
Chapter 3

Bayesian Deep Learning

In previous chapters we reviewed Bayesian neural networks (BNNs) and historical tech-

niques for approximate inference in these, as well as more recent approaches. We discussed

the advantages and disadvantages of different techniques, examining their practicality.

This, perhaps, is the most important aspect of modern techniques for approximate infer-

ence in BNNs. The field of deep learning is pushed forward by practitioners, working on

real-world problems. Techniques which cannot scale to complex models with potentially

millions of parameters, scale well with large amounts of data, need well studied models

to be radically changed, or are not accessible to engineers, will simply perish.

In this chapter we will develop on the strand of work of [Graves, 2011; Hinton and

Van Camp, 1993], but will do so from the Bayesian perspective rather than the information

theory one. Developing Bayesian approaches to deep learning, we will tie approximate

BNN inference together with deep learning stochastic regularisation techniques (SRTs)

such as dropout. These regularisation techniques are used in many modern deep learning

tools, allowing us to offer a practical inference technique.

We will start by reviewing in detail the tools used by Graves [2011], and extend on

these with recent research. In the process we will comment and analyse the variance

of several stochastic estimators used in variational inference (VI). Following that we

will tie these derivations to SRTs, and propose practical techniques to obtain model

uncertainty, even from existing models. We finish the chapter by developing specific

examples for image based models (CNNs) and sequence based models (RNNs). These

will be demonstrated in chapter 5, where we will survey recent research making use of

the suggested tools in real-world problems.



30 Bayesian Deep Learning

3.1 Advanced techniques in variational inference

We start by reviewing recent advances in VI. We are interested in the posterior over the

weights given our observables X, Y: p
(
ω♣X, Y


. This posterior is not tractable for a

Bayesian NN, and we use variational inference to approximate it. Recall our minimisation

objective (eq. (2.6)),

LVI(θ) := −
N∑

i=1

∫
qθ(ω) log p(yi♣f

ω(xi))dω + KL(qθ(ω)♣♣p(ω)). (3.1)

Evaluating this objective poses several difficulties. First, the summed-over terms
∫

qθ(ω) log p(yi♣f
ω(xi))dω are not tractable for BNNs with more than a single hidden

layer. Second, this objective requires us to perform computations over the entire dataset,

which can be too costly for large N .

To solve the latter problem, we may use data sub-sampling (also referred to as

mini-batch optimisation). We approximate eq. (3.1) with

L̂VI(θ) := −
N

M

∑

i∈S

∫
qθ(ω) log p(yi♣f

ω(xi))dω + KL(qθ(ω)♣♣p(ω)) (3.2)

with a random index set S of size M .

The data sub-sampling approximation forms an unbiased stochastic estimator to eq.

(3.1), meaning that ES[L̂VI(θ)] = LVI(θ). We can thus use a stochastic optimiser to

optimise this stochastic objective, and obtain a (local) optimum θ∗ which would be an

optimum to LVI(θ) as well [Robbins and Monro, 1951]. This approximation is often used

in the deep learning literature, and was suggested by Hoffman et al. [2013] in the VI

context (surprisingly) only recently1.

The remaining difficulty with the objective in eq. (3.1) is the evaluation of the expected

log likelihood
∫

qθ(ω) log p(yi♣f
ω(xi))dω. Monte Carlo integration of the integral has

been attempted by some, to varying degrees of success. We will review three approaches

used in the VI literature and analyse their variance.

3.1.1 Monte Carlo estimators in variational inference

We often use Monte Carlo (MC) estimation in variational inference to estimate the

expected log likelihood (the integral in eq. (3.2)). But more importantly we wish to

estimate the expected log likelihood’s derivatives w.r.t. the approximating distribution

1Although online VI methods processing one point at a time have a long history [Ghahramani and
Attias, 2000; Sato, 2001]



3.1 Advanced techniques in variational inference 31

parameters θ. This allows us to optimise the objective and find the optimal parameters θ∗.

There exist three main techniques for MC estimation in the VI literature (a brief survey

of the literature was collected by [Schulman et al., 2015]). These have very different

characteristics and variances for the estimation of the expected log likelihood and its

derivative. Here we will contrast all three techniques in the context of VI and analyse

them both empirically and theoretically.

To present the various techniques we will consider the general case of estimating the

integral derivative:

I(θ) =
∂

∂θ

∫
f(x)pθ(x)dx (3.3)

which arises when we optimise eq. (3.2) (we will also refer to a stochastic estimator of

this quantity as a stochastic derivative estimator). Here f(x) is a function defined on

the reals, differentiable almost everywhere (a.e., differentiable on R apart from a zero

measure set), and pθ(x) is a probability density function (pdf) parametrised by θ from

which we can easily generate samples. We assume that the integral exists and is finite,

and that f(x) does not depend on θ. Note that we shall write f ′(x) when we differentiate

f(x) w.r.t. its input (i.e. ∂
∂x

f(x), in contrast to the differentiation of f(x) w.r.t. other

variables).

We further use pθ(x) = N (x; µ, σ2) as a concrete example, with θ = ¶µ, σ♢. In this

case, we will refer to an estimator of (3.3) as the mean derivative estimator (for some

function f(x)) when we differentiate w.r.t. θ = µ, and the standard deviation derivative

estimator when we differentiate w.r.t. θ = σ.

Three MC estimators for eq. (3.3) are used in the VI literature:

1. The score function estimator (also known as a likelihood ratio estimator and

Reinforce, [Fu, 2006; Glynn, 1990; Paisley et al., 2012; Williams, 1992]) relies on

the identity ∂
∂θ

pθ(x) = pθ(x) ∂
∂θ

log pθ(x) and follows the parametrisation:

∂

∂θ

∫
f(x)pθ(x)dx =

∫
f(x)

∂

∂θ
pθ(x)dx (3.4)

=
∫

f(x)
∂ log pθ(x)

∂θ
pθ(x)dx

leading to the unbiased stochastic estimator Î1(θ) = f(x)∂ log pθ(x)
∂θ

with x ∼ pθ(x),

hence Epθ(x)[Î1(θ)] = I(θ). Note that the first transition is possible since x and

f(x) do not depend on θ, and only pθ(x) depends on it. This estimator is simple

and applicable with discrete distributions, but as Paisley et al. [2012] identify, it



32 Bayesian Deep Learning

has rather high variance. When used in practice it is often coupled with a variance

reduction technique.

2. Eq. (3.3) can be re-parametrised to obtain an alternative MC estimator, which we

refer to as a pathwise derivative estimator (this estimator is also referred to in the

literature as the re-parametrisation trick, infinitesimal perturbation analysis, and

stochastic backpropagation [Glasserman, 2013; Kingma and Welling, 2013, 2014;

Rezende et al., 2014; Titsias and Lázaro-Gredilla, 2014]). Assume that pθ(x) can

be re-parametrised as p(ϵ), a parameter-free distribution, s.t. x = g(θ, ϵ) with a

deterministic differentiable bivariate transformation g(·, ·). For example, with our

pθ(x) = N (x; µ, σ2) we have g(θ, ϵ) = µ + σϵ together with p(ϵ) = N (ϵ; 0, I). Then

the following estimator arises:

Î2(θ) = f ′(g(θ, ϵ))
∂

∂θ
g(θ, ϵ). (3.5)

Here Ep(ϵ)[Î2(θ)] = I(θ).

Note that compared to the estimator above where f(x) is used, in this case we use

its derivative f ′(x). In the Gaussian case, both the derivative w.r.t. µ as well as

the derivative w.r.t. σ use f(x)’s first derivative (note the substitution of ϵ with

x = µ + σϵ):

∂

∂µ

∫
f(x)pθ(x)dx =

∫
f ′(x)pθ(x)dx,

∂

∂σ

∫
f(x)pθ(x)dx =

∫
f ′(x)

(x− µ)

σ
pθ(x)dx,

i.e. Î2(µ) = f ′(x) and Î2(σ) = f ′(x) (x−µ)
σ

with Epθ(x)[Î2(µ)] = I(µ) and Epθ(x)[Î2(σ)] =

I(σ). An interesting question arises when we compare this estimator (Î2(θ)) to

the one above (Î1(θ)): why is it that in one case we use the function f(x), and in

the other use its derivative? This is answered below, together with an alternative

derivation to that of Kingma and Welling [2013, section 2.4].

The pathwise derivative estimator seems to (empirically) result in a lower variance

estimator than the one above, although to the best of my knowledge no proof to this

has been given in the literature. An analysis of this parametrisation, together with

examples where the estimator has higher variance than that of the score function

estimator is given below.



3.1 Advanced techniques in variational inference 33

3. Lastly, it is important to mention the estimator given in [Opper and Archambeau,

2009, eq. (6-7)] (studied in [Rezende et al., 2014] as well). Compared to both

estimators above, Opper and Archambeau [2009] relied on the characteristic function

of the Gaussian distribution, restricting the estimator to Gaussian pθ(x) alone.

The resulting mean derivative estimator, ∂
∂µ

∫
f(x)pθ(x)dx, is identical to the one

resulting from the pathwise derivative estimator.

