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Previous Lecture

Previously..

I Bayesian probabilistic modelling of functions

I Analytical inference of W (mean)
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Contents

Today:

I Uncertainty over functions (and decomposing uncertainty)

I Scaling ideas up (approximate inference)

I Scaling up even more (stochastic approximate inference)

I Uncertainty in shallow classification models

I Stochastic approximate inference in deep NN

I Inference in very large deep models

I Real-world applications of model uncertainty
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Bayesian deep learning

All resources (including these slides): bdl101.ml
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Bayesian Deep Learning

Uncertainty over Functions
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Reminder

Model

I prior
p(wk ,d ) = N (wk ,d ; 0, s2); W ∈ RK×D

I likelihood

p(Y|X,W ) =
∏

n

N (yn; f W (xn), σ2); f W (x) = W Tφ(x)

I with φ(x) a K dim feature vector

Posterior

p(W |X ,Y ) = N (W ;µ′,Σ′)

Σ′ = (σ−2Φ(X )T Φ(X ) + s−2IK )−1

µ′ = Σ′σ−2Φ(X )T Y

Predictive

p(y∗|x∗,X ,Y ) = N (y∗;µ′Tφ(x∗), ?)
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Predictive
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Decomposing uncertainty

p(y∗|x∗,X ,Y ) = N (y∗;µ′Tφ(x∗),

σ2 + φ(x∗)T Σ′φ(x∗))
Uncertainty has two components:

I σ2 – from likelihood

I φ(x∗)T Σ′φ(x∗) – from posterior
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Aleatoric uncertainty

I first term in predictive uncertainty
σ2 + φ(x∗)T Σ′φ(x∗)

I same as likelihood σ2 – obs noise /
corrupting additive noise eg measurement
error

I can be found via MLE rather than
assume known in advance (we’ll see later)

I from Latin aleator ‘dice player’, from alea
‘die’

I roll a pair of dice again and again – will
not reduce uncertainty
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Epistemic uncertainty

I second term in predictive uncertainty σ2 + φ(x∗)T Σ′φ(x∗)

I uncertainty over function values before noise corruption

f ∗ = W Tφ(x∗)

Varp(f∗|x∗,X ,Y )[f ∗] = φ(x∗)T Σ′φ(x∗)

I high for x∗ “far away” from the data, even in noiseless case (ie
likelihood noise is zero)

I will diminish given label for x∗

I from Ancient Greek episteme ‘knowledge, understanding’
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Bayesian Deep Learning

Approximate Inference
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Approximate variational inference

I to evaluate predictive need to invert post cov matrix – a K by K
matrix

I difficult when K is large...

I instead, let’s try to approximate posterior w a simpler dist to allow
easier computations

I in approx inference we approx posterior p(W |X ,Y ) w a different
dist qθ(W ) param by theta

I q also called “variational distribution”
I θ also called “variational params”
I technique is also known as “variational inference (VI)”

I eg q Gaussian w params θ = {µVI,ΣVI}
I qθ(W ) = N (W ;µVI,ΣVI)
I often omit θ from subscript to avoid clutter, write q(W ) or q
I often swap θ for µ,Σ back and forth
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Underlying principle of VI

I eg: I have posterior p(W |X ,Y ) = N (0,1); I give you 2 approx
dists

q1(W ) = N (1,1), q2(W ) = N (10,1)

I which would you choose?
I the one that gives best preds?
I will fail: best preds are at µ = µMLE,Σ = 0

I need some measure of how “similar” dists are to posterior...
I choose a measure of “similarity” between dists D̃ (not necessarily a

distance!)
I then min whatever measure we commit to
I ie if D̃(q1, posterior) < D̃(q2, posterior) then the core principle of VI

says that q1 should be chosen over q2
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dists

q1(W ) = N (0,2), q2(W ) = N (0,10)

I which would you choose? and now?
I the one that gives best preds?
I will fail: best preds are at µ = µMLE,Σ = 0
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I choose a measure of “similarity” between dists D̃ (not necessarily a

distance!)
I then min whatever measure we commit to
I ie if D̃(q1, posterior) < D̃(q2, posterior) then the core principle of VI

says that q1 should be chosen over q2

12 of 75



Underlying principle of VI

I eg: I have posterior p(W |X ,Y ) = N (0,1); I give you 2 approx
dists

q1(W ) = N (10,1), q2(W ) = N (0,10)

I which would you choose? and now? ... and now?
I the one that gives best preds?
I will fail: best preds are at µ = µMLE,Σ = 0

I need some measure of how “similar” dists are to posterior...
I choose a measure of “similarity” between dists D̃ (not necessarily a

distance!)
I then min whatever measure we commit to
I ie if D̃(q1, posterior) < D̃(q2, posterior) then the core principle of VI

says that q1 should be chosen over q2

12 of 75



Underlying principle of VI

I eg: I have posterior p(W |X ,Y ) = N (0,1); I give you 2 approx
dists

q1(W ) = N (10,1), q2(W ) = N (0,10)

