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Abstract—The analysis of microbial genome sequences can 
identify protein families that provide potential drug targets for 
new antibiotics. With the rapid accumulation of newly sequenced 
genomes, this analysis has become a computationally- and data-
intensive problem. This paper describes the development of a 
web service enabled, component based, architecture to support 
the large-scale comparative analysis of complete microbial 
genome sequences, and the subsequent identification of 
orthologues and protein families (Microbase). The system is 
coordinated through the use of web service based notifications 
and integrates distributed computing resources together with 
genomic databases to realize all-against-all comparisons for a 
large volume of genome sequences and to present the data in a 
computationally amenable format through a web service 
interface. We demonstrate the use of the system in searching for 
orthologues and candidate protein families which ultimately 
could lead to the identification of potential therapeutic targets.   
 

Index Terms—Genome analysis, grid, microbial genomes, 
protein families, web services. 

I. INTRODUCTION 
EVELOPMENTS in comparative genomics have been 
helping to  provide novel techniques for therapeutic anti-
microbial drug discovery. The comparative analysis of 

complete microbial genome sequences can identify unique 
proteins and homologous protein families conserved in and 
between genomes, which can be screened in the search for 
new antibiotic targets [1]-[3]. The approach promises to 
enhance our capability to develop antibiotics to tackle the 
increasing risks of infectious diseases in humans, that include 
the emergence of new bacterial pathogens, the spread of 
epidemic diseases, and the intensified resistance to existing 
antibiotics [2]. 

With the rapid increase of completed microbial genome 
sequences, the comparative analysis of whole microbial 
genomes has become a computationally- and data-intensive 

problem. For example, whole sequence alignment and 
homology search involve enormous computations over a huge 
volume of genomic datasets. Grid computing can federate 
distributed resources using open, general-purpose protocols to 
create a powerful computing system that meets end-user 
requirements of on-demand access to computing capabilities 
[4],[5], and promises to provide a solution to the highly 
increasing computational demand in biology, biomedicine and 
bioinformatics [6]-[8]. Web services and service-oriented 
architecture are important principles and technologies in the 
implementation of the grid and the exposure of such resources 
as services to end-users [4].  
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The Microbase project [9] has developed a grid-based 
system to service the timely dynamic or on-demand 
comparative analysis of microbial genome sequences in 
biological and biomedical research. We employ web service 
based technologies, in particular a web service based 
notification system, to integrate distributed components and 
orchestrate their interoperability. Consequently, the system is 
able to perform large-scale genome comparison and analysis, 
using a variety of bioinformatics tools, and expose our pre-
computed dataset of comparison results to users across the 
Internet. The pre-computed dataset provides a flexible data 
repository of genome sequence similarities that will support a 
number of subsequent analyses, both by a human user and a 
computational client, such as a workflow. A web service-
based client interface has been implemented to facilitate 
computational access to the data repository. Microbase 
enables biological and biomedical researchers to carry out 
customized analyses directly without having to repeat the 
computationally-intensive genome comparisons. In order to 
demonstrate the utility of the system, we have used this pre-
computed dataset to discover and define protein families. The 
protein families we identify may aid in the discovery of new 
therapeutic agents and in the development of new antibiotics 
by highlighting proteins that are conserved in bacteria and 
may form suitable targets. A protein family that is conserved 
amongst a phylogenic group of bacteria can be viewed as a 
potential target for broad-spectrum antibiotics, whereas a 
protein unique to a specific pathogenic bacterium can be 
considered as the target of a narrow-spectrum drug.  

Our preliminary version of the Microbase system, termed 
MicrobaseLite, has been implemented and integrates 
computing servers, a database server, and a campus grid. The 
system has been used to execute all-against-all comparisons, 
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using different tools, for 250 microbial genomes, mainly 
bacteria and archaea. Genomic comparisons are automatically 
carried out in response to web service-based notification 
messages triggered as new genome sequences are deposited in 
remote public genome databases. Two algorithms have been 
implemented to search the 250 genomes for putative 
orthologues and COGs (Clusters of Orthologous Groups). The 
system has been developed with web service-based user 
accessibility as a prime concern. Web service-based interfaces 
including an application programming interface (API) and a 
graphical viewer have been developed to allow end users to 
retrieve genome sequences, pre-computed comparison results 
and the protein families via the web. 