But when differentiating w.r.t. σ, the estimator depends on f(x)’s second derivative

[Opper and Archambeau, 2009, eq. (19)]:

∂

∂σ

∫
f(x)pθ(x)dx = 2σ ·

1

2

∫
f ′′(x)pθ(x)dx (3.6)

i.e. Î3(σ) = σf ′′(x) with Epθ(x)[Î3(σ)] = I(σ). This is in comparison to the

estimators above that use f(x) or its first derivative. We refer to this estimator as

a characteristic function estimator.

These three MC estimators are believed to have decreasing estimator variances (1) >

(2) > (3). Before we analyse this variance, we offer an alternative derivation to Kingma

and Welling [2013]’s derivation of the pathwise derivative estimator.

Remark (Auxiliary variable view of the pathwise derivative estimator). Kingma

and Welling [2013]’s derivation of the pathwise derivative estimator was obtained

through a change of variables. Instead we justify the estimator through a construc-

tion relying on an auxiliary variable augmenting the distribution pθ(x).

Assume that the distribution pθ(x) can be written as
∫

pθ(x, ϵ)dϵ =
∫

pθ(x♣ϵ)p(ϵ)dϵ,

with pθ(x♣ϵ) = δ(x− g(θ, ϵ)) a dirac delta function. Then

∂

∂θ

∫
f(x)pθ(x)dx =

∂

∂θ

∫
f(x)

(∫
pθ(x, ϵ)dϵ

)
dx

=
∂

∂θ

∫
f(x)pθ(x♣ϵ)p(ϵ)dϵdx

=
∂

∂θ

∫ ( ∫
f(x)δ

(
x− g(θ, ϵ)


dx

)
p(ϵ)dϵ.

Now, since δ(x− g(θ, ϵ)) is zero for all x apart from x = g(θ, ϵ),

∂

∂θ

∫ ( ∫
f(x)δ

(
x− g(θ, ϵ)


dx

)
p(ϵ)dϵ =

∂

∂θ

∫
f(g(θ, ϵ))p(ϵ)dϵ



34 Bayesian Deep Learning

=
∫ ∂

∂θ
f(g(θ, ϵ))p(ϵ)dϵ

=
∫

f ′(g(θ, ϵ))
∂

∂θ
g(θ, ϵ)p(ϵ)dϵ.

This derivation raises an interesting question: why is it that here the function f(x)

depends on θ, whereas in the above (the score function estimator) it does not? A clue

into explaining this can be found through a measure theoretic view of the score function

estimator:

∂

∂θ

∫
f(x)pθ(x)dx =

∂

∂θ

∫ (
f(x)pθ(x)


dλ(x)

where λ(x) is the Lebesgue measure. Here the measure does not depend on θ, hence

x does not depend on θ. Only the integrand f(x)pθ(x) depends on θ, therefore the

estimator depends on ∂
∂θ

pθ(x) and f(x). This is in comparison to the pathwise derivative

estimator:

∂

∂θ

∫
f(x)pθ(x)dx =

∂

∂θ

∫
f(x)dpθ(x).

Here the integration is w.r.t. the measure pθ(x), which depends on θ. As a result the

random variable x as a measurable function depends on θ, leading to f(x) being a

measurable function depending on θ. Intuitively, the above can be seen as “stretching”

and “contracting” the space following the density pθ(x), leading to a function defined on

this space to depend on θ.

3.1.2 Variance analysis of Monte Carlo estimators in varia-

tional inference

Next we analyse the estimator variance for the three estimators above using a Gaussian

distribution pθ(x) = N (x; µ, σ2). We will refer to the estimators as the score function esti-

mator (1), the pathwise derivative estimator (2), and the characteristic function estimator

(3). We will alternate between the estimator names and numbers indistinguishably.

We begin with the observation that none of the estimators has the lowest variance for

all functions f(x). For each estimator there exists a function f(x) such that the estimator

would achieve lowest variance when differentiating w.r.t. µ, ∂
∂µ

∫
f(x)pθ(x)dx. Further,

for each estimator there exists a function f(x) (not necessarily the same) such that the

estimator would achieve lowest variance when differentiating w.r.t. σ, ∂
∂σ

∫
f(x)pθ(x)dx.



3.1 Advanced techniques in variational inference 35

f(x) Score Pathwise Character.
function derivative function

x + x2 1.7 · 101
4.0 · 10

0
4.0 · 10

0

sin(x) 3.3 · 10−1
2.0 · 10

−1
2.0 · 10

−1

sin(10x) 5.0 · 10
−1 5.0 · 101 5.0 · 101

Table 3.1 ∂
∂µ

∫
f(x)pθ(x)dx variance

f(x) Score Pathwise Character.
function derivative function

x + x2 8.6 · 101 9.1 · 100
0.0 · 10

0

sin(x) 8.7 · 10−1
3.0 · 10

−1 4.3 · 10−1

sin(10x) 1.0 · 10
0 5.0 · 101 5.0 · 103

Table 3.2 ∂
∂σ

∫
f(x)pθ(x)dx variance

Table 3.3 Estimator variance for various functions f(x) for the score function estimator,
the pathwise derivative estimator, and the characteristic function estimator ((1), (2),
and (3) above). On the left is mean derivative estimator variance, and on the right is
standard deviation derivative estimator variance, both w.r.t. pθ = N (µ, σ2) and evaluated
at µ = 0, σ = 1. In bold is lowest estimator variance.

We assess empirical sample variance of T = 106 samples for the mean and standard

deviation derivative estimators. Tables 3.1 and 3.2 show estimator sample variance for

the integral derivative w.r.t. µ and σ respectively, for three different functions f(x). Even

though all estimators result in roughly the same means, their variances differ considerably.

For functions with slowly varying derivatives in a neighbourhood of zero (such as the

smooth function f(x) = x + x2) we have that the estimator variance obeys (1) > (2) >

(3). Also note that mean variance for (2) and (3) are identical, and that σ derivative

variance under the characteristic function estimator in this case is zero (since the second

derivative for this function is zero). Lastly, note that even though f(x) = sin(x) is

smooth with bounded derivatives, the similar function f(x) = sin(10x) has variance (3)

> (2) > (1). This is because the derivative of the function has high magnitude and varies

much near zero.

I will provide a simple property a function has to satisfy for it to have lower variance

under the pathwise derivative estimator and the characteristic function estimator than

the score function estimator. This will be for the mean derivative estimator.

Proposition 1. Let f(x), f ′(x), f ′′(x) be real-valued functions s.t. f(x) is an indefinite

integral of f ′(x), and f ′(x) is an indefinite integral of f ′′(x). Assume that Varpθ(x)((x−

µ)f(x)) <∞, and Varpθ(x)(f
′(x)) <∞, as well as Epθ(x)(♣(x−µ)f ′(x) + f(x)♣) <∞ and

Epθ(x)(♣f
′′(x)♣) <∞, with pθ(x) = N (µ, σ2).

If it holds that

Epθ(x)

(
(x− µ)f ′(x) + f(x)

2
− σ4

Epθ(x)

(
f ′′(x)2


≥ 0,

then the pathwise derivative and the characteristic function mean derivative estimators

w.r.t. the function f(x) will have lower variance than the score function estimator.



36 Bayesian Deep Learning

Before proving the proposition, I will give some intuitive insights into what the

condition means. For this, assume for simplicity that µ = 0 and σ = 1. This gives the

simplified condition

Epθ(x)

(
xf ′(x) + f(x)

2
≥ Epθ(x)

(
f ′′(x)2


.

First, observe that all expectations are taken over pθ(x), meaning that we only care

about the functions’ average behaviour near zero. Second, a function f(x) with a large

derivative absolute value will change considerably, hence will have high variance. Since

the pathwise derivative estimator boils down to f ′(x) in the Gaussian case, and the score

function estimator boils down to xf(x) (shown in the proof), we wish the expected change

in ∂
∂x

xf(x) = xf ′(x) + f(x) to be higher than the expected change in ∂
∂x

f ′(x) = f ′′(x),

hence the condition.

Proof. We start with the observation that the score function mean estimator w.r.t. a

Gaussian pθ(x) is given by

∂

∂µ

∫
f(x)pθ(x)dx =

∫
f(x)

x− µ

σ2
pθ(x)dx

resulting in the estimator Î1 = f(x)x−µ
σ2 . The pathwise derivative and the characteristic

function estimators are identical for the mean derivative, and given by Î2 = f ′(x). We

thus wish to show that Varpθ(x)(Î2) ≤ Varpθ(x)(Î1) under the proposition’s assumptions.

Since Varpθ(x)(Î1) =
Varpθ(x)(xf(x)−µf(x))

σ4 , we wish to show that

σ4Varpθ(x)

(
f ′(x)


≤ Varpθ(x)

(
(x− µ)f(x)


.

Proposition 3.2 in [Cacoullos, 1982] states that for g(x), g′(x) real-valued functions s.t.

g(x) is an indefinite integral of g′(x), and Varpθ(x)(g(x)) < ∞ and Epθ(x)(♣g
′(x)♣) < ∞,

there exists that

σ2
Epθ(x)

(
g′(x)

2
≤ Varpθ(x)

(
g(x)


≤ σ2

Epθ(x)

(
g′(x)2


.

