
Exploring Microbial Genome Sequences to
Identify Protein Families on the Grid

Yudong Sun, Anil Wipat, Matthew Pocock, Peter A. Lee, Keith Flanagan, and James T. Worthington

Abstract—The analysis of microbial genome sequences can
identify protein families that provide potential drug targets for
new antibiotics. With the rapid accumulation of newly sequenced
genomes, this analysis has become a computationally- and data-
intensive problem. This paper describes the development of a
web service enabled, component based, architecture to support
the large-scale comparative analysis of complete microbial
genome sequences, and the subsequent identification of
orthologues and protein families (Microbase). The system is
coordinated through the use of web service based notifications
and integrates distributed computing resources together with
genomic databases to realize all-against-all comparisons for a
large volume of genome sequences and to present the data in a
computationally amenable format through a web service
interface. We demonstrate the use of the system in searching for
orthologues and candidate protein families which ultimately
could lead to the identification of potential therapeutic targets.

Index Terms—Genome analysis, grid, microbial genomes,
protein families, web services.

I. INTRODUCTION
EVELOPMENTS in comparative genomics have been
helping to provide novel techniques for therapeutic anti-
microbial drug discovery. The comparative analysis of

complete microbial genome sequences can identify unique
proteins and homologous protein families conserved in and
between genomes, which can be screened in the search for
new antibiotic targets [1]-[3]. The approach promises to
enhance our capability to develop antibiotics to tackle the
increasing risks of infectious diseases in humans, that include
the emergence of new bacterial pathogens, the spread of
epidemic diseases, and the intensified resistance to existing
antibiotics [2].

With the rapid increase of completed microbial genome
sequences, the comparative analysis of whole microbial
genomes has become a computationally- and data-intensive

problem. For example, whole sequence alignment and
homology search involve enormous computations over a huge
volume of genomic datasets. Grid computing can federate
distributed resources using open, general-purpose protocols to
create a powerful computing system that meets end-user
requirements of on-demand access to computing capabilities
[4],[5], and promises to provide a solution to the highly
increasing computational demand in biology, biomedicine and
bioinformatics [6]-[8]. Web services and service-oriented
architecture are important principles and technologies in the
implementation of the grid and the exposure of such resources
as services to end-users [4].

 This work was supported by the UK BBSRC e-Science and Bioinformatics

initiative and the DTI under Grant 13/BEP17027.
Y. Sun was with Newcastle University, UK. He is now with Oxford

University Computing Laboratory, Oxford OX1 3QD, UK (email:
yudong.sun@comlab.ox.ac.uk).

A. Wipat, M. Pocock, P. A. Lee, and K. Flanagan are with School of
Computing Science, Newcastle University, Newcastle NE1 7RU, UK (e-mail:
anil.wipat@ncl.ac.uk; matthew.pocock@ncl.ac.uk; p.a.lee@ncl.ac.uk;
keith.flanagan@ncl.ac.uk).

J. T. Worthington was with Newcastle University, UK. He is now with
Convergys Corporation (email: j.t.worthington@blueyonder.co.uk).

The Microbase project [9] has developed a grid-based
system to service the timely dynamic or on-demand
comparative analysis of microbial genome sequences in
biological and biomedical research. We employ web service
based technologies, in particular a web service based
notification system, to integrate distributed components and
orchestrate their interoperability. Consequently, the system is
able to perform large-scale genome comparison and analysis,
using a variety of bioinformatics tools, and expose our pre-
computed dataset of comparison results to users across the
Internet. The pre-computed dataset provides a flexible data
repository of genome sequence similarities that will support a
number of subsequent analyses, both by a human user and a
computational client, such as a workflow. A web service-
based client interface has been implemented to facilitate
computational access to the data repository. Microbase
enables biological and biomedical researchers to carry out
customized analyses directly without having to repeat the
computationally-intensive genome comparisons. In order to
demonstrate the utility of the system, we have used this pre-
computed dataset to discover and define protein families. The
protein families we identify may aid in the discovery of new
therapeutic agents and in the development of new antibiotics
by highlighting proteins that are conserved in bacteria and
may form suitable targets. A protein family that is conserved
amongst a phylogenic group of bacteria can be viewed as a
potential target for broad-spectrum antibiotics, whereas a
protein unique to a specific pathogenic bacterium can be
considered as the target of a narrow-spectrum drug.

