Appendix A

KL condition

We show that in the dropout case, the KL condition (eq. (3.12)) holds for a large enough number of hidden units when we specify the model prior to be a product of uncorrelated Gaussian distributions over each weight ${ }^{1}$:

$$
p(\boldsymbol{\omega})=\prod_{i=1}^{L} p\left(\mathbf{W}_{i}\right)=\prod_{i=1}^{L} \mathcal{M} \mathcal{N}\left(\mathbf{W}_{i} ; 0, \mathbf{I} / l_{i}^{2}, \mathbf{I}\right) .
$$

We set the approximating distribution to be $q_{\theta}(\boldsymbol{\omega})=\int q_{\theta}(\boldsymbol{\omega} \mid \boldsymbol{\epsilon}) p(\boldsymbol{\epsilon}) \mathrm{d} \boldsymbol{\epsilon}$ where $q_{\theta}(\boldsymbol{\omega} \mid \boldsymbol{\epsilon})=$ $\delta\left(\boldsymbol{\omega}-g(\theta, \boldsymbol{\epsilon})\right.$, with $g(\theta, \boldsymbol{\epsilon})=\left\{\operatorname{diag}\left(\boldsymbol{\epsilon}_{1}\right) \mathbf{M}_{1}, \operatorname{diag}\left(\boldsymbol{\epsilon}_{2}\right) \mathbf{M}_{2}, \mathbf{b}\right\}, \theta=\left\{\mathbf{M}_{1}, \mathbf{M}_{2}, \mathbf{b}\right\}$, and $p\left(\boldsymbol{\epsilon}_{i}\right)$ defined as a product of Bernoulli distributions ($\boldsymbol{\epsilon}_{i}$ is a vector of draws from the Bernoulli distribution). Since we assumed $q_{\theta}(\boldsymbol{\omega})$ to factorise over the layers and over the rows of each weight matrix, we have

$$
\operatorname{KL}\left(q_{\theta}(\boldsymbol{\omega}) \| p(\boldsymbol{\omega})\right)=\sum_{i, k} \operatorname{KL}\left(q_{\theta_{i, k}}\left(\mathbf{w}_{i, k}\right) \| p\left(\mathbf{w}_{i, k}\right)\right)
$$

with i summing over the layers and k summing over the rows in each layers' weight matrix.

We approximate each $q_{\theta_{i, k}}\left(\mathbf{w}_{i, k} \mid \boldsymbol{\epsilon}\right)=\delta\left(\mathbf{w}_{i, k}-g\left(\theta_{i, k}, \epsilon_{i, k}\right)\right)$ as a narrow Gaussian with a small standard deviation $\Sigma=\sigma^{2} I$. This means that marginally $q_{\theta_{i, k}}\left(\mathbf{w}_{i, k}\right)$ is a mixture of two Gaussians with small standard deviations, and one component fixed at zero. For large enough models, the KL condition follows from this general proposition:

Proposition 4. Fix $K, L \in \mathbb{N}$, a probability vector $\mathbf{p}=\left(p_{1}, \ldots, p_{L}\right)$, and $\boldsymbol{\Sigma}_{i} \in \mathbb{R}^{K \times K}$ diagonal positive-definite for $i=1, \ldots, L$, with the elements of each $\boldsymbol{\Sigma}_{i}$ not dependent on

[^0]K. Let
$$
q(\mathbf{x})=\sum_{i=1}^{L} p_{i} \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right)
$$
be a mixture of Gaussians with L components and $\boldsymbol{\mu}_{i} \in \mathbb{R}^{K}$, let $p(\mathbf{x})=\mathcal{N}\left(0, \mathbf{I}_{K}\right)$, and further assume that $\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{j} \sim \mathcal{N}(0, I)$ for all i, j.

