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Abstract 

Statistical machine translation (SMT) has evolved from the word-based level to 
higher levels of abstraction. Currently the best known systems are phrased-based, 
and recent research has started to explore tree-based systems with syntactical 
information. This thesis aims to study large-scale Chinese-English SMT using a 
syntactic tree-based model. From the engineering point of view, SMT systems 
are very complex to build. However, existing pieces of software can bring the 
work load to a manageable level for this thesis. Using the GenPar framework and 
other software, this thesis studies Chinese-English SMT by parsing by large-scale 
experiments. This is the first application of GenPar on Chinese-English SMT.  
 
The experiments show that the accuracy of Chinese-English SMT by parsing is 
comparable to existing SMT by parsing of other language pairs. However, the 
accuracy of current MT methods is still largely below human translation, and is 
influenced by the difference between training and testing data, such as the 
writing style and domain. Two important factors in the SMT by parsing model 
are studied, and it is observed that though the accuracy of word-to-word 
alignment influences the translation accuracy, the mono-lingual English and 
Chinese grammars do not have a significant impact on the results. From the 
above observations, advantages and weaknesses of the SMT model are analysed, 
and possible future improvements for Chinese-English SMT are suggested.   
 
This thesis is organised in three main parts. The first chapter presents the 
introduction and overview of the thesis. The second and third chapters summarise 
the related theories by literature review, giving a detailed exposition of the theory 
of SMT and SMT by parsing. The last two chapters report the novel experiments 
of Chinese-English SMT by generalised parsing. By discussing the experimental 
output, the last chapter summarises this thesis and proposes further work.  
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Chapter 1  

Introduction 

1.1 Introduction 
 
1.1.1 Machine translation 
 
The idea of machine translation (MT) can be traced back to the seventeenth 
century, but it became realistically possible only in the middle of the twentieth 
century (Hutchins, 2005). Soon after the first computers were developed, 
research began on MT algorithms. The earliest MT systems consisted primarily 
of large bilingual dictionaries and sets of translation rules. Dictionaries were used 
for word level translation, while rules controlled higher level aspects such as 
word order and sentence organisation. Starting from a restricted vocabulary or 
domain, rule based systems proved useful. But as the study progressed, 
researchers found that it is extremely hard for rules to cover the complexity of 
natural language, and the output of the MT systems were disappointing when 
applied to larger domains. Little breakthrough was made until the late 1980’s, 
when the increase in computing power made statistical machine translation (SMT) 
based on bilingual language corpora possible. In the beginning, much scepticism 
about SMT existed from the traditional MT community because people doubted 
whether statistical methods based on counting and mathematical equations can be 
used for the sophisticated linguistic problem. However, the potential of SMT was 
justified by pioneering experiments carried out at IBM in the early 1990s (Brown 
et al., 1993). Since then the statistical approach has become the dominant method 
in MT research.   
 
1.1.2 Statistical machine translation 
 
1.1.2.1 Three important factors: training, decoding and the statistical model 
 
SMT is accomplished in two steps. Before translation, statistical tables are built 
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from bilingual corpora containing manual translations. These tables collect 
statistical information such as the characteristics of well formed sentences, and 
the correlation between the languages. During translation, the collected statistical 
information is used to find the best translation for the input sentences. Normally, 
the statistical table building process is called the learning (or training) process, 
while the translation step is called the decoding process.  
 
The decoding process for SMT is essentially a search problem (Russell and 
Norvig, 2003). Given an input sentence, it searches for the best translation by 
suggesting and giving scores to possible candidates. Take the instance of 
Chinese-English translation for example. Suppose that a Chinese sentence is 
expressed as 1 1,..., ,...,J

j JF f f f= , while its English translation is expressed as 

1 1,..., ,...,I
i IE e e e= . 0F

1 In mathematical form, 1
IE  and 1

JF  satisfies: 

 1
1 1 1arg max ( , )I
I I J

E
E SCORE E F=      (1-1) 

In the above equation, 1 1( , )I JSCORE E F  evaluates how likely the sentence 1
IE  is 

the translation of the sentence 1
JF . It is computed from the statistical information 

collected in the learning process. Obviously no statistical tables could store 

1 1( , )I JSCORE E F  directly for all possible sentence pairs 1
IE  and 1

JF , because they 
are far too numerous. Hence the score needs to be broken down into computable 
factors which can be stored. A statistical model defines the method to compute 

1 1( , )I JSCORE E F  mathematically, and which factors are stored in statistical tables. 
It is central to an SMT system.  
 
1.1.2.2 The evolution of SMT models 
 
The pioneer models for SMT are word-based (Brown et al., 1993). These models 
assume that sentences are translated word by word. Words in an input sentence 
are translated individually and put in a specific order to make the translation. 
Moreover, the word alignment between the input and output sentences follows 
certain patterns. For example, 240HTable 1-1 shows some patterns of word alignments.  
 

Example 
  

I like programming
⎡ ⎤
⎢ ⎥
⎣ ⎦

我 喜欢 编程    C++
I program in C++
⎡ ⎤
⎢ ⎥
⎣ ⎦

我 用 编程    
a book

⎡ ⎤
⎢ ⎥
⎣ ⎦

一 本 书
 

Alignment Simple one to one Reordering Align to none

Table 1-1: word alignment examples 

                                                 
1 This thesis follows the conventional use of e for English words and f for foreign words in the literature.  
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Based on the above assumption, the word-based models calculate 1 1( , )I JSCORE E F  
for candidate translations by statistical data on the word alignment pattern as well 
as word-to-word translations. The detailed theory is analysed in Section 241H2.1.2.  
 
The word-based approaches are comparatively simple and efficient. They proved 
to be a successful start of SMT approaches. However, the assumption that 
sentences are translated word by word is oversimplified in some situations, which 
may lead to potential loss of accuracy in the calculation of 1 1( , )I JSCORE E F .  For 
example, 242HTable 1-2 shows some Chinese and English sentences that are not 
strictly translated on the basis of individual words.  
 

Example 
   

I like it very much
⎡ ⎤
⎢ ⎥
⎣ ⎦

我 非常 喜欢 它
 

exciting trips
⎡ ⎤
⎢ ⎥
⎣ ⎦

令 人 激动 的 旅行

big gun
⎡ ⎤
⎢ ⎥
⎣ ⎦

重要 人物
 

Alignment One to many Many to one Many to many

Table 1-2: phrase alignment examples 
 
The above examples contain unbreakable phrases as units of translation. To 
improve the accuracy, such phrases should be included in the model.  
 
Moving from the word-based models, a number of phrase-based models were 
developed (Koehn et al., 2003). These models separate a sentence into phrases 
before translation, while they deal with phrase ordering by similar techniques that 
the word-based models use. Consequently, they calculate 1 1( , )I JSCORE E F  by 
statistical data of the phrase alignment and the phrase-to-phrase translations. The 
theory of phrase-based models is analysed in more detail in Section 243H2.1.3.   
 
Phrase-based models improved the accuracy over word-based models. However, 
they did not improve the model of sentence order patterns, which becomes the 
bottleneck of further improvement. Chiang (2005) used the following example to 
illustrate the problem of the phrase reordering models:  
 

Original sentence           澳洲 是 与 北 韩有 邦交 的少数 国家 之一  
Output of a phrase-
based SMT system 

[Australia] [is] [diplomatic relations] [with] [North 
Korea] [is] [one of the few countries] 

Correct transltion Australia is one of the few countries that has diplomatic 
relations with North Korea 

Table 1-3: phrase-based translation example; adapted from (Chiang, 2005) 
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In the above example, the phrase-based SMT system translated “diplomatic 
relations with North Korea” and “one of the few countries” correctly. However, it 
failed to put the long phrases in the correct order. One possible reason is that the 
alignment model is based on flat reordering patterns. It may perform well with 
local phrase orders, but not as well with long sentences and complex orders.   
 
Based on the above observations, Chiang (2005) developed a hierarchical phrase 
based model. Chiang’s model evolved from the phrase-based models. However, 
different from simple phrases, hierarchical phrases have recursive structures. For 
example, “have diplomatic relation with North Korea” can be viewed as a 
hierarchical phrase, where “have … with …” embeds “diplomatic relation” and 
“North Korea”. This structure is illustrated in 244HFigure 1-1.  
 

 
Figure 1-1: the hierarchical phrase structure 

 
Now “ 1 2   f f% %与 有 ” is translated to “ 2 1 have  withe e% % ”, where sub phrases 1f%  and 

2f%  translate to 2e%  and 1e% , respectively. With hierarchical structures, long phrase 
orders are divided into sub phrase orders, which are much simpler. 245HFigure 1-2 
shows a longer example of hierarchical phrase translation.    
 

 
Figure 1-2: an illustration of hierarchical phrase ordering 

 

has       with    

diplomatic relation North Korea

one of          that  

the few countries has       with    

diplomatic relation North Korea 

     的        之一  

少数国家与     有     

北 韩  邦交  
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The hierarchical phrase model calculates 1 1( , )I JSCORE E F  by recursive structures. 
It can be seen as one of the recent tree-based SMT models, and further improved 
the accuracy. More related SMT models are described in Section 2.1.3.  
 
From the above examples, it can be seen that SMT models has evolved towards 
higher levels of abstraction. The accuracy has been improved by more precise 
representations of structural correspondence between languages. This fact leads 
naturally to a question – what abstraction can best represent such correspondence? 
Possible answers may come from linguistics, as it is the human abstraction of 
languages.  
 
1.1.3 Grammars – the provider of linguistic information 
 
Being an important part of linguistics, grammar studies the rules behind 
languages. Specifically, the aspect of grammar that does not concern meaning 
directly is called syntax, while the aspects that concern meaning include 
semantics and pragmatics (Allen, 1995).  
 
Grammars can be prescriptive (for example “Do not use superlative form when 
comparing only two objects”) or descriptive (“the word ‘anything’ is used in 
negative sentences and questions”). Linguists are typically more interested in 
descriptive grammars. In 1956, Chomsky formalized a generative way to 
describe grammars. Such grammars regard sentences as the result of recursive 
symbol generations according to certain rules. In terminology, words in a 
language are called terminal symbols, syntactic information such as part-of-
speech (e.g. the noun, the verb etc.; Allen 1995) is called non-terminal symbols, 
and the rules that generate new symbols from existing symbols are called 
production rules. From a special starting non-terminal symbol, a sentence can be 
generated by recursively applying production rules to existing symbols.  
 
Chomsky classified generative grammars into four categories known as the 
Chomsky Hierarchy (Allen, 1995). Among these categories, the context free 
grammar (CFG) is frequently used to represent the syntax of English. In this 
grammar, every production rule takes a non-terminal symbol and generates a 
string of new symbols. An example CFG is shown in Figure 1-3. In this grammar, 
S, NP, VP, N, and V are non-terminal symbols, representing the start symbol, 
noun phrases, verb phrases, nouns and verbs, respectively; “I”, “like” and “C++” 
are terminal symbols, which are the vocabulary words in this grammar. This CFG 
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contains six production rules. For example, VP  V NP is a production rule that 
generates string V NP (verb noun-phrase) from symbol VP (verb-phrase).  
 

S  NP VP N  C++ 
NP  N  VP  V NP 
N  I   V  like 

Figure 1-3: an example CFG that consists of six production rules 
 
According to the above grammar, a subset of English sentences can be analysed. 
For example, 248HFigure 1-4 shows the process in which the sentence “I like C++” is 
generated. This structural representation is called a syntax tree.  
 

 
Figure 1-4: an example syntax tree 

 
Because generative grammars have precise description and transformation rules, 
they are widely used in computer algorithms. Specifically, parsing is the process 
of sentence analysis according to a given grammar. A parsing algorithm is also 
called a parser. For example, a CFG parser can take the input sentence “I like 
C++” and derive the syntax tree in 249HFigure 1-4, which is also called a parse tree. 
More details of the theory of parsers are reviewed in Section 250H2.3.  
 
1.1.4 Synchronous grammars and SMT by parsing 
 
Besides English, CFG can also be used to describe Chinese and other languages. 
Now assume that a CFG in English can have a corresponding CFG in Chinese, in 
which each symbol and production rule has a counterpart. We can thus combine 
the two grammars to make a grammar which generates matching Chinese-
English sentence pairs simultaneously. Such combined grammars are called 

NPV 

S 

NP VP 

N 

I like N 

C++
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transduction grammars (Aho and Ullman, 1969), or synchronous grammars (Wu, 
1997). 251HFigure 1-5 shows a simple synchronous CFG by combining the English 
CFG in 252HFigure 1-3 and its Chinese counterpart (the non-terminal symbols in the 
Chinese CFG are underlined). 
 

