep learning often requires large amounts
of labelled data

I increases with the complexity of problem
I complexity of the input data
I eg image inputs require large models
I hundreds of gigabytes in ImageNet

I sometimes can’t afford to label huge data...
I eg automating lesion image analysis
I would require expert to spend expensive time

annotating large number of lesion images (for
every cancer type of interest)

I instead, could use active learning
55 of 75

Small data big models

I we use machine learning to aid experts working
in laborious fields

I automate small parts of the expert’s work
I eg melanoma (cancer) diagnosis based on

lesion images

I but deep learning often requires large amounts
of labelled data

I increases with the complexity of problem
I complexity of the input data
I eg image inputs require large models
I hundreds of gigabytes in ImageNet

I sometimes can’t afford to label huge data...
I eg automating lesion image analysis
I would require expert to spend expensive time

annotating large number of lesion images (for
every cancer type of interest)

I instead, could use active learning
55 of 75

Small data big models

I we use machine learning to aid experts working
in laborious fields

I automate small parts of the expert’s work
I eg melanoma (cancer) diagnosis based on

lesion images

I but deep learning often requires large amounts
of labelled data

I increases with the complexity of problem
I complexity of the input data
I eg image inputs require large models
I hundreds of gigabytes in ImageNet

I sometimes can’t afford to label huge data...
I eg automating lesion image analysis
I would require expert to spend expensive time

annotating large number of lesion images (for
every cancer type of interest)

I instead, could use active learning
55 of 75

Principles of active learning

I active learning
I agent chooses which unlabelled data is most informative
I asks external “oracle” (eg human annotator) for a label only for that
I acquisition function: ranks points based on their potential

informativeness
I eg, epistemic uncertainty

56 of 75

!

MNIST active learning

1 ...
2 model.compile(loss="categorical_crossentropy",
3 optimizer="adam")
4 model.fit(x_train, y_train)
5 MC_samples = [model.predict(x_test) for _ in range(20)]

Need uncertainty for classification...
57 of 75

!

MNIST active learning

1 ...
2 model.compile(loss="categorical_crossentropy",
3 optimizer="adam")
4 model.fit(x_train, y_train)
5 MC_samples = [model.predict(x_test) for _ in range(20)]

Predictive entropy

p(y∗ = c|x∗,D) ≈ 1
T

∑
t

pŴt (x∗)c

Hp(y∗|x∗,D)[y∗] = −
∑
y∗=c

p(y∗ = c|x∗,D) log p(y∗ = c|x∗,D)

1 expected_p = np.mean(MC_samples, axis=0)
2 predictive_entropy = -np.sum(expected_p *
3 np.log(expected_p), axis=-1)

58 of 75

!

MNIST active learning

1 ...
2 model.compile(loss="categorical_crossentropy",
3 optimizer="adam")
4 model.fit(x_train, y_train)
5 MC_samples = [model.predict(x_test) for _ in range(20)]

Mutual information (epistemic uncertainty)

MI(y∗,W |D, x∗) = Hp(y∗|x∗,D)[y∗]− 1
T

∑
t ,y∗=c

pŴt (x∗)c log pŴt (x∗)c

1 MC_entropy = np.sum(MC_samples * np.log(MC_samples),
2 axis=-1)
3 expected_entropy = -np.mean(MC_entropy, axis=0)
4 mi = predictive_entropy - expected_entropy

59 of 75

!

Active learning applications

MNIST with only 1,000 images (instead of 60,000)

0 100 200 300 400 500 600 700 800 900 1000
80

82

84

86

88

90

92

94

96

98

100

BALD
Deterministic BALD

60 of 75

Active learning applications

Melanoma diagnosis with 300 images

acquired positive examples vs. acquisition

60 of 75

Diabetes retinopathy diagnostics

I goal is to detect diabetes, and be able to tell when model is
guessing at random

I used to pre-screen patients, send only patients with high
uncertainty to expert

61 of 75

Quality of uncertainty measures

How to tell if uncertainty is good or bad?