Our preliminary version of the Microbase system, termed
MicrobaseLite, has been implemented and integrates
computing servers, a database server, and a campus grid. The
system has been used to execute all-against-all comparisons,

D

 2

using different tools, for 250 microbial genomes, mainly
bacteria and archaea. Genomic comparisons are automatically
carried out in response to web service-based notification
messages triggered as new genome sequences are deposited in
remote public genome databases. Two algorithms have been
implemented to search the 250 genomes for putative
orthologues and COGs (Clusters of Orthologous Groups). The
system has been developed with web service-based user
accessibility as a prime concern. Web service-based interfaces
including an application programming interface (API) and a
graphical viewer have been developed to allow end users to
retrieve genome sequences, pre-computed comparison results
and the protein families via the web.

A full overview of the project will be presented in the
future. In Section II we discuss previous work related to the
project and the novelty of our approach. The MicrobaseLite
system is outlined in Section III. Section IV discusses the
identification of protein families based on the system and
finally our ideas for future work are covered in Section V.

II. RELATED WORK
Grid computing is increasingly being employed in

biological and biomedical research and in particular to support
genome comparison and analysis. For example, GNARE
(Genome Analysis Research Environment) [8] is a scalable
grid-based system using Globus, Condor, and GriPhyN virtual
data system and running on the grid systems as GRID2003,
TeraGrid, and the DOE science Grid to automate genome
analysis (including data acquisition from genome databases),
mainly using BLAST. TIGR’s DCE (Distributed Computing
Environment) [10] is an institutional grid system that connects
the on-campus computers and database servers with Sun Grid
Engine. Genome analysis is implemented on demand using
BLAST, MUMmer, and HMMsearch, and a repository of
protein and nucleotide sequence data and a protein database of
all-vs.-all searches to identify protein similarity is maintained.
The GPSA (Grid Protein Sequence Analysis) [11] web portal
provides a user interface to run protein sequence analyses,
including BLAST, FASTA, SSEARCH, and ClusterW, on the
European EGEE Grid [12]. The PUMA2 system also provides
a flexible system for grid based, high-throughput analysis of
genome sequences, based on the use of the GADU system,
leveraging experience gained from the GriPhyN physics
project [13].

Whilst the projects mentioned above concentrate on grid
enabled gene and protein sequence comparison, there are far
fewer projects providing data from analyses that employ
sequence comparison data. One such application area is the
identification of orthologous genes and their grouping into
protein families. The identification of orthologues is an
important application of comparative genomics that seeks to
establish relationships between similar proteins and genes
from different genomes for subsequent evolutionary and
functional studies. The COG database [14],[15] contains the
clusters of orthologous proteins identified from different

phylogenetic lineages and has become widely accepted for the
annotation of proteins. coliBASE [16],[17] is a database of
Escherichia coli, Shigella, and Salmonella, reflecting the full
diversity of E. coli and its relatives, which includes the
putative orthologues found in these genomes. The e-Fungi
project [7] has performed homologue analysis for fungal
genomes using BLASTP and has employed a Markov Chain
Clustering (MCL) method to cluster protein families for
phylogenetic and pathogenic analysis.

Drug discovery is also an emerging application area of grid
computing. For example, myGrid [18] is a service-based grid
middleware framework to manage the complex process of life
science research. myGrid supports data management, new
discovery notification, and provenance management in the
drug discovery process, in particular through the use of e-
Science workflows [19]. In addition, the EGEE Grid has a
project for the virtual screening of a large amount of data to
find potential drugs for infectious diseases such as malaria
[20].

In comparison, the Microbase project supports the
computational analysis of microbial genomes, particularly
bacteria. The project provides a grid-based system that
possesses a distributed component infrastructure to integrate
grid computing, remote public genome databases, with a pre-
computed, dynamically updated genome similarity dataset,
useful to biological and biomedical researches. We build on
the approaches introduced by similar projects, extending them
with a focus on ease of computational access to the datasets
and by introducing flexibility in the analyses available for
these data. Unlike many existing systems, the individual
components of the system are amenable to deployment in a
distributed computing environment. Inter-component
communication and interoperability is facilitated via web
services, so in theory individual components may be located
disparately, and in multiple instances, as long as network
communication is maintained. The mechanism behind inter-
component communication is based on web service-based
notifications, which are used to orchestrate the behavior of the
system. In particular, notification facilitates the auto-update of
the pre-computed dataset to import and process new genomes
from public genome databases as they are released. The
system also provides a greater range of all-against-all genome
comparison results at both nucleotide and protein levels, than
many existing systems. We provide tools including BLASTP,
BLASTN, and the suffix-tree based algorithms MUMmer and
PROmer, but additional tools can easily be incorporated as the
need arises.