Substituting g(x) with (x− µ)f(x) we have

σ2
Epθ(x)

(
(x− µ)f ′(x) + f(x)

2
≤ Varpθ(x)

(
(x− µ)f(x)





3.2 Practical inference in Bayesian neural networks 37

and substituting g(x) with f ′(x) we have

Varpθ(x)

(
f ′(x)


≤ σ2

Epθ(x)

(
f ′′(x)2


.

Under the proposition’s assumption that

Epθ(x)

(
(x− µ)f ′(x) + f(x)

2
− σ4

Epθ(x)

(
f ′′(x)2


≥ 0

we conclude

σ4Varpθ(x)

(
f ′(x)


≤ σ6

Epθ(x)

(
f ′′(x)2


≤ σ2

Epθ(x)

(
(x− µ)f ′(x) + f(x)

2

≤ Varpθ(x)

(
(x− µ)f(x)



as we wanted to show.

For example, with the simple polynomial function f(x) = x + x2 and µ = 0, σ = 1

from table 3.3 we have

EN (0,1)

(
xf ′(x) + f(x)

2
− EN (0,1)

(
f ′′(x)2


= EN (0,1)

(
2x + 3x2

2
− 22

= 32 − 22 > 0,

and indeed the score function estimator variance is higher than that of the pathwise

derivative estimator and that of the characteristic function estimator. A similar result

can be derived for the standard deviation derivative estimator.

From empirical observation, the functions f(x) often encountered in VI seem to

satisfy the variance relation (1) > (2). For this reason, and since we will make use of

distributions other than Gaussian, we continue our work using the pathwise derivative

estimator.

3.2 Practical inference in Bayesian neural networks

We now derive what would hopefully be a practical inference method for Bayesian neural

networks. Inspired by the work of Graves [2011], we propose an inference technique

that satisfies our definition of practicality, making use of the tools above. The work in

this section and the coming sections was previously presented in [Gal, 2015; Gal and

Ghahramani, 2015a,b,c,d, 2016a,b,c].



38 Bayesian Deep Learning

In his work, Graves [2011] used both delta approximating distributions, as well as fully

factorised Gaussian approximating distributions. As such, Graves [2011] relied on Opper

and Archambeau [2009]’s characteristic function estimator in his approximation of eq.

(3.2). Further, Graves [2011] factorised the approximating distribution for each weight

scalar, losing weight correlations. This approach has led to the limitations discussed in

§2.2.2, hurting the method’s performance and practicality.

Using the tools above, and relying on the pathwise derivative estimator instead of

the characteristic function estimator in particular, we can make use of more interesting

non-Gaussian approximating distributions. Further, to avoid losing weight correlations,

we factorise the distribution for each weight row wl,i in each weight matrix Wl, instead

of factorising over each weight scalar. The reason for this will be given below. Using

these two key changes, we will see below how our approximate inference can be closely

tied to SRTs, suggesting a practical, well performing, implementation.

To use the pathwise derivative estimator we need to re-parametrise each qθl,i
(wl,i) as

wl,i = g(θl,i, ϵl,i) and specify some p(ϵl,i) (this will be done at a later time). For simplicity

of notation we will write p(ϵ) =
∏

l,i p(ϵl,i), and ω = g(θ, ϵ) collecting all model random

variables. Starting from the data sub-sampling objective (eq. (3.2)), we re-parametrise

each integral to integrate w.r.t. p(ϵ):

L̂VI(θ) = −
N

M

∑

i∈S

∫
qθ(ω) log p(yi♣f

ω(xi))dω + KL(qθ(ω)♣♣p(ω))

= −
N

M

∑

i∈S

∫
p(ϵ) log p(yi♣f

g(θ,ϵ)(xi))dϵ + KL(qθ(ω)♣♣p(ω))

and then replace each expected log likelihood term with its stochastic estimator (eq.

(3.5)), resulting in a new MC estimator:

L̂MC(θ) = −
N

M

∑

i∈S

log p(yi♣f
g(θ,ϵ)(xi)) + KL(qθ(ω)♣♣p(ω)) (3.7)

s.t. ES,ϵ(L̂MC(θ)) = LVI(θ).

Following results in stochastic non-convex optimisation [Rubin, 1981], optimising

L̂MC(θ) w.r.t. θ would converge to the same optima as optimising our original objective

LVI(θ). One thus follows algorithm 1 for inference.

Predictions with this approximation follow equation (2.4) which replaces the posterior

p(ω♣X, Y) with the approximate posterior qθ(ω). We can then approximate the predictive



3.2 Practical inference in Bayesian neural networks 39

Algorithm 1 Minimise divergence between qθ(ω) and p(ω♣X, Y )

1: Given dataset X, Y,
2: Define learning rate schedule η,
3: Initialise parameters θ randomly.
4: repeat

5: Sample M random variables ϵ̂i ∼ p(ϵ), S a random subset of ¶1, .., N♢ of size M .
6: Calculate stochastic derivative estimator w.r.t. θ:

∆̂θ ← −
N

M

∑

i∈S

∂

∂θ
log p(yi♣f

g(θ,̂ϵi)(xi)) +
∂

∂θ
KL(qθ(ω)♣♣p(ω)).

7: Update θ:
θ ← θ + η∆̂θ.

8: until θ has converged.

distribution with MC integration as well:

q̃θ(y
∗♣x∗) :=

1

T

T∑

t=1

p(y∗♣x∗, ω̂t) −−−→
T →∞

∫
p
(
y∗♣x∗, ω


qθ(ω)dω (3.8)

≈
∫

p
(
y∗♣x∗, ω


p(ω♣X, Y)dω

= p(y∗♣x∗, X, Y)

with ω̂t ∼ qθ(ω).

We next present distributions qθ(ω) corresponding to several SRTs, s.t. standard

techniques in the deep learning literature could be seen as identical to executing algorithm

1 for approximate inference with qθ(ω). This means that existing models that use such

SRTs can be interpreted as performing approximate inference. As a result, uncertainty

information can be extracted from these, as we will see in the following sections.

3.2.1 Stochastic regularisation techniques

First, what are SRTs? Stochastic regularisation techniques are techniques used to

regularise deep learning models through the injection of stochastic noise into the model.

By far the most popular technique is dropout [Hinton et al., 2012; Srivastava et al., 2014],

but other techniques exist such as multiplicative Gaussian noise (MGN, also referred to

as Gaussian dropout) [Srivastava et al., 2014], or dropConnect [Wan et al., 2013], among

many others [Huang et al., 2016; Krueger et al., 2016; Moon et al., 2015; Singh et al.,



40 Bayesian Deep Learning

2016]. We will concentrate on dropout for the moment, and discuss alternative SRTs

below.

Notation remark. In this section and the next, in order to avoid confusion between

matrices (used as weights in a NN) and stochastic random matrices (which are random

variables inducing a distribution over BNN weights), we change our notation slightly

from §1.1. Here we use M to denote a deterministic matrix over the reals, W to denote a

random variable defined over the set of real matrices2, and use Ŵ to denote a realisation

of W.

Dropout is a technique used to avoid over-fitting in neural networks. It was suggested

as an ad-hoc technique, and was motivated with sexual breeding metaphors rather than

through theoretical foundations [Srivastava et al., 2014, page 1932]. It was introduced

several years ago by Hinton et al. [2012] and studied more extensively in [Srivastava

et al., 2014]. We will describe the use of dropout in simple single hidden layer neural

networks (following the notation of §1.1 with the adjustments above). To use dropout

we sample two binary vectors ϵ̂1, ϵ̂2 of dimensions Q (input dimensionality) and K

(intermediate layer dimensionality) respectively. The elements of the vector ϵ̂i take value

0 with probability 0 ≤ pi ≤ 1 for i = 1, 2. Given an input x, we set p1 proportion of the

elements of the input to zero in expectation: x̂ = x⊙ ϵ̂1
3. The output of the first layer

is given by h = σ(x̂M1 + b), in which we randomly set p2 proportion of the elements to

zero: ĥ = h⊙ ϵ̂2, and linearly transform the vector to give the dropout model’s output

ŷ = ĥM2. We repeat this for multiple layers.

We sample new realisations for the binary vectors ϵ̂i for every input point and every

forward pass through the model (evaluating the model’s output), and use the same values

in the backward pass (propagating the derivatives to the parameters to be optimised

θ = ¶M1, M2, b♢). At test time we do not sample any variables and simply use the

original units x, h scaled by 1
1−pi

.

Multiplicative Gaussian noise is similar to dropout, where the only difference is that

ϵ̂i are vectors of draws from a Gaussian distribution N (1, α) with a positive parameter

α, rather than draws from a Bernoulli distribution.

2The reason for this notation is that M will often coincide with the mean of the random matrix W.
3Here ⊙ is the element-wise product.