A full overview of the project will be presented in the 
future. In Section II we discuss previous work related to the 
project and the novelty of our approach. The MicrobaseLite 
system is outlined in Section III. Section IV discusses the 
identification of protein families based on the system and 
finally our ideas for future work are covered in Section V. 

II. RELATED WORK 
Grid computing is increasingly being employed in 

biological and biomedical research and in particular to support 
genome comparison and analysis. For example, GNARE 
(Genome Analysis Research Environment) [8] is a scalable 
grid-based system using Globus, Condor, and GriPhyN virtual 
data system and running on the grid systems as GRID2003, 
TeraGrid, and the DOE science Grid to automate genome 
analysis (including data acquisition from genome databases), 
mainly using BLAST. TIGR’s DCE (Distributed Computing 
Environment) [10] is an institutional grid system that connects 
the on-campus computers and database servers with Sun Grid 
Engine. Genome analysis is implemented on demand using 
BLAST, MUMmer, and HMMsearch, and a repository of 
protein and nucleotide sequence data and a protein database of 
all-vs.-all searches to identify protein similarity is maintained. 
The GPSA (Grid Protein Sequence Analysis) [11] web portal 
provides a user interface to run protein sequence analyses, 
including BLAST, FASTA, SSEARCH, and ClusterW, on the 
European EGEE Grid [12]. The PUMA2 system also provides 
a flexible system for grid based, high-throughput analysis of 
genome sequences, based on the use of the GADU system, 
leveraging experience gained from the GriPhyN physics 
project [13]. 

Whilst the projects mentioned above concentrate on grid 
enabled gene and protein sequence comparison, there are far 
fewer projects providing data from analyses that employ 
sequence comparison data. One such application area is the 
identification of orthologous genes and their grouping into 
protein families. The identification of orthologues is an 
important application of comparative genomics that seeks to 
establish relationships between similar proteins and genes 
from different genomes for subsequent evolutionary and 
functional studies. The COG database [14],[15] contains the 
clusters of orthologous proteins identified from different 

phylogenetic lineages and has become widely accepted for the 
annotation of proteins. coliBASE [16],[17] is a database of 
Escherichia coli, Shigella, and Salmonella, reflecting the full 
diversity of E. coli and its relatives, which includes the 
putative orthologues found in these genomes. The e-Fungi 
project [7] has performed homologue analysis for fungal 
genomes using BLASTP and has employed a Markov Chain 
Clustering (MCL) method to cluster protein families for 
phylogenetic and pathogenic analysis. 

Drug discovery is also an emerging application area of grid 
computing. For example, myGrid [18] is a service-based grid 
middleware framework to manage the complex process of life 
science research. myGrid supports data management, new 
discovery notification, and provenance management in the 
drug discovery process, in particular through the use of e-
Science workflows [19]. In addition, the EGEE Grid has a 
project for the virtual screening of a large amount of data to 
find potential drugs for infectious diseases such as malaria 
[20]. 

In comparison, the Microbase project supports the 
computational analysis of microbial genomes, particularly 
bacteria. The project provides a grid-based system that 
possesses a distributed component infrastructure to integrate 
grid computing, remote public genome databases, with a pre-
computed, dynamically updated genome similarity dataset, 
useful to biological and biomedical researches. We build on 
the approaches introduced by similar projects, extending them 
with a focus on ease of computational access to the datasets 
and by introducing flexibility in the analyses available for 
these data. Unlike many existing systems, the individual 
components of the system are amenable to deployment in a 
distributed computing environment. Inter-component 
communication and interoperability is facilitated via web 
services, so in theory individual components may be located 
disparately, and in multiple instances, as long as network 
communication is maintained. The mechanism behind inter-
component communication is based on web service-based 
notifications, which are used to orchestrate the behavior of the 
system. In particular, notification facilitates the auto-update of 
the pre-computed dataset to import and process new genomes 
from public genome databases as they are released. The 
system also provides a greater range of all-against-all genome 
comparison results at both nucleotide and protein levels, than 
many existing systems.  We provide tools including BLASTP, 
BLASTN, and the suffix-tree based algorithms MUMmer and 
PROmer, but additional tools can easily be incorporated as the 
need arises. 