I define a binary event: ‘is diabetes?’; group test set inputs by
prediction ‘yes’/‘no’ vs label ‘yes’/‘no’

I each corresponds to one of TP, FP, FN, TN

I TPR and FPR are rates of TP and FP
I TPR = sensitivity = recall = TP / (TP + FN) = 1 - FNR
I TNR = specificity = TN / (TN + FP) = 1 - FPR
I FPR = FP / (TN + FP) = 1 - specificity

I want TPR to be high, FPR to be low

I usually given reqs what’s the worst we’re allowed to perform in
order to deploy system

I eg TPR=0.7 and FPR=0.1

62 of 75

!

Quality of uncertainty measures

How to tell if uncertainty is good or bad?

I define a binary event: ‘is diabetes?’; group test set inputs by
prediction ‘yes’/‘no’ vs label ‘yes’/‘no’

I each corresponds to one of TP, FP, FN, TN

I TPR and FPR are rates of TP and FP
I TPR = sensitivity = recall = TP / (TP + FN) = 1 - FNR
I TNR = specificity = TN / (TN + FP) = 1 - FPR
I FPR = FP / (TN + FP) = 1 - specificity

I want TPR to be high, FPR to be low

I usually given reqs what’s the worst we’re allowed to perform in
order to deploy system

I eg TPR=0.7 and FPR=0.1

62 of 75

!

Quality of uncertainty measures

How to tell if uncertainty is good or bad?

I define a binary event: ‘is diabetes?’; group test set inputs by
prediction ‘yes’/‘no’ vs label ‘yes’/‘no’

I each corresponds to one of TP, FP, FN, TN

I TPR and FPR are rates of TP and FP
I TPR = sensitivity = recall = TP / (TP + FN) = 1 - FNR
I TNR = specificity = TN / (TN + FP) = 1 - FPR
I FPR = FP / (TN + FP) = 1 - specificity

I want TPR to be high, FPR to be low

I usually given reqs what’s the worst we’re allowed to perform in
order to deploy system

I eg TPR=0.7 and FPR=0.1

62 of 75

!

Quality of uncertainty measures

How to tell if uncertainty is good or bad?

I define a binary event: ‘is diabetes?’; group test set inputs by
prediction ‘yes’/‘no’ vs label ‘yes’/‘no’

I each corresponds to one of TP, FP, FN, TN

I TPR and FPR are rates of TP and FP
I TPR = sensitivity = recall = TP / (TP + FN) = 1 - FNR
I TNR = specificity = TN / (TN + FP) = 1 - FPR
I FPR = FP / (TN + FP) = 1 - specificity

I want TPR to be high, FPR to be low

I usually given reqs what’s the worst we’re allowed to perform in
order to deploy system

I eg TPR=0.7 and FPR=0.1

62 of 75

!

Quality of uncertainty measures

How to tell if uncertainty is good or bad?

I define a binary event: ‘is diabetes?’; group test set inputs by
prediction ‘yes’/‘no’ vs label ‘yes’/‘no’

I each corresponds to one of TP, FP, FN, TN

I TPR and FPR are rates of TP and FP
I TPR = sensitivity = recall = TP / (TP + FN) = 1 - FNR
I TNR = specificity = TN / (TN + FP) = 1 - FPR
I FPR = FP / (TN + FP) = 1 - specificity

I want TPR to be high, FPR to be low

I usually given reqs what’s the worst we’re allowed to perform in
order to deploy system

I eg TPR=0.7 and FPR=0.1

62 of 75

!

Quality of uncertainty measures

I model outputs a predictive prob p(y |x ,D); how do we get a
recommendation ‘yes’/‘no’?

I easiest is to take argmax
I but what if model outputs 0.51? is this a ‘yes’?

I def a threshold t

I if predictive prob is higher than t then say ‘yes’ otherwise say ‘no’
I for t = 0 says ‘yes’ to all, ie FN=TN=0, and model has

TPR=1,FPR=1
I for t = 1 says ‘no’ to all, ie TP=FP=0 and model has TPR=0,

FPR=0

I each threshold t gives us a pair (FPR, TPR)

I scatter points for all t (or some discrete steps t)

I this is an ROC plot

63 of 75

!

Quality of uncertainty measures

I model outputs a predictive prob p(y |x ,D); how do we get a
recommendation ‘yes’/‘no’?

I easiest is to take argmax
I but what if model outputs 0.51? is this a ‘yes’?