 The results generated provide a flexible dataset to support
different, custom genomic analyses, in particular those that
underpin the successful identification of therapeutic targets
such as protein family identification. Web service-based client
interfaces including a documented service API and a graphical
genome viewer maximize the ease of access for end users to
the pre-computed dataset. Users can directly undertake user-
specified analyses without having to redo the time-consuming
genome comparisons that usually exceed the computing

 3

capability of a single institute. A web service-based
infrastructure also facilitates the enactment of workflows to
manage subsequent sophisticated genome analysis processes.
In this work, we have used our pre-computed genome
comparison dataset, to establish orthologues and protein
families from 250 proteomes, (to our knowledge, a greater
range than the current versions of the related tools discussed
above) in order to identify potential therapeutic protein
targets.

III. MICROBASELITE
MicrobaseLite is the initial system implementation of the

project. As detailed in Fig. 1, MicrobaseLite consists of
distinct components for computation, data acquisition and
database management, user access, and component
orchestration. The components can be deployed on distributed
servers and orchestrated via web service-based notification
message passing mechanisms. The main components include
the microbial genome pool, the genome comparison pool, the
notification service, and the client interface.

A. Microbial Genome Pool
The microbial genome pool provides an up-to-date database

of complete microbial genome sequences. Genomes published
in the public EMBL nucleotide database [21] are imported
into a local microbial genome database and subsequently
compared to all other genomes in the repository. Automatic
updates of the database are triggered by the web service-based
notification service where the collector component is deployed
to regularly check for new microbial genomes in the EMBL
database. When a new genome is available, the collector
notifies the genome loader in this pool to download the new
genome into the local database. More details of the
notification service are presented in subsection C.

To facilitate end-user access, the microbial genome pool
uses BioJava [22] to parse the plain-text genome sequence
records obtained from the EMBL database and enters the
sequences and their annotations into the microbial genome
MySQL database with a BioSQL schema [23]. At the time of
writing, the microbial genome pool holds 250 microbial
genome sequences.

Web service-based client interfaces have been developed to
allow end users to flexibly access the genome sequences in the
microbial genome database. A Java API to the database has
been exposed as web services and a graphical genome viewer
application developed to visualize the data. The API has been
implemented using Apache Tomcat and Codehaus XFire, a
service-oriented SOAP (Simple Object Access Protocol)
implementation [24]. Users can retrieve DNA and protein
sequences, gene features (e.g. CDS, tRNA, mRNA), and
annotations (e.g. a sequence’s ID, organism species, and
references) using this interface. The genome viewer enables
end users to browse the genome sequences in a graphical
format using a web browser, and has been developed using
JSP (JavaServer Pages) and Java Servlet and deployed under
Tomcat. The API and genome viewer are connected to the

microbial genome database via JDBC (Java Database
Connectivity). Details of the client graphical user interface are
presented in subsection D.

Fig. 1. MicrobaseLite architecture

B. Genome Comparison Pool
The genome comparison pool is a central component

responsible for conducting genome comparison and analysis
within the system, and for maintaining the pre-computed
comparison dataset.

The genome comparison pool performs pairwise sequence
comparisons using existing tools to establish sequence
similarities at nucleotide and protein sequence levels, both for
whole genomes and individual genes. Currently, four
sequence comparison tools are applied: BLASTP, BLASTN,
MUMmer, and PROmer. BLASTP [25] is a protein-protein
comparison tool that searches similar proteins. BLASTN [25]
is a pairwise nucleotide alignment tool to find similar
nucleotide fragments. MUMmer [26] is a suffix-tree based fast
tool for nucleotide alignment that gives a concise report on
similar nucleotide sequence fragments. PROmer [26] is a
variant of MUMmer that translates two nucleotide sequences
into amino acids in all six frames, finds all matches in the
amino acid sequences, and then maps the matches back to the
positions in the nucleotide sequences.

Since our alignments are non-reciprocal statistical
computations, we compare each member of a pair of genomes
against each other (i.e. genome A is compared against B and
genome B against A). In total, the all-against-all comparison
of 250 microbial genomes requires 62,500 pairwise
comparisons of genome sequences. The comparison of
complete genome sequences and their encoded proteins is
usually a computationally intensive task. For example, the
BLASTP comparison of two species of Bacillus: Bacillus
anthracis and Bacillus cereus (approximately 5500 proteins
each) takes 12 minutes on a 2.8GHz CPU and produces
95MB of output data. The BLASTN comparison of two
Leptospira interrogans genomes (approximately 4.3M base
pairs each) takes over 8 hours and produces 193MB data.
Using the four comparison tools, the all-against-all
comparison is an overloaded task that exceeds the capability
of common computing systems.