3.2 Practical inference in Bayesian neural networks 41

3.2.2 Stochastic regularisation techniques as approximate in-

ference

Dropout and most other SRTs view the injected noise as applied in the feature space (the

input features to each layer: x, h). In Bayesian NNs, on the other hand, the stochasticity

comes from our uncertainty over the model parameters. We can transform dropout’s

noise from the feature space to the parameter space as follows4:

ŷ = ĥM2

= (h⊙ ϵ̂2)M2

= (h · diag(ϵ̂2))M2

= h(diag(ϵ̂2)M2)

= σ
(
x̂M1 + b


(diag(ϵ̂2)M2)

= σ
(
(x⊙ ϵ̂1)M1 + b


(diag(ϵ̂2)M2)

= σ
(
x(diag(ϵ̂1)M1) + b


(diag(ϵ̂2)M2)

writing Ŵ1 := diag(ϵ̂1)M1 and Ŵ2 := diag(ϵ̂2)M2 we end up with

ŷ = σ
(
xŴ1 + b


Ŵ2 =: fŴ1,Ŵ2,b(x)

with random variable realisations as weights, and write ω̂ = ¶Ŵ1, Ŵ2, b♢.

This allows us to write dropout’s objective in a more convenient form. Recall that a

neural network’s optimisation objective is given by eq. (1.3). For dropout it will simply

be:

L̂dropout(M1, M2, b) :=
1

M

∑

i∈S

EŴi
1,Ŵi

2,b(xi, yi) + λ1♣♣M1♣♣
2 + λ2♣♣M2♣♣

2 + λ3♣♣b♣♣
2,

(3.9)

with Ŵi
1, Ŵi

2 corresponding to new masks ϵ̂
i
1, ϵ̂

i
2 sampled for each data point i. Here

we used data sub-sampling with a random index set S of size M , as is common in deep

learning.

4Here the diag(·) operator maps a vector to a diagonal matrix whose diagonal is the elements of the
vector.



42 Bayesian Deep Learning

As shown by Tishby et al. [1989], in regression EM1,M2,b(x, y) can be rewritten as

the negative log-likelihood scaled by a constant:

EM1,M2,b(x, y) =
1

2
♣♣y− fM1,M2,b(x)♣♣2 = −

1

τ
log p(y♣fM1,M2,b(x)) + const (3.10)

where p(y♣fM1,M2,b(x)) = N (y; fM1,M2,b(x), τ−1I) with τ−1 observation noise. It is

simple to see that this holds for classification as well (in which case we should set τ = 1).

Recall that ω̂ = ¶Ŵ1, Ŵ2, b♢ and write

ω̂i = ¶Ŵi
1, Ŵi

2, b♢ = ¶diag(ϵ̂i
1)M1, diag(ϵ̂i

2)M2, b♢ =: g(θ, ϵ̂i)

with θ = ¶M1, M2, b♢, ϵ̂
i
1 ∼ p(ϵ1), and ϵ̂

i
2 ∼ p(ϵ2) for 1 ≤ i ≤ N . Here p(ϵl) (l = 1, 2) is

a product of Bernoulli distributions with probabilities 1− pl, from which a realisation

would be a vector of zeros and ones.

We can plug identity (3.10) into objective (3.9) and get

L̂dropout(M1, M2, b) = −
1

Mτ

∑

i∈S

log p(yi♣f
g(θ,̂ϵi)(x)) + λ1♣♣M1♣♣

2 + λ2♣♣M2♣♣
2 + λ3♣♣b♣♣

2

(3.11)

with ϵ̂i realisations of the random variable ϵ.

The derivative of this optimisation objective w.r.t. model parameters θ = ¶M1, M2, b♢

is given by

∂

∂θ
L̂dropout(θ) = −

1

Mτ

∑

i∈S

∂

∂θ
log p(yi♣f

g(θ,̂ϵi)(x)) +
∂

∂θ

(
λ1♣♣M1♣♣

2 + λ2♣♣M2♣♣
2 + λ3♣♣b♣♣

2

.

The optimisation of a NN with dropout can then be seen as following algorithm 2.

There is a great sense of similarity between algorithm 1 for approximate inference in a

Bayesian NN and algorithm 2 for dropout NN optimisation. Specifically, note the case of a

Bayesian NN with approximating distribution q(ω) s.t. ω = ¶diag(ϵ1)M1, diag(ϵ2)M2, b♢

with p(ϵl) (l = 1, 2) a product of Bernoulli distributions with probability 1− pl (which we

will refer to as a Bernoulli variational distribution or a dropout variational distribution).

The only differences between algorithm 1 and algorithm 2 are

1. the regularisation term derivatives (KL(qθ(ω)♣♣p(ω)) in algo. 1 and λ1♣♣M1♣♣
2 +

λ2♣♣M2♣♣
2 + λ3♣♣b♣♣

2 in algo. 2),

2. and the scale of ∆̂θ (multiplied by a constant 1
Nτ

in algo. 2).



3.2 Practical inference in Bayesian neural networks 43

Algorithm 2 Optimisation of a neural network with dropout

1: Given dataset X, Y,
2: Define learning rate schedule η,
3: Initialise parameters θ randomly.
4: repeat

5: Sample M random variables ϵ̂i ∼ p(ϵ), S a random subset of ¶1, .., N♢ of size M .
6: Calculate derivative w.r.t. θ:

∆̂θ ← −
1

Mτ

∑

i∈S

∂

∂θ
log p(yi♣f

g(θ,̂ϵi)(x)) +
∂

∂θ

(
λ1♣♣M1♣♣

2 + λ2♣♣M2♣♣
2 + λ3♣♣b♣♣

2

.

7: Update θ:
θ ← θ + η∆̂θ.

8: until θ has converged.

More specifically, if we define the prior p(ω) s.t. the following holds:

∂

∂θ
KL(qθ(ω)♣♣p(ω)) =

∂

∂θ
Nτ

(
λ1♣♣M1♣♣

2 + λ2♣♣M2♣♣
2 + λ3♣♣b♣♣

2


(3.12)

(referred to as the KL condition), we would have the following relation between the

derivatives of objective (3.11) and objective (3.7):

∂

∂θ
L̂dropout(θ) =

1

Nτ

∂

∂θ
L̂MC(θ)

with identical optimisation procedures!

We found that for a specific choice for the approximating distribution qθ(ω), VI

results in identical optimisation procedure to that of a dropout NN. I would stress that

this means that optimising any neural network with dropout is equivalent to a form of

approximate inference in a probabilistic interpretation of the model5. This means that

the optimal weights found through the optimisation of a dropout NN (using algo. 2)

are the same as the optimal variational parameters in a Bayesian NN with the same

structure. Further, this means that a network already trained with dropout is a Bayesian

NN, thus possesses all the properties a Bayesian NN possesses.

We have so far concentrated mostly on the dropout SRT. As to alternative SRTs, re-

member that an approximating distribution qθ(ω) is defined through its re-parametrisation

ω = g(θ, ϵ). Various SRTs can be recovered for different re-parametrisations. For exam-

5Note that to get well-calibrated uncertainty estimates we have to optimise the dropout probability
p as well as θ, for example through grid-search over over validation log probability. This is discussed
further in §4.3



44 Bayesian Deep Learning

ple, multiplicative Gaussian noise [Srivastava et al., 2014] can be recovered by setting

g(θ, ϵ) = ¶diag(ϵ1)M1, diag(ϵ2)M2, b♢ with p(ϵl) (for l = 1, 2) a product of N (1, α) with

positive-valued α6. This can be efficiently implemented by multiplying a network’s units

by i.i.d. draws from a N (1, α). On the other hand, setting g(θ, ϵ) = ¶M1⊙ϵ1, M2⊙ϵ2, b♢

with p(ϵl) a product of Bernoulli random variables for each weight scalar we recover

dropConnect [Wan et al., 2013]. This can be efficiently implemented by multiplying a

network’s weight scalars by i.i.d. draws from a Bernoulli distribution. It is interesting

to note that Graves [2011]’s fully factorised approximation can be recovered by setting

g(θ, ϵ) = ¶M1 + ϵ1, M2 + ϵ2, b♢ with p(ϵl) a product of N (0, α) for each weight scalar.

This SRT is often referred to as additive Gaussian noise.

3.2.3 KL condition

For VI to result in an identical optimisation procedure to that of a dropout NN, the KL

condition (eq. (3.12)) has to be satisfied. Under what constraints does the KL condition

hold? This depends on the model specification (selection of prior p(ω)) as well as choice

of approximating distribution qθ(ω). For example, it can be shown that setting the model

prior to p(ω) =
∏L

i=1 p(Wi) =
∏L

i=1N (0, I/l2
i ), in other words independent normal priors

over each weight, with prior length-scale7

l2
i =

2Nτλi

1− pi

(3.13)

we have

∂

∂θ
KL(qθ(ω)♣♣p(ω)) ≈

∂

∂θ
Nτ(λ1♣♣M1♣♣

2 + λ2♣♣M2♣♣
2 + λ3♣♣b♣♣

2)

for a large enough number of hidden units and a Bernoulli variational distribution. This

is discussed further in appendix A. Alternatively, a discrete prior distribution

p(w) ∝ e− l2

2
wT w

6For the multiplicative Gaussian noise this result was also presented in [Kingma et al., 2015], which
was done in parallel to this work.

7A note on mean-squared-error losses: the mean-squared-error loss can be seen as a scaling of the
Euclidean loss (eq. (1.1)) by a factor of 2, which implies that the factor of 2 in the length-scale should
be removed. The mean-squared-error loss is used in many modern deep learning packages instead (or as)
the Euclidean loss.