I def a threshold t

I if predictive prob is higher than t then say ‘yes’ otherwise say ‘no’
I for t = 0 says ‘yes’ to all, ie FN=TN=0, and model has

TPR=1,FPR=1
I for t = 1 says ‘no’ to all, ie TP=FP=0 and model has TPR=0,

FPR=0

I each threshold t gives us a pair (FPR, TPR)

I scatter points for all t (or some discrete steps t)

I this is an ROC plot

63 of 75

!

Quality of uncertainty measures

I model outputs a predictive prob p(y |x ,D); how do we get a
recommendation ‘yes’/‘no’?

I easiest is to take argmax
I but what if model outputs 0.51? is this a ‘yes’?

I def a threshold t

I if predictive prob is higher than t then say ‘yes’ otherwise say ‘no’
I for t = 0 says ‘yes’ to all, ie FN=TN=0, and model has

TPR=1,FPR=1
I for t = 1 says ‘no’ to all, ie TP=FP=0 and model has TPR=0,

FPR=0

I each threshold t gives us a pair (FPR, TPR)

I scatter points for all t (or some discrete steps t)

I this is an ROC plot

63 of 75

!

Quality of uncertainty measures

I model outputs a predictive prob p(y |x ,D); how do we get a
recommendation ‘yes’/‘no’?

I easiest is to take argmax
I but what if model outputs 0.51? is this a ‘yes’?

I def a threshold t

I if predictive prob is higher than t then say ‘yes’ otherwise say ‘no’
I for t = 0 says ‘yes’ to all, ie FN=TN=0, and model has

TPR=1,FPR=1
I for t = 1 says ‘no’ to all, ie TP=FP=0 and model has TPR=0,

FPR=0

I each threshold t gives us a pair (FPR, TPR)

I scatter points for all t (or some discrete steps t)

I this is an ROC plot

63 of 75

!

Quality of uncertainty measures

I model outputs a predictive prob p(y |x ,D); how do we get a
recommendation ‘yes’/‘no’?

I easiest is to take argmax
I but what if model outputs 0.51? is this a ‘yes’?

I def a threshold t

I if predictive prob is higher than t then say ‘yes’ otherwise say ‘no’
I for t = 0 says ‘yes’ to all, ie FN=TN=0, and model has

TPR=1,FPR=1
I for t = 1 says ‘no’ to all, ie TP=FP=0 and model has TPR=0,

FPR=0

I each threshold t gives us a pair (FPR, TPR)

I scatter points for all t (or some discrete steps t)

I this is an ROC plot

63 of 75

!

Quality of uncertainty measures

I model outputs a predictive prob p(y |x ,D); how do we get a
recommendation ‘yes’/‘no’?

I easiest is to take argmax
I but what if model outputs 0.51? is this a ‘yes’?

I def a threshold t

I if predictive prob is higher than t then say ‘yes’ otherwise say ‘no’
I for t = 0 says ‘yes’ to all, ie FN=TN=0, and model has

TPR=1,FPR=1
I for t = 1 says ‘no’ to all, ie TP=FP=0 and model has TPR=0,

FPR=0

I each threshold t gives us a pair (FPR, TPR)

I scatter points for all t (or some discrete steps t)

I this is an ROC plot

63 of 75

!

Quality of uncertainty measures

64 of 75

!

Quality of uncertainty measures

I ROC shows tradeoff between TPR and FPR

I each point on the plot corresponds to a choice of t which will give
that tradeoff

I aim: find a model which gives highest Area Under Curve (AUC)
I allows for better tradeoffs generally
I but not always

I how can we improve AUC? one solution:
I identify patients for which you are guessing at random (uncertain)
I select 10% patients you are most uncertain about and remove from

test set (send to expert)
I plot ROC for remaining 90% test set patients
I if uncertainty correlates to patients you were mistaken on, ROC

should improve (higher AUC)

65 of 75

!

Quality of uncertainty measures

I ROC shows tradeoff between TPR and FPR

I each point on the plot corresponds to a choice of t which will give
that tradeoff

I aim: find a model which gives highest Area Under Curve (AUC)
I allows for better tradeoffs generally
I but not always

I how can we improve AUC? one solution:
I identify patients for which you are guessing at random (uncertain)
I select 10% patients you are most uncertain about and remove from

test set (send to expert)
I plot ROC for remaining 90% test set patients
I if uncertainty correlates to patients you were mistaken on, ROC

should improve (higher AUC)

65 of 75

!