 4

To cope with this burden, the genome comparison pool
utilizes a grid-based system to support all-against-all genome
comparison. The system is based on a campus grid consisting
of computing clusters distributed within different labs of our
university. The clusters are federated into a powerful
computing environment with Condor to handle large
applications that overburden any single cluster. The access to
the campus grid is authenticated by the user accounts in the
Condor system. To manage the execution of the large number
of pairwise comparisons, the genome comparison pool
provides a task scheduler that calls the Condor job
management mechanism to realize parallel execution of the
comparison jobs on the grid. Running on a computing server,
the task scheduler creates an individual job for each
comparison and submits the job to the Condor job queue.
Condor, in turn, allocates the job to execute on an idle node.
The task scheduler can consecutively submit a large number
of jobs to run in parallel depending on the available computer
nodes in the grid. Meanwhile the task scheduler is also
responsible for managing the pace of job submission to keep
the overall workload at a reasonable level. The task scheduler
uses a Condor command to check the status of each job. Once
a running job has finished, a new job will be submitted to run.
Therefore, the task scheduler along with the underlying
Condor can progressively dispatch the large number of jobs
for execution yet maintain load balancing to prevent the
system from being overloaded by excessive queuing jobs. The
task scheduler is implemented in Java and can use different
grid middleware. For example, the task scheduler can also be
executed on Sun Grid Engine (SGE) by calling the job
submission and status-checking commands of SGE.

A comparison job also parses and loads its results into the
comparison database when a comparison has finished. The
comparison database is a MySQL database which stores all
pairwise comparison results. The web service-based API and
genome viewer (discussed earlier) also support access to the
comparison database. Since many techniques in genome
analyses are based on sequence similarities, the comparison
database provides an instantly accessible, base-level pre-
computed dataset that enables biological and bioinformatics
researchers to directly implement in-depth genome analyses
without having to redo time-consuming genome comparisons.
In Section IV we illustrate this concept by using these results
to define protein families for all genomes within the database.

At present, 250-against-250 genome comparisons have
been completed on the grid system and the comparison
database has reached 28GB. Fig. 2 shows the execution time
of all-against-all comparisons on a selected number of
microbial genomes. The execution time includes the parallel
execution time of all pairwise comparisons using the four
tools, and the time for parsing and loading the results into the
comparison database. The execution time is decreased by
exploiting the CPUs available on the campus grid. However,
the centralized database ultimately becomes a bottleneck to
the overall performance when additional CPUs are used. We
intend to address this limitation in future versions by

deploying a decentralized database on multiple servers.
Fig. 2. The execution time of all-against-all genome comparison on the grid

Once a pairwise comparison result has been generated it is
reusable in further analyses. 68 hours were required to run the
comparisons of 165 genomes on 40 CPUs and to populate the
results into the comparison database. Subsequently, the
database was regularly updated to import the data from new
genomes. When a new genome is imported, it is compared
with each of the existing genomes in our database using the
four tools and the database is updated with the new
comparison results. The update process is automatically
invoked by the notification service and the comparisons are
also executed on the grid system with the support of the task
scheduler.

C. Notification Service
The notification service is based on the myGrid notification

system [27],[28]. The myGrid notification system is a web
service-based event notification that supports topic-based
message publish and subscribe. Subscribers can receive
notification messages on a registered topic in push and pull
models. A subscriber can be a real user or a software
component. The push model delivers a notification by calling
back to the client code deployed at a web service endpoint.
MicrobaseLite’s notification service utilizes the push model to
notify subscribed components about the arrival of new
genomes. The microbial genome pool relies on this
notification service to trigger the updates to the local
microbial genome database. A collector is deployed in the
notification service to monitor a remote genome repository
(the EMBL database). When a new microbial genome is
published, the collector will push a specific notification to the
microbial genome pool, which in turn requests the new
genome sequence from the collector. The collector then
downloads the genome file from the remote repository via
FTP, forwards it to the microbial genome pool, which parses
the genome file, and then loads the sequence into the
microbial genome database. Subsequently, the microbial
genome pool sends a notification to the genome comparison
pool that triggers the task scheduler to start the comparison of
the new genome against all existing genomes to update the
pre-computed dataset. The notification service also allows
human users to receive notification of new genomes. A

 5

notification message will be sent to the subscribers when a
new genome has been added to the database. The notification
service is implemented using Apache Tomcat and Codehaus
XFire and uses a MySQL database to store the registered
publishers, subscribers, and notification messages.