I which would you choose? and now? ... and now?
I the one that gives best preds?
I will fail: best preds are at µ = µMLE,Σ = 0

I need some measure of how “similar” dists are to posterior...
I choose a measure of “similarity” between dists D̃ (not necessarily a

distance!)
I then min whatever measure we commit to
I ie if D̃(q1, posterior) < D̃(q2, posterior) then the core principle of VI

says that q1 should be chosen over q2

12 of 75



Underlying principle of VI

I D̃(q1, posterior) < D̃(q2, posterior) → q1 should be chosen over
q2

I what if we have two divergences D̃1 and D̃2, one saying to select q1
and the other q2?

! a difference to full Bayesian inference... (where there’s only one way
of doing things ‘correctly’)

I “from dogmatic Bayes to pragmatic Bayes”;

I often choose D̃ that is mathematically convenient

I eg Kullback Leibler

KL(q,p) =

∫
q(x) log

q(x)

p(x)
dx
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KL properties (eg w discrete distributions)

I K dim discrete prob vectors q, p: KL(q,p) =
∑

k qk log qk/pk

I when the two dists are the same we get exactly 0

I when the two dists are different the divergence is positive

I KL is not symmetric

I if qk is zero it is ignored in KL

I whenever qk > 0 it must be that pk > 0 for the KL to be finite

I Homework: find examples for all properties; eg
q = [1/8,3/8,4/8], p = [3/8,4/8,1/8];
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KL for cnts rvs

What if we want to approx cnts rv like W ?

I q(x) = N(x ;µ0, s2
0), p(x) = N(x ;µ1, s2

1); KL for Gaussians:

KL(q,p) = 1/2(s−2
1 s2

0 + s−2
1 (µ1 − µ0)2 − 1 + log(s2

1/s
2
0))

I nice property: if X1 and X2 are independent under p and q then

KL(q(X1,X2),p(X1,X2)) = KL(q(X1),p(X1)) + KL(q(X2),p(X2))

I multivariate diagonal Gaussians (K dims):
write x = [x1, .., xK ]

q(x) = N (x;µ0,S0) with S0 = diag([s2
01, ..., s

2
0K ])

p(x) = N (x;µ1,S1) with S1 = diag([s2
11, ..., s

2
1K ])

Then from indep of x1, .., xK :

KL(q,p) =
∑

k

1/2(s−2
1k s2

0k + s−2
1k (µ1k −µ0k )2−1 + log(s2

1k/s
2
0k ))
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KL for approx inference

I want to approx p(W |X ,Y ) using some qθ(W )

I min
KL(qθ(W ),p(W |X ,Y ))

wrt θ (remember def KL(q,p) =
∫

q(x) log q(x)
p(x) dx )
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KL for approx inference
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KL for approx inference

I want to approx p(W |X ,Y ) using some qθ(W )

I min
KL(qθ(W ),p(W |X ,Y ))

wrt θ (remember def KL(q,p) =
∫

q(x) log q(x)
p(x) dx )

I log p(Y |X ) ≥
∫

q(W ) log p(Y |X ,W )dW − KL(q(W ),p(W ))
I pops out a bound on evidence for free
I also called “evidence lower bound” (ELBO)
I min KL to posterior = max ELBO

I what does it mean to max ELBO?
I first term: how well we “explain the data”; if possible, q should

put all mass at MLE!
I second term: how close we are to the prior (get simplest q that

can still explain data well); if possible, q should be prior itself!
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KL for approx inference

I max ∫
qθ(W ) log p(Y |X ,W )dW − KL(qθ(W ),p(W ))

wrt θ

I which terms can we compute?
I for Gaussian prior and q, can compute KL to prior
I for Gaussian lik can compute expected log lik as well (analytic – try

this at home using tools from earlier!)
I but in more complicated likelihoods (like in classification) can’t

eval above...
I for this we’ll look at stochastic approximate inference
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Bayesian Deep Learning

Stochastic Approximate
Inference
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Classification NN

Let’s try to do a classification task

I want to get notion of epistemic uncertainty in classification

I generative story
I Nature chose function p(x) : RQ → [0,1]C

I p(x) a prob vector as a function of x
I eg p softmax func
I for n = 1..N generate label yn ∼ Categorical(p(xn))

I encode yn as a one hot vector yn (eg [0,0,1,0] with C = 4
classes and yn = 2)
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Classification NN

Model:
I likelihood

I model prob func by function pW (x) with W a
K by C matrix; then lik is def’d as elem c in
prob vec

p(y = c|x ,W ) = pW (x)c ,

p(Y |X ,W ) =
∏

n

pW (xn)yn=c

=
∏

n

yT
n pW (xn)