 The results generated provide a flexible dataset to support 
different, custom genomic analyses, in particular those that 
underpin the successful identification of therapeutic targets 
such as protein family identification. Web service-based client 
interfaces including a documented service API and a graphical 
genome viewer maximize the ease of access for end users to 
the pre-computed dataset. Users can directly undertake user-
specified analyses without having to redo the time-consuming 
genome comparisons that usually exceed the computing 
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capability of a single institute. A web service-based 
infrastructure also facilitates the enactment of workflows to 
manage subsequent sophisticated genome analysis processes. 
In this work, we have used our pre-computed genome 
comparison dataset, to establish orthologues and protein 
families from 250 proteomes, (to our knowledge, a greater 
range than the current versions of the related tools discussed 
above) in order to identify potential therapeutic protein 
targets.   

III. MICROBASELITE 
MicrobaseLite is the initial system implementation of the 

project. As detailed in Fig. 1, MicrobaseLite consists of 
distinct components for computation, data acquisition and 
database management, user access, and component 
orchestration. The components can be deployed on distributed 
servers and orchestrated via web service-based notification 
message passing mechanisms. The main components include 
the microbial genome pool, the genome comparison pool, the 
notification service, and the client interface.  

A. Microbial Genome Pool 
The microbial genome pool provides an up-to-date database 

of complete microbial genome sequences. Genomes published 
in the public EMBL nucleotide database [21] are imported 
into a local microbial genome database and subsequently 
compared to all other genomes in the repository. Automatic 
updates of the database are triggered by the web service-based 
notification service where the collector component is deployed 
to regularly check for new microbial genomes in the EMBL 
database. When a new genome is available, the collector 
notifies the genome loader in this pool to download the new 
genome into the local database. More details of the 
notification service are presented in subsection C. 

To facilitate end-user access, the microbial genome pool 
uses BioJava [22] to parse the plain-text genome sequence 
records obtained from the EMBL database and enters the 
sequences and their annotations into the microbial genome 
MySQL database with a BioSQL schema [23]. At the time of 
writing, the microbial genome pool holds 250 microbial 
genome sequences. 

Web service-based client interfaces have been developed to 
allow end users to flexibly access the genome sequences in the 
microbial genome database. A Java API to the database has 
been exposed as web services and a graphical genome viewer 
application developed to visualize the data. The API has been 
implemented using Apache Tomcat and Codehaus XFire, a 
service-oriented SOAP (Simple Object Access Protocol)  
implementation [24]. Users can retrieve DNA and protein 
sequences, gene features (e.g. CDS, tRNA, mRNA), and 
annotations (e.g. a sequence’s ID, organism species, and 
references) using this interface. The genome viewer enables 
end users to browse the genome sequences in a graphical 
format using a web browser, and has been developed using 
JSP (JavaServer Pages) and Java Servlet and deployed under 
Tomcat. The API and genome viewer are connected to the 

microbial genome database via JDBC (Java Database 
Connectivity). Details of the client graphical user interface are 
presented in subsection D. 

 
Fig. 1.  MicrobaseLite architecture 

B. Genome Comparison Pool 
The genome comparison pool is a central component 

responsible for conducting genome comparison and analysis 
within the system, and for maintaining the pre-computed 
comparison dataset.  

The genome comparison pool performs pairwise sequence 
comparisons using existing tools to establish sequence 
similarities at nucleotide and protein sequence levels, both for 
whole genomes and individual genes. Currently, four 
sequence comparison tools are applied: BLASTP, BLASTN, 
MUMmer, and PROmer. BLASTP [25] is a protein-protein 
comparison tool that searches similar proteins. BLASTN [25] 
is a pairwise nucleotide alignment tool to find similar 
nucleotide fragments. MUMmer [26] is a suffix-tree based fast 
tool for nucleotide alignment that gives a concise report on 
similar nucleotide sequence fragments. PROmer [26] is a 
variant of MUMmer that translates two nucleotide sequences 
into amino acids in all six frames, finds all matches in the 
amino acid sequences, and then maps the matches back to the 
positions in the nucleotide sequences.  