Fig. 3. The genome viewer showing BLASTP alignment between
Escherichia coli CFT073 (upper) and Escherichia coli O157:H7 EDL933
(lower) fragments. The popup window shows the detail of the hit between the
dnaK genes of two sequences.

D. Client Interface
The client interface exposes the microbial genome database,

the pre-computed comparison database, and the protein
families for external users to access over the Internet. The
client interface includes a Java API and a genome viewer. The
API provides various methods that can be called in user
programs to retrieve the genome sequences and the
comparison results, by connecting to the web services
deployed on the server side under Apache Tomcat and
Codehaus XFire. The genome viewer uses JSP and Servlet
and is also deployed under Apache Tomcat. The genome
viewer allows web users to browse the genome sequences and
comparison results, and to search the protein families via a
web browser such as Internet Explorer and Mozilla Firefox. In
Fig. 3, the genome viewer shows the BLASTP alignment
between Escherichia coli CFT073 (up) and Escherichia coli
O157:H7 EDL933 (down). The strips in between highlight the
hits of similar fragments between the two sequences.
Hovering over a region using the mouse will pop up a window
showing the detail of a hit or a gene.

IV. PROTEIN FAMILY ANALYSIS
A protein family is a group of similar proteins that are

related through evolution. Proteins directly related to each
other through evolutionary processes are called homologues,
and can be further classified as orthologues and paralogues.
Paralogues are homologous proteins in the same genome.
Orthologues are homologous proteins in different genomes
that evolved from a common ancestral gene. Orthologues
often retain the same function in the process of evolution.
Thus, orthologue search is an effective method to predict the
evolutionary relationships and infer the functions of a group
of genes or proteins [15],[29],[30]. Identifying orthologues
can also aid in the drug discovery process. For example, when
seeking to develop a new broad spectrum antibiotic it is useful
to identify potential protein drug targets that are conserved in
the target species, but not present in humans or higher
eukaryotes. In this respect, groups of orthologues that are
unique to bacteria can be considered as potential targets for
new broad-spectrum antibiotics.

As proof of principle for the Microbase system we have
used the pre-computed BLASTP results from MicrobaseLite
to carry out orthologue searches providing a starting point for
users wishing to identify conserved proteins as drug targets.
We also extend this analysis to group orthologous genes into
families, which may also provide useful information in this
respect. In order to accelerate the identification of orthologues
and protein families in such a large dataset, we parallelized the
algorithms as described below.

A. Putative Orthologues
Putative orthologues are defined as the proteins that have

mutual best hits in the BLASTP comparison and satisfy
specific requirements on the aligned portions. We use the
same criteria of putative orthologues specified by coliBASE
[16],[17]. Since orthologues reflect the evolutionary
relationships of the genes that encode those proteins, for
convenience we use the terms “protein” and “gene”
interchangeably when referring to orthologues in the
following discussion. The search for putative orthologues
begins by selecting the mutual best hits from the BLASTP
results.

Definition 1: Given protein α from genome A and protein β
from genome B (A and B are different genomes), α is a best
hit to β if the hit has the highest bit score and the lowest E-
value in all BLASTP hits between α and any proteins of
genome B. The hit between α and β is a mutual best hit if α is
a best hit to β and β is also a best hit to α.

The mutual best hit means that α and β are the most similar
proteins in all proteins between genome A and B, as defined
by BLASTP. The evolutionary and functional relationships
between the similar proteins, and therefore the genes that
encode the proteins, can be inferred based on the mutual best
hits that are also putative orthologues as defined below.

Definition 2: If the mutual best hit between protein α and β
satisfies two conditions on the aligned portion as following, α
and β are putative orthologues:

1. α and β have at least 80% amino acid identity.
2. The aligned portion covers at least 90% of the shorter

sequence.

 6

With the definitions above, the search for putative
orthologues can be achieved in three steps:

1. Select the best hits in all BLASTP hits of each protein of
a genome against the proteins from each of other
genomes;

2. Identify mutual best hits among the best hits;
3. Check the amino acid identity and alignment coverage of

the mutual best hits to determine the putative orthologues
that satisfy the two conditions as in Definition 2.