I prior over W
I vectorise W (still write W instead of vec(W ))
I same prior as before:

p(W ) = N (W ; 0CK , s2ICK )
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Classification NN

Model:

I to do predictions

p(y∗|x∗,X ,Y ) =

∫
p(y∗|x∗,W )p(W |X ,Y )dW

I need posterior. But product of softmax and Gaussian is not
Gaussian, so can’t use tricks from before.. for posterior need
evidence:

p(Y |X ) =

∫ ∏
n

[yT
n softmax(f W (xn)1, ..f W (xn)]N(W ; 0, s2I)dW

can’t integrate/sum explicitly.. will use VI instead to approx
posterior
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Approx inference in classification NN

I For approx inf need log lik of softmax(f1, .., fC) = [ ef1

ef1 +...+efC
, ...]

log p(y = c|x ,W ) = fc − log(ef1 + ...+ efC )

with [f1, ..., fC ] the logits vector [wT
1 φ(x), ..,wT

Cφ(x)]

I then expected log likelihood is

L(θ) =
∑

xn,yn=c

∫ [
f W (xn)c − log

(∑
c′

ef W (xn)c′

)]
N(W ;µVI,ΣVI)dW

− KL(q,p)

with f W (x)c = wT
c φ(x)

I can’t integrate analytically either (log sum exp); need new tools...

24 of 75



Approx inference in classification NN

I For approx inf need log lik of softmax(f1, .., fC) = [ ef1

ef1 +...+efC
, ...]

log p(y = c|x ,W ) = fc − log(ef1 + ...+ efC )

with [f1, ..., fC ] the logits vector [wT
1 φ(x), ..,wT

Cφ(x)]

I then expected log likelihood is

L(θ) =
∑

xn,yn=c

∫ [
f W (xn)c − log

(∑
c′

ef W (xn)c′

)]
N(W ;µVI,ΣVI)dW

− KL(q,p)

with f W (x)c = wT
c φ(x)

I can’t integrate analytically either (log sum exp); need new tools...

24 of 75



Approx inference in classification NN

I For approx inf need log lik of softmax(f1, .., fC) = [ ef1

ef1 +...+efC
, ...]

log p(y = c|x ,W ) = fc − log(ef1 + ...+ efC )

with [f1, ..., fC ] the logits vector [wT
1 φ(x), ..,wT

Cφ(x)]

I then expected log likelihood is

L(θ) =
∑

xn,yn=c

∫ [
f W (xn)c − log

(∑
c′

ef W (xn)c′

)]
N(W ;µVI,ΣVI)dW

− KL(q,p)

with f W (x)c = wT
c φ(x)

I can’t integrate analytically either (log sum exp); need new tools...

24 of 75



MC integration

Useful tool to estimate expectations

I let p(x) be some dist which is easy to sample from

I let f (x) be some function of x

I assume it to be difficult to eval E := Ep[f (x)]

I can use MC integration instead:

I generate x̂1, .., x̂T ∼ p(x)

I estimate Ê := 1/T
∑

t f (x̂t )

I an estimator Ê of E is called unbiased if in expectation equals E

I Ê is an unbiased estimator of E (prove at home!)
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Integral derivative estimation

I We actually need an estimator of the derivative of an integral

I let G(θ) be the gradient of L(θ); will interchangeably use

I G (grad of L)

I (L(θ))′ = derivative of L wrt θ

I ∂
∂W (θ) L(W (θ)) = derivative of L wrt W (θ)

I if had unbiased derivative estimator Ĝ(θ) (estimator of G(θ)) can
use a stochastic iterative method to optimise L(θ):

θn+1 ← θn +
1
n

Ĝ(θ)

go in direction of steepest ascent, on average
I this is called stochastic gradient descent (well, ascent here)
I SGD
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Example of integral derivative estimation

I L(µ, σ) =
∫

(W + W 2)N(W ;µ, σ2)dW
I can actually eval analytically as L = µ+ σ2 + µ2

I so integral derivative is G(µ) = 1 + 2µ; will write G(µ) := ∂L/∂µ

I Let’s try MC integration first – L̂(Ŵ ;µ, σ) = Ŵ + Ŵ 2 with
realisations (numbers) Ŵ ∼ N (µ, σ2), so

Ĝ(µ) = ∂(Ŵ + Ŵ 2)/∂µ
?
= 0

(no µ in L̂)

I but L̂ clearly depends on µ;
I eg increasing µ increases expectation of L̂
I doesn’t look correct... what’s going on?
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Example of integral derivative estimation

I L̂ deps on µ through Ŵ ; Ŵ is actually a function of µ as well as a
rv ε̂ indep of θ:

Ŵ ∼ N (µ, σ2) ↔ Ŵ = Ŵ (θ, ε̂) = µ+σε̂; ε̂ ∼ N (0,1)

I then can rewrite L̂ as

L̂(µ, σ, ε̂) = (µ+ σε̂) + (µ+ σε̂)2 = µ+ µ2 + 2µσε̂+ σε̂+ σ2ε̂2

and
Ĝ(µ) = 1 + 2µ+ 2σε̂

I check:
Ep(ε)[Ĝ] = 1 + 2µ = G

ie Ĝ is an unbiased estimator of G
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Ep(ε)[Ĝ] = 1 + 2µ = G
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Reparametrisation trick

I technique known in literature as the re-parametrisation trick
I also known as a pathwise derivative estimator, infinitesimal

perturbation analysis, and stochastic backpropagation

I in general:
I given func f (W ), dist qθ(W )
I want to estimate gradients of L(θ) =

∫
f (W )qθ(W )dW

I if W can be reparam as W = g(θ, ε) with ε not dependent on θ,
and g is differentiable wrt θ

I then Ĝ(θ, ε̂) = f ′(g(θ, ε̂)) · ∂g(θ, ε̂)/∂θ
I .. and plug into a stochastic optimiser

I eg, for Gaussian q...
I W = g([µ, σ], ε) = µ+ σε
I ∂g([µ, σ], ε)/∂µ = 1 and ∂g([µ, σ], ε)/∂σ = ε
I so Ĝ(ε̂;µ) = f ′(µ+ σε̂) · 1 and Ĝ(ε̂;σ) = f ′(µ+ σε̂)ε̂

I with ε̂ ∼ N (0, I)
I can substitute in Ŵ = µ+ σε̂: sample Ŵ ∼ qθ(W ); then

Ĝ(Ŵ ;µ) = f ′(Ŵ ) and Ĝ(Ŵ ;σ) = f ′(Ŵ )(Ŵ − µ)/σ.
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29 of 75

!



Reparametrisation trick

I technique known in literature as the re-parametrisation trick
I also known as a pathwise derivative estimator, infinitesimal

perturbation analysis, and stochastic backpropagation

I in general:
I given func f (W ), dist qθ(W )
I want to estimate gradients of L(θ) =

∫
f (W )qθ(W )dW

I if W can be reparam as W = g(θ, ε) with ε not dependent on θ,
and g is differentiable wrt θ
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Back to approx inference in classification NN

Remember prev ELBO which we couldn’t eval

L(θ) =
∑

xn,yn=c

∫ [
f W (xn)c − log

(∑
c′

ef W (xn)c′

)]
N(W ;µVI,ΣVI)dW

− KL(q,p)

W vectorised w dim CK by 1, so is µVI, and assume ΣVI is diagonal w
dim CK by CK

I using MC integration
I sample ε̂ ∼ N (0, ICK )
I write vecŴ (θ, ε̂) = µVI + Σ

1/2
VI ε̂

I reshape vecŴ to K by C: Ŵ (θ, ε̂)
I write f θ,ε̂(x) = f Ŵ (θ,ε̂)(x)
I giving

L̂(θ, ε̂) =
∑

xn,yn=c

f θ,ε̂(xn)c − log
(∑

c′
ef θ,ε̂(xn)c′

)
− KL(q,p)

I with Ep(ε)[L̂(θ, ε)] = L(θ), Ep(ε)[Ĝ(θ, ε)] = G(θ)
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Back to approx inference in classification NN
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Bayesian Deep Learning

Uncertainty in Classification
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Uncertainty in classification NN

Epistemic uncertainty in classification (vs regression)

I finally have tools to get epistemic uncertainty for classification

I but quantifying uncertainty in classification is not as
straightforward as in regression...

I use various measures of uncertainty from the field of Information
Theory, which have different properties

I each capturing different uncertainty desiderata

Useful tools

I Entropy Hp(X)[X ] = −
∑

outcomes x p(X = x) log p(X = x)
I high when p is uniform, 0 when one outcome is certain

I Mutual information of rvs X and Y

MI(X ,Y ) = Hp(X)[X ]− Ep(Y )[Hp(X |Y )[X ]]

I “how much information on X we would get if we had observed Y”
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Uncertainty in classification NN

A quick overview:

I Predictive Entropy
I entropy of predictive distribution p(y = y∗|x∗,D)

Hp(y∗|x∗,D)[y∗] = −
∑
y∗=c

p(y∗ = c|x∗,D) log p(y∗ = c|x∗,D)

I Mutual Information (MI)
I between model params rv W and model output rv y∗ on input x∗

MI(y∗,W |D, x∗) = Hp(y∗|x∗,D)[y∗]− Ep(W |D)[Hp(y∗|x∗,W )[y∗]]