3.2 Practical inference in Bayesian neural networks 45

defined over a finite space w ∈ X satisfies the KL condition (eq. (3.12)) exactly. This is

discussed in more detail in §6.5. For multiplicative Gaussian noise, Kingma et al. [2015]

have shown that an improper log-uniform prior distribution satisfies our KL condition.

Notation remark. In the rest of this work we will use M and W interchangeably,

with the understanding that in deterministic NNs the random variable W will follow a

delta distribution with mean parameter M.

Remark (What is a prior length-scale l2
i ?). It is interesting to explain why we

consider the parameter l to be a prior length-scale in a Bayesian NN when setting

a Gaussian prior N (0, I/l2) over the weights. To see this, re-parametrise the input

prior distribution as W′
1 ∼ N (0, I), with W1 = W′

1/l:

ŷ = σ

(
x

W′
1

l
+ b

)
W2 = σ

(
x

l
W′

1 + b

)
W2

i.e. placing a prior distribution N (0, I/l2) over W1 can be replaced by scaling the

inputs by 1/l with a N (0, I) prior instead. For example, multiplying the inputs

by 100 (making the function smoother) and placing a prior length-scale l = 100

would give identical model output to placing a prior length-scale l = 1 with the

original inputs. This means that the length-scale’s unit of measure is identical to

the inputs’ one.

What does the prior length-scale mean? To see this, consider a real valued function

f(x), periodic with period P , and consider its Fourier expansion with K terms:

fK(x) :=
A0

2
+

K∑

k=1

Ak · sin
(

2πk
P

x + ϕk


.

This can be seen as a single hidden layer neural network with a non-linearity

σ(·) := sin(·), input weights given by the Fourier frequencies W1 := [2πk
P

]Kk=1 (which

are fixed and not learnt), b := [ϕk]Kk=1 is the bias term of the hidden layer, the

Fourier coefficients are the output weights W2 := [Ak]Kk=1, and A0

2
is the output

bias (which can be omitted for centred data). For simplicity we assume that W1 is

composed of only the Fourier frequencies for which the Fourier coefficients are not

zero. For example, W1 might be composed of high frequencies, low frequencies, or

a combination of the two.



46 Bayesian Deep Learning

This view of single hidden layer neural networks gives us some insights into the role

of the different quantities used in a neural network. For example, erratic functions

have high frequencies, i.e. high magnitude input weights W1. On the other hand,

smooth slow-varying functions are composed of low frequencies, and as a result the

magnitude of W1 is small. The magnitude of W2 determines how much different

frequencies will be used to compose the output function fK(x). High magnitude W2

results in a large magnitude for the function’s outputs, whereas low W2 magnitude

gives function outputs scaled down and closer to zero.

When we place a prior distribution over the input weights of a BNN, we can capture

this characteristic. Having W1 ∼ N (0, I/l2) a priori with long length-scale l results

in weights with low magnitude, and as a result slow-varying induced functions. On

the other hand, placing a prior distribution with a short length-scale gives high

magnitude weights, and as a result erratic functions with high frequencies. This

will be demonstrated empirically in §4.1.

Given the intuition about weight magnitude above, equation (3.13) can be re-written

to cast some light on the structure of the weight-decay in a neural networka:

λi =
l2
i (1− pi)

2Nτ
. (3.14)

A short length-scale li (corresponding to high frequency data) with high pre-

cision τ (equivalently, small observation noise) results in a small weight-decay

λi—encouraging the model to fit the data well but potentially generalising badly.

A long length-scale with low precision results in a large weight-decay—and stronger

regularisation over the weights. This trade-off between the length-scale and model

precision results in different weight-decay values.

Lastly, I would comment on the choice of placing a distribution over the rows of a

weight matrix rather than factorising it over each row’s elements. Gal and Turner

[2015] offered a derivation related to the Fourier expansion above, where a function

drawn from a Gaussian process (GP) was approximated through a finite Fourier

decomposition of the GP’s covariance function. This derivation has many properties

in common with the view above. Interestingly, in the multivariate f(x) case the

Fourier frequencies are given in the columns of the equivalent weight matrix W1

of size Q (input dimension) by K (number of expansion terms). This generalises

on the univariate case above where W1 is of dimensions Q = 1 by K and each

entry (column) is a single frequency. Factorising the weight matrix approximating



3.3 Model uncertainty in Bayesian neural networks 47

distribution qθ(W1) over its rows rather than columns captures correlations over

the function’s frequencies.

aNote that with a mean-squared-error loss the factor of 2 should be removed.

3.3 Model uncertainty in Bayesian neural networks

We next derive results extending on the above showing that model uncertainty can be

obtained from NN models that make use of SRTs such as dropout.

Recall that our approximate predictive distribution is given by eq. (2.4):

q∗
θ(y∗♣x∗) =

∫
p(y∗♣fω(x∗))q∗

θ(ω)dω (3.15)

where ω = ¶Wi♢
L
i=1 is our set of random variables for a model with L layers, fω(x∗) is

our model’s stochastic output, and q∗
θ(ω) is an optimum of eq. (3.7).

We will perform moment-matching and estimate the first two moments of the predictive

distribution empirically. The first moment can be estimated as follows:

Proposition 2. Given p(y∗♣fω(x∗)) = N (y∗; fω(x∗), τ−1I) for some τ > 0, Eq∗

θ
(y∗♣x∗)[y

∗]

can be estimated with the unbiased estimator

Ẽ[y∗] :=
1

T

T∑

t=1

f ω̂t(x∗) −−−→
T →∞

Eq∗

θ
(y∗♣x∗)[y

∗] (3.16)

with ω̂t ∼ q∗
θ(ω).

Proof.

Eq∗

θ
(y∗♣x∗)[y

∗] =
∫

y∗q∗
θ(y∗♣x∗)dy∗

=
∫ ∫

y∗N (y∗; fω(x∗), τ−1I)q∗
θ(ω)dωdy∗

=
∫ ( ∫

y∗N (y∗; fω(x∗), τ−1I)dy∗

)
q∗

θ(ω)dω

=
∫

fω(x∗)q∗
θ(ω)dω,

giving the unbiased estimator Ẽ[y∗] := 1
T

∑T
t=1 f ω̂t(x∗) following MC integration with T

samples.



48 Bayesian Deep Learning

When used with dropout, we refer to this Monte Carlo estimate (3.16) as MC dropout.

In practice MC dropout is equivalent to performing T stochastic forward passes through

the network and averaging the results. For dropout, this result has been presented

in the literature before as model averaging [Srivastava et al., 2014]. We have given

a new derivation for this result which allows us to derive mathematically grounded

uncertainty estimates as well, and generalises to all SRTs (including SRTs such as

multiplicative Gaussian noise where the model averaging interpretation would result in

infinitely many models). Srivastava et al. [2014, section 7.5] have reasoned based on

empirical experimentation that the model averaging can be approximated by multiplying

each network unit hi by 1/(1− pi) at test time, referred to as standard dropout. This

can be seen as propagating the mean of each layer to the next. Below (in section §4.4)

we give results showing that there exist models in which standard dropout gives a bad

approximation to the model averaging.

We estimate the second raw moment (for regression) using the following proposition:

Proposition 3.

Given p(y∗♣fω(x∗)) = N (y∗; fω(x∗), τ−1I) for some τ > 0, Eq∗

θ
(y∗♣x∗)

[
(y∗)T (y∗)

]
can be

estimated with the unbiased estimator

Ẽ

[
(y∗)T (y∗)

]
:= τ−1I +

1

T

T∑

t=1

f ω̂t(x∗)T f ω̂t(x∗) −−−→
T →∞

Eq∗

θ
(y∗♣x∗)

[
(y∗)T (y∗)

]

with ω̂t ∼ q∗
θ(ω) and y∗, f ω̂t(x∗) row vectors (thus the sum is over the outer-products).

Proof.

Eq∗

θ
(y∗♣x∗)

[
(y∗)T (y∗)

]
=
∫ ( ∫

(y∗)T (y∗)p(y∗♣x∗, ω)dy∗

)
q∗

θ(ω)dω

=
∫ (

Covp(y∗♣x∗,ω)[y
∗] + Ep(y∗♣x∗,ω)[y

∗]TEp(y∗♣x∗,ω)[y
∗]

)
q∗

θ(ω)dω

=
∫ (

τ−1I + fω(x∗)T fω(x∗)

)
q∗

θ(ω)dω

giving the unbiased estimator Ẽ

[
(y∗)T (y∗)

]
:= τ−1I + 1

T

∑T
t=1 f ω̂t(x∗)T f ω̂t(x∗) following

MC integration with T samples.

To obtain the model’s predictive variance we use the unbiased estimator:

Ṽar[y∗] := τ−1I +
1

T

T∑

t=1

f ω̂t(x∗)T f ω̂t(x∗)− Ẽ[y∗]T Ẽ[y∗]



3.3 Model uncertainty in Bayesian neural networks 49

−−−→
T →∞

Varq∗

θ
(y∗♣x∗)[y

∗]

which equals the sample variance of T stochastic forward passes through the NN plus

the inverse model precision.

