Appendix A

KL condition

We show that in the dropout case, the KL condition (eq. (3.12)) holds for a large enough
number of hidden units when we specify the model prior to be a product of uncorrelated

Gaussian distributions over each weight!:

L
plw) = [T p(W) = [ MN(W;; 0, L/7,T).
i=1 i=1
We set the approximating distribution to be gy(w) = [ go(w|€)p(€)de where gp(wle) =
5((.0 - 9(67 6))7 with g<07 6) - {dia’g(el)Mla diag(GQ)M27 b}7 0 = {Mh M27 b}7 and p(€l>
defined as a product of Bernoulli distributions (€; is a vector of draws from the Bernoulli
distribution). Since we assumed gy(w) to factorise over the layers and over the rows of

each weight matrix, we have

KL(gs(w)]|p(w)) = Zk: KL(qs, . (Wi ) [[P(Wir))
i,
with ¢ summing over the layers and k£ summing over the rows in each layers’ weight
matrix.
We approximate each gy, , (W;x|€) = 0(Wir — g(0ix, €ix)) as a narrow Gaussian with
a small standard deviation ¥ = ¢2/. This means that marginally s, , (Wi ) is a mixture
of two Gaussians with small standard deviations, and one component fixed at zero. For

large enough models, the KL condition follows from this general proposition:

Proposition 4. Fiz K, L € N, a probability vector p = (p1,...,p1), and X; € REXE

diagonal positive-definite for 1 = 1, ..., L, with the elements of each 3; not dependent on

"Here MAN(0,1,1) is the standard matrix Gaussian distribution.
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KL condition
K. Let

Zpl X; l’l'zu Z)

be a mizture of Gaussians with L components and p,
Jurther assume that p; — p; ~ N(0,1) for all i,j.
The KL divergence between q(x) and p(x) can be approximated as:

e RE, et p(x) = N(0,I), and

L .
KL(g(x)|Ip(x)) = ) _ %(M@Tm + (%) — K(1 +log2r) — log |E]) — H(p) (A1)
i=1
with H(p) := — & p;logp; for large enough K.

Before we prove the proposition, we observe that a direct result from it is the following

Corollary 2. The KL condition (eq. (3.12)) holds for a large enough number of hidden
units when we specify the model prior to be

p(w) UP(Wz) = I:IMN(W’L? O7I/li27 )

and the approximating distribution to be a dropout variational distribution

Proof.

S KL (@) () = 55 (0., ()l [P (W3))

L A=p)lF 0 o m

2 8mi7k Lk R
0

om

— N7 (A ][My][* + X M| [* + As|b][?)

i,k

1—p;)l?
for )‘i:(zzlxer)l'

Next we prove proposition 4.

Proof. We have

X
KL(g()lIp(x)) = [ a(x)log 275
X

= /q X logq(x)dx—/q(x) log p(x)dx
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= —H(q(x)) - / q(x) log p(x)dx (A2)

—a sum of the entropy of ¢(x) (H(q(x))) and the expected log probability of x. The
expected log probability can be evaluated analytically, but the entropy term has to be

approximated.

We begin by approximating the entropy term. We write

H(g(x)) = —sz [N, B Tog a(x)dx
= - sz' /N(Ei; 0,1)log q(p; + Lie;)de;

using a change of variables x = p, + L;e; with L;L! = X, and €; ~ N(0, 7).
Now, the term inside the logarithm can be written as

L
q(p; + Lig;) = Zpi/\/(ui + Li€is pj, 3)

L
= 2 Om e { = Sl s Ll

where || - [|s is the Mahalanobis distance. Since p;, pt; are assumed to be normally
distributed, the quantity p; —p; —Lje€; is also normally distributed?. Since the expectation
of a generalised x? distribution with K degrees of freedom increases with K, we have that?
K > 0 implies that |[p; — p; — Li€i|[3;;, > 0 for i # j (since the elements of 3; do not
depend on K). Finally, we have for i = j that ||p; — p; — Lig;||%, = €/ LTL; "L 'Le; =

€’'€;. Therefore the last equation can be approximated as
—K/2|x |—1/2 L p

L.e., in high dimensions the mixture components will not overlap. This gives us

Q

H(q(x)) —Zpi/N(ei;O,I) log (pi(2ﬂ>_K/2|2i|_1/26Xp{ ;e e,})dez

= Zl;l (10g|2 ‘ +/N 67,7 )E;Eidﬁi —{—KlogQrﬁ) +H(p)
=1

*With mean zero and variance Var(u; — p; — Li€;) = 21 + X;.
3To be exact, for dlagonal matrices A, A and v ~ N(0,A), we have E[||v||a] = E[vIA~lv] =

Zli(:lE[ k Uk] Zk 1A A
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where H(p) := — >k, p;logp;. Since €’¢; distributes according to a x? distribution, its

expectation is K, and the entropy can be approximated as

Zf:];z(log\&! +K(1+log27r)) + H(p). (A.3)

Next, evaluating the expected log probability term of the KL divergence we get

[ ax)1ogpx)dx = i [ N . 5,) log p(x)dx

for p(x) = N (0,1f) it is easy to show that

[ ax)1og pix)ax = — zpz (7, + t2(2)). (A4)

=1

Finally, combining eq. (A.3) and eq. (A.4) as in (A.2) we get:

L
Di
KL(g(o)llp(x)) & D= 5 (4] g+ tr(S1) — K (1 + log 2m) — log || ) — H(p).
=1

as required to show. O