I satisfies
0 ≤ MI[x∗] ≤ H[x∗]
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Uncertainty in classification NN

Predictive entropy

Hp(y∗|x∗,D)[y∗] = −
∑
y∗=c

p(y∗ = c|x∗,D) log p(y∗ = c|x∗,D)

I MC approximation

p(y∗ = c|x∗,D) ≈ 1
T

∑
t

pŴt (x∗)c

with Ŵt ∼ qθ(W ) and pŴt (x∗) = softmax(f Ŵt (x∗))

I high when predictive is near uniform

I so, high either when we have inherent ambiguity
I eg when a point x has training labels both 0 and 1
I for ambiguous input x loss is log p(x) + log(1− p(x))
I cross entropy loss minimiser (=ELBO miximiser) is to predict p = .5
I all func draws will go through (.5,.5) (ie high entropy)

I or when far away from data: eg half draws=1 and half draws=0
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Uncertainty in classification NN

Mutual information

MI(y∗,W |D, x∗) = Hp(y∗|x∗,D)[y∗]− Ep(W |D)[Hp(y∗|x∗,W )[y∗]]

I MI MC approx (second term)∫
p(W |D)

∑
y∗=c

p(y∗ = c|x∗,W ) log p(y∗ = c|x∗,W )dW

≈ 1
T

∑
t ,y∗=c

pŴt (x∗)c log pŴt (x∗)c

with Ŵt ∼ qθ(W )

I high only when we are far away from data
I has “second term = first term” if all func draws same for input x
I “second term = 0” when func preds are confident and all over the

place

I ie, capturing only epistemic uncertainty (vs pred ent capturing
epistemic and aleatoric uncertainty)
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Uncertainty in classification NN

Predictive: p(y∗ = c|x∗,D) ≈ 1
T
∑

t pŴt (x∗)c
MI: MI(y∗,W |D, x∗) = Hp(y∗|x∗,D)[y∗]− Ep(W |D)[Hp(y∗|x∗,W )[y∗]]
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Bayesian Deep Learning

Stochastic Approximate
Inference in Deep NN

38 of 75

!



Summary so far

I Model for regression (D outputs) / classification

I ELBO L(θ) =
∫

qθ(W )log p(Y |X ,W )dW − KL(q, prior)

I log likelihood eg
log p(Y |X ,W ) = − 1

2σ2

∑
||yn − f W (xn)||22 −

N
2 log 2πσ2

I approx post eg qθ(wkd ) = N(wkd ; mkd , σ
2
kd )

I KL(q, prior) =
∑

kd 1/2(s−2σ2
kd + s−2mkd

2 − 1 + log(s2/σ2
kd ))

I MC integration:
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Stochastic VI in deep models

I until now we only did inference over W (last layer weights)

I because doing inference on preceding layers was too challenging
(intractable / non-conjugate)

I but with our new techniques we can easily extend to W ,b of all
layers in model (denoted ω)

I these models (where all layers have dists over) are known as
Bayesian neural networks (BNNs)

I X of dim N by Q (and Y of dim N by D)
I W 1 of dim Q by K, b1 dim K
I W 2 of dim K by D, b2 dim D
I φ elem-wise non-linearity
I ω = {W 1,W 2,b1,b2}
I fω(x) = φ(xT W 1 + b1)W 2 + b2

note: could be a deep net with thousands of layers
I Long history (Hopfield [1987] → LeCun [1991] → MacKay [1992]
→ Hinton [1993] → Neal [1995] → Barber and Bishop [1998])
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Stochastic VI in deep models

BNNs
I model

I as before, but swap W 1,W 2, fω instead of W and f W

I approx inference
I log likelihood – same
I approx post – Gaussians w means {m1

qk ,m
2
kd} and stds {σ1

qk , σ
2
kd}

KL to prior KL(q(W 1,W 2),p) = KL(q(W 1),p) + KL(q(W 2),p)
I ELBO

Ŵ 1
qk = m1

qk + σ1
qk ε̂

1
qk

Ŵ 2
kd = m2

kd + σ2
kd ε̂

2
kd

with ε̂1qk , ε̂
2
kd ∼ N (0,1) and ε̂ = {ε̂1qk , ε̂

2
kd}

I swap f θ,ε̂(x) = Ŵ (θ, ε̂)Tφ(x) with

f θ,ε̂(x) = φ(xT Ŵ 1(θ, ε̂) + b1)Ŵ 2(θ, ε̂) + b2

and plug into L̂(θ, {ε̂n}).
I Proposed as MDL from compression literature [Graves, 2011], in

Bayesian modelling known as mean-field variational inference
(MFVI); Also referred to as Bayes by Backprop [Blundell, 2015].
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Inference in Very Large Deep Models

Issue with above...