The KL divergence between $q(\mathbf{x})$ and $p(\mathbf{x})$ can be approximated as:

$$
\begin{equation*}
K L(q(\mathbf{x}) \| p(\mathbf{x})) \approx \sum_{i=1}^{L} \frac{p_{i}}{2}\left(\boldsymbol{\mu}_{i}^{T} \boldsymbol{\mu}_{i}+\operatorname{tr}\left(\boldsymbol{\Sigma}_{i}\right)-K(1+\log 2 \pi)-\log \left|\boldsymbol{\Sigma}_{i}\right|\right)-\mathcal{H}(\mathbf{p}) \tag{A.1}
\end{equation*}
$$

with $\mathcal{H}(\mathbf{p}):=-\sum_{i=1}^{L} p_{i} \log p_{i}$ for large enough K.
Before we prove the proposition, we observe that a direct result from it is the following:
Corollary 2. The KL condition (eq. (3.12)) holds for a large enough number of hidden units when we specify the model prior to be

$$
p(\boldsymbol{\omega})=\prod_{i=1}^{L} p\left(\mathbf{W}_{i}\right)=\prod_{i=1}^{L} \mathcal{M} \mathcal{N}\left(\mathbf{W}_{i} ; 0, \mathbf{I} / l_{i}^{2}, \mathbf{I}\right)
$$

and the approximating distribution to be a dropout variational distribution.
Proof.

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{m}_{i, k}} \mathrm{KL}\left(q_{\theta}(\boldsymbol{\omega}) \| p(\boldsymbol{\omega})\right) & =\frac{\partial}{\partial \mathbf{m}_{i, k}} \operatorname{KL}\left(q_{\theta_{i, k}}\left(\mathbf{w}_{i, k}\right) \| p\left(\mathbf{w}_{i, k}\right)\right) \\
& \approx \frac{\left(1-p_{i}\right) l_{i}^{2}}{2} \frac{\partial}{\partial \mathbf{m}_{i, k}} \mathbf{m}_{i, k}^{T} \mathbf{m}_{i, k} \\
& =\frac{\partial}{\partial \mathbf{m}_{i, k}} N \tau\left(\lambda_{1}\left\|\mathbf{M}_{1}\right\|^{2}+\lambda_{2}\left\|\mathbf{M}_{2}\right\|^{2}+\lambda_{3}\|\mathbf{b}\|^{2}\right)
\end{aligned}
$$

for $\lambda_{i}=\frac{\left(1-p_{i}\right) l_{i}^{2}}{2 N \tau}$.
Next we prove proposition 4.
Proof. We have

$$
\begin{aligned}
\mathrm{KL}(q(\mathbf{x}) \| p(\mathbf{x})) & =\int q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p(\mathbf{x})} \mathrm{d} \mathbf{x} \\
& =\int q(\mathbf{x}) \log q(\mathbf{x}) \mathrm{d} \mathbf{x}-\int q(\mathbf{x}) \log p(\mathbf{x}) \mathrm{d} \mathbf{x}
\end{aligned}
$$

$$
\begin{equation*}
=-\mathcal{H}(q(\mathbf{x}))-\int q(\mathbf{x}) \log p(\mathbf{x}) \mathrm{d} \mathbf{x} \tag{A.2}
\end{equation*}
$$

-a sum of the entropy of $q(\mathbf{x})(\mathcal{H}(q(\mathbf{x})))$ and the expected \log probability of \mathbf{x}. The expected \log probability can be evaluated analytically, but the entropy term has to be approximated.

We begin by approximating the entropy term. We write

$$
\begin{aligned}
\mathcal{H}(q(\mathbf{x})) & =-\sum_{i=1}^{L} p_{i} \int \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right) \log q(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& =-\sum_{i=1}^{L} p_{i} \int \mathcal{N}\left(\boldsymbol{\epsilon}_{i} ; 0, \mathbf{I}\right) \log q\left(\boldsymbol{\mu}_{i}+\mathbf{L}_{i} \boldsymbol{\epsilon}_{i}\right) \mathrm{d} \boldsymbol{\epsilon}_{i}
\end{aligned}
$$