S|S  NP|NP VP|VP N|N  C++|C++ 
NP|NP  N|N  VP|VP  V|V NP|NP 
N|N  我 | I   V|V  喜欢 | like 

Figure 1-5: a bilingual grammar combining a Chinese and an English grammar 
 
According to the combined grammar in 253HFigure 1-5, 254HFigure 1-6 illustrates the 
synchronous parse tree for the following sentence pair  

 C++
I like C++

⎡ ⎤
⎢ ⎥
⎣ ⎦

我 喜欢
, 

 

 
Figure 1-6: an example parse tree for Chinese-English bilingual grammar 

 
Now if a parser can generate the above syntax tree from only one sentence (e.g. 
“   C++我 喜欢 ”), then the other sentence (e.g. “I like C++”) can be derived from 
the tree. This is the basic idea of SMT by synchronous parsing – the main theory 
of this thesis. Details on synchronous grammars are discussed in 255HChapter 3.  
 
It can be seen that SMT by synchronous parsing is a higher level model than the 
word-based and phrase-based SMT in Section 256H1.1.2.2, which use alignment 
patterns to abstract word and phrase orders. Like hierarchical phrase based SMT, 
synchronous grammar based SMT use tree structures. However, a potential 
advantage of SMT by synchronous parsing is the use of syntactic information, 
which arbitrary hierarchical phrases do not have.  

NP|NPV|V

S|S

NP|NP VP|VP

N|N

我 |I 喜欢 |like N|N 

C++|C++
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The decoding algorithm for SMT by parsing is different from those models in 
Section 1.1.2 – the goal of the decoding search is the best synchronous tree, 
instead of the best translation directly. Therefore, the decoding process can be 
seen as a statistical parsing process (Section 2.3.2). The advantage is that existing 
parsing algorithms can be used to facilitate SMT research. For example, the 
experiments of this thesis are based on GenPar, which is the implementation of a 
generalised parsing algorithm (Section 2.3.3). 
 
1.1.5 Chinese-English SMT by parsing 
 
The topic of this thesis is Chinese-English SMT by parsing. This is the first 
application of the SMT by parsing model in Chapter 3 to the specific language 
pair.  
 
On the one hand, the language-independent mathematical theory of SMT by 
parsing is important to the effect of translation, and the experimental output 
reflects the strength of weakness of the SMT model (Chapter 5).  
 
On the other hand, the effect of Chinese-English SMT is also influenced by the 
specific characteristics of the two languages, and language-specific processing is 
required for the translation. For example, a Chinese sentence is written as a 
continuous sequence of characters. To be processed by the SMT systems, it needs 
to be separated into individual words. This process is called segmentation 
(Jurafsky and Martin, 2000). What is more, the structural correspondence 
between Chinese and English is more complex than that between Indo-European 
language pairs. For example, phrase-based models may benefit from the strong 
localisation effect observed between Indo-European phrases (Tillman et al., 
1997), but Chinese phrases may not have the advantage.   
 
This thesis does large-scale experiments with existing software, including the 
GenPar framework. Apart from the necessary software engineering work for a 
running system, special engineering techniques such as parallel processing are 
used to control the experiment progress under the time frame of this thesis. The 
details of these experiments are recorded in Chapter 4.   
 
The next section gives the organisation of the rest of this thesis.  
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1.2 Overview 
 
263HChapter 2 provides the detailed background, including the mathematical theory of 
SMT models and MT evaluation methods. By reviewing the theory of parsers, it 
introduces the generalised parsing algorithm, which is used by GenPar.  
 
264HChapter 3 introduces the synchronous grammar used by this thesis, as well as its 
statistical parsing model and the training and decoding process. On this basis, it 
introduces the theory of SMT by parsing, showing the implementation of several 
important algorithms by generalised parsing.  
 
265HChapter 4 records the details of the experiments, including the software used, the 
corpus texts, the process of a typical experiment and brief introductions of the 
programs written during the process. This chapter also includes a summary of the 
research questions corresponding to each experiment.  
 
266HChapter 5 discusses the research questions with the experiment results. It draws a 
conclusion of this thesis and gives suggestion for future work.   
 
 

1.3 Contributions 
 
• Detailed exposition of the theory of SMT and SMT by parsing using the 

example of Chinese-English translation, giving original analysis to important 
algorithms.  

 
• First experiments on Chinese-English SMT by parsing using the GenPar 

framework, with results comparable to existing language pairs using GenPar.   
 
• Demonstration that large-scale Chinese-English syntax-based SMT is possible, 

by using over 3 million words of bilingual data, 32 machines and 1,000 hours 
of processing.  

 
• Analysis and comparison of SMT models by novel experiments.  
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Chapter 2  

Background 

 
2.1 The theory of statistical machine translation 
 
As stated in 267HChapter 1, three important factors for SMT are the training process, 
the decoding process and the statistical model. Typical SMT models include the 
source-channel model (Brown et al., 1993) and the log-likelihood model (Och et 
al., 2002). This chapter uses the source-channel model for illustration.  
 
2.1.1 The source-channel model 
 
The source-channel model originated from signal processing and information 
theory, and was first used in statistical natural language processing for speech 
recognition. It was used for SMT by Brown et al. (1993).  
 
Imagine that there is a noisy channel, through which sentences in one language 
are distorted into another. Now for the translation problem, the source sentences 
can be regarded as the result of their corresponding target sentences being passed 
through such an imaginary channel. The task of MT is to reconstruct the original 
sentences, given their distorted versions. It is done by searching for a target 
sentence that has the highest conditional probability given the source sentence.  
 
In mathematical form, the English translation 1

IE  (i.e. 1,..., ,...i Ie e e ) for a given 
Chinese sentence 1

JF  (i.e. 1,..., ,...j Jf f f ) is the one that satisfies: 

 1
1 1 1arg max ( | )I
I I J

E
E P E F=  (2-1) 

Equation 268H2-1 is a specific version of Equation 269H1-1. This equation uses conditional 
probability 1 1( | )I JP E F  for the ranking score 1 1( , )I JSCORE E F .  
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According to Bayes’ rule, the source-channel model estimates 1 1( | )I JP E F  by 
breaking it into the product 1 1 1( ) ( | )I J IP E P F Eα  (where α is a normalisation factor). 
In this equation, the prior probability of the English sentence 1( )IP E  is called the 
language model and the likelihood probability 1 1( | )J IP F E  is called the translation 
model. Interestingly, the Chinese-English translation probability 1 1( | )I JP E F  is 
now estimated by the English-Chinese translation probability 1 1( | )J IP F E .  
 
The main reason for estimating 1 1( | )I JP E F  by the product 1 1 1( ) ( | )I J IP E P F Eα  is 
modularity. While the translation model represents the matching between the 
source and target sentences, the language model is used specially to control the 
fluency of output sentence. The implementation of the language model is 
typically an n-gram model (Brown et al., 1990), while the translation model has 
evolved from word-based to phrase-based and higher levels of abstractions, as 
introduced in Section 270H1.1.2.2.  
 
2.1.2 Word-based SMT – the fundamental ideas 
 
As introduced in Section 271H1.1.2.2, word-based SMT assumes that sentences are 
translated word by word, and the different ordering between the input and the 
translation can be represented by a pattern of word alignment. Take the Chinese-
English translation for example. As stated earlier, the translation model estimates 
the English-Chinese translation probability 1 1( | )J IP F E . Thus it assumes that each 
English word ie  in a source sentence 1

IE  is translated into a Chinese word jf  in 
its translation 1

JF . Therefore, in equation form, the word alignment between 1
IE  

and 1
JF  can be expressed as 1 1,..., ,...,J

j JA a a a= , where ja  stands for the index of 
the English word that aligns to the Chinese word jf . Considering alignments, the 
translation model can be calculated by summing disjoint probabilities: 

 1
1 1 1 1 1( | ) ( , | )J

J I J J I
A

P F E P F A E=∑  (2-2) 

For each alignment 1
JA , the joint probability 1 1 1( , | )J J IP F A E  can be broken down 

according to the chain rule of probability, in the order of dependence from J to 
the sequence of 1a , 1f , …, ja , jf , …, until Ja , Jf : 

 
1

1 1 1 1 1 1 1 1 11
( , | ) ( | ) ( | , , , ) ( | , , , )JJ J I I I j I

j j j j jj
P F A E P J E P a a f J E P f a f J E−

− −=
= ∏  (2-3) 

Equation 272H2-3 is still hard to process in both the learning phase and the decoding 
phase, because there are many factors to consider.  
 
By making independence assumptions over the conditional probabilities, Brown 
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et al. (1993) gave simplifications to equation 273H2-3 and developed the five seminal 
word-based IBM models. The simplest model, IBM model-1, can be used as an 
illustration of the learning and decoding phases in word-based SMT. This model 
has the following independence assumptions on Equation 274H2-3: 

 • 1( | )IP J E  = ε (the length J is not considered) 

 • 1 1 1
1( | , , , )

1
I

j j jP a a f J E
I− − =
+

 (the alignment of words is evenly distributed) 
1F

1 

 • 1
1 1( | , , , ) ( | )

j

j I
j j j aP f a f J E P f e− =  (individual word-to-word translations are 

independent of each other)  

With these independence assumptions, equation 275H2-3 becomes 

 
1 1 1 1 1

( | )
( , | ) ( | )

1 (1 )
j

j

J Jj aJ J I
j aJj j

P f e
P F A E P f e

I I
εε

= =
= =

+ +∏ ∏  (2-4) 

Hence the whole translation model of Equation 276H2-2 becomes 

1 1
1 1 1 1 1 1

( | ) ( , | ) ( | )
(1 )J J j

JJ I J J I
j aJA A j

P F E P F A E P f e
I
ε

=
= =

+∑ ∑ ∏  

Further, because words are aligned independently, each word can have I + 1 
different alignments: 

1
1

1 1 1 1
0 0

( | ) ( | ) ... ( | )
( 1) ( 1)J j j

j

I IJ JJ I
j a j aJ JA j j

a a
P F E P f e P f e

I I
ε ε

= =
= =

= =
+ +∑ ∑ ∑∏ ∏  

What is more, by observation, the sum of the permutation production can be 
rewritten as the production of term sums: 

 1

1 1 01 1
0 0

( | ) ... ( | ) ( | )
( 1) ( 1)j

j

I I J J IJ I
j a j iJ J ij j

a a
P F E P f e P f e

I I
ε ε

== =
= =

= =
+ +∑ ∑ ∑∏ ∏   (2-5) 

Equation 277H2-5 is fairly simple to compute, and can be used in the decoding process 
to determine the most probable translation. The only parameters required in this 
equation are the word translation probabilities ( | )P f e , which are collected in the 
learning process and from corpus data.  
 
The ideal situation for learning ( | )P f e  is the availability of a word-aligned 
corpus. In such a corpus, words that translate to each other are put into pairs, and 
their frequency recorded. The maximum likelihood estimation method (Russell 
and Norvig, 2003) can be directly applied to get the probabilities ( | )P f e , by 
choosing the ( | )P f e  that maximises the probability of the corpus data. Suppose 
                                                 
1 The denominator is I+1 instead of I, because there is a case when a Chinese word is aligned to no English word.  
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that in the corpus, an English word e translates to Chinese words 1,..., ,...,n Nf f f , 
each translation occurring 1( | )c f e ,…, ( | )nc f e ,…, ( | )Nc f e  times, respectively. 
Assuming the translations are independent, the probability of translation from e 
to fn occurring c(fn |e) times among 1 ( | )

N
kk c f e=∑ samples is:  

 
1

(( ( | )) ( | ))( | )( | ) (1 ( | ))
N

k nn k
c f e c f ec f e

n np P f e P f e =
−∑= −  (2-6) 

By the maximum likelihood principle, the best value for ( | )nP f e  is the one that 
maximises the probability p in Equation 278H2-6. This value can be derived by 
finding the equivalent value ( | )nP f e  that maximises the logarithm of p: 

1
(( ( | )) ( | ))( | )

1

log( ( | ) (1 ( | )) )

( | ) log ( | ) (( ( | )) ( | )) log(1 ( | ))

N
k nn k

c f e c f ec f e
n n

N
n n k n nk

q P f e P f e

c f e P f e c f e c f e P f e

=
−

=

∑= −

= + − −∑
 

We then solve the following equation to find the ( | )nP f e  that makes the 
derivative of q zero: 

1
( ( | )) ( | )( | ) 0

( | ) ( | ) 1 ( | )

N
k nn k

n n n

c f e c f ec f edq
dP f e P f e P f e

=
−

= − =
−

∑
 

 1

( | )( | )
( | )

n
n N

kk

c f eP f e
c f e

=

⇒ =
∑  

(2-7) 

The answer 1
( | ) ( | ) /( ( | ))N

n n kk
P f e c f e c f e

=
= ∑  is consistent with intuition – it is 

simply the number of times that e translates to fn divided by the total number of 
times that e translates to any fk.  
 
