References

- Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from tensorflow.org.
- Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mane. Concrete problems in ai safety. *arXiv preprint arXiv:1606.06565*, 2016.
- C Angermueller and O Stegle. Multi-task deep neural network to predict CpG methylation profiles from low-coverage sequencing data. In *NIPS MLCB workshop*, 2015.
- O Anjos, C Iglesias, F Peres, J Martínez, Á García, and J Taboada. Neural networks applied to discriminate botanical origin of honeys. *Food chemistry*, 175:128–136, 2015.
- Christopher Atkeson and Juan Santamaria. A comparison of direct and model-based reinforcement learning. In *In International Conference on Robotics and Automation*. Citeseer, 1997.
- Jimmy Ba and Brendan Frey. Adaptive dropout for training deep neural networks. In Advances in Neural Information Processing Systems, pages 3084–3092, 2013.
- P Baldi, P Sadowski, and D Whiteson. Searching for exotic particles in high-energy physics with deep learning. *Nature communications*, 5, 2014.
- Pierre Baldi and Peter J Sadowski. Understanding dropout. In Advances in Neural Information Processing Systems, pages 2814–2822, 2013.
- David Barber and Christopher M Bishop. Ensemble learning in Bayesian neural networks. NATO ASI SERIES F COMPUTER AND SYSTEMS SCIENCES, 168:215–238, 1998.
- Justin Bayer, Christian Osendorfer, Daniela Korhammer, Nutan Chen, Sebastian Urban, and Patrick van der Smagt. On fast dropout and its applicability to recurrent networks. arXiv preprint arXiv:1311.0701, 2013.

- Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards ai. Large-scale kernel machines, 34(5), 2007.
- S Bergmann, S Stelzer, and S Strassburger. On the use of artificial neural networks in simulation-based manufacturing control. *Journal of Simulation*, 8(1):76–90, 2014.
- James Bergstra et al. Theano: a CPU and GPU math expression compiler. In *Proceedings of the Python for Scientific Computing Conference (SciPy)*, June 2010. Oral Presentation.
- Chris M Bishop. Training with noise is equivalent to Tikhonov regularization. *Neural* computation, 7(1):108–116, 1995.
- Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN 0387310738.
- Théodore Bluche, Christopher Kermorvant, and Jérôme Louradour. Where to apply dropout in recurrent neural networks for handwriting recognition? In *ICDAR*. IEEE, 2015.
- Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural network. In *ICML*, 2015.
- Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, Matteo Negri, Aurelie Neveol, Mariana Neves, Martin Popel, Matt Post, Raphael Rubino, Carolina Scarton, Lucia Specia, Marco Turchi, Karin Verspoor, and Marcos Zampieri. Findings of the 2016 conference on machine translation. In Proceedings of the First Conference on Machine Translation, pages 131–198, Berlin, Germany, August 2016. Association for Computational Linguistics.
- Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.
- Thang D Bui, Daniel Hernández-Lobato, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner. Deep Gaussian processes for regression using approximate expectation propagation. *ICML*, 2016.
- Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder. Dropout distillation. In Proceedings of The 33rd International Conference on Machine Learning, pages 99–107, 2016.
- Theophilos Cacoullos. On upper and lower bounds for the variance of a function of a random variable. *The Annals of Probability*, pages 799–809, 1982.
- Hugh Chipman. Bayesian variable selection with related predictors.
- Kyunghyun Cho et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation. In *EMNLP*, Doha, Qatar, October 2014. ACL.