Quality of uncertainty measures

I ROC shows tradeoff between TPR and FPR

I each point on the plot corresponds to a choice of t which will give
that tradeoff

I aim: find a model which gives highest Area Under Curve (AUC)
I allows for better tradeoffs generally
I but not always

I how can we improve AUC? one solution:
I identify patients for which you are guessing at random (uncertain)
I select 10% patients you are most uncertain about and remove from

test set (send to expert)
I plot ROC for remaining 90% test set patients
I if uncertainty correlates to patients you were mistaken on, ROC

should improve (higher AUC)

65 of 75

!

Quality of uncertainty measures

I ROC shows tradeoff between TPR and FPR

I each point on the plot corresponds to a choice of t which will give
that tradeoff

I aim: find a model which gives highest Area Under Curve (AUC)
I allows for better tradeoffs generally
I but not always

I how can we improve AUC? one solution:
I identify patients for which you are guessing at random (uncertain)
I select 10% patients you are most uncertain about and remove from

test set (send to expert)
I plot ROC for remaining 90% test set patients
I if uncertainty correlates to patients you were mistaken on, ROC

should improve (higher AUC)

65 of 75

!

Quality of uncertainty measures

Send patients to expert diagnosis if model is uncertain

I use some uncertainty metric to refuse to diagnose a patient if
model is uncertain

I what uncertainty measure?
I MI would be high for far away points but will keep ambiguous

points in test set
I (points for which expert annotation in dataset was noisy)
I expected entropy would be high for both far away inputs (entropy
≥ MI) and ambiguous inputs

I → use expected entropy

I can we improve tradeoff by sending a small number of patients to
an expert in a real-world system?

66 of 75

!

Quality of uncertainty measures

Send patients to expert diagnosis if model is uncertain

I use some uncertainty metric to refuse to diagnose a patient if
model is uncertain

I what uncertainty measure?
I MI would be high for far away points but will keep ambiguous

points in test set
I (points for which expert annotation in dataset was noisy)
I expected entropy would be high for both far away inputs (entropy
≥ MI) and ambiguous inputs

I → use expected entropy

I can we improve tradeoff by sending a small number of patients to
an expert in a real-world system?

66 of 75

!

Quality of uncertainty measures

Send patients to expert diagnosis if model is uncertain

I use some uncertainty metric to refuse to diagnose a patient if
model is uncertain

I what uncertainty measure?
I MI would be high for far away points but will keep ambiguous

points in test set
I (points for which expert annotation in dataset was noisy)
I expected entropy would be high for both far away inputs (entropy
≥ MI) and ambiguous inputs

I → use expected entropy

I can we improve tradeoff by sending a small number of patients to
an expert in a real-world system?

66 of 75

!

Quality of uncertainty measures

Send patients to expert diagnosis if model is uncertain

I use some uncertainty metric to refuse to diagnose a patient if
model is uncertain

I what uncertainty measure?
I MI would be high for far away points but will keep ambiguous

points in test set
I (points for which expert annotation in dataset was noisy)
I expected entropy would be high for both far away inputs (entropy
≥ MI) and ambiguous inputs

I → use expected entropy

I can we improve tradeoff by sending a small number of patients to
an expert in a real-world system?

66 of 75

!

Quality of uncertainty measures

67 of 75

!

Quality of uncertainty measures

Another measure of uncertainty performance
I plot accuracy as a function of % retained data, as sending more

and more patients to an expert
I 100% retain data = original accuracy on full dataset
I 10% retain data = accuracy after removing 90% patients with

highest uncertainty

68 of 75

!

Quality of uncertainty measures

Another measure of uncertainty performance
I plot accuracy as a function of % retained data, as sending more

and more patients to an expert
I 100% retain data = original accuracy on full dataset
I 10% retain data = accuracy after removing 90% patients with

highest uncertainty

68 of 75

!

Quality of uncertainty measures

Another measure of uncertainty performance
I plot accuracy as a function of % retained data, as sending more

and more patients to an expert
I 100% retain data = original accuracy on full dataset
I 10% retain data = accuracy after removing 90% patients with

highest uncertainty

68 of 75

!