MicrobaseLite has a dataset of 646,954 proteins from 250
genomes. Pairwise BLASTP comparisons have reported more
than 400 million hits with a total size of 22GB. A parallelized
search was implemented to identify the putative orthologues
among this huge number of hits. Running on eight 2.8GHz
CPUs, the search was completed in ten days (compared to in
excess of two months if run on a single CPU). Additional
CPUs have not been used because the search is data-intensive
and restricted by the speed of the database server and
therefore using more CPUs does not improve the
performance. (This problem will be solved by deploying a
decentralized database on distributed servers that can improve
the parallel search).

The number of putative orthologues found by the search
depends on the specified values of cutoff conditions. Using
the conditions in Definition 2, the search found putative
orthologues for 287,490 proteins. This represents 44.4% of
the total proteins in our database. Among these proteins, most
of them have more than one putative orthologues each.
However, some genes are conserved in very limited numbers
of organisms. There are 98,206 proteins that have only one
putative orthologue. For example, the gene BH14430 (locus
tag) of Bartonella henselae str. Houston-1 (an agent of cat
scratch fever and bacillary angiomatosis) has only one
putative orthologue, the gene BQ11380 (locus tag) of
Bartonella quintana str. Toulouse (an agent of trench fever,
bacillary angiomatosis and bacteremia).

The comparison database in the genome comparison pool
has also been populated with the putative orthologues defined
using this approach. Users can search for orthologues of a
given gene via the genome viewer.

B. COGs
COGs (Clusters of Orthologous Groups) are a classification

of homologous protein families [15],[29]. A COG is
composed of orthologous proteins or orthologous groups of
paralogous proteins from three or more genomes. A COGs
search identifies both orthologous proteins from different
genomes and paralogous proteins from the same genomes.
The paralogues from a genome are collected into a group that
is treated as a single candidate orthologue in the search for
COGs. Putative orthologues only reflect one-to-many
relationships of the proteins; nevertheless, COGs can reveal
more comprehensive, many-to-many relationships amongst
the proteins from the same and different genomes.

Our search for COGs is based on the same set of mutual
best hits obtained in the putative orthologues search.

However, the COGs search does not set any cutoff
requirement on aligned portions. In addition, the COGs search
needs to identify all paralogues that are the mutual best hits
from the same genomes. Our COGs search includes the
following steps based on the COG construction procedure
from the COG database project [14],[15],[29]:

Fig. 4. Divide and conquer method for parallel COGs search. The set of
proteins is split into p subsets. The search of three-orthologue groups runs on
each subset per CPU, followed by log p rounds of merge.

1. Identify best hits and mutual best hits from all BLASTP
hits (available from the putative orthologues search).

2. Find paralogues in each genome and group them.
3. Search the groups of three orthologues in the mutual best

hits. Given three proteins α, β, and γ, the proteins form a
group of three orthologues if (α, β), (β, γ) and (α, γ) are
mutual best hits. A group of paralogues is regarded as a
single orthologue in the formation of the groups.

4. Merge the groups that have at least a common mutual
best hit, if the merge will not put the proteins from the
same genome (except those are paralogues) into a group.

5. COGs have finally been formed if the groups cannot be
further merged.

The process involves an exhaustive search of the groups
containing three orthologues (triples) and then an iterative
merge of the groups that have common mutual best hits. This
is an extremely compute- and data-intensive process. In order
to establish a fast and parallel implementation of the COGs
search, a divide and conquer method is used. As Fig. 4 shows,
the divide and conquer method consists of three phases:

1. Divide: divide the whole protein set into p subsets.
2. Search: search the groups of three orthologues for the

proteins in each subset based on the BLASTP hits, and
perform an initial merge of the groups. This phase can be
run in parallel on p CPUs.

3. Merge: merge the groups of orthologues from different
subsets in log p rounds. Round i runs on ip 2 CPUs
(i=1, 2, …, log p) to merge the groups of orthologues
between adjacent CPUs. The complete COGs are formed
in the final round which is run on one CPU.

In the search of three-orthologue groups (α, β, γ), only the
starting point α is selected from the corresponding subset. Its
orthologues β and γ can come from other protein subsets.

 7

Therefore, the parallel search can find the same groups of
orthologues as a sequential search.