- François Chollet. Keras, 2015. URL https://github.com/fchollet/keras. GitHub repository.
- David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical models. *Journal of artificial intelligence research*, 1996.
- George Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics* of control, signals and systems, 2(4):303–314, 1989.
- Marc Deisenroth and Carl Rasmussen. PILCO: A model-based and data-efficient approach to policy search. In *Proceedings of the 28th International Conference on machine learning (ICML-11)*, pages 465–472, 2011.
- Marc Deisenroth, Dieter Fox, and Carl Rasmussen. Gaussian processes for data-efficient learning in robotics and control. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 37(2):408–423, 2015.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *Computer Vision and Pattern Recognition*, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.
- John Denker and Yann LeCun. Transforming neural-net output levels to probability distributions. In Advances in Neural Information Processing Systems 3. Citeseer, 1991.
- John Denker, Daniel Schwartz, Ben Wittner, Sara Solla, Richard Howard, Lawrence Jackel, and John Hopfield. Large automatic learning, rule extraction, and generalization. *Complex systems*, 1(5):877–922, 1987.
- Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft. Learning and policy search in stochastic dynamical systems with Bayesian neural networks. arXiv preprint arXiv:1605.07127, 2016.
- Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid Monte Carlo. *Physics letters B*, 195(2):216–222, 1987.
- Linton G Freeman. Elementary applied statistics, 1965.
- Michael C. Fu. Chapter 19 gradient estimation. In Shane G. Henderson and Barry L. Nelson, editors, Simulation, volume 13 of Handbooks in Operations Research and Management Science, pages 575 – 616. Elsevier, 2006.
- Antonino Furnari, Giovanni Maria Farinella, and Sebastiano Battiato. Segmenting egocentric videos to highlight personal locations of interest. 2016.
- Yarin Gal. A theoretically grounded application of dropout in recurrent neural networks. arXiv:1512.05287, 2015.
- Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with Bernoulli approximate variational inference. arXiv:1506.02158, 2015a.
- Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Insights and applications. In *Deep Learning Workshop*, *ICML*, 2015b.

- Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. arXiv:1506.02142, 2015c.
- Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Appendix. arXiv:1506.02157, 2015d.
- Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with Bernoulli approximate variational inference. *ICLR workshop track*, 2016a.
- Yarin Gal and Zoubin Ghahramani. A theoretically grounded application of dropout in recurrent neural networks. *NIPS*, 2016b.
- Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. *ICML*, 2016c.
- Yarin Gal and Richard Turner. Improving the Gaussian process sparse spectrum approximation by representing uncertainty in frequency inputs. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), 2015.
- Yarin Gal, Mark van der Wilk, and Carl Rasmussen. Distributed variational inference in sparse Gaussian process regression and latent variable models. In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 3257–3265. Curran Associates, Inc., 2014.
- Yarin Gal, Rowan McAllister, and Carl E. Rasmussen. Improving PILCO with Bayesian neural network dynamics models. *Data-Efficient Machine Learning workshop*, ICML, April, 2016.
- Carl Friedrich Gauss. Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium. 1809.
- Edward I George and Robert E McCulloch. Variable selection via gibbs sampling. *Journal* of the American Statistical Association, 88(423):881–889, 1993.
- Edward I George and Robert E McCulloch. Approaches for Bayesian variable selection. *Statistica sinica*, pages 339–373, 1997.
- J.D Gergonne. Application de la méthode des moindre quarrés a l'interpolation des suites. Annales des Math Pures et Appl, 6:242–252, 1815.
- Z Ghahramani. Probabilistic machine learning and artificial intelligence. *Nature*, 521 (7553), 2015.
- Z. Ghahramani and H. Attias. Online variational Bayesian learning. Slides from talk presented at NIPS 2000 Workshop on Online learning, 2000.
- Ryan J Giordano, Tamara Broderick, and Michael I Jordan. Linear response methods for accurate covariance estimates from mean field variational Bayes. In *Advances in Neural Information Processing Systems*, pages 1441–1449, 2015.
- Paul Glasserman. Monte Carlo methods in financial engineering, volume 53. Springer Science & Business Media, 2013.

- Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM, 33(10):75–84, 1990.
- Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. Book in preparation for MIT Press, 2016. URL http://www.deeplearningbook.org.
- Ian J Goodfellow, Aaron Courville, and Yoshua Bengio. Spike-and-slab sparse coding for unsupervised feature discovery. arXiv preprint arXiv:1201.3382, 2012.
- Alan Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recurrent neural networks. In *ICASSP*. IEEE, 2013.
- Alex Graves. Practical variational inference for neural networks. In NIPS, 2011.
- Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep Q-learning with model-based acceleration. *ICML*, 2016.
- Jose Miguel Hernandez-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learning of Bayesian neural networks. In *ICML*, 2015.
- José Miguel Hernández-Lobato, Yingzhen Li, Daniel Hernández-Lobato, Thang Bui, and Richard E Turner. Black-box alpha divergence minimization. In *Proceedings of The* 33rd International Conference on Machine Learning, pages 1511–1520, 2016.
- S Herzog and D Ostwald. Experimental biology: Sometimes Bayesian statistics are better. *Nature*, 494, 2013.
- Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing the description length of the weights. In *COLT*, pages 5–13. ACM, 1993.
- Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.
- Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9(8), 1997.
- Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference. *JMLR*, 2013.
- Alex Holub, Pietro Perona, and Michael C Burl. Entropy-based active learning for object recognition. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW'08. IEEE Computer Society Conference on, pages 1–8. IEEE, 2008.
- Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251–257, 1991.
- Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for classification and preference learning. *arXiv preprint arXiv:1112.5745*, 2011.
- Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Weinberger. Deep networks with stochastic depth. arXiv preprint arXiv:1603.09382, 2016.