In real world situations, a word-aligned corpus is hard to find. However, it is 
comparatively easy to find a sentence-aligned corpus, containing pairs of 
translation sentences. If the word-to-word alignment for these sentences is known, 
the problem is reduced to the word-aligned corpus learning described above. 
Alternatively, if the probability distribution of the word alignment for the 
sentences is known, the word-aligned corpus situation can be approximated by 
computing the mathematical expectation of word-to-word alignments. For 
example, given a translation sentence pair 1 1( , )J IF E  and the alignment distribution 

1 1 1( | , )J J IP A F E , we can calculate the mathematical expectation of the number of 
times that f in 1

JF  is aligned with e in 1
IE : 

1
1 1 1 1 1 1( | ; , ) ( | , ) (the number of times   is aligned to  with )J

J I J J I J
A

c f e F E P A F E f e A= ×∑  
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Using the Kronecker Delta function2F

1, this equation can be written as:  

 1
1 1 1 1 1 1

( | ; , ) ( | , ) ( , ) ( , )J j

JJ I J J I
j aA j

c f e F E P A F E f f e eδ δ
=

=∑ ∑  
(2-8) 

Combining Equation 279H2-7 and Equation 280H2-8, we can find an equation to estimate 
( | )nP f e  for the sentence aligned situation: 

 

1

1

1 1 1

1 1 11 1

( | , ) ( , ) ( , )( | )( | )
( | ) ( | , ) ( , ) ( , )

J j

J j

J J I
j aAn

n N N J J I
k k j ak k A

P A F E f f e ec f eP f e
c f e P A F E f f e e

δ δ

δ δ
= =

= =
∑

∑ ∑ ∑
 (2-9) 

 
Equation 281H2-9 cannot be used directly, however, because the alignment 
distribution 1 1 1( | , )J J IP A F E  is unknown. One intuitive way in which 1 1 1( | , )J J IP A F E  
can be computed is from the conditional probability rule: 

 
1 1 1

1 1 1
1 1

( , | )( | , )
( | )

J J I
J J I

J I

P A F EP A F E
P F E

=
 

(2-10) 

Looking back to Equation 282H2-4 and Equation 283H2-5, it can be seen that they give an 
exact way to compute 1 1 1( , | )J J IP A F E  and 1 1( | )J IP F E , respectively. Combining 
Equation 284H2-4, 285H2-5 and 286H2-10, we get: 

 

11 1 1
1 1 1

1 1 01

( | )( , | )( | , )
( | ) ( | )

j

J
J J I

j ajJ J I
J IJ I

j iij

P f eP A F EP A F E
P F E P f e

=

==

= =
∏
∑∏  

(2-11) 

Now we have found a way to compute word-to-word probabilities from 
alignment probabilities (Equation 287H2-11), as well as a way to compute alignment 
probabilities from word-to-word probabilities (Equation 288H2-9). This is a form of 
the expectation maximisation (EM) algorithm (Russell and Norvig, 2003), with 
the word alignment probabilities as the hidden parameter. We can find the word-
to-word probabilities that bring the corpus probability p (Equation 289H2-6) to a local 
maximum, by first assigning initial values to them, and then iterating through 
Equation 290H2-11 and 291H2-9 until the values converge. Generally there are many local 
maxima for the EM problem. However, for this particular translation model, it 
can be proved that the local maximum is also the global maximum. 
 
The above method is essentially IBM model-1, although the reasoning is 
different from the one that Brown et al. (1993) originally used. Models-2 to 5 
also derive from Equation 292H2-3, while they include more factors than model-1 in 
the calculation. For example, model-2 adds absolute word order to model-1, 
model-3 further adds fertility (number of words that translates to the word), 

                                                 
1 Kronecker’s delta ( , ) 1i jδ =  when i and j are the same, and 0 when they are different. 
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model-4 uses relative word order and model-5 further fixes some deficiencies of 
model-4.  
 
Before finishing this section, it should be noticed that the word-to-word 
translations ( | )nP f e  (Equation 293H2-9) and word alignments 1 1 1( | , )J J IP A F E  (Equation 
294H2-11) can be used not only for the word-based models, but also as a building 
block in other SMT models. Extensions on the IBM models have been made for 
the calculation of word alignment, including the HMM (Russell and Norvig, 
2003) model (Vogel et al., 1996) and the bi-directional method (Och et al., 1999). 
Och and Ney (2003) gives a summary of word alignment methods.  
 
2.1.3 The trend towards higher levels of abstraction 
 
As stated in Section 295H1.1.2.2, the word-based approach has some apparent 
problems. For example, English phrases such as “a piece of cake” (which 
translates to the Chinese word“小菜一碟 ”) or “off the hook” (which translates to 
the Chinese word “解脱”) are not included in the model at all. This is because the 
alignment model 1

JA  provides only one English word index for each Chinese 
word. As a result, no Chinese word can align to multiple English words.  
 
This problem can be dealt with by phrase-based translation models. Instead of 
breaking sentences into separate words, these models break sentences into 
continuous phrases: 

11 1 1 1,..., ..., , where ,...
k k

I K
k K k i iE E e e e e e e

− += = =% % % % %  

11 1 1 1,..., ..., , where ,...
k k

J K
k K k j jF F f f f f f f

− += = =% % % %%  

Similar to the word-based approach in section 296H2.1.2, the alignment for phrases 
from a translation pair can be expressed as 1 1,... ,...K

k KA a a a=% % % % , where each ka%  in 

1
KA%  indicates the English phrase index that aligns to k. In other words, alignment 

1
KA%  means that English phrase 

kae%%  translates to Chinese phrase kf% .  
 
In the decoding process, the translation probabilities can be calculated by 
summing up possible phrase alignments: 

1
1 1 1 1 1( | ) ( , | )K

K K K K K
A

P F E P F A E=∑ %
%% % % %  

It should be noticed that this equation is similar to Equation 297H2-2. By the same 
reasoning from section 298H2.1.2, the following generalised score function can be 
derived for phrases: 
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1
1 1 1 1 1 1 1 11

( | ) ( | , , ) ( | , , )KK K K K k K
k k k k kj

P F A E P a a f E P f a f E−
− −=

=∏ % % %%% % % %% % %  

Most current phrase-based methods are simplifications of this equation. For 
example, Koehn et al. (2003) used the following simplifications in their summary 
of phrase-based approaches: 

 • 
1

1 1 1 1 1( | ) arg max ( , | )K
K K K K K

A
P F E P F A E= %

%% % % %     (replace summation by maximum) 

 • 1 1 1 1 1( | , , ) ( | )K
k k k k kP a a f E P j i− − − −=% %% %    (the phrase alignment is only dependent on 

corresponding phrase positions) 
 or 1 1| 1 |

1 1 1 1 1 1 1( | , , ) ( | ) ( 1 ) k kj iK
k k k k k k kP a a f E P j i d j i α − −+ −

− − − − − −= = + − =% %% %    (still further 
simplification – the phrase alignment is only dependent on the distance 
between corresponding indice) 

 • 1
1 1( | , , ) ( | )k K

k k k kP f a f E P f a− =% % %%% %    (the individual phrase-to-phrase translations 
are independent of each other)  

There are alternative ways to train a phrase-based system. Firstly, given a word 
alignment method (Section 299H2.1.2), phrase alignment can be derived from word-
to-word alignment (Och et al., 1999, Koehn et al., 2003) – two phrases are 
aligned when all the words in one phrase are only aligned to words in the other. 
Or alternatively, phrase alignment can also be derived directly by EM machine 
learning methods similar to the word alignment from Section 300H2.1.2. Marcu and 
Wong (2002) used a (simplified) method similar to IBM model-3 to compute 
phrase alignments directly.  
 
The phrase-based models are able to solve the one-to-many word-alignment 
problem successfully. However, they still assume that sentences are translated by 
simple reordering. As shown in Section 301H1.1.2.2, this assumption is oversimplified 
for complex situations. Consequently, several tree-based models are proposed for 
better solutions. An example is the hierarchical phrase based model (Chiang, 
2005) in 302H1.1.2.2. This model does not take use of syntactic information. The 
training process derives hierarchical phrase information from existing statistical 
word-to-word alignments. In comparison, Yamada and Knight (2001) proposed a 
model that uses the syntactical information of the input language. This model 
assumes that the translation is derived by operations over the CFG parse tree of 
the input sentence. It takes use of a CFG parser, and can be seen as a tree-to-
string model. Meanwhile, there are also tree-to-tree models which take use of 
syntactic information of both the input and the translation. For example, the work 
of Gildea (2003) includes such models. Cowan et al. (2006) proposed a tree-to-
tree model which maps the parse tree of the input language to the parse tree of 
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the translation language.  
 
As stated in Section 303H1.1.4, SMT by synchronous parsing can be seen as a specific 
syntax tree based SMT model. This model is based on combined syntax trees. Its 
decoding algorithm can benefit from existing parsing algorithms. Examples of 
SMT by synchronous parsing include research by Wu (1997), as well as 
Melamed and Wang (2005). By using the GenPar framework, this thesis uses the 
model of Melamed and Wang (2005). The detail of the synchronous grammar 
will be given in 304HChapter 3.   
 
 

2.2 The evaluation of machine translation 
 
It is important to evaluate the accuracy of machine translation against fixed 
standards, so that the effect of different models can be seen and compared. The 
obvious difficulty in setting a standard for MT evaluation is the flexibility of 
natural language usage. For an input sentence, there can be many perfect 
translations. Knight and Marcu (2004) showed 12 independent English 
translations by human translators, given the same Chinese sentence. All of the 12 
are different, yet all correct.  
 
The most accurate evaluation is human evaluation, and it is frequently used for 
new MT theories. However, this method is far more time consuming than 
automatic methods. It is difficult for human evaluators to evaluate a large sample 
of translated sentences. Research has shown that certain machine evaluation 
methods correspond reasonably well with human evaluators, and thus they are 
usually used for the evaluation of large test sets. This section introduces three 
most common automatic evaluation methods, which are used by the experiments 
of this thesis.  
 
2.2.1 The Bleu metrics 
 
The Bleu metrics (Papineni et al., 2001) evaluates machine translation by 
comparing the output of an MT system with correct translations. Therefore, a test 
corpus is needed for this method, giving at least one manual translation for each 
test sentence. During a test, each test sentence is passed to the MT system, and 
the output is scored by comparison with the correct translations. This score is 
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called the Bleu score. The output sentence is called the candidate sentence, and 
the correct translations are called references.  
 
The Bleu score is evaluated by two factors, concerning the precision and the 
length of candidates, respectively. Precision refers to the percentage of correct n-
grams in the candidate. In the simplest case, unigram (n=1) precision equals to 
the number of words from the candidate that appear in the references divided by 
the total number of words in the candidate.  
 
The standard n-gram precision is sometimes inaccurate in measuring translation 
accuracy. Take the following candidate translation for example:  
 

Candidate: a a a. 
Reference: a good example. 

 
In the above case, the standard unigram precision is 3/3=1, but the candidate 
translation is inaccurate with duplicated words. Because of this problem, Bleu 
uses a modified n-gram precision measure, which consumes a word in the 
references when it is matched to a candidate word. The modified unigram 
precision of the above example is 1/3, for the word ‘a’ in the reference is 
consumed by the first ‘a’ in the candidate.  
 
Similar to unigrams, modified n-gram precision applies to bigrams, trigrams and 
so forth. In mathematical form, the n-gram precision is as follows: 

{ } -

{ } -

( - )

( - )
c Candidate n gram C

n
c Candidate n gram C

Matched n gram
p

Count n gram
∈ ∈

∈ ∈

=
∑ ∑
∑ ∑

 

 
Apart from modified n-gram precision, a factor of candidate length is also 
included in the Bleu score. The main aim of this factor is to penalise short 
candidates, because long candidates will be penalised by low modified n-gram 
precisions. Take the following candidate for example:  

Candidate: C++ runs. 
Reference: C++ runs much faster than Python. 

Both the unigram precision and the bigram precision for the above candidate are 
1 (i.e. 100%), but the candidate contains much less information than the reference. 
To penalise such short candidates, a brevity penalty score is used. Suppose that 
the length of the reference sentence is r, and the length of the candidate is c. In 
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equation form, the brevity penalty score is as follows:  

(1 / )

1                 if 
        if c rr c

c r
BP

e −

>⎧
= ⎨ ≤⎩

 

 
When there are many references, r takes the length of the reference that is the 
closest to the length of the candidate. This length is called the effective reference 
length.  
 
The Bleu score combines the modified n-gram score and the brevity penalty 
score. When there are many test sentences in the test set, one Bleu score is 
calculated for all candidate translations. This is done is two steps. Firstly, the 
geometric average of the modified n-gram precisions pn is calculated for all n 
from 1 to N, using positive weights wn which sum up to 1. Secondly, the brevity 
penalty score is computed with the total length of all candidates and total 
effective reference length for all candidates. In equation form,  

1

exp log
N

LEU n n
n

B BP w p
=

⎛ ⎞= ⋅ ⎜ ⎟
⎝ ⎠
∑  

By default, the Bleu score includes the unigram, bigram, trigram and 4-gram 
precisions, each having the same weight. This is done by using N=4 and wn=1/N 
in the above equation.  
 
Experiments have shown that the Blue metrics are generally consistent with 
human evaluators, and thus are useful indicators for the accuracy of machine 
translation.  
 