I when we use large models we usually use 10s-100s of millions of
params – models as big as can fit on GPU

I when using Gaussian approx we need at least two params for each
NN weight

I doubling num of params... so having to reduce model size by 2!

I can we scale the ideas above to very large models?
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Stochastic regularisation as approx inference

Stochastic regularisation

I lots of techniques in deep learning inject noise into large models to
help with regularisation

I eg dropout (but lots of others which mostly work the same)
I at training time, randomly set network

units to zero with prob p (Bern)

I call this “stochastic forward pass”

I at test time multiply each unit by
1/(1− p) and do not drop

I call this “deterministic forward pass”

I noise is added to units (feature space)

I implemented in every deep learning
framework (from TF/PyTorch to
TensorRT for embedded devices)
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Stochastic VI in deep models
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Feature space noise to weight space

I Can transform noise to param (weight) space

ŷ =

(
φ
[
(x ε̂1)M1 + b1]ε̂2)M2 + b2

= φ
[
x(ε̂1M1) + b1](ε̂2M2) + b2

writing Ŵ 1 := ε̂1M1 and Ŵ 2 := ε̂2M2 gives

ŷ = φ(xŴ 1 + b1)Ŵ 2 + b2 = f ω̂(x)

with ω̂ = {Ŵ 1, Ŵ 2}

I so at training time dropout samples weights matrices... looks v
familiar!

I let’s see if we can make this connection more formal

I develop approx inf in BNNs with a new approx dist...
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Feature space noise to weight space

I model
I prior - same
I lik - same

I approx inference
I approx dist qθ(W 1) = M1ε with εqq = Bernoulli(p1) and zero

otherwise, and θ = {M1,p1,M2,p2}

KL(q,p) ≈ 1− p1

2s2 ||M
1||22−QH(p1)+

1− p2

2s2 ||M
2||22−KH(p2)+const

I ELBO

L̂(θ, {ε̂n}) = − 1
2σ2

∑
xn,yn

||yn − f θ,ε̂n (xn)||22 −
N
2

log 2πσ2−1− p1

2s2 ||M
1||22..

with f θ,ε̂n (xn) a dropout stochastic forward pass
I can rewrite as min obj (multiply by −2σ2/N)

J =
1
N

∑
n

||yn − ŷn||22 + λ1||M1||22 + λ2||M2||22 + const

with ŷn = f θ,ε̂n (xn) and defining λ1 = σ2 1−p1

s2N ..
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with ŷn = f θ,ε̂n (xn) and defining λ1 = σ2 1−p1

s2N ..

47 of 75



Feature space noise to weight space

I model
I prior - same
I lik - same

I approx inference
I approx dist qθ(W 1) = M1ε with εqq = Bernoulli(p1) and zero

otherwise, and θ = {M1,p1,M2,p2}

KL(q,p) ≈ 1− p1

2s2 ||M
1||22−QH(p1)+

1− p2

2s2 ||M
2||22−KH(p2)+const

I ELBO

L̂(θ, {ε̂n}) = − 1
2σ2

∑
xn,yn

||yn − f θ,ε̂n (xn)||22 −
N
2

log 2πσ2−1− p1

2s2 ||M
1||22..

with f θ,ε̂n (xn) a dropout stochastic forward pass
I can rewrite as min obj (multiply by −2σ2/N)

J =
1
N

∑
n
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Feature space noise to weight space

I This is the standard dropout objective

I ie any standard NN in which you use dropout, you can view as a
BNN

I note: need to tune p as a variational param
I can’t diff wrt p (used in Bern in obj; can’t use reparam trick..)
I but when you do grid search over p on a validation set, use

L̂(θ, {ε̂n}) to select p which max ELBO or validation log predictive
I Can also use continuous relaxation for dropout (see Concrete

Dropout, 2017)

I Example:
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Dropout uncertainty example

Define model and train on data x train, y train:

1 from tensorflow.keras.layers import Input, Dense, Dropout
2 from tf.keras.regularizers import l2
3

4 reg = sigma**2 * (1-p) / (s**2 * N)
5

6 inputs = Input(shape=(512,))
7 x = Dense(1024, activation="relu",
8 kernel_regularizer=l2(reg))(inputs)
9 x = Dropout(p)(x, training=True)

10 x = Dense(1024, activation="relu",
11 kernel_regularizer=l2(reg))(x)
12 x = Dropout(p)(x, training=True)
13 outputs = Dense(1, kernel_regularizer=l2(reg))(x)
14

15 model = tf.keras.Model(inputs, outputs)
16 model.compile(loss="mean_squared_error",
17 optimizer="adam")
18 model.fit(x_train, y_train)
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Epistemic uncertainty in regression BNNs

Using MC estimators can estimate epistemic uncertainty in BNNs
almost trivially...