- Hemant Ishwaran and J Sunil Rao. Spike and slab variable selection: frequentist and Bayesian strategies. *Annals of Statistics*, pages 730–773, 2005.
- Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with Gumbelsoftmax. In *Bayesian Deep Learning workshop*, *NIPS*, 2016.
- Chuanyi Ji, Robert R Snapp, and Demetri Psaltis. Generalizing smoothness constraints from discrete samples. *Neural Computation*, 2(2):188–197, 1990.
- Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.
- Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to variational methods for graphical models. *Machine learning*, 37(2): 183–233, 1999.
- Ajay J Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos. Multi-class active learning for image classification. In *Computer Vision and Pattern Recognition*, 2009. CVPR 2009. IEEE Conference on, pages 2372–2379. IEEE, 2009.
- Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In *EMNLP*, 2013.
- Michael Kampffmeyer, Arnt-Borre Salberg, and Robert Jenssen. Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. In *The IEEE Conference on Computer Vision* and Pattern Recognition (CVPR) Workshops, June 2016.
- A Karpathy et al. A Javascript implementation of neural networks. https://github.com/ karpathy/convnetjs, 2014–2015.
- C.D. Keeling, T.P. Whorf, and the Carbon Dioxide Research Group. Atmospheric CO2 concentrations (ppmv) derived from in situ air samples collected at Mauna Loa Observatory, Hawaii. Scripps Institution of Oceanography (SIO), University of California, La Jolla, California USA 92093-0444, June 2004.
- Alex Kendall and Roberto Cipolla. Modelling uncertainty in deep learning for camera relocalization. In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 4762–4769. IEEE, 2016.
- Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. Bayesian segnet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680, 2015.
- Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
- Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114, 2013.

- Diederik P Kingma and Max Welling. Stochastic gradient VB and the variational auto-encoder. 2nd International Conference on Learning Representationsm (ICLR), 2014.
- Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization trick. In *NIPS*. Curran Associates, Inc., 2015.
- Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Computer Science Department, University of Toronto, Tech. Rep, 1(4):7, 2009.
- Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In *Advances in neural information processing systems*, pages 1097–1105, 2012.
- David Krueger, Tegan Maharaj, János Kramár, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary Ke, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Aaron Courville, et al. Zoneout: Regularizing RNNs by randomly preserving hidden activations. *arXiv* preprint arXiv:1606.01305, 2016.
- M Krzywinski and N Altman. Points of significance: Importance of being uncertain. Nature methods, 10(9), 2013.
- Solomon Kullback. Information theory and statistics. John Wiley & Sons, 1959.
- Solomon Kullback and Richard A Leibler. On information and sufficiency. *The annals of* mathematical statistics, 22(1):79–86, 1951.
- Quoc V Le, Alex J Smola, and Stéphane Canu. Heteroscedastic Gaussian process regression. In Proceedings of the 22nd international conference on Machine learning, pages 489–496. ACM, 2005.
- J. Lean. Solar irradiance reconstruction. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA, 2004. IGBP PAGES/World Data Center for Paleoclimatology. Data Contribution Series 2004-035.
- Yann LeCun and Corinna Cortes. The mnist database of handwritten digits, 1998.
- Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. *Neural Computation*, 1(4):541–551, 1989.
- Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.
- Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeplysupervised nets. arXiv preprint arXiv:1409.5185, 2014.
- Adrien Marie Legendre. Nouvelles Methodes pour la Determination des Orbites des Come'tes. Paris, 1805.
- Nicholas Léonard, Sagar Waghmare, and Yang Wang. RNN: Recurrent library for Torch. arXiv preprint arXiv:1511.07889, 2015.