2.2.2 The NIST metric 
 
The NIST metric (Doddington, 2002) was developed on the basis of the Bleu 
metrics. It focuses mainly on improving two problems of the Bleu score. Firstly, 
the Bleu metrics use the geometric average of modified n-gram precisions. 
However, because current MT systems have not reached considerable fluency, 
the modified n-gram precision scores may become very small for long phrases 
(i.e. big n). Such small scores have a potential negative effect on the overall score, 
which is not desired. To solve this problem, the NIST score uses the arithmetic 
average instead of geometric average. In this way, all modified n-gram precisions 
make zero or positive contribution to the overall score.  
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Secondly, the Bleu metrics weigh all n-grams equally in the modified n-gram 
precision score. However, some n-grams carry more useful information than 
others. For example, the bigram “washing machine” is considered more useful 
for the evaluation than the bigram “of the”. The NIST metric gives each n-gram 
an information weight, which is computed by:  

1 1
1 2

1

the # of occurrences of ...( ... ) log
the # of occurrences of ...

n
n

n

w wInfo w w
w w

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

 
Besides the above two differences, the NIST score also uses a special brevity 
penalty score. In equation form, it can be written as: 

2exp log (min( ,1))sys

ref

L
BP

L
β

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, 

where refL  is the average number of words in the references, Lsys is the number of 
words in the candidate, and β is chosen to make BP=0.5 when the number of 
words in the candidate is 2/3 of the average number of words in the references.  
 
In summary, the NIST score for MT evaluation can be written as:  

1
1...

1 1...

( ... )

(1)
n

N nw w Matched

n w wn Candidate

Info w w
Score BP ∈

= ∈

⎛ ⎞
⎜ ⎟= ⋅
⎜ ⎟
⎝ ⎠

∑
∑ ∑

 

 
2.2.3 The F-measure 
 
The F-measure (Turian et al., 2003) is an MT evaluation method developed 
independently from the Bleu and NIST metrics. In the domain of natural 
language processing, the term F-measure refers to a combination of precision 
and recall. It is commonly used for the evaluation of information retrieval 
systems. Suppose that the set of candidates is Y and the set of references is X, the 
precision, recall and F-measure are defined as follows:  

| |( | )
| |

X Yprecision Y X
Y
∩

=  

| |( | )
| |

X Yrecall Y X
Y
∩

=  

2- precision recallF measure
precision recall
× ×

=
+
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In the simplest case, the F-measure for a MT translation candidate can be based 
on unigram precision and recall. See 305HFigure 2-1 for an illustration of this method.  
 

E  •
D  •
C  • •
I  •
A • •
B  • •
C  • •
H  
 A B C D E F I A B C

Figure 2-1: unigram matches; adapted from (Turian et al., 2003).  
 
In the above figure, each row represents a unigram (i.e. word) from the candidate 
translation (C), and each column represents a unigram from a reference (R). A 
dot (•) highlights the matching between a row and a column, which is called a hit. 
A matching is a subset of hits in which no two are in the same row or column. 
For the unigram case, the size of a matching can be defined as the number of hits 
in it. A matching with the biggest size is called a maximum matching, and is used 
as R C∩  for precision and recall computations. 306HFigure 2-1 shows a maximum 
matching with dark background. 
 
Denote the size of a maximum matching as MMS. In equation form, we have: 

| ( , ) |( | )
| |

MMS C Rprecision C R
C

=  

| ( , ) |( | )
| |

MMS C Rrecall C R
R

=  

Therefore, from the above definitions, the unigram F-measure can be calculated.  
 
The unigram form of the F-measure treats each sentence as a bag of words. This 
method ignores the evaluation of the word order in the candidate translations. 
One way to include the word order information is weighing continuous hits (i.e. 
phrases) more heavily than discontinuous hits. In formal definition, a run is a 
sequence of hits in which both the row and the column are contiguous. For 
example, the matching in 307HFigure 2-1 contains three runs, each with length 1, 2 
and 4 respectively. Denote a matching with M, and a run in M with r. To give 
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longer runs more weight, the size of matching M can be calculated by: 

 
( ) ( )e

e
r M

size M length r
∈

= ∑      (2-12) 

In the above equation, e is the weighing factor which favours longer runs when 
e>1. When e=1, the F-measure is reduced to the unigram case.  
 
2.2.4 Summary  
 
Experiments have shown that automatic evaluation methods are useful indicators 
of the quality of MT. However, they are not always consistent with human 
evaluators. Also, among different evaluation methods, some may perform 
comparatively better in certain cases but worse in others. For example, with the 
reference “programming methods”, the candidate “methods of programming” 
would have a comparatively low Bleu score, because it does not contain 
matching bigrams. The same candidate may have a better score by the unigram 
F-measure, because word order information is not considered by this method. 
Therefore, the unigram F-measure is more consistent with human evaluators in 
this particular example. In contrast, the candidate “methods programming of” 
will not be penalised by the unigram F-measure by the same reason. Therefore, 
the Bleu metrics will be more consistent with human evaluators in this case.  
 
The three automatic methods from Section 308H2.2.1 to Section 309H2.2.3 are currently the 
most commonly used for MT evaluation. In the experiments of this thesis, all 
three methods are applied.  
 
 

2.3 The theory of parsing and generalised parsing  
 
As stated in Section 310H1.1.3, parsing refers to the process of sentence analysis in 
order to decide its grammatical structure. It is not only a means to bring syntactic 
information to SMT, but also an essential algorithm used by the synchronous 
parsing based SMT model. By reviewing important parsing algorithms, this 
section introduces the generalised parsing algorithm that GenPar implements.  
 
Similar to the development of MT algorithms (Section 311H1.1.1), natural language 
parsing algorithms have also evolved from rule-based to statistical approaches. 
Section 312H2.3.1 and Section 313H2.3.2 reviews these two approaches, respectively, 
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giving original analysis to some important algorithms.  
 
2.3.1 Rule-based parsers 
 
According to a grammar, rule-based parsers search for the best parse tree by 
hard-coded rules. There are generally two searching directions: top-down parsing, 
which starts from the starting non-terminal and generates possible partial parse 
trees to match the input sentence, and bottom-up parsing, which starts from the 
input sentence and hypothesise possible partial parse trees to reach the starting 
non-terminal backwardly.  
 
Because production rules are applied recursively, different parse trees may share 
the same sub parse trees. To avoid these overlapping sub parse trees being 
produced more than once, the parser can cache them (i.e. memoisation) during 
the parsing process. Hence the parse problem can be efficiently solved by 
dynamic programming (DP) (Cormen et al., 2001). In DP-based parsers, the 
cache for sub parse trees is called the chart. Consequently, the DP-based parsers 
are called chart parsers.  
 
The CYK (or CKY) algorithm and the Earley (1970) algorithm are two examples 
of rule-based chart parsers for CFG. The CYK algorithm was developed by 
Cocke (1970), Kasami (1965) and Younger (1967). It is a pure bottom-up DP-
based search algorithm, which caches the partial parse trees of all possible 
subsequences of an input sentence. The CYK algorithm has a restriction on the 
CFG – it requires that each production rule to be in the form of either A BC→  or 
A α→ , where A, B and C are non-terminal symbols (B, C are not the starting 
non-terminal symbol) and α is a terminal symbol. Such restricted form of CFG is 
called the Chomsky Normal Form (CNF). Under this restriction, the time 
complexity of the parser can be largely reduced.   
 
Suppose that the input sentence is a1, …, an, and the grammar contains non-
terminal symbols R1, …, Rr. Further, suppose that that the start symbol is Rstart. 
Because the grammar is in CNF, each rule can be written either as x yR a→  or as 

x y zR R R→ . The CYK algorithm contains two bottom-up actions: “scan”, which 
builds partial parse trees from a terminal symbol a with a production rule xR a→ ; 
and “compose”, which builds partial parse trees from two non-terminals Ry and Rz 
with a production rule x y zR R R→ . The cache (memoisation table) for the CYK 
algorithm can be represented by an n by n by r table Chart, where Chart[start, 
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end, symbol] caches whether the subsequence (of input sentence) starting from 
index start and ending at index end can be generated from symbol. Figure 2-2 
illustrates the algorithm.  
 

procedure Scan(index): 
   for each rule Rx -> aindex:  
      Chart[index,index,Rx] = True 
 
procedure Compose(start, end, middle): 
   for each production Rx -> Ry Rz: 
      if Chart[start,middle,Ry] == True 
         and Chart[middle+1,end,Rz]: 
         Chart[start,end,Rx] = True 
 
function CYK(): 
   initialise Chart with each entry = False 
   for each index in [1..n]: 
      Scan(index) 
   for each length in [2..n]: 
      for each start in [1..n-length+1]: 
         for each middle = [start..start+length-1]: 
            Compose(start,start+length-1,middle) 
    
   return Chart[1,n,Rstart] 

Figure 2-2: an illustration of the CYK algorithm 
 
Compared to the CYK algorithm, the Earley algorithm is more complex. It 
combines bottom-up search with top-down prediction. The algorithm processes 
the input sentences from left to right, and its chart contains the partial parse trees 
that cover the processed subsequences from the beginning of the sentence. It 
contains three actions: “predict”, which predicts all possible non-terminals that 
are consistent with the left-most unprocessed word, “scan”, which matches the 
left-most unprocessed word to a rule that generates it, and “complete”, which 
finishes predictions and moves the current word index to the right. Unlike the 
CYK algorithm, the Earley algorithm does not require its CFG to be in CNF. See 
(Jurafsky and Martin, 2000) for the details of this algorithm.  
 
In the area of programming languages, rule based parsers have been used for the 
task of translation. For example, most compilers do the job of translating one 
formal language to another. However, translation is much harder in the domain of 
natural language. Ambiguity of structure appears to be the most important 
obstacle. For example, the sentence “I touched the man with my hand.” can be 
generated in both ways shown in Figure 2-3. However, only the syntax in Figure 
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2-3 (b) has the obvious meaning.  

 

   
(a) This is correct in syntax, but its meaning is not obvious 

   
(b) This is correct, and has the most likely meaning 

Figure 2-3: ambiguous sentence 
 
In natural languages, such ambiguities are easy to find. Because there are no 
simple rules to cover the general case, it is hard for rule based parsing to resolve 
such ambiguities. In contrast, statistical parsing algorithms collect statistical data 
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from correctly parsed sentences, and resolves ambiguity by experience. Because 
of this, it has the potential to generalise better to new situations.  
 
2.3.2 Statistical parsers 
 
The idea of statistical parsers originated in the late 1980s, when people started to 
investigate corpus based English grammar. This is mainly because rule-based 
grammars never covered the whole usage of the language, and it was doubtful 
whether they would ever do so. Pioneered by Geoffrey Leech and Roger Garside, 
linguists started to look for ways to define English grammar from examples – 
using human annotated corpora (Garside et al., 1987). Meanwhile, study on 
statistical parsing began.  
 
Similar to rule-based parsers, the statistical parsing process can be viewed as a 
search algorithm. However, instead of using rules to find the correct parse tree, 
statistical parsers select the best parse tree from possible candidates. Similar to 
SMT, the statistical parsing process is called a decoding process. In equation 
form, the decoding process finds the parse tree T for the sentence S that satisfies: 

 arg max ( | )TT P T S=       (2-13) 
 
Similar to SMT, the detailed method to compute scores ( | )P T S  is defined by a 
statistical model. The difference between a grammar and a model is worth 
noticing. A grammar defines what parse trees are allowed, and it is not confined 
to the scope of statistical parsers. Meanwhile, a model is the method by which 
candidates are evaluated in statistical parsing.  
 
One of the earliest works in statistical parsing was Sampson (1986). It used a 
manually designed language model based on a set of transition networks, and the 
stimulated annealing decoding search algorithm (Russell and Norvig, 2003).   
 
Regarding statistical parsing with CFG, an important early model is the 
Probabilistic Context Free Grammar (PCFG), which associates each production 
rule with a probability. With PCFG, a candidate parse tree can be scored by the 
overall probability of the rules used to generate it. Suppose each rule in a parse 
tree is i iLHS RHS→ , then the probability of the parse tree is: 

 
( | ) ( | )i ii

P T S P RHS LHS=∏      (2-14) 
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In a similar way to CFG, PCFG can also be parsed with a chart-based DP 
algorithm. 317HFigure 2-4 illustrates this algorithm. 
 

procedure Scan(index): 
   for each rule Rx → aindex:  
      Chart[index,index,Rx] = P(aindex|Rx) 
 
procedure Compose(start, end, middle): 
   for each production Rx -> Ry Rz: 
      Chart[start,end,Rx] =  
  max( Chart[start,end,Rx], 
 Chart[start,middle,Ry] * 
 Chart[middle+1,end,Rz] * P(Ry Rz|Rx)  
 ) 
 
function Viterbi(Rstart): 
   initialise Chart with each entry = 0 
   for each index in [1..n]: 
      Scan(index) 
   for each length in [2..n]:  
      for each start in [1..n-length+1]: 
         for each middle = [start..start+length-1]: 
            Compose(start,start+length-1,middle) 
 
   return Chart[1, n, Rstart]  

Figure 2-4: an illustration of the chart parsing algorithm for PCFG  
(written in the same format as CYK in 318HFigure 2-2) 

 
319HFigure 2-4 uses the same symbols as 320HFigure 2-2. However, in contrast to the 
CYK algorithm, Chart[start, end, symbol] for the PCFG parsing algorithm 
records the score for symbol to generate the fraction of input starting from index 
start to index end, rather than Boolean values. Correspondingly, the function 
Compose computes the new probability instead of the truth value.  
 