I predictive mean
I

Ep(y∗|x∗,D)[y∗] ≈
1
T

∑
t

f ω̂t (x)

with ω̂t ∼ qθ(ω).
ie, average multiple stochastic forward passes

I predictive variance
I again, collect some stochastic forward passes...

Varp(y∗|x∗,D)[y∗] = Ep(y∗|x∗,D)[(y∗)2]− Ep(y∗|x∗,D)[y∗]2

≈ σ2 +
1
T

∑
t

f ω̂t (x)2 −
(

1
T

∑
t

f ω̂t (x)

)2
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Example

Do stochastic forward passes on x test:

1 num_MC_samples = 100
2 MC_samples = [model.predict(x_test)
3 for _ in range(num_MC_samples)]

Predictive mean

1 np.mean(MC_samples, axis=0)

Predictive variance

1 sigma**2 + np.var(MC_samples, axis=0)
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How to visualise BNNs?

A useful tool for debugging

I sample from weights ω ∼ p(ω|D) = function sample fω(·)

I evaluate over interval [−10,10]

I eg:
I sample ω and def fω(·)
I for each xi in {−10,−9.95,−9.9, ...,9.9,9.95,10}

I evaluate yi = fω(xi) and plot (xi , yi)

I note: if using dropout inference, use same dropout mask for all
inputs x

I Visualisation: bdl101.ml/vis
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Bayesian Deep Learning

Real-world Applications of
Model Uncertainty
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Small data big models

I we use machine learning to aid experts working
in laborious fields

I automate small parts of the expert’s work
I eg melanoma (cancer) diagnosis based on

lesion images

I but deep learning often requires large amounts
of labelled data

I increases with the complexity of problem
I complexity of the input data
I eg image inputs require large models
I hundreds of gigabytes in ImageNet

I sometimes can’t afford to label huge data...
I eg automating lesion image analysis
I would require expert to spend expensive time

annotating large number of lesion images (for
every cancer type of interest)

I instead, could use active learning
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Principles of active learning

I active learning
I agent chooses which unlabelled data is most informative
I asks external “oracle” (eg human annotator) for a label only for that
I acquisition function: ranks points based on their potential

informativeness
I eg, epistemic uncertainty
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MNIST active learning

1 ...
2 model.compile(loss="categorical_crossentropy",
3 optimizer="adam")
4 model.fit(x_train, y_train)
5 MC_samples = [model.predict(x_test) for _ in range(20)]

Need uncertainty for classification...
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MNIST active learning

1 ...
2 model.compile(loss="categorical_crossentropy",
3 optimizer="adam")
4 model.fit(x_train, y_train)
5 MC_samples = [model.predict(x_test) for _ in range(20)]

Predictive entropy

p(y∗ = c|x∗,D) ≈ 1
T

∑
t

pŴt (x∗)c

Hp(y∗|x∗,D)[y∗] = −
∑
y∗=c

p(y∗ = c|x∗,D) log p(y∗ = c|x∗,D)

1 expected_p = np.mean(MC_samples, axis=0)
2 predictive_entropy = -np.sum(expected_p *
3 np.log(expected_p), axis=-1)
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MNIST active learning

1 ...
2 model.compile(loss="categorical_crossentropy",
3 optimizer="adam")
4 model.fit(x_train, y_train)
5 MC_samples = [model.predict(x_test) for _ in range(20)]

Mutual information (epistemic uncertainty)

MI(y∗,W |D, x∗) = Hp(y∗|x∗,D)[y∗]− 1
T

∑
t ,y∗=c

pŴt (x∗)c log pŴt (x∗)c

1 MC_entropy = np.sum(MC_samples * np.log(MC_samples),
2 axis=-1)
3 expected_entropy = -np.mean(MC_entropy, axis=0)
4 mi = predictive_entropy - expected_entropy
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Active learning applications

MNIST with only 1,000 images (instead of 60,000)
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Active learning applications

Melanoma diagnosis with 300 images

# acquired positive examples vs. acquisition
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Diabetes retinopathy diagnostics

I goal is to detect diabetes, and be able to tell when model is
guessing at random

I used to pre-screen patients, send only patients with high
uncertainty to expert
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Quality of uncertainty measures

How to tell if uncertainty is good or bad?

I define a binary event: ‘is diabetes?’; group test set inputs by
prediction ‘yes’/‘no’ vs label ‘yes’/‘no’

I each corresponds to one of TP, FP, FN, TN

I TPR and FPR are rates of TP and FP
I TPR = sensitivity = recall = TP / (TP + FN) = 1 - FNR
I TNR = specificity = TN / (TN + FP) = 1 - FPR
I FPR = FP / (TN + FP) = 1 - specificity

I want TPR to be high, FPR to be low

I usually given reqs what’s the worst we’re allowed to perform in
order to deploy system

I eg TPR=0.7 and FPR=0.1
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Quality of uncertainty measures

I model outputs a predictive prob p(y |x ,D); how do we get a
recommendation ‘yes’/‘no’?