Since our alignments are non-reciprocal statistical 
computations, we compare each member of a pair of genomes 
against each other (i.e. genome A is compared against B and 
genome B against A). In total, the all-against-all comparison 
of 250 microbial genomes requires 62,500 pairwise 
comparisons of genome sequences. The comparison of 
complete genome sequences and their encoded proteins is 
usually a computationally intensive task. For example, the 
BLASTP comparison of two species of Bacillus: Bacillus 
anthracis and Bacillus cereus (approximately 5500 proteins 
each) takes 12 minutes on a 2.8GHz CPU and produces 
95MB of output data. The BLASTN comparison of two 
Leptospira interrogans genomes (approximately 4.3M base 
pairs each) takes over 8 hours and produces 193MB data. 
Using the four comparison tools, the all-against-all 
comparison is an overloaded task that exceeds the capability 
of common computing systems.  
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To cope with this burden, the genome comparison pool 
utilizes a grid-based system to support all-against-all genome 
comparison. The system is based on a campus grid consisting 
of computing clusters distributed within different labs of our 
university. The clusters are federated into a powerful 
computing environment with Condor to handle large 
applications that overburden any single cluster. The access to 
the campus grid is authenticated by the user accounts in the 
Condor system. To manage the execution of the large number 
of pairwise comparisons, the genome comparison pool 
provides a task scheduler that calls the Condor job 
management mechanism to realize parallel execution of the 
comparison jobs on the grid. Running on a computing server, 
the task scheduler creates an individual job for each 
comparison and submits the job to the Condor job queue. 
Condor, in turn, allocates the job to execute on an idle node. 
The task scheduler can consecutively submit a large number 
of jobs to run in parallel depending on the available computer 
nodes in the grid. Meanwhile the task scheduler is also 
responsible for managing the pace of job submission to keep 
the overall workload at a reasonable level. The task scheduler 
uses a Condor command to check the status of each job. Once 
a running job has finished, a new job will be submitted to run. 
Therefore, the task scheduler along with the underlying 
Condor can progressively dispatch the large number of jobs 
for execution yet maintain load balancing to prevent the 
system from being overloaded by excessive queuing jobs. The 
task scheduler is implemented in Java and can use different 
grid middleware. For example, the task scheduler can also be 
executed on Sun Grid Engine (SGE) by calling the job 
submission and status-checking commands of SGE.  

A comparison job also parses and loads its results into the 
comparison database when a comparison has finished. The 
comparison database is a MySQL database which stores all 
pairwise comparison results. The web service-based API and 
genome viewer (discussed earlier) also support access to the 
comparison database. Since many techniques in genome 
analyses are based on sequence similarities, the comparison 
database provides an instantly accessible, base-level pre-
computed dataset that enables biological and bioinformatics 
researchers to directly implement in-depth genome analyses 
without having to redo time-consuming genome comparisons. 
In Section IV we illustrate this concept by using these results 
to define protein families for all genomes within the database.  

At present, 250-against-250 genome comparisons have 
been completed on the grid system and the comparison 
database has reached 28GB. Fig. 2 shows the execution time 
of all-against-all comparisons on a selected number of 
microbial genomes. The execution time includes the parallel 
execution time of all pairwise comparisons using the four 
tools, and the time for parsing and loading the results into the 
comparison database. The execution time is decreased by 
exploiting the CPUs available on the campus grid. However, 
the centralized database ultimately becomes a bottleneck to 
the overall performance when additional CPUs are used. We 
intend to address this limitation in future versions by 

deploying a decentralized database on multiple servers. 
Fig. 2.  The execution time of all-against-all genome comparison on the grid 

Once a pairwise comparison result has been generated it is 
reusable in further analyses. 68 hours were required to run the 
comparisons of 165 genomes on 40 CPUs and to populate the 
results into the comparison database. Subsequently, the 
database was regularly updated to import the data from new 
genomes. When a new genome is imported, it is compared 
with each of the existing genomes in our database using the 
four tools and the database is updated with the new 
comparison results. The update process is automatically 
invoked by the notification service and the comparisons are 
also executed on the grid system with the support of the task 
scheduler.  

C. Notification Service 
The notification service is based on the myGrid notification 

system [27],[28]. The myGrid notification system is a web 
service-based event notification that supports topic-based 
message publish and subscribe. Subscribers can receive 
notification messages on a registered topic in push and pull 
models. A subscriber can be a real user or a software 
component. The push model delivers a notification by calling 
back to the client code deployed at a web service endpoint. 
MicrobaseLite’s notification service utilizes the push model to 
notify subscribed components about the arrival of new 
genomes. The microbial genome pool relies on this 
notification service to trigger the updates to the local 
microbial genome database. A collector is deployed in the 
notification service to monitor a remote genome repository 
(the EMBL database). When a new microbial genome is 
published, the collector will push a specific notification to the 
microbial genome pool, which in turn requests the new 
genome sequence from the collector. The collector then 
downloads the genome file from the remote repository via 
FTP, forwards it to the microbial genome pool, which parses 
the genome file, and then loads the sequence into the 
microbial genome database. Subsequently, the microbial 
genome pool sends a notification to the genome comparison 
pool that triggers the task scheduler to start the comparison of 
the new genome against all existing genomes to update the 
pre-computed dataset. The notification service also allows 
human users to receive notification of new genomes. A 
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notification message will be sent to the subscribers when a 
new genome has been added to the database. The notification 
service is implemented using Apache Tomcat and Codehaus 
XFire and uses a MySQL database to store the registered 
publishers, subscribers, and notification messages. 