It can be seen from 321HFigure 2-4 that according to the PCFG model, the score of a 
parse tree is produced recursively by the factors ( | )P RHS LHS . Similar to SMT, 
these production rule probabilities can be derived by a training process.  
 
Training can be conducted under two different conditions. Firstly, maximum 
likelihood learning (Section 322H2.1.2) can be used when a corpus is available. Such a 
corpus containing manually parsed sentences is called a treebank. Suppose that in 
a treebank there are 1000 production instances starting with symbol VP, among 
which 600 are VP  V NP. According to maximum likelihood estimation, the 
probability (  | )P V NP VP  is the one that maximises the likelihood of the treebank, 



 

 28 

which is 600 / 1000 = 0.6. In the same way, all production probabilities in the 
model can be trained from the treebank. 
 
Secondly, when treebanks are not available, training can be conducted with an 
EM machine learning algorithm (Section 323H2.1.2) that uses hidden variables. This 
algorithm trains with a set of grammatically correct sentences, and takes the parse 
trees for these sentences as the hidden variables. Specifically, we have the 
following two conditions: (1) When the parse trees for the training sentences are 
known, the set of training sentences becomes a treebank, and thus the production 
rule probabilities ( | )P RHS LHS  can be derived using the maximum likelihood 
training method above. (2) Meanwhile, when ( | )P RHS LHS  are given, the parse 
trees can be derived by a parsing algorithm like 324HFigure 2-4. Therefore, with some 
initial values of ( | )P RHS LHS , the probabilities can be estimated by several EM 
iterations between (1) and (2), which will find a local maximum of the 
probability of the training set.  
 
An example of the EM training algorithm is the Inside-Outside algorithm (Baker, 
1979) (Lari and Young, 1990). It works differently from the above analysis, but it 
can be seen essentially as a variation of the above EM algorithm. We explain the 
difference in the following way.  
 
In an EM iteration, the Inside-Outside algorithm does not actually derive parse 
trees as the above step (2) does. Instead, for the maximum likelihood estimation 
of ( | )P RHS LHS  in step (1), it counts the “occurrences” of LHS RHS→  by the 
probability of it being used in parse trees. To achieve this, it defines two types of 
probabilities. Given an input sentence a1, …, an, the inside probability for a non-
terminal symbol R and a subsequence ai, …, aj (written as ( , , )Inside R i j ) is the 
probability of R generating subsequence ai, …, aj, regardless of the intermediate 
steps; while the outside probability (written as ( , , )Outside R i j ) is the probability 
of Rstart generating a1, …, ai-1, aj+1, …, an, and R, regardless of the intermediate 
steps. These probabilities are illustrated in 325HFigure 2-5.  
 

 
Figure 2-5: an illustration of the inside and outside scores 

 

Inside(R,i,j) 
Outside(R,i,j) 

a1      ai     aj    an

Rstart 
R 
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The above figure illustrates the full parse trees for sentence a1, …, an, as well as 
Inside(R,i,j) (white) and Outside(R,i,j) (grey). In these parse trees, the probability 
of the production rule x yR R R→  being used is:  

( , , ) ( , , ) ( , , ) ( | )
( ,1, )

x y x yk

start

Inside R i k Inside R k j Outside R i j P R R R
Inside R n

× × ×∑  

During the maximum likelihood estimation of the probabilities ( | )P RHS LHS , the 
above expression can be used as the count of x yR R R→ ’s “occurrences” in parse 
trees. In this way, the above step (1) can be achieved.  
 
Correspondingly, the above step (2) needs to compute the Inside and Outside 
probabilities from the production rule probabilities ( | )P RHS LHS . Take the inside 
probability for example, it can be computed as the sum of all partial parse trees 
from R to ai, …, aj, as illustrated in 326HFigure 2-6.  
 

procedure Scan(index): 
   for each rule Rx → aindex:  
      Chart[index,index,Rx] = P(aindex|Rx) 
 
procedure Compose(start, end, middle): 
   for each production Rx -> Ry Rz: 
      Chart[start,end,Rx] = Chart[start,end,Rx] + 
 Chart[start,middle,Ry] * 
 Chart[middle+1,end,Rz] * 
 P(Ry Rz|Rx) 
 
function Inside(R,i,j): 
   initialise Chart with each entry = 0 
   for each index in [i..j]: 
      Scan(index) 
   for each length in [i+1..j]: 
      for each start in [i..j-length+1]: 
         for each middle = [start..start+length-1]: 
            Compose(start,start+length-1,middle) 
 
   return Chart[i, j, R]  

Figure 2-6: the Inside algorithm for PCFG learning 
 
In the above way, the variation of EM iteration steps (1) and (2) are achieved.   
 
PCFG parsing resolves the ambiguity in 327HFigure 2-3, because 328HFigure 2-3 (b) will 
be chosen without ambiguity when it is scored higher than 329HFigure 2-3 (a). 
Meanwhile, PCFG has an obvious disadvantage in that the rules are assigned 
with probabilities without context. Because of this, PCFG will not be able to 
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resolve the ambiguity between “I touched the man with my hand” and “I saw the 
man with my wallet”.  
 
Magerman (1995) developed a decision tree (Russell and Norvig, 2003) based 
statistical parser that includes context information. A parse tree in Magerman’s 
system includes not only production rules, but also head words and the part of 
speech of the head words. The head word (Allen, 1995) of a phrase is the word 
that carries the essential meaning of the phrase. For example, the head word of “a 
big apple” is “apple”, and the head word of “run fast” is “run”. By using head 
words and their POS, Magerman takes context information into account. 
Magerman’s parser uses a decision tree (Russell and Norvig, 2003) as the 
statistical model. The decision tree is trained with a treebank, using information 
about the current node as well as its four neighbours, including the productions, 
the head words, the POS of head words and the position information. For the 
decoding search, Magerman uses a combination of stack decoding (Jelinek, 
1969), which is essentially the same as the A* search (Russell and Norvig, 2003) 
algorithm, and breadth-first search (Russell and Norvig, 2003) with pruning. 
Magerman’s parser greatly improved the accuracy of CFG parsing.  
 
After Magerman’s decision tree parser, Collins (1996) developed a dependency 
based statistical CFG parser. Collins’ parser was much simpler than Magerman’s, 
and yet gave comparable accuracy. Context information was introduced into 
Collins’ parser by dependency structures, which represent the relationship 
between a word in a phrase and the head word of the phrase. For example, “big” 
is dependent of “apple” in “a big apple”, and “fast” is dependent on “run” in “run 
fast”. Collins’ parser transfers a parse tree into the corresponding dependencies, 
which are evaluated instead of the tree. For example, the corresponding 
dependencies for Figure 1-4 are shown in Figure 2-7.  
 

 
Figure 2-7: the corresponding dependency structure of Figure 1-4 
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NP S VP
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Before the dependencies are evaluated, Collins’ parser reduces non-recursive 
noun phrases (called baseNPs) in the input sentence into their head words. For 
example, “a big apple” will be reduced to “apple” before parsing. This helps to 
improve the accuracy of dependency structures by removing dependency within 
noun phrases. With basedNPs considered, Collins’ parser works in two steps. 
Firstly identify the baseNPs B from the sentence, then analyse the dependencies 
D on the basis of B. In equation form, T=(B,D) and 

( | ) ( , | ) ( | ) ( | , )P T S P B D S P B S P D B S= =  

With a treebank, the probabilities for the dependencies can be trained with the 
relative frequencies. Thus Collins’ parser is comparatively very quick to train. 
Collins’ parser uses a simple bottom-up chart parsing algorithm, and has 
reasonable efficiency.  
 
Collins (1997) further improved the parser by proposing three different statistical 
models. Other statistical models for lexicalised PCFG include the maximum 
entropy based model (Charniak, 2000). With re-ranking and other techniques, the 
model reaches the best accuracy in the literature (McClosky et al., 2006).  
 
2.3.3 Generalised parsing 
 
Like most AI algorithms, parsing is essentially a search problem. In this sense, 
both rule based parsing and statistical parsing are under the same framework. 
Summarising similarities among parsers, Goodman (1998) outlined a semiring 
parsing algorithm which summarises a wide range of problems including both 
rule based parsing and probabilistic parsing.  
 
A semiring (Rosenfeld, 1968) is an algebraic set that is closed under two 
operators ⊕ and ⊗, and that conform to a set of restrictions, such as the identity 
elements 0 and 1, and the distribution of ⊗ over ⊕. For example, non-negative 
integers make a semiring, with numerical addition being ⊕ and numerical 
multiplication being ⊗. 0 and 1 are the identity elements for ⊕ and ⊗, 
respectively. Boolean values also make a semiring, with AND being ⊕ and OR 
being ⊗. False and True are the identity elements for ⊕ and ⊗, respectively.  
 
The same concept of semiring can be used to describe different mathematical sets. 
Goodman (1998) utilised this idea, and used the same general parsing algorithm 
to describe different specific parsing algorithms. The basis of semiring parsing is 
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the similarity between parsers. For example, 333HFigure 2-2, 334HFigure 2-4 and 335HFigure 
2-6, as written in similar structures, shows the similarity between the three 
algorithms. As Goodman pointed out, they can be viewed as the same generalised 
parsing algorithm under different semirings. For a specific parser, the semiring 
defines the specific method for scoring candidates in the search algorithm. 
Observing the Compose function, it can be seen that the semiring for the CYK 
algorithm has the Boolean set, with (∧, ∨) as the operators (⊕,⊗). Meanwhile, the 
semirings for the Viterbi and Inside algorithms both have the non-negative 
floating point set, while they have (+, max) and (+, ×) as (⊕, ⊗), respectively.  
 
To put such generalisation into practical efficiency, Melamed (2005) suggested a 
generalised parsing algorithm that is based on semiring parsing. It consists of five 
components: a grammar, a logic, a semiring, a search strategy and a termination 
condition. As the name suggests, grammar defines terminal and non-terminal 
symbols, as well as a set of production rules. Logic defines the mechanism how 
the parser runs by generating new partial parse trees. The semiring defines how 
partial parse trees are scored, the search strategy defines the order in which 
partial parse trees are processed, and the termination condition defines when to 
stop the logic necessarily.  
 
Using G for the grammar, L for the logic, R for the semiring (⊕R and ⊗R for the 
operators and 0R and 1R for the identity elements), S for the search strategy and C 
for the termination condition, the generalised parsing algorithm can be illustrated 
in brief as 336HFigure 2-8. 
 

initialise the R value for symbols and production rules from G 
while C isn’t met: 
   get a set of symbols X by S 
   pass X to L to generate a set of symbols Y 
   assign R value for symbols in Y 

Figure 2-8: generalised parsing 
 
With one or many of the five components specifically defined, the generalised 
parser can be turned into a specific parser such as the CYK parser. In this way the 
generalised parser saves development time by module reusing. Starting with the 
synchronous grammar for the experiments, the next chapter shows how this 
generalised parsing algorithm can be used to facilitate the implementation of 
various algorithms in SMT by parsing.  
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Chapter 3  

The theory of SMT by parsing 

 
3.1 Statistical GMTG and its generalised parsing 
 
The concept of SMT by parsing was introduced in Section 337H1.1.4, using a simple 
synchronous CFG. Moving from this oversimplified example, this section derives 
the generalised multitext grammar (GMTG; Melamed et al., 2004), which is able 
to express more general parallel structures, and is used in the experiments. Then 
it introduces the probabilistic version of this grammar, and the corresponding 
statistical learning and decoding (parsing) algorithms with generalised parsing.  
 
3.1.1 Generalised multitext grammar (GMTG) 
 
3.1.1.1 Reordering 
 
The grammar in 338HFigure 1-5 combines an English CFG with its exact counterpart 
in Chinese. It can be used to analyse the following sentence pair:  

 C++
I like C++

⎡ ⎤
⎢ ⎥
⎣ ⎦

我 喜欢
 

However, the same type of grammar is unable to describe sentence pairs in 
different word order. Take the following sentence pair for example:  

   C++
I like C++ very much
⎡ ⎤
⎢ ⎥
⎣ ⎦

我 非常 喜欢
 

As illustrated in 339HFigure 3-1, the order of the Chinese verb phrase “   C++非常 喜欢 ” 
is adverb phrase (“非常 ”) + verb phrase (“ C++喜欢 ”), while the order of the 
English translation is verb phrase (“like C++”) + adverb phrase (“very much”). 
Therefore, the Chinese production rule VP  ADVP VP and the corresponding 
English production rule VP  VP ADVP cannot be combined directly.  
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(a) The Chinese parse tree                        (b) The English parse tree 

Figure 3-1: an illustration of constituent reordering between Chinese and English 
 
In vector form, we need to combine the following production rules: 

VP ADVP VP
VP VP ADVP

→⎡ ⎤
⎢ ⎥→⎣ ⎦

 

 
To solve this problem, symbol ordering must be included into the synchronous 
grammar. GMTG (Melamed and Wang, 2005) introduces the concept of 
precedence array vector (PAV) to describe such ordering. For example, the 
above CFG production rules can be combined into one rule in GMTG as:  

[1,2]
 

[2,1]
VP ADVP VP
VP ADVP VP

⎡ ⎤ ⎡ ⎤
→ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
><  

On the right hand side of this production rule, symbol  joins a PAV (the first 
vector) with a symbol vector (the second vector). In this action, each row in the 
PAV (called a precedence array) defines the order of the corresponding symbols 
in the symbol vector. For example, the precedence array and the non-terminal 
symbols in the second row (i.e. [2,1] and [ADVP VP]) are joined to give [VP 
ADVP]. In this way, reordering can be expressed in the production rules.   
 