How can we find the model precision? In practice in the deep learning literature we

often grid-search over the weight-decay λ to minimise validation error. Then, given a

weight-decay λi (and prior length-scale li), eq. (3.13) can be re-written to find the model

precision8:

τ =
(1− p)l2

i

2Nλi

. (3.17)

Remark (Predictive variance and posterior variance). It is important to note the

difference between the variance of the approximating distribution qθ(ω) and the

variance of the predictive distribution qθ(y♣x) (eq. (3.15)).

To see this, consider the illustrative example of an approximating distribution

with fixed mean and variance used with the first weight layer W1, for example a

standard Gaussian N (0, I). Further, assume for the sake of argument that delta

distributions (or Gaussians with very small variances) are used to approximate the

posterior over the layers following the first layer. Given enough follow-up layers we

can capture any function to arbitrary precision—including the inverse cumulative

distribution function (CDF) of any distribution (similarly to the remark in §2.2.1,

but with the addition of a Gaussian CDF as we don’t have a uniform on the first

layer in this case). Passing the distribution from the first layer through the rest of

the layers transforms the standard Gaussian with this inverse CDF, resulting in

any arbitrary distribution as determined by the CDF.

In this example, even though the variance of each weight layer is constant, the

variance of the predictive distribution can take any value depending on the learnt

CDF. This example can be extended from a standard Gaussian approximating

distribution to a mixture of Gaussians with fixed standard deviations, and to discrete

distributions with fixed probability vectors (such as the dropout approximating

distribution). Of course, in real world cases we would prefer to avoid modelling the

8Prior length-scale li can be fixed based on the density of the input data X and our prior belief as to
the function’s wiggliness, or optimised over as well (w.r.t. predictive log-likelihood over a validation set).
The dropout probability is optimised using grid search similarly.



50 Bayesian Deep Learning

deep layers with delta approximating distributions since that would sacrifice our

ability to capture model uncertainty.

Given a dataset X, Y and a new data point x∗ we can calculate the probability

of possible output values y∗ using the predictive probability p(y∗♣x∗, X, Y). The log

of the predictive likelihood captures how well the model fits the data, with larger

values indicating better model fit. Our predictive log-likelihood (also referred to as test

log-likelihood) can be approximated by MC integration of eq. (3.15) with T terms:

˜log p(y∗♣x∗, X, Y) := log

(
1

T

T∑

t=1

p(y∗♣x∗, ωt)

)
−−−→
T →∞

log
∫

p(y∗♣x∗, ω)q∗
θ(ω)dω

≈ log
∫

p(y∗♣x∗, ω)p(ω♣X, Y)dω

= log p(y∗♣x∗, X, Y)

with ωt ∼ q∗
θ(ω) and since q∗

θ(ω) is the minimiser of eq. (2.3). Note that this is a

biased estimator since the expected quantity is transformed with the non-linear logarithm

function, but the bias decreases as T increases.

For regression we can rewrite this last equation in a more numerically stable way9:

˜log p(y∗♣x∗, X, Y) = logsumexp

(
−

1

2
τ ♣♣y− f ω̂t(x∗)♣♣2

)
− log T −

1

2
log 2π +

1

2
log τ

(3.18)

with our precision parameter τ .

Uncertainty quality can be determined from this quantity as well. Excessive un-

certainty (large observation noise, or equivalently small model precision τ) results in

a large penalty from the last term in the predictive log-likelihood. On the other hand,

an over-confident model with large model precision compared to poor mean estimation

results in a penalty from the first term—the distance ♣♣y− f ω̂t(x∗)♣♣2 gets amplified by τ

which drives the exponent to zero.

Note that the normal NN model itself is not changed. To estimate the predictive

mean and predictive uncertainty we simply collect the results of stochastic forward passes

through the model. As a result, this information can be used with existing NN models

trained with SRTs. Furthermore, the forward passes can be done concurrently, resulting

in constant running time identical to that of standard NNs.

9logsumexp is the log-sum-exp function.



3.3 Model uncertainty in Bayesian neural networks 51

3.3.1 Uncertainty in classification

In regression we summarised predictive uncertainty by looking at the sample variance

of multiple stochastic forward passes. In the classification setting, however, we need

to rely on alternative approaches to summarise uncertainty10. We will analyse three

approaches to summarise uncertainty within classification: variation ratios [Freeman,

1965], predictive entropy [Shannon, 1948], and mutual information [Shannon, 1948]. These

measures capture different notions of uncertainty: model uncertainty and predictive

uncertainty, and will be explained below. But first, how do we calculate these quantities

in our setting?

To use variation ratios we would sample a label from the softmax probabilities at

the end of each stochastic forward pass for a test input x. Collecting a set of T labels

yt from multiple stochastic forward passes on the same input we can find the mode of

the distribution11 c∗ = arg max
c=1,...,C

∑
t 1[yt = c], and the number of times it was sampled

fx =
∑

t 1[yt = c∗]. We then set

variation-ratio[x] := 1−
fx

T
. (3.19)

The variation ratio is a measure of dispersion—how “spread” the distribution is around

the mode. In the binary case, the variation ratio attains its maximum of 0.5 when the

two classes are sampled equally likely, and its minimum of 0 when only a single class is

sampled.

Remark (Variation ratios and approximate inference). The variation ratio as it

was formulated in [Freeman, 1965] and used above can be seen as approximating

the quantity

1− p(y = c∗♣x,Dtrain)

with c∗ = arg max
c=1,...,C

p(y = c♣x,Dtrain). This is because for yt the t’th class sampled

for input x we have:

fx

T
=

1

T

∑

t

1[yt = c∗] −−−→
T →∞

Eq∗

θ
(y♣x)

[
1[y = c∗]

]

10These approaches are necessary since the probability vector resulting from a deterministic forward
pass through the model does not capture confidence, as explained in figure 1.3.

11Here 1[·] is the indicator function.



52 Bayesian Deep Learning

=q∗
θ(y = c∗♣x)

≈p(y = c∗♣x,Dtrain)

and,

c∗ = arg max
c=1,...,C

∑

t

1[yt = c] =arg max
c=1,...,C

1

T

∑

t

1[yt = c]

−−−→
T →∞

arg max
c=1,...,C

Eq∗

θ
(y♣x)[1[y = c]]

=arg max
c=1,...,C

q∗
θ(y = c♣x).

≈arg max
c=1,...,C

p(y = c♣x,Dtrain)

since q∗
θ(ω) is a minimiser of the KL divergence to p(ω♣Dtrain) and therefore

q∗
θ(y♣x) ≈

∫
p(y♣fω(x))p(ω♣Dtrain)dω (following eq. (3.15)).

Unlike variation ratios, predictive entropy has its foundations in information theory.

This quantity captures the average amount of information contained in the predictive

distribution:

H[y♣x,Dtrain] := −
∑

c

p(y = c♣x,Dtrain) log p(y = c♣x,Dtrain) (3.20)

summing over all possible classes c that y can take. Given a test point x, the predictive

entropy attains its maximum value when all classes are predicted to have equal uniform

probability, and its minimum value of zero when one class has probability 1 and all others

probability 0 (i.e. the prediction is certain).

In our setting, the predictive entropy can be approximated by collecting the probability

vectors from T stochastic forward passes through the network, and for each class c

averaging the probabilities of the class from each of the T probability vectors, replacing

p(y = c♣x,Dtrain) in eq. (3.20). In other words, we replace p(y = c♣x,Dtrain) with
1
T

∑
t p(y = c♣x, ω̂t), where p(y = c♣x, ω̂t) is the probability of input x to take class c

with model parameters ω̂t ∼ q∗
θ(ω):

[p(y = 1♣x, ω̂t), ..., p(y = C♣x, ω̂t)] := Softmax(f ω̂t(x)).



3.3 Model uncertainty in Bayesian neural networks 53

Then,

H̃[y♣x,Dtrain] :=−
∑

c

(
1

T

∑

t

p(y = c♣x, ω̂t)

)
log

(
1

T

∑

t

p(y = c♣x, ω̂t)

)

−−−→
T →∞

−
∑

c

(∫
p(y = c♣x, ω)q∗

θ(ω)dω

)
log

(∫
p(y = c♣x, ω)q∗

θ(ω)dω

)

≈−
∑

c

(∫
p(y = c♣x, ω)p(ω♣Dtrain)dω

)
log

(∫
p(y = c♣x, ω)p(ω♣Dtrain)dω

)

=−
∑

c

p(y = c♣x,Dtrain) log p(y = c♣x,Dtrain)

=H[y♣x,Dtrain]

with ω̂t ∼ q∗
θ(ω) and since q∗

θ(ω) is the optimum of eq. (3.7). Note that this is a biased

estimator since the unbiased estimator 1
T

∑
t p(y = c♣x, ω̂t) −−−→

T →∞

∫
p(y = c♣x, ω)q∗

θ(ω)dω

is transformed through the non-linear function H[·]. The bias of this estimator will

decrease as T increases.

