Def sample space X of simple events (possible outcomes)

• e.g. experiment flipping two coins $X = \{HH, HT, TH, TT\}$

Let A be an event (a subset of X). A holding true = at least one of the outcomes in A happened

▶ e.g. "at least one heads" $\leftrightarrow A = \{HH, HT, TH\}$

Setup

- Assuming all unit wagers
- Writing p_A for belief of event A (your wager on A happening)

Will show that if $\{p_A\}_{A\subseteq X}$ are rational beliefs $\rightarrow \{p_A\}_{A\subseteq X}$ must satisfy laws of probability theory

- ► $0 \le p_A \le 1$ $\forall A \subseteq X$
 - ▶ p > 1: I sell you £p priced wager; You lose regardless of outcome
 - you give me $\pounds p>1$ for the wager, I need to give you at most $\pounds 1$
 - so p > 1 forms a Dutch book and is not rational
 - p < 0: I buy from you for £p
 - you give me $\pounds p$ to sell me the wager, and then you give me $\pounds 1$ if heads

$\blacktriangleright \ 0 \le p_A \le 1 \qquad \forall A \subseteq X$

• Unit measure $p_X = 1$ (hint: what wager would you define?) Exercise (discuss with your neighbour)

$\blacktriangleright 0 \le p_A \le 1 \qquad \forall A \subseteq X$

- Unit measure $p_X = 1$ (hint: what wager would you define?)
 - ► Set p to be your belief that 'at least one outcome in X holding true'
 - p > 1: from prev statement
 - ▶ p < 1: I will buy from you the wager 'at least one outcome in X holding true' at £p
 - ▶ at least one of the outcomes in X must hold, therefore you have to give me £1 and you lost £1-p.

- $\blacktriangleright \ 0 \le p_A \le 1 \qquad \forall A \subseteq X$
- Unit measure $p_X = 1$
- ► Two disjoint events satisfy $p_{A\cup B} = p_A + p_B$ Exercise (discuss with your neighbour)

$\blacktriangleright \ 0 \le p_A \le 1 \qquad \forall A \subseteq X$

• Unit measure $p_X = 1$

- Two disjoint events satisfy $p_{A\cup B} = p_A + p_B$
 - set p_A your price of a promise to pay £1 if event A happens,
 - ▶ and p_B your price of a promise to pay £1 if B happens,
 - ► and finally p_{A∪B} price of a promise to pay £1 if either A or B happen.
 - ▶ if $p_A + p_B > p_{A \cup B}$, then
 - 1. I will buy wager $A \cup B$ and sell you wagers A and B;
 - 2. regardless of which of three outcomes happens, you lose (if A, B or none, you give me $p_A + p_B p_{A \cup B} > 0$; note A and B disjoint)

• opposite if price of $A \cup B$ wager too high vs other two prices (can be extended to a countable sequence of disjoint sets)

- ► $0 \le p_A \le 1$ $\forall A \subseteq X$
- Unit measure $p_X = 1$
- Two disjoint events satisfy $p_{A\cup B} = p_A + p_B$
- All laws of probability follow from these three properties of rational beliefs
- This is known as the **Bayesian** interpretation of probability theory (vs the Frequentist interpretation...)

- ► $0 \le p_A \le 1$ $\forall A \subseteq X$
- Unit measure $p_X = 1$
- Two disjoint events satisfy $p_{A\cup B} = p_A + p_B$
- All laws of probability follow from these three properties of rational beliefs
- This is known as the **Bayesian** interpretation of probability theory (vs the Frequentist interpretation...)

- ► $0 \le p_A \le 1$ $\forall A \subseteq X$
- Unit measure $p_X = 1$
- Two disjoint events satisfy $p_{A\cup B} = p_A + p_B$
- All laws of probability follow from these three properties of rational beliefs
- This is known as the **Bayesian** interpretation of probability theory (vs the Frequentist interpretation...)