using a change of variables $\mathbf{x}=\boldsymbol{\mu}_{i}+\mathbf{L}_{i} \boldsymbol{\epsilon}_{i}$ with $\mathbf{L}_{i} \mathbf{L}_{i}^{T}=\boldsymbol{\Sigma}_{i}$ and $\boldsymbol{\epsilon}_{i} \sim \mathcal{N}(0, I)$.
Now, the term inside the logarithm can be written as

$$
\begin{aligned}
q\left(\boldsymbol{\mu}_{i}+\mathbf{L}_{i} \boldsymbol{\epsilon}_{i}\right) & =\sum_{j=1}^{L} p_{i} \mathcal{N}\left(\boldsymbol{\mu}_{i}+\mathbf{L}_{i} \boldsymbol{\epsilon}_{i} ; \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right) \\
& =\sum_{j=1}^{L} p_{i}(2 \pi)^{-K / 2}\left|\boldsymbol{\Sigma}_{j}\right|^{-1 / 2} \exp \left\{-\frac{1}{2}\left\|\boldsymbol{\mu}_{j}-\boldsymbol{\mu}_{i}-\mathbf{L}_{i} \boldsymbol{\epsilon}_{i}\right\|_{\boldsymbol{\Sigma}_{j}}^{2}\right\}
\end{aligned}
$$

where $\|\cdot\|_{\boldsymbol{\Sigma}}$ is the Mahalanobis distance. Since $\boldsymbol{\mu}_{i}, \boldsymbol{\mu}_{j}$ are assumed to be normally distributed, the quantity $\boldsymbol{\mu}_{j}-\boldsymbol{\mu}_{i}-\mathbf{L}_{i} \boldsymbol{\epsilon}_{i}$ is also normally distributed ${ }^{2}$. Since the expectation of a generalised χ^{2} distribution with K degrees of freedom increases with K, we have that ${ }^{3}$ $K \gg 0$ implies that $\left\|\boldsymbol{\mu}_{j}-\boldsymbol{\mu}_{i}-\mathbf{L}_{i} \boldsymbol{\epsilon}_{i}\right\|_{\boldsymbol{\Sigma}_{j}}^{2} \gg 0$ for $i \neq j$ (since the elements of $\boldsymbol{\Sigma}_{j}$ do not depend on K). Finally, we have for $i=j$ that $\left\|\boldsymbol{\mu}_{i}-\boldsymbol{\mu}_{i}-\mathbf{L}_{i} \boldsymbol{\epsilon}_{i}\right\|_{\boldsymbol{\Sigma}_{i}}^{2}=\boldsymbol{\epsilon}_{i}^{T} \mathbf{L}_{i}^{T} \mathbf{L}_{i}^{-T} \mathbf{L}_{i}^{-1} \mathbf{L}_{i} \boldsymbol{\epsilon}_{i}=$ $\boldsymbol{\epsilon}_{i}^{T} \boldsymbol{\epsilon}_{i}$. Therefore the last equation can be approximated as

$$
q\left(\boldsymbol{\mu}_{i}+\mathbf{L}_{i} \boldsymbol{\epsilon}_{i}\right) \approx p_{i}(2 \pi)^{-K / 2}\left|\boldsymbol{\Sigma}_{i}\right|^{-1 / 2} \exp \left\{-\frac{1}{2} \boldsymbol{\epsilon}_{i}^{T} \boldsymbol{\epsilon}_{i}\right\} .
$$