As an alternative to the predictive entropy, the mutual information between the

prediction y and the posterior over the model parameters ω offers a different measure of

uncertainty:

I[y, ω♣x,Dtrain] := H[y♣x,Dtrain]− Ep(ω♣Dtrain)

[
H[y♣x, ω]

]

= −
∑

c

p(y = c♣x,Dtrain) log p(y = c♣x,Dtrain)

+ Ep(ω♣Dtrain)

[∑

c

p(y = c♣x, ω) log p(y = c♣x, ω)
]

with c the possible classes y can take. This tractable view of the mutual information

was suggested in [Houlsby et al., 2011] in the context of active learning. Test points x

that maximise the mutual information are points on which the model is uncertain on

average, yet there exist model parameters that erroneously produce predictions with high

confidence.

The mutual information can be approximated in our setting in a similar way to the

predictive entropy approximation:

Ĩ[y, ω♣x,Dtrain] :=−
∑

c

(
1

T

∑

t

p(y = c♣x, ω̂t)

)
log

(
1

T

∑

t

p(y = c♣x, ω̂t)

)

+
1

T

∑

c,t

p(y = c♣x, ω̂t) log p(y = c♣x, ω̂t)

−−−→
T →∞

H[y♣x,Dtrain]− Eq∗

θ
(ω)

[
H[y♣x, ω]

]



54 Bayesian Deep Learning

≈I[y, ω♣x,Dtrain]

with ω̂t ∼ q∗
θ(ω).

Some intuition. To understand the different measures for uncertainty, we shall look

at three concrete examples in binary classification of dogs and cats given an input image.

More specifically, we will look at the sets of probability vectors obtained from multiple

stochastic forward passes, and the uncertainty measures resulting from these sets. The

three examples are where the probabilities for the class “dog” in all vectors are

1. all equal to 1 (i.e. the probability vectors collected are ¶(1, 0), ..., (1, 0)♢),

2. all equal to 0.5 (i.e. the probability vectors collected are ¶(0.5, 0.5), ..., (0.5, 0.5)♢),

and

3. half of the probabilities sampled equal to 0 and half of the probabilities equal to 1

(i.e. the probability vectors collected are ¶(1, 0), (0, 1), (0, 1), ..., (1, 0)♢ for example).

In example (1) the prediction has high confidence, whereas in examples (2) and (3) the

prediction has low confidence. These are examples of predictive uncertainty. Compared

to this notion of confidence, in examples (1) and (2) the model is confident about its

output since it gives identical probabilities in multiple forward passes. On the other

hand, in the last example (3) the model is uncertain about its output, corresponding to

the case in figure 1.3 (where the layer before the softmax has high uncertainty). This is

an example of model uncertainty.

In example (1), both variation ratios, predictive entropy, and the mutual information

would return value 0, all measures indicating high confidence. In example (3) variation

ratios, predictive entropy, and the mutual information would all return value 0.5, all

measures indicating high uncertainty. All three measures of uncertainty agree on these

two examples.

However, in example (2) variation ratios and predictive entropy would return value

0.5, whereas the mutual information would return value 0. In this case variation ratios

and predictive entropy capture the uncertainty in the prediction, whereas the mutual

information captures the model’s confidence in its output. This information can be used

for example in active learning, and will be demonstrated in section §5.2.

3.3.2 Difficulties with the approach

Our technique is simple: perform several stochastic forward passes through the model, and

look at the sample mean and variance. But it has several shortcomings worth discussing.



3.3 Model uncertainty in Bayesian neural networks 55

First, even though the training time of our model is identical to that of existing models

in the field, the test time is scaled by T—the number of averaged forward passes through

the network. This may not be of real concern in some real world applications, as NNs are

often implemented on distributed hardware. Distributed hardware allows us to obtain

MC estimates in constant time almost trivially, by transferring an input to a GPU and

setting a mini-batch composed of the same input multiple times. In dropout for example

we sample different Bernoulli realisations for each output unit and each mini-batch input,

which results in a matrix of probabilities. Each row in the matrix is the output of the

dropout network on the same input generated with different random variable realisations

(dropout masks). Averaging over the rows results in the MC dropout estimate.

Another concern is that the model’s uncertainty is not calibrated. A calibrated

model is one in which the predictive probabilities match the empirical frequency of the

data. The lack of calibration can be seen through the derivation’s relation to Gaussian

processes [Gal and Ghahramani, 2015b]. Gaussian processes’ uncertainty is known

to not be calibrated—the Gaussian process’s uncertainty depends on the covariance

function chosen, which is shown in [Gal and Ghahramani, 2015b] to be equivalent to

the non-linearities and prior over the weights. The choice of a GP’s covariance function

follows from our assumptions about the data. If we believe, for example, that the model’s

uncertainty should increase far from the data we might choose the squared exponential

covariance function.

For many practical applications the lack of calibration means that model uncertainty

can increase for large magnitude data points or be of different scale for different datasets.

To calibrate model uncertainty in regression tasks we can scale the uncertainty linearly

to remove data magnitude effects, and manipulate uncertainty percentiles to compare

among different datasets. This can be done by finding the number of validation set

points having larger uncertainty than that of a test point. For example, if a test point

has predictive standard deviation 5, whereas almost all validation points have standard

deviation ranging from 0.2 to 2, then the test point’s uncertainty value will be in the top

percentile of the validation set uncertainty measures, and the model will be considered as

very uncertain about the test point compared to the validation data. However, another

model might give the same test point predictive standard deviation of 5 with most of

the validation data given predictive standard deviation ranging from 10 to 15. In this

model the test point’s uncertainty measure will be in the lowest percentile of validation

set uncertainty measures, and the model will be considered as fairly confident about the

test point with respect to the validation data.



56 Bayesian Deep Learning

One last concern is a known limitation of VI. Variational inference is known to

underestimates predictive variance [Turner and Sahani, 2011], a property descendent

from our objective (which penalises qθ(ω) for placing mass where p(ω♣X, Y) has no

mass, but less so for not placing mass where it should). Several solutions exist for

this (such as [Giordano et al., 2015]), with different limitations for their practicality.

Uncertainty under-estimation does not seem to be of real concern in practice though,

and the variational approximation seems to work well in practical applications as we will

see in the next chapter.

3.4 Approximate inference in complex models

We finish the chapter by extending the approximate inference technique above to more

complex models such as convolutional neural networks and recurrent neural networks.

This will allow us to obtain model uncertainty for models defined over sequence based

datasets or for image data. We describe the approximate inference using Bernoulli

variational distributions for convenience of presentation, although any SRT could be used

instead.

3.4.1 Bayesian convolutional neural networks

In existing convolutional neural networks (CNNs) literature dropout is mostly used after

inner-product layers at the end of the model alone. This can be seen as applying a

finite deterministic transformation to the data before feeding it into a Bayesian NN.

As such, model uncertainty can still be obtained for such models, but an interesting

question is whether we could use approximate Bayesian inference over the full CNN.

Here we wish to integrate over the convolution layers (kernels) of the CNN as well. To

implement a Bayesian CNN we could apply dropout after all convolution layers as well

as inner-product layers, and evaluate the model’s predictive posterior using eq. (3.8) at

test time. Note though that generalisations to SRTs other than dropout are also possible

and easy to implement.

Recall the structure of a CNN described in §1.1 and in figure 1.1. In more de-

tail, the input to the i’th convolution layer is represented as a 3 dimensional tensor

x ∈ R
Hi−1×Wi−1×Ki−1 with height Hi−1, width Wi−1, and Ki−1 channels. A convolution

layer is then composed of a sequence of Ki kernels (weight tensors): kk ∈ R
h×w×Ki−1

for k = 1, ..., Ki. Here we assume kernel height h, kernel width w, and the last di-

mension to match the number of channels in the input layer: Ki−1. Convolving



3.4 Approximate inference in complex models 57

the kernels with the input (with a given stride s) then results in an output layer

of dimensions y ∈ R
H′

i−1×W ′

i−1×Ki with H ′
i−1 and W ′

i−1 being the new height and

width, and Ki channels—the number of kernels. Each element yi,j,k is the sum of

the element-wise product of kernel kk with a corresponding patch in the input image x:

[[xi−h/2,j−w/2,1, ..., xi+h/2,j+w/2,1], ..., [xi−h/2,j−w/2,Ki−1
, ..., xi+h/2,j+w/2,Ki−1

]].

To integrate over the kernels, we reformulate the convolution as a linear operation. Let

kk ∈ R
h×w×Ki−1 for k = 1, ..., Ki be the CNN’s kernels with height h, width w, and Ki−1

channels in the i’th layer. The input to the layer is represented as a 3 dimensional tensor

x ∈ R
Hi−1×Wi−1×Ki−1 with height Hi−1, width Wi−1, and Ki−1 channels. Convolving the

kernels with the input with a given stride s is equivalent to extracting patches from the

input and performing a matrix product: we extract h× w ×Ki−1 dimensional patches

from the input with stride s and vectorise these. Collecting the vectors in the rows of

a matrix we obtain a new representation for our input x ∈ R
n×hwKi−1 with n patches.

The vectorised kernels form the columns of the weight matrix Wi ∈ R
hwKi−1×Ki. The

convolution operation is then equivalent to the matrix product xWi ∈ R
n×Ki. The

columns of the output can be re-arranged into a 3 dimensional tensor y ∈ R
Hi×Wi×Ki

(since n = Hi ×Wi). Pooling can then be seen as a non-linear operation on the matrix y.