The COGs search over all proteins of the 250 microbial
genomes took 30 days on eight 2.8GHz CPUs excluding the
time for filtering the mutual best hits which are already
available. We estimate that the sequential search would take in
excess of 200 days if running on a single CPU. Due to the
more intensive search on the table of mutual best hits and the
table of intermediate orthologous groups, the centralized
database restricts the performance improvement of COGs
search when using more than 8 CPUs. This problem will also
be solved when a decentralized database is deployed in the
future.

Our COGs search identified 152,011 clusters of
orthologous groups containing 546,699 orthologues, of which
531,441 are single proteins and 15,258 are groups of
paralogues. In total, 571,701 proteins were assigned to one or
more COGs, representing 88.37% of all proteins from the 250
genomes. Also, 18,455 groups of paralogues have been found
which consist of 47,608 proteins. Fig. 5 shows the
composition of the COGs in terms of the number of distinct
genomes contributing to each COG, giving an indication of
the degree of conservation of COGs across a range of
genomes. The results demonstrate that a large number of
COGs span between 50 and 75 genomes and hence appear to
be well conserved. Around 3000 COGs contain members from
200 genomes, but far fewer span greater than 225 genomes.

As a COG is formed by merging the orthologous groups,
the COGs search collects more orthologues together reflecting
the many-to-many relationships between proteins and between
the genes that encode them. The results of our COGs
identification are also incorporated into the comparison
database within MicrobaseLite and users can search the COGs
for a given gene via the genome viewer or access the results
via the web service exposed API. When a new genome is
imported, it will be compared with existing genomes to find
the mutual best hits between them. If a protein from the new
genome has found two mutual best hits in a COG, it can be
assigned to that COG.

V. CONCLUSIONS

Fig. 5. The composition of the COGs in terms of the number of distinct
genomes in each COG. For example, there are around 24,000 COGs each
containing the orthologues contributed from 3 to 25 distinct genomes.

Grid technologies enable a more rapid analysis of genome
sequences facilitating a more intensive exploration of genomic
data than can be achieved with traditional technology. In turn,
this allows knowledge to be more quickly derived from our
investment in sequencing programs and helps to address the
problem of the analysis of rapidly accumulating genomic data.
The Microbase project is developing a grid-based
environment to support computationally- and data-intensive
genome comparison and analysis, particularly for the analysis
of microbial genomes. MicrobaseLite is a system
implementation that integrates distributed computing and data
resources to perform the comparison and analysis of genome
sequences. The system features the extensive use of web
service technologies for component orchestration, notification,
database update, and user access. A large volume of pre-
computed comparison dataset has been generated on the
system and exposed as a base-level database to end users for
in-depth biological and biomedical research. We expose the
results in both a computational amenable and user-friendly
form through the use of web services and graphical user
interfaces.

One of the important applications implemented within
MicrobaseLite is the identification of protein families in a
large number of proteomes. Such searches may aid the
identification of potential targets for drug discovery and
increase our understanding of protein evolution, and we hope
the system will prove useful in this respect.

In the future, we aim to develop a workflow framework to
support the definition and enactment of custom applications
based on which the system will be able to service user-
defined, remotely conceived genome analyses. The system
will provide the services to support user application
submission and execution on the grid system. A decentralized
database will be deployed. We will extend the protein family
analysis to include the TribesMCL algorithm and implement
other applications such as metabolic reconstruction and
promoter searching. Finally, the system is not limited to the
analysis of microbial genomes, and we intend to extend our
approach to the analysis of eukaryotic genomes.

REFERENCES
[1] M. T. Black and J. Hodgson, "Novel target sites in bacteria for

overcoming antibiotic resistance," Advanced Drug Delivery Reviews,
vol. 57, no. 10, 2005, pp. 1528-1538.

[2] H. Loferer, "Mining bacterial genomes for antimicrobial targets,"
Molecular Medicine Today, vol. 6, 2000,

[3] J. Rosamond and A. Allsop, "Harnessing the power of the genome in
the search for new antibiotics," Science, vol. 287, no. 5460, 2000, pp.
1973-1976.

[4] I. Foster, "Describing the elephant: the different faces of IT as service,"
ACM Queue vol. 3, no. 6, 2005,

[5] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, "Grid services for
distributed system integration," Computer, vol. 35, no. 6, 2002, pp. 37-
46.

[6] N. Jacq, C. Blanchet, C. Combet, E. Cornillot, L. Duret, K. Kurata, et
al., "Grid as a bioinformatic tool," Parallel Computing, vol. 30, no. 9-
10, 2004, pp. 999-1167.