In a GMTG production rule, each column in the symbol vector represents 
corresponding symbols in the two languages, and is called a link. The left hand 
side of a GMTG production rule is also a link. In the above production rule, the 
links are [VP VP], [ADVP ADVP], and [VP VP]. Though each link has the same 
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symbol in this example, a link does not necessarily contain the same symbols. 
For example, the following production rule was generated during the experiments: 

[1]
 

[2]
FRAG VV

NP NN
∅⎡ ⎤ ⎡ ⎤

→ ⎢ ⎥ ⎢ ⎥∅⎣ ⎦ ⎣ ⎦
><  

In the above production, all three links (i.e. [FRAG NP], [VV ∅] and [∅ NN]) 
have different symbols. Notice that the empty symbol (∅) in a link means that the 
corresponding symbol in the link does not align to anything.  
 
3.1.1.2 Discontinuity 
 
Section 340H2.3.1 introduced the CNF for CFG. Because there are at most two 
symbols on the right hand side of a production rule, CNF can be seen as a 
binarised grammar. By the restriction on production rules, binarised grammars 
bring simplicity and thus efficiency to parsing algorithms. The comparison of the 
CYK and the Earley algorithms in Section 341H2.3.1 is an example. Binarised 
grammars are widely used in parsing algorithms. The CYK algorithm, the Viterbi 
algorithm (Section 342H2.3.2) and the Inside algorithm (Section 343H2.3.2) all use CNF 
(see the method Compose in each of the above grammars).  
 
Grammars can be binarised recursively, each rule being processed by inserting 
intermediate symbols in the right hand side. 344HFigure 3-2 illustrates an example.  
 

   
                 (a) Before binarisation                         (b) After binarisation 

Figure 3-2: grammar binarisation 
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The binarisation of grammar can also break the continuity of phrases, which 
complicates the situation. For example, the binarisation of the following phrases 
results in a discontinuous phrase “  ”, which aligns to “work for me”.  

work  for me  tonight
⎡ ⎤
⎢ ⎥
⎣ ⎦

我 今晚的 工作
 

In GMTG, such discontinuity can also be expressed by PAV. For example, 
345HFigure 3-3 illustrates the GMTG parse tree of the above phrase pair, showing the 
corresponding PAVs. 

 
Figure 3-3: alignment with discontinuous symbols 

 
In the above figure, the phrase “我今晚的工作” is broken into the discontinuous 
phrase “ ... 我 工作 ” and the phrase “今晚的”. The order of the two sub phrases is 
expressed by the corresponding PAV ([1,2,1]) in the production rule: 

[1,2,1]
 

[1,2]
NP NP ADJ
NP NP ADJ

⎡ ⎤ ⎡ ⎤
→ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
><  

What is more, the gap in phrase “ ... 我 工作 ” is expressed by the mark “;” in the 
PAV [1;2] of the following production rule:  

[1;2]
 

[1,2]
NP ADJ N
NP ADJ N

⎡ ⎤ ⎡ ⎤
→ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
><  

The total number of discontinuous phrases in a precedence array is called the 
fanout of the precedence array. For example, the fanout of [1,2] is 1, while the 
fanout of [1;2] is 2. 
 
3.1.1.3 Generalised Chomsky Normal Form 
 

ADJ  
ADJ  

NP [1, 2, 1]
NP [1, 2] 

今晚的
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ADJ  
ADJ  

N 
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For formal definition, this thesis uses the Generalised Chomsky Normal Form 
(GCNF) (Melamed et al., 2004) to express binarised GMTG, consistent with the 
software system for the experiments.  
 
Like CNF, GCNF defines two types of production rules – the non-terminating 
productions, which involve only non-terminal symbols, and the terminating 
productions, which involve terminal symbols.   
 
The non-terminating productions join a PAV and a symbol vector on the right 
hand side. Example non-terminating rules can be:  

[1]
 

[2]
FRAG VV

NP NN
∅⎡ ⎤ ⎡ ⎤

→ ⎢ ⎥ ⎢ ⎥∅⎣ ⎦ ⎣ ⎦
><

     [1,2,1]
or      

[1,2]
NP NP ADJ
NP NP ADJ

⎡ ⎤ ⎡ ⎤
→ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
><

 

In comparison, a terminating production has only one terminal symbol link on the 
right hand side, and therefore no PAV. What is more, it has only one language 
active, and uses empty symbols (∅) for the other language. Examples include:  

  or  
V like

N ∅ ∅
→ →

∅ ∅
我

 

 
According to the above definition, the GCNF syntax tree for 346HFigure 1-6 is:  
 

 
Figure 3-4: the GCNF format of 347HFigure 1-6 

 

∅ 
V 

喜欢

∅ 
C++
∅

∅ 
like

我  
∅ 

∅
I

V 
∅ N | ∅

∅| N 
N 
∅ 

∅ 
N 

V [1]
V [2]

NP | NP N 
∅ 

∅
N

NP [1] 
NP [2] 

NP [1] 
NP [2] 

VP [1,2]
VP [1,2]

S [1,2] 
S [1,2] 

∅
C++



 

 38 

In the above figure, there are four non-terminating production rules, which are: 

[1,2] [1,2]
   ,     ,  

[1,2] [1,2]

[1] [1]
   and   

[2] [2]

S NP VP VP V NP
S NP VP VP V NP

VP V NP N
VP V NP N

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
→ →⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
∅ ∅⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

→ →⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∅ ∅⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

>< ><

>< ><

 

Meanwhile, there are six terminating production rules, including: 

C++
  ,    ,    ,    ,    and   

I like C++
N V N

N V N
∅ ∅ ∅∅ ∅ ∅

→ → → → → →
∅ ∅ ∅ ∅ ∅ ∅

我 喜欢
 

 
The GCNF of MTG is useful to express a wide range of bilingual alignments. It 
is adequate as a synchronous grammar between Chinese and English.  
 
3.1.2 The statistical model 
 
This section introduces the statistical model for GMTG. This model defines the 
method in which parse trees can be scored and ranked.  
 
3.1.2.1 Lexicalisation 
 
Section 348H2.3.2 shows that lexicalisation is very important for the statistical parsing 
of CFG. This is because head words bring useful context information to resolve 
ambiguity and improve accuracy. This is the same for probabilistic GMTG.  
 
GMTG can be lexicalised separately by each language. For each language in the 
combined grammar, the head word of a non-terminal symbol is the corresponding 
CFG lexical head. Take the following production rule for example: 

[ ] [1,2] [ ] [ ]
 

[prepare] [2,1] [in advance] [prepare]
VP ADVP V

VP ADVP V
⎡ ⎤ ⎡ ⎤

→ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

><

准备 提前 准备
 

The head words in each language are decided from the following CFG rules: 

 [ ] [ ] [ ]VP ADVP V→准备 提前 准备  (Chinese) 
 [prepare] [prepare] [in advance]VP V ADVP→  (English) 
 
In a mono-lingual production rule, the symbol on the right hand side whose head 
word is propagated to the left hand side is called the heir. In the above examples, 
V is the heir of both the Chinese and the English production rule. The index of 
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heir is called the heir role. For example, the heir role for the above Chinese and 
English production rules are 2 and 1, respectively. For a GMTG production rule, 
combining the heir role for each language makes an heir role vector. For example, 
the heir role vector of the above example is [2,1]. Similarly, combining the 
symbol heir in each language makes a heir vector. In the above example, the heir 
vector is the second column in the symbol vector: [ [ ],  [prepare]]V V准备 . 
 
3.1.2.2 Six events to calculate production probability 
 
Similar to PCFG, the probability of a GMTG parse tree can be computed by the 
overall probability of the production rules that generate it. Suppose that a parse 
tree is generated by a set of productions LHSi  RHSi. In equation form, the 
probability of the tree is: 

( | ) ( | )i ii
P T S P RHS LHS=∏  

Now we define a statistical model by breaking the probability of each production 
rule into smaller factors, so that it becomes more computable.  
 
Consider the production LHS  RHS, where RHS has v links (v=1 or v=2). 
When v=1, this production is a terminating production (Section 349H3.1.1.1). In this 
case, RHS is just the lexical heads from LHS. Thus ( | ,  1) 1P RHS LHS v = = , and 

  ( ,  1| )P RHS v LHS=  
 =  ( 1| ) ( | ,  1)P v LHS P RHS LHS v= =  
 =  ( 1| )P v LHS=   

When v=2, this production is a non-terminating production, and RHS consists of 
a precedence array vector PAV and a symbol vector SYM (Section 350H3.1.1.1). 
Denote the heir role vector with hrv, and the corresponding heir vector with HV 
(Section 351H3.1.2.1). Also, denote the dependencies with D. (These dependencies are 
decided in each dimension separately, in the same way as Section 352H2.3.2) 
According to the chain rule, the probability 

  ( ,  2 | )P RHS v LHS=  
 =  ( 2 | ) ( , | , 2)P v LHS P SYM PAV LHS v= =  
 = ( 2 | ) ( | , 2) ( | , , 2)P v LHS P SYM LHS v P PAV SYM LHS v= = =  
 =  ( 2 | ) ( | , 2) ( | , , 2)P v LHS P hrv LHS v P HV hrv LHS v= = =  
  ( | , , , 2) ( | , , 2)P D HV hrv LHS v P PAV SYM LHS v= =   ( 3-1) 
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Equation 353H3-1 can be further simplified with independence assumptions. For 
example, it can be assumed that:  

 • ( | , , 2)  ( | )P HV hrv LHS v P HV LHS= =    (HV is only dependent on LHS) 
 • ( | , , , 2)  ( | )P D HV hrv LHS v P D LHS= =   (dependencies only depend on LHS) 
 • ( | , , 2)  ( | , )P PAV SYM LHS v P PAV SYM LHS= =    
 
In the above equations, v=2 is omitted. This is because in the non-terminating 
rules of the GCNF of GMTG, v=2 is a certain condition (Section 354H3.1.1.3).  
 
While ( | ,  )P PAV SYM LHS  can be computed directly, it can also be broken into 
the production of the probabilities of precedence arrays (PA) in each dimension 
on the assumption that they are mutually independent:  

 
( | , ) ( | , )dim dim dimdim

P PAV SYM LHS P PA SYM LHS=∏    (3-2) 

Both methods to compute ( | ,  )P PAV SYM LHS are provided by GenPar. In the 
experiments of this thesis, Equation 355H3-2 is used.  
 
3.1.3 Statistical parsing with GMTG 
 
Like CFG, GMTG can be parsed with the generalised parsing algorithm in 
Section 356H2.3.3. This algorithm has five components: a grammar, a logic, a 
semiring, a search strategy and a termination condition. For the particular 
problem of probabilistic GMTG parsing, the grammar (probabilistic GMTG) and 
the semiring (non-negative float) are implicitly defined. The following sections 
define the logic, the search strategy and the terminating condition.  
 
The logic generates new search state items (i.e. partial parse trees) from existing 
ones. The search strategy determines the order in which state items processed by 
the logic. Triggered by an initial state item from the search strategy, the logic 
starts generating new state items, and then passing them to the search strategy. 
This process loops until the termination condition is met. The parsing goal is 
normally a (highly scored) parse tree that covers the whole input span.   
 
3.1.3.1 The logic 
 
Similar to the mono-lingual case, bilingual parsing can take the bottom-up chart 
approach in Section 357H2.3 (e.g. the CYK algorithm, the Viterbi algorithm and the 
Inside algorithm). Starting from the input sentence (i.e. terminal symbols), new 
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partial parse trees are generated upwards. This is done by two types of actions: 
scan, which builds up from a terminal symbol by a terminating production rule; 
and compose, which builds up from two non-terminal symbols by a non-
terminating production rule.  
 
In the logic, partial parse trees are represented by search state items. Each state 
item contains the spans in the input sentences that the partial parse tree generates. 
One span is used for each language in the input sentence pair. Due to grammar 
binarisation (Section 358H3.1.1.2), this span can be discontinuous. Discontinuous 
input spans can be expressed by a list of pairs, indicating a series of continuous 
sub spans. For example, [(1,2),(3,6)] expresses a discontinuous span that contains 
two continuous sub spans (one starts from index 1 and has length 1, and the other 
starts from index 3 and has length 3). If the length of an input sentence is n, the 
discontinuous span [(1,n+1)] covers the whole sentence.  
 