- Xin Li and Yuhong Guo. Adaptive active learning for image classification. In *Proceedings* of the IEEE Conference on Computer Vision and Pattern Recognition, pages 859–866, 2013.
- Yingzhen Li and Richard E Turner. Variational inference with r\'enyi divergence. arXiv preprint arXiv:1602.02311, 2016.
- Timothy Lillicrap, Jonathan Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.
- Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400, 2013.
- O Linda, T Vollmer, and M Manic. Neural network based intrusion detection system for critical infrastructures. In Neural Networks, 2009. IJCNN 2009. International Joint Conference on. IEEE, 2009.
- Christos Louizos. Smart regularization of deep architectures, 2015.
- David MacKay. *Bayesian methods for adaptive models*. PhD thesis, California Institute of Technology, 1992a.
- David JC MacKay. A practical Bayesian framework for backpropagation networks. Neural Computation, 4(3):448–472, 1992b.
- Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete distribution: A continuous relaxation of discrete random variables. In *Bayesian Deep Learning* workshop, NIPS, 2016.
- David Madigan and Adrian E Raftery. Model selection and accounting for model uncertainty in graphical models using Occam's window. *Journal of the American Statistical Association*, 89(428):1535–1546, 1994.
- Shin-ichi Maeda. A Bayesian encourages dropout. arXiv preprint arXiv:1412.7003, 2014.
- Andrew McHutchon. Nonlinear modelling and control using Gaussian processes. PhD thesis, University of Cambridge, 2014.
- Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recurrent neural network based language model. In *Eleventh Annual Conference of* the International Speech Communication Association, 2010.
- Tom Minka. Divergence measures and message passing. Technical report, Microsoft Research, 2005.
- Toby J Mitchell and John J Beauchamp. Bayesian variable selection in linear regression. Journal of the American Statistical Association, 83(404):1023–1032, 1988.
- V Mnih, K Kavukcuoglu, D Silver, A A Rusu, J Veness, et al. Human-level control through deep reinforcement learning. *Nature*, 518(7540):529–533, 2015.

- Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.
- Taesup Moon, Heeyoul Choi, Hoshik Lee, and Inchul Song. RnnDrop: A Novel Dropout for RNNs in ASR. In ASRU Workshop, 2015.
- Radford M Neal. *Bayesian learning for neural networks*. PhD thesis, University of Toronto, 1995.
- Radford M Neal. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 2:113–162, 2011.
- Isaac Newton. *Philosophiae naturalis principia mathematica*, volume Adv.b.39.1. Jussu Societatis Regiæ ac Typis Joseph Streater, Londini, 1687. (in Latin).
- NHTSA. PE 16-007. Technical report, U.S. Department of Transportation, National Highway Traffic Safety Administration, Jan 2017. Tesla Crash Preliminary Evaluation Report.
- Steven J Nowlan and Geoffrey E Hinton. Simplifying neural networks by soft weightsharing. *Neural computation*, 4(4):473–493, 1992.
- Regina Nuzzo. Statistical errors. Nature, 506(13):150–152, 2014.
- Manfred Opper and Cédric Archambeau. The variational Gaussian approximation revisited. *Neural Computation*, 21(3):786–792, 2009.
- Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via bootstrapped DQN. In Advances In Neural Information Processing Systems, pages 4026–4034, 2016.
- Marius Pachitariu and Maneesh Sahani. Regularization and nonlinearities for neural language models: when are they needed? *arXiv preprint arXiv:1301.5650*, 2013.
- John Paisley, David Blei, and Michael Jordan. Variational Bayesian inference with stochastic search. *ICML*, 2012.
- Vu Pham, Theodore Bluche, Christopher Kermorvant, and Jerome Louradour. Dropout improves recurrent neural networks for handwriting recognition. In *ICFHR*. IEEE, 2014.
- Ofir Press and Lior Wolf. Using the output embedding to improve language models. arXiv preprint arXiv:1608.05859, 2016.
- Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, 2006. ISBN 026218253X.
- Alfréd Rényi et al. On measures of entropy and information. In *Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics.* The Regents of the University of California, 1961.

- Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In *ICML*, 2014.
- Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical statistics, pages 400–407, 1951.
- Donald B Rubin. The Bayesian bootstrap. The annals of statistics, 9(1):130–134, 1981.
- David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by error propagation. Technical report, DTIC Document, 1985.
- Masa-Aki Sato. Online model selection based on the variational Bayes. *Neural Computation*, 13(7):1649–1681, 2001.
- John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation using stochastic computation graphs. In *Advances in Neural Information Processing Systems*, pages 3528–3536, 2015.
- Hilary L Seal. Studies in the history of probability and statistics. XXIX The discovery of the method of least squares. *Biometrika*, 54(1-2):1–24, 1967.
- Rico Sennrich, Barry Haddow, and Alexandra Birch. Edinburgh neural machine translation systems for wmt 16. In *Proceedings of the First Conference on Machine Translation*, pages 371–376, Berlin, Germany, August 2016. Association for Computational Linguistics.
- Burr Settles. Active learning literature survey. University of Wisconsin, Madison, 52 (55-66):11, 2010.
- Claude Elwood Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):379–423, 1948.
- Saurabh Singh, Derek Hoiem, and David Forsyth. Swapout: Learning an ensemble of deep architectures. *NIPS*, 2016.
- Kirstine Smith. On the standard deviations of adjusted and interpolated values of an observed polynomial function and its constants and the guidance they give towards a proper choice of the distribution of the observations. *Biometrika*, 12:1–85, 1918.
- Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Advances in neural information processing systems, pages 1257–1264, 2005.
- Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine learning algorithms. In Advances in Neural Information Processing Systems, pages 2951–2959, 2012.

Jasper Snoek et al. Spearmint. https://github.com/JasperSnoek/spearmint, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. *JMLR*, 2014.

- Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement learning with deep predictive models. *arXiv preprint arXiv:1507.00814*, 2015.
- Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural networks for language modeling. In *INTERSPEECH*, 2012.
- Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning with neural networks. In *NIPS*, 2014.
- Richard Sutton and Andrew Barto. *Reinforcement learning: An introduction*. MIT press, 1998.
- Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014.
- William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika*, pages 285–294, 1933.
- Naftali Tishby, Esther Levin, and Sara A Solla. Consistent inference of probabilities in layered networks: Predictions and generalizations. In *Neural Networks*, 1989. IJCNN., International Joint Conference on, pages 403–409. IEEE, 1989.
- Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational Bayes for nonconjugate inference. In *Proceedings of the 31st International Conference on Machine Learning (ICML-14)*, pages 1971–1979, 2014.
- Michalis K Titsias and Miguel Lázaro-Gredilla. Spike and slab variational inference for multi-task and multiple kernel learning. In *Advances in neural information processing* systems, pages 2339–2347, 2011.
- D Trafimow and M Marks. Editorial. Basic and Applied Social Psychology, 37(1), 2015.
- R. E. Turner and M. Sahani. Two problems with variational expectation maximisation for time-series models. In *Bayesian Time series models*, chapter 5, pages 109–130. Cambridge University Press, 2011.
- Stefan Wager, Sida Wang, and Percy S Liang. Dropout training as adaptive regularization. In Advances in Neural Information Processing Systems, pages 351–359, 2013.
- L Wan, M Zeiler, S Zhang, Y LeCun, and R Fergus. Regularization of neural networks using dropconnect. In *ICML-13*, 2013.
- S Wang and C Manning. Fast dropout training. ICML, 2013.
- Andreas S Weigend, David E Rumelhart, and Bernardo A Huberman. Generalization by weight-elimination with application to forecasting. In Advances in Neural Information Processing Systems, pages 875–882, 1991.
- Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In *Proceedings of the 28th International Conference on Machine Learning (ICML-11)*, pages 681–688, 2011.

- Paul J Werbos. Generalization of backpropagation with application to a recurrent gas market model. *Neural Networks*, 1(4):339–356, 1988.
- Christopher KI Williams. Computing with infinite networks. Advances in neural information processing systems, pages 295–301, 1997.
- Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. *Machine learning*, 8(3-4):229–256, 1992.
- John Winn and Christopher M Bishop. Variational message passing. Journal of Machine Learning Research, 6(Apr):661–694, 2005.
- Xiao Yang, Roland Kwitt, and Marc Niethammer. Fast predictive image registration. arXiv preprint arXiv:1607.02504, 2016.
- Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization. arXiv preprint arXiv:1409.2329, 2014.
- Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions. In *ICML 2003* workshop on The Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining, 2003.