 8

[7] M. Cornell, I. Alam, D. Soanes, H. Wong, M. Rattray, S. Hubbard, et
al., "e-Fungi: an e-science infrastructure for comparative functional
genomics in fungal species," in Proc. 4th UK e-Science All Hands
Meeting (AHM 2005), Nottingham, UK, 2005.

[8] D. Sulakhe, A. Rodriguez, M. D'Souza, M. Wilde, V. Nefedova, I.
Foster, et al., "GNARE: an environment for grid-based high-throughput
genome analysis," in Proc. 5th IEEE Int. Symp. Cluster Computing and
Grid (CCGrid 05), Cardiff, UK, 2005, pp. 455-462.

[9] Microbase project, http://www.microbase.org.uk
[10] TIGR Grid Computing, http://www.tigr.org/grid/
[11] GPSA: Grid protein sequence analysis, http://gpsa.ibcp.fr/
[12] EGEE, http://public.eu-egee.org/
[13] N. Maltsev, E. Glass, D. Sulakhe, A. Rodriguez, M. H. Syed, T.

Bompada, et al., "PUMA2-grid-based high-throughput analysis of
genomes and metabolic pathways," Nucleic Acids Research, vol. 34, no.
Supplement 1, 2006, pp. D369-D372.

[14] COGs, http://www.ncbi.nlm.nih.gov/COG/
[15] R. L. Tatusov, M. Y. Galperin, D. A. Natale, and E. V. Koonin, "The

COG database: a tool for genome-scale analysis of protein functions
and evolution," Nucleic Acids Research, vol. 28, no. 1, 2000, pp. 33-36.

[16] coliBASE, http://colibase.bham.ac.uk/
[17] R. R. Chaudhuri, A. M. Khan, and M. J. Pallen, "coliBASE: an online

database for Escherichia coli, Shigella and Salmonella comparative
genomics," Nucleic Acids Research, vol. 32, no. Database, 2004, pp.
D296-D299.

[18] R. Stevens, A. Robinson, and C. Goble, "myGrid: personalised
bioinformatics on the information grid," Bioinformatics, vol. 19 Suppl
1, 2003, pp. i302-i304.

[19] R. Stevens, R. McEntire, C. A. Goble, M. Greenwood, J. Zhao, A.
Wipat, et al., "myGrid and the drug discovery process," Drug Discovery
Today: BIOSILICO, vol. 2, no. 4, 2004, pp. 140-148.

[20] EGEE battles malaria with grid wisdom, http://public.eu-
egee.org/news/fullstory.php?news_id=53

[21] EMBL, http://www.ebi.ac.uk/embl/index.html
[22] BioJava, http://www.biojava.org/
[23] BioSQL, http://www.biosql.org/
[24] Codehaus XFire, http://xfire.codehaus.org/
[25] NCBI BLAST, http://www.ncbi.nlm.nih.gov/BLAST/
[26] MUMmer 3, http://mummer.sourceforge.net/
[27] A. Krishna, V. Tan, R. Lawley, S. Miles, and L. Moreau, "myGrid

notification service," in Proc. UK e-Science All Hands Meeting,
Nottingham, 2003, pp. 475-482.

[28] myGrid project, http://www.mygrid.org.uk/
[29] R. L. Tatusov, E. V. Koonin, and D. J. Lipman, "A genomic perspective

on protein families," Science, vol. 278, 1997, pp. 631-637.
[30] A. K. Bansal and T. E. Meyer, "Evolutionary analysis by whole-

genome comparisons," Journal of Bacteriology, vol. 184, no. 8, 2002,
pp. 2260-2272.

http://www.microbase.org.uk/
http://www.tigr.org/grid/
http://gpsa.ibcp.fr/
http://public.eu-egee.org/
http://www.ncbi.nlm.nih.gov/COG/
http://colibase.bham.ac.uk/
http://public.eu-egee.org/news/fullstory.php?news_id=53
http://public.eu-egee.org/news/fullstory.php?news_id=53
http://www.ebi.ac.uk/embl/index.html
http://www.biojava.org/
http://www.biosql.org/
http://xfire.codehaus.org/
http://www.ncbi.nlm.nih.gov/BLAST/
http://mummer.sourceforge.net/
http://www.mygrid.org.uk/

	I. INTRODUCTION
	II. Related work
	MicrobaseLite
	A. Microbial Genome Pool
	B. Genome Comparison Pool
	C. Notification Service
	Client Interface

	IV. Protein Family Analysis
	A. Putative Orthologues
	B. COGs

	Conclusions