 
Fig. 3. The genome viewer showing BLASTP alignment between 
Escherichia coli CFT073 (upper) and Escherichia coli O157:H7 EDL933 
(lower) fragments. The popup window shows the detail of the hit between the 
dnaK genes of two sequences. 
 

D. Client Interface 
The client interface exposes the microbial genome database, 

the pre-computed comparison database, and the protein 
families for external users to access over the Internet. The 
client interface includes a Java API and a genome viewer. The 
API provides various methods that can be called in user 
programs to retrieve the genome sequences and the 
comparison results, by connecting to the web services 
deployed on the server side under Apache Tomcat and 
Codehaus XFire. The genome viewer uses JSP and Servlet 
and is also deployed under Apache Tomcat. The genome 
viewer allows web users to browse the genome sequences and 
comparison results, and to search the protein families via a 
web browser such as Internet Explorer and Mozilla Firefox. In 
Fig. 3, the genome viewer shows the BLASTP alignment 
between Escherichia coli CFT073 (up) and Escherichia coli 
O157:H7 EDL933 (down). The strips in between highlight the 
hits of similar fragments between the two sequences. 
Hovering over a region using the mouse will pop up a window 
showing the detail of a hit or a gene. 

IV. PROTEIN FAMILY ANALYSIS 
A protein family is a group of similar proteins that are 

related through evolution. Proteins directly related to each 
other through evolutionary processes are called homologues, 
and can be further classified as orthologues and paralogues. 
Paralogues are homologous proteins in the same genome. 
Orthologues are homologous proteins in different genomes 
that evolved from a common ancestral gene. Orthologues 
often retain the same function in the process of evolution. 
Thus, orthologue search is an effective method to predict the 
evolutionary relationships and infer the functions of a group 
of genes or proteins [15],[29],[30].  Identifying orthologues 
can also aid in the drug discovery process. For example, when 
seeking to develop a new broad spectrum antibiotic it is useful 
to identify potential protein drug targets that are conserved in 
the target species, but not present in humans or higher 
eukaryotes. In this respect, groups of orthologues that are 
unique to bacteria can be considered as potential targets for 
new broad-spectrum antibiotics.  

As proof of principle for the Microbase system we have 
used the pre-computed BLASTP results from MicrobaseLite 
to carry out orthologue searches providing a starting point for 
users wishing to identify conserved proteins as drug targets.  
We also extend this analysis to group orthologous genes into 
families, which may also provide useful information in this 
respect. In order to accelerate the identification of orthologues 
and protein families in such a large dataset, we parallelized the 
algorithms as described below.  

A. Putative Orthologues 
Putative orthologues are defined as the proteins that have 

mutual best hits in the BLASTP comparison and satisfy 
specific requirements on the aligned portions. We use the 
same criteria of putative orthologues specified by coliBASE 
[16],[17]. Since orthologues reflect the evolutionary 
relationships of the genes that encode those proteins, for 
convenience we use the terms “protein” and “gene” 
interchangeably when referring to orthologues in the 
following discussion. The search for putative orthologues 
begins by selecting the mutual best hits from the BLASTP 
results.  

Definition 1: Given protein α from genome A and protein β 
from genome B (A and B are different genomes), α  is a best 
hit to β if the hit has the highest bit score and the lowest E-
value in all BLASTP hits between α and any proteins of 
genome B. The hit between α and β is a mutual best hit if α is 
a best hit to β and β is also a best hit to α.  

The mutual best hit means that α and β are the most similar 
proteins in all proteins between genome A and B, as defined 
by BLASTP. The evolutionary and functional relationships 
between the similar proteins, and therefore the genes that 
encode the proteins, can be inferred based on the mutual best 
hits that are also putative orthologues as defined below.  