I.e., in high dimensions the mixture components will not overlap. This gives us

$$
\begin{aligned}
\mathcal{H}(q(\mathbf{x})) & \approx-\sum_{i=1}^{L} p_{i} \int \mathcal{N}\left(\boldsymbol{\epsilon}_{i} ; 0, \mathbf{I}\right) \log \left(p_{i}(2 \pi)^{-K / 2}\left|\boldsymbol{\Sigma}_{i}\right|^{-1 / 2} \exp \left\{-\frac{1}{2} \boldsymbol{\epsilon}_{i}^{T} \boldsymbol{\epsilon}_{i}\right\}\right) \mathrm{d} \boldsymbol{\epsilon}_{i} \\
& =\sum_{i=1}^{L} \frac{p_{i}}{2}\left(\log \left|\boldsymbol{\Sigma}_{i}\right|+\int \mathcal{N}\left(\boldsymbol{\epsilon}_{i} ; 0, \mathbf{I}\right) \boldsymbol{\epsilon}_{i}^{T} \boldsymbol{\epsilon}_{i} \mathrm{~d} \boldsymbol{\epsilon}_{i}+K \log 2 \pi\right)+\mathcal{H}(\mathbf{p})
\end{aligned}
$$

[^1]where $\mathcal{H}(\mathbf{p}):=-\sum_{i=1}^{L} p_{i} \log p_{i}$. Since $\boldsymbol{\epsilon}_{i}^{T} \boldsymbol{\epsilon}_{i}$ distributes according to a χ^{2} distribution, its expectation is K, and the entropy can be approximated as
\[

$$
\begin{equation*}
\mathcal{H}(q(\mathbf{x})) \approx \sum_{i=1}^{L} \frac{p_{i}}{2}\left(\log \left|\boldsymbol{\Sigma}_{i}\right|+K(1+\log 2 \pi)\right)+\mathcal{H}(\mathbf{p}) \tag{A.3}
\end{equation*}
$$

\]

Next, evaluating the expected log probability term of the KL divergence we get

$$
\int q(\mathbf{x}) \log p(\mathbf{x}) \mathrm{d} \mathbf{x}=\sum_{i=1}^{L} p_{i} \int \mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right) \log p(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

for $p(\mathbf{x})=\mathcal{N}\left(0, \mathbf{I}_{K}\right)$ it is easy to show that

$$
\begin{equation*}
\int q(\mathbf{x}) \log p(\mathbf{x}) \mathrm{d} \mathbf{x}=-\frac{1}{2} \sum_{i=1}^{L} p_{i}\left(\boldsymbol{\mu}_{i}^{T} \boldsymbol{\mu}_{i}+\operatorname{tr}\left(\boldsymbol{\Sigma}_{i}\right)\right) . \tag{A.4}
\end{equation*}
$$

Finally, combining eq. (A.3) and eq. (A.4) as in (A.2) we get:

$$
\mathrm{KL}(q(\mathbf{x}) \| p(\mathbf{x})) \approx \sum_{i=1}^{L} \frac{p_{i}}{2}\left(\boldsymbol{\mu}_{i}^{T} \boldsymbol{\mu}_{i}+\operatorname{tr}\left(\boldsymbol{\Sigma}_{i}\right)-K(1+\log 2 \pi)-\log \left|\boldsymbol{\Sigma}_{i}\right|\right)-\mathcal{H}(\mathbf{p})
$$

as required to show.

[^0]: ${ }^{1}$ Here $\mathcal{M} \mathcal{N}(0, \mathbf{I}, \mathbf{I})$ is the standard matrix Gaussian distribution.

[^1]: ${ }^{2}$ With mean zero and variance $\operatorname{Var}\left(\boldsymbol{\mu}_{j}-\boldsymbol{\mu}_{i}-\mathbf{L}_{i} \boldsymbol{\epsilon}_{i}\right)=2 I+\boldsymbol{\Sigma}_{i}$.
 ${ }^{3}$ To be exact, for diagonal matrices Λ, Δ and $\mathbf{v} \sim \mathcal{N}(0, \Lambda)$, we have $\mathbb{E}\left[\|\mathbf{v}\|_{\Delta}\right]=\mathbb{E}\left[\mathbf{v}^{T} \Delta^{-1} \mathbf{v}\right]=$ $\sum_{k=1}^{K} \mathbb{E}\left[\Delta_{k}^{-1} v_{k}^{2}\right]=\sum_{k=1}^{K} \Delta_{k}^{-1} \Lambda_{k}$.