Note that the pooling operation is a non-linearity applied after the linear convolution

counterpart to ReLU or Tanh non-linearities.

To make the CNN into a probabilistic model we place a prior distribution over each

kernel and approximately integrate each kernels-patch pair with Bernoulli variational

distributions. We sample Bernoulli random variables ϵi,j,n and multiply patch n by

the weight matrix Wi · diag([ϵi,j,n]Ki

j=1). This product is equivalent to an approximating

distribution modelling each kernel-patch pair with a distinct random variable, tying

the means of the random variables over the patches. The distribution randomly sets

kernels to zero for different patches. This approximating distribution is also equivalent

to applying dropout for each element in the tensor y before pooling. Implementing our

Bayesian CNN is therefore as simple as using dropout after every convolution layer before

pooling.

The standard dropout test time approximation (scaling hidden units by 1/(1− pi))

does not perform well when dropout is applied after convolutions—this is a negative result

we identified empirically. We solve this by approximating the predictive distribution

following eq. (3.8), averaging stochastic forward passes through the model at test time

(using MC dropout). We assess the model above with an extensive set of experiments

studying its properties in §4.4.



58 Bayesian Deep Learning

3.4.2 Bayesian recurrent neural networks

We next develop inference with Bernoulli variational distributions for recurrent neural

networks (RNNs), although generalisations to SRTs other than dropout are trivial. We

will concentrate on simple RNN models for brevity of notation. Derivations for LSTM

and GRU follow similarly. Given input sequence x = [x1, ..., xT ] of length T , a simple

RNN is formed by a repeated application of a deterministic function fh. This generates a

hidden state ht for time step t:

ht = fh(xt, ht−1) = σ(xtWh + ht−1Uh + bh)

for some non-linearity σ. The model output can be defined, for example, as

fy(hT ) = hT Wy + by.

To view this RNN as a probabilistic model we regard ω = ¶Wh, Uh, bh, Wy, by♢ as

random variables (following Gaussian prior distributions). To make the dependence on

ω clear, we write fω

y for fy and similarly for fω

h . We define our probabilistic model’s

likelihood as above (section 2.1). The posterior over random variables ω is rather complex,

and we approximate it with a variational distribution q(ω). For the dropout SRT for

example we may use a Bernoulli approximating distribution.

Recall our VI optimisation objective eq. (3.1). Evaluating each log likelihood term in

eq. (3.1) with our RNN model we have

∫
q(ω) log p(y♣fω

y (hT ))dω =
∫

q(ω) log p

(
y

∣∣∣∣∣f
ω

y

(
fω

h (xT , hT −1)
)

dω

=
∫

q(ω) log p

(
y

∣∣∣∣∣f
ω

y

(
fω

h (xT , fω

h (...fω

h (x1, h0)...))
)

dω

with h0 = 0. We approximate this with MC integration with a single sample:

≈ log p

(
y

∣∣∣∣∣f
ω̂

y

(
f ω̂

h (xT , f ω̂

h (...f ω̂

h (x1, h0)...))
)

,

with ω̂ ∼ q(ω), resulting in an unbiased estimator to each sum term12.

12Note that for brevity we did not re-parametrise the integral, although this should be done to obtain
low variance derivative estimators.



3.4 Approximate inference in complex models 59

This estimator is plugged into equation (3.1) to obtain our minimisation objective

L̂MC = −
N∑

i=1

log p

(
yi

∣∣∣∣∣f
ω̂i
y

(
f ω̂i

h (xi,T , f ω̂i

h (...f ω̂i

h (xi,1, h0)...))
)

+ KL(q(ω)♣♣p(ω)). (3.21)

Note that for each sequence xi we sample a new realisation ω̂i = ¶Ŵi
h, Ûi

h, b̂i
h, Ŵi

y, b̂i
y♢,

and that each symbol in the sequence xi = [xi,1, ..., xi,T ] is passed through the function

f ω̂i

h with the same weight realisations Ŵi
h, Ûi

h, b̂i
h used at every time step t ≤ T .

In the dropout case, evaluating the model output f ω̂

y (·) with sample ω̂ corresponds to

randomly zeroing (masking) rows in each weight matrix W during the forward pass. In

our RNN setting with a sequence input, each weight matrix row is randomly masked

once, and importantly the same mask is used through all time steps. When viewed as a

stochastic regularisation technique, our induced dropout variant is therefore identical

to implementing dropout in RNNs with the same network units dropped at each time

step, randomly dropping inputs, outputs, and recurrent connections. Predictions can be

approximated by either propagating the mean of each layer to the next (referred to as the

standard dropout approximation), or by performing dropout at test time and averaging

results (MC dropout, eq. (3.16)).

Remark (Bayesian versus ensembling interpretation of dropout). Apart from our

Bayesian approximation interpretation, dropout in deep networks can also be seen as

following an ensembling interpretation [Srivastava et al., 2014]. This interpretation

also leads to MC dropout at test time. But the ensembling interpretation does

not determine whether the ensemble should be over the network units or the

weights. For example, in an RNN this view will not lead to our dropout variant,

unless the ensemble is defined to tie the weights of the network ad hoc. This is in

comparison to the Bayesian approximation view where the weight tying is forced

by the probabilistic interpretation of the model.

The same can be said about the latent variable model view of dropout [Maeda,

2014] where a constraint over the weights would have to be added ad hoc to derive

the results presented here.

Certain RNN models such as LSTMs [Graves et al., 2013; Hochreiter and Schmidhuber,

1997] and GRUs [Cho et al., 2014] use different gates within the RNN units. For example,

an LSTM is defined by setting four gates: “input”, “forget”, “output”, and an “input

modulation gate”,

i = sigm
(
ht−1Ui + xtWi


f = sigm

(
ht−1Uf + xtWf





60 Bayesian Deep Learning

o = sigm
(
ht−1Uo + xtWo


g = tanh

(
ht−1Ug + xtWg



ct = f ⊙ ct−1 + i⊙ g ht = o⊙ tanh(ct) (3.22)

with ω = ¶Wi, Ui, Wf , Uf , Wo, Uo, Wg, Ug♢ weight matrices and sigm the sigmoid

non-linearity. Here an internal state ct (also referred to as cell) is updated additively.

Alternatively, the model could be re-parametrised as in [Graves et al., 2013]:




i

f

o

g




=




sigm

sigm

sigm

tanh





W ·


 xt

ht−1




 (3.23)

with ω = ¶W♢, W = [Wi, Ui; Wf , Uf ; Wo, Uo; Wg, Ug] a matrix of dimensions 4K by

2K (K being the dimensionality of xt). We name this parametrisation a tied-weights

LSTM (compared to the untied-weights LSTM parametrisation in eq. (3.22)).

Even though these two parametrisations result in the same deterministic model output,

they lead to different approximating distributions q(ω). With the first parametrisation

one could use different dropout masks for different gates (even when the same input xt is

used). This is because the approximating distribution is placed over the matrices rather

than the inputs: we might drop certain rows in one weight matrix W applied to xt and

different rows in another matrix W′ applied to xt. With the second parametrisations we

would place a distribution over the single matrix W. This leads to a faster forward-pass,

but with slightly diminished results (this tradeoff is examined in section §4.5).

Remark (Word embeddings dropout). In datasets with continuous inputs we often

apply SRTs such as dropout to the input layer—i.e. to the input vector itself. This

is equivalent to placing a distribution over the weight matrix which follows the

input and approximately integrating over it (the matrix is optimised, therefore

prone to overfitting otherwise).

But for models with discrete inputs such as words (where every word is mapped to a

continuous vector—a word embedding)—this is seldom done. With word embeddings

the input can be seen as either the word embedding itself, or, more conveniently, as

a “one-hot” encoding (a vector of zeros with 1 at a single position). The product of

the one-hot encoded vector with an embedding matrix WE ∈ R
V ×D (where D is

the embedding dimensionality and V is the number of words in the vocabulary)

then gives a word embedding. Curiously, this parameter layer is the largest layer in



3.4 Approximate inference in complex models 61

most language applications, yet it is often not regularised. Since the embedding

matrix is optimised it can lead to overfitting, and it is therefore desirable to apply

dropout to the one-hot encoded vectors. This in effect is identical to dropping

words at random throughout the input sentence, and can also be interpreted as

encouraging the model to not “depend” on single words for its output.

Note that as before, we randomly set rows of the matrix WE ∈ R
V ×D to zero. Since

we repeat the same mask at each time step, we drop the same words throughout

the sequence—i.e. we drop word types at random rather than word tokens (as an

example, the sentence “the dog and the cat” might become “— dog and — cat”

or “the — and the cat”, but never “— dog and the cat”). A possible inefficiency

implementing this is the requirement to sample V Bernoulli random variables,

where V might be large. This can be solved by the observation that for sequences

of length T , at most T embeddings could be dropped (other dropped embeddings

have no effect on the model output). For T ≪ V it is therefore more efficient

to first map the words to the word embeddings, and only then to zero-out word

embeddings based on their word type.

F • f

In the next chapter we will study the techniques above empirically and analyse

them quantitatively. This is followed by a survey of recent literature making use of

the techniques in real-world problems concerning AI safety, image processing, sequence

processing, active learning, and other examples.