I easiest is to take argmax
I but what if model outputs 0.51? is this a ‘yes’?

I def a threshold t

I if predictive prob is higher than t then say ‘yes’ otherwise say ‘no’
I for t = 0 says ‘yes’ to all, ie FN=TN=0, and model has

TPR=1,FPR=1
I for t = 1 says ‘no’ to all, ie TP=FP=0 and model has TPR=0,

FPR=0

I each threshold t gives us a pair (FPR, TPR)

I scatter points for all t (or some discrete steps t)

I this is an ROC plot
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Quality of uncertainty measures
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Quality of uncertainty measures

I ROC shows tradeoff between TPR and FPR

I each point on the plot corresponds to a choice of t which will give
that tradeoff

I aim: find a model which gives highest Area Under Curve (AUC)
I allows for better tradeoffs generally
I but not always

I how can we improve AUC? one solution:
I identify patients for which you are guessing at random (uncertain)
I select 10% patients you are most uncertain about and remove from

test set (send to expert)
I plot ROC for remaining 90% test set patients
I if uncertainty correlates to patients you were mistaken on, ROC

should improve (higher AUC)
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Quality of uncertainty measures

Send patients to expert diagnosis if model is uncertain

I use some uncertainty metric to refuse to diagnose a patient if
model is uncertain

I what uncertainty measure?
I MI would be high for far away points but will keep ambiguous

points in test set
I (points for which expert annotation in dataset was noisy)
I expected entropy would be high for both far away inputs (entropy
≥ MI) and ambiguous inputs

I → use expected entropy

I can we improve tradeoff by sending a small number of patients to
an expert in a real-world system?
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Quality of uncertainty measures
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Quality of uncertainty measures

Another measure of uncertainty performance
I plot accuracy as a function of % retained data, as sending more

and more patients to an expert
I 100% retain data = original accuracy on full dataset
I 10% retain data = accuracy after removing 90% patients with

highest uncertainty
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Autonomous driving

We’ll be looking at semantic segmentation

I input: image in RGB space

I output: image in semantic space

I each pixel is mapped to semantic class (eg road, sky, car,
pedestrian) based on its context (near by pixels)
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DeepLab

I one of the SOTA NNs for semantic segmentation is DeepLab

I uses atrous (dilated) convolutions (has ‘holes’)
I widen field of view over the input feature maps without increasing

parameters or pooling

I uses encoder-decoder architectures
I upsampling replicates pixels then applies eg 1x1 conv which doesn’t

reduce dim

I can be applied to any base network (‘backbone’) as long as it is
fully convolutional (ie no fully connected layers)
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Backbone

I Popular deep CNNs backbones
I VGG-16
I ResNet101
I Xception

neurohive.io/

I ResNet

I layer def
I solves the issue of “diminishing gradient” in deep nets (bounding

eigenvalues from below)
I can use hundreds of layers - seems to improve results the more

layers you use

neurohive.io/

71 of 75

!



Backbone

I Popular deep CNNs backbones
I VGG-16
I ResNet101
I Xception

I ResNet
I layer def
I solves the issue of “diminishing gradient” in deep nets (bounding

eigenvalues from below)
I can use hundreds of layers - seems to improve results the more

layers you use

71 of 75

!!



Backbone

I Popular deep CNNs backbones
I VGG-16
I ResNet101
I Xception

I ResNet
I layer def
I solves the issue of “diminishing gradient” in deep nets (bounding

eigenvalues from below)
I can use hundreds of layers - seems to improve results the more

layers you use

71 of 75

!!



Xception

We use Xception

I architecture has simplicity of VGG with multiple convolution layers
stacked on top of one another

I Xception modules use skip connections similar to ResNet but
between blocks

I works well empirically
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Uncertainties in segmentation

I we have a classification problem with H by W softmax outputs
(categorical variable for each pixel)

I model loss: sum of cross entropy (log likelihoods) for each pixel

I can use standard tools for uncertainty in classification (per pixel)

I and look at epistemic and aleatoric uncertainty maps
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More applications
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What you should be able to do now

I use uncertainty in regression correctly

I perform predictions in simple probabilistic models efficiently

I use Bayesian modelling in complex ML models (eg classification)

I use uncertainty (both epistemic and aleatoric) in real world models

I extend VI correctly to complex models
I try to extend to new likelihoods like Laplace
I try to extend to multiple outputs: categorical and continuous

outputs

I do deep learning with small amounts of data
I do try this at home!

I evaluate whether your uncertainty makes sense

I (somewhat) understand how huge deep vision systems work
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