Autonomous driving

We’ll be looking at semantic segmentation

I input: image in RGB space

I output: image in semantic space

I each pixel is mapped to semantic class (eg road, sky, car,
pedestrian) based on its context (near by pixels)

69 of 75

!

DeepLab

I one of the SOTA NNs for semantic segmentation is DeepLab

I uses atrous (dilated) convolutions (has ‘holes’)
I widen field of view over the input feature maps without increasing

parameters or pooling

I uses encoder-decoder architectures
I upsampling replicates pixels then applies eg 1x1 conv which doesn’t

reduce dim

I can be applied to any base network (‘backbone’) as long as it is
fully convolutional (ie no fully connected layers)

70 of 75

!

DeepLab

I one of the SOTA NNs for semantic segmentation is DeepLab

I uses atrous (dilated) convolutions (has ‘holes’)
I widen field of view over the input feature maps without increasing

parameters or pooling

I uses encoder-decoder architectures
I upsampling replicates pixels then applies eg 1x1 conv which doesn’t

reduce dim

I can be applied to any base network (‘backbone’) as long as it is
fully convolutional (ie no fully connected layers)

70 of 75

!

DeepLab

I one of the SOTA NNs for semantic segmentation is DeepLab

I uses atrous (dilated) convolutions (has ‘holes’)
I widen field of view over the input feature maps without increasing

parameters or pooling

I uses encoder-decoder architectures
I upsampling replicates pixels then applies eg 1x1 conv which doesn’t

reduce dim

I can be applied to any base network (‘backbone’) as long as it is
fully convolutional (ie no fully connected layers)

70 of 75

!

DeepLab

I one of the SOTA NNs for semantic segmentation is DeepLab

I uses atrous (dilated) convolutions (has ‘holes’)
I widen field of view over the input feature maps without increasing

parameters or pooling

I uses encoder-decoder architectures
I upsampling replicates pixels then applies eg 1x1 conv which doesn’t

reduce dim

I can be applied to any base network (‘backbone’) as long as it is
fully convolutional (ie no fully connected layers)

70 of 75

!

Backbone

I Popular deep CNNs backbones
I VGG-16
I ResNet101
I Xception

neurohive.io/

I ResNet

I layer def
I solves the issue of “diminishing gradient” in deep nets (bounding

eigenvalues from below)
I can use hundreds of layers - seems to improve results the more

layers you use

neurohive.io/

71 of 75

!

Backbone

I Popular deep CNNs backbones
I VGG-16
I ResNet101
I Xception

I ResNet
I layer def
I solves the issue of “diminishing gradient” in deep nets (bounding

eigenvalues from below)
I can use hundreds of layers - seems to improve results the more

layers you use

71 of 75

!!

Backbone

I Popular deep CNNs backbones
I VGG-16
I ResNet101
I Xception

I ResNet
I layer def
I solves the issue of “diminishing gradient” in deep nets (bounding

eigenvalues from below)
I can use hundreds of layers - seems to improve results the more

layers you use

71 of 75

!!

Xception

We use Xception

I architecture has simplicity of VGG with multiple convolution layers
stacked on top of one another

I Xception modules use skip connections similar to ResNet but
between blocks

I works well empirically

72 of 75

!

Uncertainties in segmentation

I we have a classification problem with H by W softmax outputs
(categorical variable for each pixel)

I model loss: sum of cross entropy (log likelihoods) for each pixel

I can use standard tools for uncertainty in classification (per pixel)

I and look at epistemic and aleatoric uncertainty maps

73 of 75

!

More applications

74 of 75

More applications

74 of 75

More applications

74 of 75

More applications

74 of 75

More applications

74 of 75

What you should be able to do now

I use uncertainty in regression correctly

I perform predictions in simple probabilistic models efficiently

I use Bayesian modelling in complex ML models (eg classification)

I use uncertainty (both epistemic and aleatoric) in real world models

I extend VI correctly to complex models
I try to extend to new likelihoods like Laplace
I try to extend to multiple outputs: categorical and continuous

outputs

I do deep learning with small amounts of data
I do try this at home!

I evaluate whether your uncertainty makes sense

I (somewhat) understand how huge deep vision systems work

75 of 75