Definition 2: If the mutual best hit between protein α and β 
satisfies two conditions on the aligned portion as following, α 
and β are putative orthologues:  

1. α and β have at least 80% amino acid identity. 
2. The aligned portion covers at least 90% of the shorter 

sequence. 
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With the definitions above, the search for putative 
orthologues can be achieved in three steps:  

1. Select the best hits in all BLASTP hits of each protein of 
a genome against the proteins from each of other 
genomes;  

2. Identify mutual best hits among the best hits;  
3. Check the amino acid identity and alignment coverage of 

the mutual best hits to determine the putative orthologues 
that satisfy the two conditions as in Definition 2.  

MicrobaseLite has a dataset of 646,954 proteins from 250 
genomes. Pairwise BLASTP comparisons have reported more 
than 400 million hits with a total size of 22GB. A parallelized 
search was implemented to identify the putative orthologues 
among this huge number of hits. Running on eight 2.8GHz 
CPUs, the search was completed in ten days (compared to in 
excess of two months if run on a single CPU).  Additional 
CPUs have not been used because the search is data-intensive 
and restricted by the speed of the database server and 
therefore using more CPUs does not improve the 
performance. (This problem will be solved by deploying a 
decentralized database on distributed servers that can improve 
the parallel search).  

The number of putative orthologues found by the search 
depends on the specified values of cutoff conditions. Using 
the conditions in Definition 2, the search found putative 
orthologues for 287,490 proteins. This represents 44.4% of 
the total proteins in our database. Among these proteins, most 
of them have more than one putative orthologues each. 
However, some genes are conserved in very limited numbers 
of organisms. There are 98,206 proteins that have only one 
putative orthologue. For example, the gene BH14430 (locus 
tag) of Bartonella henselae str. Houston-1 (an agent of cat 
scratch fever and bacillary angiomatosis) has only one 
putative orthologue, the gene BQ11380 (locus tag) of 
Bartonella quintana str. Toulouse (an agent of trench fever, 
bacillary angiomatosis and bacteremia).  

The comparison database in the genome comparison pool 
has also been populated with the putative orthologues defined 
using this approach. Users can search for orthologues of a 
given gene via the genome viewer.  

B. COGs 
COGs (Clusters of Orthologous Groups) are a classification 

of homologous protein families [15],[29]. A COG is 
composed of orthologous proteins or orthologous groups of 
paralogous proteins from three or more genomes. A COGs 
search identifies both orthologous proteins from different 
genomes and paralogous proteins from the same genomes. 
The paralogues from a genome are collected into a group that 
is treated as a single candidate orthologue in the search for 
COGs. Putative orthologues only reflect one-to-many 
relationships of the proteins; nevertheless, COGs can reveal 
more comprehensive, many-to-many relationships amongst 
the proteins from the same and different genomes. 

Our search for COGs is based on the same set of mutual 
best hits obtained in the putative orthologues search. 

However, the COGs search does not set any cutoff 
requirement on aligned portions. In addition, the COGs search 
needs to identify all paralogues that are the mutual best hits 
from the same genomes. Our COGs search includes the 
following steps based on the COG construction procedure 
from the COG database project [14],[15],[29]: 

 
Fig. 4.  Divide and conquer method for parallel COGs search. The set of 
proteins is split into p subsets. The search of three-orthologue groups runs on 
each subset per CPU, followed by log p rounds of merge. 
 

1. Identify best hits and mutual best hits from all BLASTP 
hits (available from the putative orthologues search). 

2. Find paralogues in each genome and group them. 
3. Search the groups of three orthologues in the mutual best 

hits. Given three proteins α, β, and γ, the proteins form a 
group of three orthologues if (α, β), (β, γ) and (α, γ) are 
mutual best hits. A group of paralogues is regarded as a 
single orthologue in the formation of the groups. 

4. Merge the groups that have at least a common mutual 
best hit, if the merge will not put the proteins from the 
same genome (except those are paralogues) into a group.  

5. COGs have finally been formed if the groups cannot be 
further merged. 

The process involves an exhaustive search of the groups 
containing three orthologues (triples) and then an iterative 
merge of the groups that have common mutual best hits. This 
is an extremely compute- and data-intensive process. In order 
to establish a fast and parallel implementation of the COGs 
search, a divide and conquer method is used. As Fig. 4 shows, 
the divide and conquer method consists of three phases: 

1. Divide: divide the whole protein set into p subsets.  
2. Search: search the groups of three orthologues for the 

proteins in each subset based on the BLASTP hits, and 
perform an initial merge of the groups. This phase can be 
run in parallel on p CPUs. 