The difference between PAV and discontinuous span is worth noticing. PAV is a 
part of GMTG to describe non-terminal symbols, including their discontinuity. In 
contrast, discontinuous span is used for terminal symbols. It is used only in 
statistical parsing, recording the index of certain terminal symbols in a sentence.  
 
The compose action generates a new state item by joining two partial parse trees 
to build a larger one. Correspondingly, the span for the new state item is the total 
span of the two original items. In the discontinuous case, it is the concatenation 
of all continuous sub spans in the two original spans. Melamed (2003) uses 
operator + to express such concatenation. For example:  

[(1,2),(3,6)] + [(2,3)] = [(1,6)] 
 
Moreover, in the compose action, the order of terminal symbols expressed by the 
discontinuous spans needs to be consistent with the order of corresponding non-
terminal symbols expressed by the PAV. The relationship between discontinuous 
spans and PAVs can be expressed by the relativization operator ⊗ (Melamed, 
2003). This operator computes the relative positions of two discontinuous spans 
in the form of a precedence array. For example: 

[(1,2),(3,6)] ⊗ [(2,3)] = [(1,2,1)] 

[(1,2),(4,6)] ⊗ [(2,3)] = [(1,2;1)] 
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Suppose that an input sentence pair is f1,…,fJ and e1,…,eI. A bottom-up partial 
parse tree can consist of only one node containing a terminal symbol link. The 
corresponding state items can be represented by:  

 or  j

i

f
e
∅

∅
 

Meanwhile, the state items for higher partial parse trees contain a non-terminal 
symbol link for the top of the tree, and the discontinuous spans for the input 
terminal symbols covered by the parse tree. Denote the top of the tree as [X1,X2] 
and the discontinuous spans as [sx1,sx2], the state item can be represented by: 

1 1

2 2

;
X sx
X sx
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Given the above representations, the logic for the probabilistic GMTG parsing 
can be summarised by 359HTable 3-1.  
 

Action Trigger item Generated item Production rule 

Scan j

i

f
e
∅

∅
 

[( 1, )]
;

[]

[]
;
[( 1, )]

X j j

X i i

−⎡ ⎤
⎢ ⎥∅⎣ ⎦
∅⎡ ⎤
⎢ ⎥−⎣ ⎦

 
tX

X t
∅ ∅

→ →
∅ ∅

 

Complete 

1 1

2 2

1 1

2 2

;  and 

;

Y sy
Y sy

Z sz
Z sz

⎡ ⎤
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎣ ⎦

1 1 1

2 2 2

;
X sy sz
X sy sz

+⎡ ⎤
⎢ ⎥+⎣ ⎦

 

 

1 1 1 1 1

2 2 2 2 2

sy sy
 

sy sz
X Y Z
X Y Z

⊗⎡ ⎤ ⎡ ⎤
→ ⎢ ⎥ ⎢ ⎥⊗⎣ ⎦ ⎣ ⎦

><

Table 3-1: the logic for probabilistic parsing with GMTG 
 
3.1.3.2 The search strategy 
 
The search strategy maintains a list of search state items, ranking them by a 
certain standard. The state item with the highest rank will be passed to the logic 
for new item generation. The search strategy can be implemented as an agenda, 
which can be seen as a queue of state items ordered by a certain criterion. For 
example, an agenda may order items by their current score. With this agenda the 
search strategy becomes a best first search. Alternatively, the agenda may order 
items by their size, which is the size of the corresponding partial parse tree. The 
smaller size an item has, the higher it is ranked. With this agenda the search 
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strategy becomes a bottom-up search. This experiment uses a best-first agenda.  
 
Besides best-first and bottom-up search, A-star search (Russell and Norvig, 2003) 
can also be used as the search strategy. The difference between A-star search and 
best-first search is that A-star search ranks an item not by its current score, but by 
an estimation of its best total score.  The best total score of an item is that of the 
best possible complete parse tree built from the current partial parse tree, and is 
the combination of the current score and the estimated best score for the rest of 
the possible total parse tree. The advantage of A-star search is that by accurate 
estimation of total scores, it is possible to expand a much smaller search space 
before a goal is found.  
 
3.1.3.3 The termination condition 
 
Apart from the common parsing goal that the whole input is included into a parse 
tree, there are other termination conditions. For example, it may be necessary to 
terminate the parsing process if it is taking too much time, or using up the 
memory resource. It is also possible to have composite termination conditions by 
using logical conjunctions and disjunctions. For example, a parsing goal may be 
a parse tree that “starts from a special non-terminal symbol AND covers the 
whole input span”. Or the goal may be “running for 24 hours OR using more than 
4GB memory”.  
 
3.1.4 The training process 
 
The last two sections introduced the model and the decoding process for the 
statistical parsing of GMTG. The other important factor is the learning process, 
where parameters in the statistical model (i.e. probabilities for production rules) 
are determined. In the mono-lingual case (Section 2.3.2), two different learning 
methods are used to train PCFG, making use of different forms of corpora. 
Similarly, the following training methods can be used for bilingual GMTG.  
 
3.1.4.1 Maximum likelihood training 
 
Maximum likelihood estimation can be used when a manually parsed treebank is 
available (Section 2.3.2). For the training of statistical GMTG, such a treebank 
enabling maximum likelihood learning must contain manually parsed sentence 
pairs in GMTG.  
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Currently there is no existing bilingual GMTG treebank that contains enough 
parsed sentence pairs to be used in this experiment. However, parallel sentences 
in Chinese and English are available in reasonable size. What is more, the 
monolingual structure for both Chinese and English can be derived from existing 
statistical parsers. Therefore, by combining corresponding monolingual parse 
trees, it is possible to introduce a bilingual treebank. Such a process is called 
hierarchical alignment (Melamed and Wang, 2005).  
 
Hierarchical alignment is currently a necessary step to train probabilistic GMTG. 
After this step, maximum likelihood learning can be performed from the output 
bilingual treebank. Section 362H3.2 will show that hierarchical alignment can be done 
by the generalised parsing process.  
 
3.1.4.2 Expectation maximisation training 
 
As was described in Section 363H2.3.2, the EM machine learning algorithm can be 
used to train a probabilistic grammar without a treebank. For statistical GMTG, 
the training data can be a set of parallel sentence pairs which can be generated by 
GMTG. Starting with an initial probabilistic grammar, the algorithm updates it by 
EM iterations over the training sentence pairs. This method converges to a 
grammar that brings the probability of the training data to a local maximum value.  
 
However, the effect of EM training is dependent on the initial values. When the 
initial grammar is not well chosen, the local maximum value can be far from the 
global maximum value. Because of this, the EM training method is too unreliable 
to be used alone for GMTG training. At the same time, it can be used to further 
improve an initial grammar that is reasonably near the global optimal value. For 
example, it can be used for an optimisation after maximum likelihood learning.  
 
 

3.2 Hierarchical alignment by parsing 
 
The goal of hierarchical alignment is building a bilingual treebank from two 
mono-lingual treebanks. For each pair of mono-lingual tree, the corresponding 
symbols are aligned hierarchically to make a combined bilingual tree. In order to 
achieve this goal, the algorithmic solution is searching for the best aligned 
bingual tree from all possible alignments.  
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Without introducing any restrictions, two mono-lingual trees can be combined 
arbitrarily – one symbol in a mono-lingual tree can be aligned to any symbol in 
the other. Each possible combination makes a candidate for the bilingual parse 
tree. Correspondingly, the set of all such combinations makes a search space. In 
order to find the correctly combined bilingual tree from this search space, we can 
score each candidate combination, enabling the search goal to get the best score.  
 
This search problem looks like statistical parsing in that it is to find the bilingual 
tree that has the highest score among many bilingual trees. The difference is that 
the arbitrarily aligned candidate trees can be not in GMTG at all. In spite of this, 
we can still borrow experience from the statistical model which calculates the 
score of a parse tree. As was described in Section 364H2.3.2 and Section 365H3.1.2, the 
score of a parse tree can be seen as the overall score of the production rules that 
generate it. In this way the calculation of parse tree scores is reduced to the 
calculation of production scores, which has simpler forms.  
 
Candidates for hierarchical alignment can be scored in the same way, treating 
each combined tree as if it were generated by “production rules”. The score of 
these pseudo production rules can be calculated by the component mono-lingual 
grammars. The next two sections describe two methods to score these pseudo 
production rules, with different information from the mono-lingual grammars.  
 
3.2.1 Calculating combined pseudo production rules from one 

mono-lingual grammar  
 
This section describes the calculation of combined pseudo production rules by 
only one mono-lingual grammar, which is comparatively simpler. Suppose that 
the first language is used. In this case, all non-terminal symbols in the second 
language can be represented by a dummy non-terminal symbol NULL.  
 
In the GCNF format (Section 366H3.1.1.3), there are two kinds of production rules – 
the terminating production rules and the non-terminating production rules. A 
terminating production rule contains only one link on the right hand side. In the 
lexicalised form, it can be written as:  

 1 1 1

2 2 2

[ ]
     or   

[ ]
X h h

LHS RHS
X h h
∅ ∅

→ = → →
∅ ∅

 (3-3)
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In Equation 3-3, Xd[hd] represents a non-terminal symbol Xd whose head word is 
hd. For the terminating production rules, only one language is active (As 
indicated by Equation 3-3, the inactive language has empty symbol ∅ on both 
sides of the production rule; see also Section 367H3.1.1.3). Correspondingly, the 
scores of combined pseudo production rules are decided by the active language. 
Therefore, when the first language is active, P(RHS|LHS)=P(h1|X1[h1]) – the 
probability is the same as the corresponding mono-lingual production score. 
Similarly, when the second language is active, P(RHS|LHS)=P(h2|X2[h2]). 
However, because only the first language is used in this method, we have 
P(h2|X2[h2])=1 only when X2=NULL, and P(h2|X2[h2])=0 otherwise. 
 
A non-terminating production rule consists of a PAV and a symbol vector on the 
right hand side. A lexicalised non-terminating production rule can be written as:  

1 1 1 1 1 1 1

2 2 2 2 2 2 2

[ ] [ ] [ ]
   

[ ] [ ] [ ]
X h pa Y g Z h

LHS RHS
X h pa Y g Z h

⎡ ⎤ ⎡ ⎤
→ = → ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
><  (3-4)

 

In the above equation, Xd, Yd and Zd are non-terminal symbols, hd and gd are head 
words and pad are precedence arrays. Therefore, P(RHS|LHS) can be written as 

1 2 1 2 1 2 1 2 1 2 1 2( , , , , , , , | , , , )P pa pa Y Y Z Z g g X X h h . Using the chain rule, this probability 
can be broken down as follows:  

  1 2 1 2 1 2 1 2 1 2 1 2( , , , , , , , | , , , )P pa pa Y Y Z Z g g X X h h  
 = 1 1 1 1 1 2 1 2( , , , | , , , )P pa g Y Z X X h h ×  
  2 2 1 1 1 1 1 2 1 2( , | , , , , , , , )P Y Z pa g Y Z X X h h ×   
  2 1 1 1 2 1 2 1 2 1 2( | , , , , , , , , , )P g pa g Y Y Z Z X X h h ×  
  2 1 1 2 1 2 1 2 1 2 1 2( | , , , , , , , , , , )P pa pa g g Y Y Z Z X X h h      (3-5) 
 
To further simplify the calculation of Equation 368H3-5, the following independence 
assumptions can be made: 

(1) 1 1 1 1 1 2 1 2 1 1 1 1 1 1( , , , | , , , ) ( , , , | , )P pa g Y Z X X h h P pa g Y Z X h=  (mono-lingual production) 

(2) 2 2
2 2 1 1 1 1 1 2 1 2

1 if 
( , | , , , , , , , )

0 otherwise              
Y Z NULL

P Y Z pa g Y Z X X h h
= =⎧

= ⎨
⎩

(the unused language) 

(3) 2 1 1 1 2 1 2 1 2 1 2 2 1( | , , , , , , , , , ) ( | )P g pa g Y Y Z Z X X h h P g g=  (word-to-word probability) 

(4) 2 1 1 2 1 2 1 2 1 2 1 2 2
1( | , , , , , , , , , , ) ( )
( )

P pa pa g g Y Y Z Z X X h h P pa
fμ

= = , where ( )fμ is the 

number of  unique precedence arrays of the maximum fanout f.  
 
 



 

 47 

Thus the simplified calculation for the pseudo non-terminating production rules 
is as follows:   

 

1 1 1 1 1 1 2 1
2 2

( , , , | , ) ( | ) , if  and  are both  
( )( | )

0                       , otherwise

P pa g Y Z X h P g g Y Z NULL
fP RHS LHS μ

⎧
⎪= ⎨
⎪⎩

  (3-6) 

 
3.2.2 Calculating combined pseudo production scores from two 

mono-lingual grammars 
 
Moving from the simpler case, this section describes the calculation of combined 
pseudo production rules from both mono-lingual grammars.   
 
