
Appendix A

KL condition

We show that in the dropout case, the KL condition (eq. (3.12)) holds for a large enough

number of hidden units when we specify the model prior to be a product of uncorrelated

Gaussian distributions over each weight1:

p(ω) =
L
∏

i=1

p(Wi) =
L
∏

i=1

MN (Wi; 0, I/l2
i , I).

We set the approximating distribution to be qθ(ω) =
∫

qθ(ω♣ϵ)p(ϵ)dϵ where qθ(ω♣ϵ) =

δ(ω − g(θ, ϵ)), with g(θ, ϵ) = ¶diag(ϵ1)M1, diag(ϵ2)M2, b♢, θ = ¶M1, M2, b♢, and p(ϵi)

defined as a product of Bernoulli distributions (ϵi is a vector of draws from the Bernoulli

distribution). Since we assumed qθ(ω) to factorise over the layers and over the rows of

each weight matrix, we have

KL(qθ(ω)♣♣p(ω)) =
∑

i,k

KL(qθi,k
(wi,k)♣♣p(wi,k))

with i summing over the layers and k summing over the rows in each layers’ weight

matrix.

We approximate each qθi,k
(wi,k♣ϵ) = δ(wi,k − g(θi,k, ϵi,k)) as a narrow Gaussian with

a small standard deviation Σ = σ2I. This means that marginally qθi,k
(wi,k) is a mixture

of two Gaussians with small standard deviations, and one component fixed at zero. For

large enough models, the KL condition follows from this general proposition:

Proposition 4. Fix K, L ∈ N, a probability vector p = (p1, ..., pL), and Σi ∈ R
K×K

diagonal positive-definite for i = 1, ..., L, with the elements of each Σi not dependent on

1Here MN (0, I, I) is the standard matrix Gaussian distribution.
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K. Let

q(x) =
L
∑

i=1

piN (x; µi, Σi)

be a mixture of Gaussians with L components and µi ∈ R
K, let p(x) = N (0, IK), and

further assume that µi − µj ∼ N (0, I) for all i, j.

The KL divergence between q(x) and p(x) can be approximated as:

KL(q(x)♣♣p(x)) ≈
L
∑

i=1

pi

2

(

µ
T
i µi + tr(Σi) − K(1 + log 2π) − log ♣Σi♣



− H(p) (A.1)

with H(p) := −
∑L

i=1 pi log pi for large enough K.

Before we prove the proposition, we observe that a direct result from it is the following:

Corollary 2. The KL condition (eq. (3.12)) holds for a large enough number of hidden

units when we specify the model prior to be

p(ω) =
L
∏

i=1

p(Wi) =
L
∏

i=1

MN (Wi; 0, I/l2
i , I)

and the approximating distribution to be a dropout variational distribution.

Proof.

∂

∂mi,k

KL(qθ(ω)♣♣p(ω)) =
∂

∂mi,k

KL(qθi,k
(wi,k)♣♣p(wi,k))

≈
(1 − pi)l

2
i

2

∂

∂mi,k

mT
i,kmi,k

=
∂

∂mi,k

Nτ(λ1♣♣M1♣♣
2 + λ2♣♣M2♣♣

2 + λ3♣♣b♣♣2)

for λi =
(1−pi)l

2

i

2Nτ
.

Next we prove proposition 4.

Proof. We have

KL(q(x)♣♣p(x)) =
∫

q(x) log
q(x)

p(x)
dx

=
∫

q(x) log q(x)dx −
∫

q(x) log p(x)dx
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= −H(q(x)) −
∫

q(x) log p(x)dx (A.2)

—a sum of the entropy of q(x) (H(q(x))) and the expected log probability of x. The

expected log probability can be evaluated analytically, but the entropy term has to be

approximated.

We begin by approximating the entropy term. We write

H(q(x)) = −
L
∑

i=1

pi

∫

N (x; µi, Σi) log q(x)dx

= −
L
∑

i=1

pi

∫

N (ϵi; 0, I) log q(µi + Liϵi)dϵi

using a change of variables x = µi + Liϵi with LiL
T
i = Σi and ϵi ∼ N (0, I).

Now, the term inside the logarithm can be written as

q(µi + Liϵi) =
L
∑

j=1

piN (µi + Liϵi; µj, Σj)

=
L
∑

j=1

pi(2π)−K/2♣Σj♣
−1/2 exp

{

−
1

2
♣♣µj − µi − Liϵi♣♣

2
Σj

}

where ♣♣ · ♣♣Σ is the Mahalanobis distance. Since µi, µj are assumed to be normally

distributed, the quantity µj −µi−Liϵi is also normally distributed2. Since the expectation

of a generalised χ2 distribution with K degrees of freedom increases with K, we have that3

K ≫ 0 implies that ♣♣µj − µi − Liϵi♣♣
2
Σj

≫ 0 for i ≠ j (since the elements of Σj do not

depend on K). Finally, we have for i = j that ♣♣µi − µi − Liϵi♣♣
2
Σi

= ϵ
T
i LT

i L−T
i L−1

i Liϵi =

ϵ
T
i ϵi. Therefore the last equation can be approximated as

q(µi + Liϵi) ≈ pi(2π)−K/2♣Σi♣
−1/2 exp

{

−
1

2
ϵ

T
i ϵi

}

.

I.e., in high dimensions the mixture components will not overlap. This gives us

H(q(x)) ≈ −
L
∑

i=1

pi

∫

N (ϵi; 0, I) log

(

pi(2π)−K/2♣Σi♣
−1/2 exp

{

−
1

2
ϵ

T
i ϵi

}

)

dϵi

=
L
∑

i=1

pi

2

(

log ♣Σi♣ +
∫

N (ϵi; 0, I)ϵT
i ϵidϵi + K log 2π

)

+ H(p)

2With mean zero and variance Var(µj − µi − Liϵi) = 2I + Σi.
3To be exact, for diagonal matrices Λ, ∆ and v ∼ N (0, Λ), we have E[♣♣v♣♣∆] = E[vT ∆−1

v] =
∑K

k=1
E[∆−1

k v2

k] =
∑K

k=1
∆−1

k Λk.
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where H(p) := −
∑L

i=1 pi log pi. Since ϵ
T
i ϵi distributes according to a χ2 distribution, its

expectation is K, and the entropy can be approximated as

H(q(x)) ≈
L
∑

i=1

pi

2

(

log ♣Σi♣ + K(1 + log 2π)


+ H(p). (A.3)

Next, evaluating the expected log probability term of the KL divergence we get

∫

q(x) log p(x)dx =
L
∑

i=1

pi

∫

N (x; µi, Σi) log p(x)dx

for p(x) = N (0, IK) it is easy to show that

∫

q(x) log p(x)dx = −
1

2

L
∑

i=1

pi

(

µ
T
i µi + tr(Σi)



. (A.4)

Finally, combining eq. (A.3) and eq. (A.4) as in (A.2) we get:

KL(q(x)♣♣p(x)) ≈
L
∑

i=1

pi

2

(

µ
T
i µi + tr(Σi) − K(1 + log 2π) − log ♣Σi♣



− H(p),

as required to show.