3. Merge: merge the groups of orthologues from different 
subsets in log p rounds. Round i runs on ip 2 CPUs 
(i=1, 2, …, log p) to merge the groups of orthologues 
between adjacent CPUs. The complete COGs are formed 
in the final round which is run on one CPU. 

In the search of three-orthologue groups (α, β, γ), only the 
starting point α is selected from the corresponding subset. Its 
orthologues β and γ can come from other protein subsets. 
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Therefore, the parallel search can find the same groups of 
orthologues as a sequential search.  

The COGs search over all proteins of the 250 microbial 
genomes took 30 days on eight 2.8GHz CPUs excluding the 
time for filtering the mutual best hits which are already 
available. We estimate that the sequential search would take in 
excess of 200 days if running on a single CPU. Due to the 
more intensive search on the table of mutual best hits and the 
table of intermediate orthologous groups, the centralized 
database restricts the performance improvement of COGs 
search when using more than 8 CPUs. This problem will also 
be solved when a decentralized database is deployed in the 
future.  

Our COGs search identified 152,011 clusters of 
orthologous groups containing 546,699 orthologues, of which 
531,441 are single proteins and 15,258 are groups of 
paralogues. In total, 571,701 proteins were assigned to one or 
more COGs, representing 88.37% of all proteins from the 250 
genomes. Also, 18,455 groups of paralogues have been found 
which consist of 47,608 proteins. Fig. 5 shows the 
composition of the COGs in terms of the number of distinct 
genomes contributing to each COG, giving an indication of 
the degree of conservation of COGs across a range of 
genomes. The results demonstrate that a large number of 
COGs span between 50 and 75 genomes and hence appear to 
be well conserved. Around 3000 COGs contain members from 
200 genomes, but far fewer span greater than 225 genomes.  

As a COG is formed by merging the orthologous groups, 
the COGs search collects more orthologues together reflecting 
the many-to-many relationships between proteins and between 
the genes that encode them. The results of our COGs 
identification are also incorporated into the comparison 
database within MicrobaseLite and users can search the COGs 
for a given gene via the genome viewer or access the results 
via the web service exposed API. When a new genome is 
imported, it will be compared with existing genomes to find 
the mutual best hits between them. If a protein from the new 
genome has found two mutual best hits in a COG, it can be 
assigned to that COG.  

V. CONCLUSIONS 

Fig. 5. The composition of the COGs in terms of the number of distinct 
genomes in each COG. For example, there are around 24,000 COGs each 
containing the orthologues contributed from 3 to 25 distinct genomes. 

Grid technologies enable a more rapid analysis of genome 
sequences facilitating a more intensive exploration of genomic 
data than can be achieved with traditional technology.  In turn, 
this allows knowledge to be more quickly derived from our 
investment in sequencing programs and helps to address the 
problem of the analysis of rapidly accumulating genomic data. 
The Microbase project is developing a grid-based 
environment to support computationally- and data-intensive 
genome comparison and analysis, particularly for the analysis 
of microbial genomes. MicrobaseLite is a system 
implementation that integrates distributed computing and data 
resources to perform the comparison and analysis of genome 
sequences. The system features the extensive use of web 
service technologies for component orchestration, notification, 
database update, and user access. A large volume of pre-
computed comparison dataset has been generated on the 
system and exposed as a base-level database to end users for 
in-depth biological and biomedical research. We expose the 
results in both a computational amenable and user-friendly 
form through the use of web services and graphical user 
interfaces.  

One of the important applications implemented within 
MicrobaseLite is the identification of protein families in a 
large number of proteomes. Such searches may aid the 
identification of potential targets for drug discovery and 
increase our understanding of protein evolution, and we hope 
the system will prove useful in this respect.  

In the future, we aim to develop a workflow framework to 
support the definition and enactment of custom applications 
based on which the system will be able to service user-
defined, remotely conceived genome analyses. The system 
will provide the services to support user application 
submission and execution on the grid system. A decentralized 
database will be deployed. We will extend the protein family 
analysis to include the TribesMCL algorithm and implement 
other applications such as metabolic reconstruction and 
promoter searching. Finally, the system is not limited to the 
analysis of microbial genomes, and we intend to extend our 
approach to the analysis of eukaryotic genomes. 
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