Similar to Section 369H3.2.1, the scores for combined pseudo terminating production 
rules are calculated by the active language. When the first language is active, 
P(RHS|LHS)=P(h1|X1[h1]), and this probability is the same as the corresponding 
mono-lingual production rule. Similarly, when the second language is active, 
P(RHS|LHS)=P(h2|X2[h2]), and this probability is the corresponding mono-lingual 
production score of the second language.  
 
For combined non-terminating production rules, the calculation can be based on 
Equation 370H3-6. In a simple form, the production score of the second language can 
be incorporated into the combined production score as a factor. In equation form:  

  ( | )P RHS LHS  
 = 1 2 1 2 1 2 1 2 1 2 1 2( , , , , , , , | , , , )P pa pa Y Y Z Z g g X X h h  

 = 1 1 1 1 1 1 2 2 2 2 2 2 2 1( , , , | , ) ( , , , | , ) ( | )
( )

P pa g Y Z X h P pa g Y Z X h P g g
fμ

 

 
3.2.3 Hierarchical alignment by generalised parsing 
 
Section 371H3.2.1 and Section 372H3.2.2 define possible ways to calculate the combined 
production scores. From these production scores, the score of combined bilingual 
trees can be calculated, and the best tree can be chosen by the search algorithm.  
 
In summary, the input for the hierarchical alignment problem is a set of aligned 
bilingual sentences, the output is a bilingual parse tree, and the search process is 
based on the calculation of candidate trees by production scores. All the above 
conditions are the same as the bilingual parsing problem, enabling hierarchical 
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alignment to be implemented by generalised parsing.   
 
Among the five generalised parsing components, the semiring of hierarchical 
alignment is the same as that of bilingual parsing (Section 373H3.1.3) – both are non-
negative floating point numbers as probabilities. However, the grammar for 
hierarchical alignment is different from the grammar for bilingual parsing (i.e. 
probabilistic GMTG). In fact, the hierarchical alignment process is not based on 
any bilingual grammar – as stated in the beginning of Section 374H3.2, the candidate 
trees are arbitrarily combined. However, because scores are assigned to the 
pseudo bilingual production rules, it can be regarded as using a pseudo grammar. 
This pseudo grammar does not contain any production rules, but with an input 
symbol, it can generate possible production rules and assign scores to them, as 
described in Section 375H3.2.1 and Section 376H3.2.2.   
 
The external behaviour of the pseudo grammar can be made exactly the same as 
probabilistic GMTG, so that hierarchical alignment can use the same logic and 
search strategy as bilingual parsing (Section 377H3.1.3.1 and Section 378H3.1.3.2). What is 
more, because the parsing goals of the two problems are the same, hierarchical 
alignment can also use the terminating conditions in Section 379H3.1.3.3.  
 
 

3.3 Translation by bilingual parsing  
 
This section describes the algorithm of SMT by GMTG parsing, using the 
generalised parsing algorithm. As introduced in Section 380H1.1.4, the process of 
SMT by parsing is a parsing process, which derives a bilingual parse tree. Given 
a probabilistic GMTG model, the main differences between the SMT by parsing 
algorithm and the GMTG parsing algorithm in Section 381H3.1.3 include: (1) the 
inputs for translation are mono-lingual sentences instead of bilingual sentence 
pairs; (2) translation sentence pairs need to be extracted from the output parse 
trees.  
 
It is possible to implement the decoding process of translation by generalised 
parsing. Comparing the five generalised parsing components, translation by 
parsing has the same grammar (probabilistic GMTG) and semiring (non-negative 
floating point numbers) as bilingual parsing. Not considering the flattening of 
parse trees, the termination condition and parsing goals are also the same.  
 



 

 49 

The logic for translation needs to be different from the one for bilingual parsing 
(Section 382H3.1.3.1). This is mainly because the input for translation contains only 
one language. During the translation by parsing process, terminal symbols of the 
target language are not available from input. In order to build bilingual GMTG 
parse trees, a special action is needed to bring terminal symbols of the other 
language into search state items.  
 
One possible choice is the load action (Melamed and Wang, 2005), which is 
similar to the scan action in that it generates new items according to terminating 
productions. However, the load action does not take any inputs. Instead of 
matching input terminal symbols with terminating productions, it allows state 
items to be generated from any terminal symbols. Using a similar format as 383HTable 
3-1, 384HTable 3-2 illustrates the logic for translation.  
 

Action Trigger item Generated item Production rule 

Scan jf
∅

 
[( 1, )]

;
X j j−⎡ ⎤
⎢ ⎥∅⎣ ⎦

 
tX

→
∅ ∅

 

Load None 
[]

;
X
∅⎡ ⎤
⎢ ⎥
⎣ ⎦

 
X t
∅ ∅
→  

Complete 

1 1

2

1 1

2

;  and 

;

Y sy
Y

Z sz
Z

⎡ ⎤
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎣ ⎦

1 1 1

2

;
X sy sz
X

+⎡ ⎤
⎢ ⎥
⎣ ⎦

 

 

1 1 1 1 1

2 2 2 2

sy sy
 

X Y Z
X pa Y Z

⊗⎡ ⎤ ⎡ ⎤
→ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
><

Table 3-2: the logic for translation by parsing 
 
It can be seen from the table that items in the translation target language do not 
contain any span information. This is because no input sentences in the language 
are available. As a consequence, there is no need to choose production rules that 
match the discontinuous spans in this language. pa2 in the production rule of the 
“complete” action denotes any precedence array in that dimension.  
 
The main differences between the translation logic and the bilingual parsing logic 
are the load action and the span information for the translation target language. 
Besides these differences, the logics for the two problems are the same. For the 
translation case, although all possible terminal symbols for one language are 
loaded, the search process will finally determine the best parse tree and remove 
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the unlikely items by scores.  
 
A disadvantage of the load action is that a considerable number of items are 
introduced into the search space, which will impact decoding efficiency. A 
possible improvement for the load action is to generate items only from those 
terminal symbols that are possible translations of the terminal symbols from the 
source sentence. This will reduce the search space considerably, because the 
possible word translations for an input sentence are much fewer than all the 
words from the vocabulary.  
 
Finally, corresponding to the above logic definition, translation by parsing can 
also use the same search strategy as bilingual parsing, such as the best-first 
agenda approach.  
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Chapter 4  

The details of experiments 

4.1 Introduction 
 
The above theory is applied to Chinese-English SMT by this thesis with large-
scale experiments. This chapter records the details of the experiments, including 
the software systems, the training and testing corpora, and the typical process that 
is used by all the experiments of this thesis. The output and research questions 
are discussed in 385HChapter 5.   
 
The system for the experiments is built upon existing pieces of software. The 
engineering work includes the choosing and compiling of the software systems 
and libraries, the selecting and formatting of corpora, the code analysis in 
accordance with the theory of the last two chapters, the software development 
work to combine and coordinate different software systems, and the application 
of automatic MT evaluation methods. One of the challenges of the experiments is 
training the system with significantly large amounts of data within a reasonable 
time frame; the techniques used include filtering dispensable time consuming 
data, running tasks in parallel, and doing experiments incrementally.   
 
 
4.2 Software  
 
4.2.1 GenPar – the software framework for generalised parsing 
 
GenPar (Burbank et al., 2005) is the major software framework used by the 
experiments. It provides an implementation of the generalised parsing algorithm. 
GenPar is written in C++. It was developed during the 2005 Johns Hopkins 
Language and Speech Processing Workshop.  
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4.2.1.1 Design and data structures 
 
Figure 4-1 shows the main classes that GenPar uses. 
 

 
Figure 4-1: design of GenPar; adapted from (Burbank et al., 2005) 

 
According to the five components of the generalised parsing algorithm (Section 
2.3.3), GenPar contains five major component classes: Parser, Grammar, Logic, 
SearchStrategy and TerminationCondition.  
 
The core component is Parser, which contains an implementation of the 
generalised parsing algorithm in Figure 2-8. By sub-classing the abstract base 
classes Grammar, Logic, SearchStrategy and TerminationCondition and 
providing detailed implementations, GenPar can be instantiated into specific 
parsers. For example, using the probabilistic GMTG, the bottom-up logic, the 
agenda search strategy and the termination condition described in Section 3.1.3 
for Grammar, Logic, SearchStrategy and TerminationCondition, GenPar 
can be instantiated as sa bilingual GMTG parser.  
 
GenPar provides a set of implementations of the abstract components. For 
example, the abstract class Logic is implemented by sub-class BottomUpLogic 
and BottomUpTranslationLogic, which can be used for the bottom-up 
bilingual parsing algorithm (Section 3.1.3.1) and the translation algorithm 
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(Section 3.3), respectively. The class diagram is shown in Figure 4-2.  
 

 
Figure 4-2: classes for the Logic component, adapted from (Burbank et al., 2005) 
 
GenPar supports the use of a set of configuration files to specify which sub-
classes are to be used for the abstract components. For example, a possible set of 
configuration files is shown in Figure 4-3.  
 

 
Figure 4-3: GenPar configuration file hierarchy, adapted from  

(Burbank et al., 2005).  
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In the above figure, each box represents a file. The first column contains the file 
name, and the second column contains configuration items in the file. A file can 
refer to other files, as indicated by links. 
 
4.2.1.2 The typical process for translation by GenPar  
 
As introduced earlier, SMT by parsing is achieved by two steps – training and 
decoding. To train a statistical GMTG, a corresponding bilingual treebank is 
needed (Section 3.1.4). This bilingual treebank is not directly available, and can 
be derived from mono-lingual syntax trees using the hierarchical alignment 
algorithm (Section 3.2), which requires word-to-word translation probabilitiess. 
After maximum likelihood training using the bilingual treebank, EM based 
training (Section 3.1.4.2) can be conducted to optimise the probabilistic grammar. 
In the above process, most algorithms can be implemented by generalised parsing.  
 
Therefore, a typical process to train a probabilistic GMTG using GenPar includes: 

(1) Input: provide the training data.  
(2) Pre-process: format the training data and provide mono-lingual treebanks. 
(3) Word alignment: provide the word-to-word relationships for the training data. 
(4) Hierarchical alignment: derive the bilingual treebank. 
(5) Initialise grammar: maximum likelihood training from the bilingual treebank. 
(6) Optimise: EM training from the initial grammar (this step is not necessary, 

but can be used to improve grammar quality).  
 
When training is done, translation by parsing can be done using the generalised 
parsing algorithm in Section 3.3. Specifically, the following steps can be used: 

(1) Input: provide the testing data.  
(2) Preprocess: format the testing data.  
(3) Translate: do translation by the generalised parsing algorithm in Section 3.3. 
 
After translation, the results are evaluated by the methods from Section 2.2.  
 
4.2.1.3 Existing experiments by GenPar  
 
The GenPar framework was developed in the 2005 Johns Hopkins Workshop. By 
the time of this thesis, GenPar had been used for experiments of Arabic-English 
and French-English SMT by parsing. Each language pair requires specific 
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processing, and the overall French-English translation was more accurate than the 
Arabic-English translation (Burbank et al., 2005). In Section 5.1.1.3, the Chinese-
English SMT by parsing results of this thesis are compared with the results of 
existing Arabic-English and French-English experiments with GenPar.    
 
4.2.2 The Bikel statistical (mono-lingual) parser 
 
The Bikel parser (Bikel, 2002) is a mono-lingual parser that supports different 
types of statistical parsing models. It is used in the experiments to produce 
English and Chinese mono-lingual grammars. This parser is implemented in Java.  
 
The Bikel parser requires the part-of-speech information for each word in the 
input sentence. Therefore, before using the parser, POS tagging (Jurafsky and 
Martin, 2000) is required, which assigns POS tags to the input words.  
 
4.2.3 The LingPipe libraries for the Chinese segmentation task 
 
The LingPipe natural language processing library is used by this thesis for 
Chinese word segmentation (Section 1.1.5). It is chosen because of its 
comparatively high accuracy. LingPipe uses an n-gram based language model. It 
does Chinese word segmentation by a spelling correction algorithm. The library 
is written in Java. 
 
4.2.4 The Stanford statistical tagger 
 
The Stanford Tagger (Toutanova and Manning, 2000) is used by this thesis for 
the POS tagging of both Chinese and English. It is based on the maximum 
entropy probabilistic model (Ratnarparkhi, 1997). An advantage of this model is 
that it allows different features to be selected in the calculation of tagging 
probability. The Stanford Tagger is written in Java.  
 
4.2.5 GIZA++ – the word alignment tool 
 
GIZA++ (Och and Ney, 2000) is a general word alignment tool. It is used by this 
thesis to obtain word-to-word translation probabilities between Chinese and 
English. It is based on the word alignment models in Section 2.1.2, and it 
incorporates many features. GIZA++ is written in C++.  
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4.3 Training and testing data 
 
4.3.1 Training data 
 
Hong Kong Parallel Text corpus is used for the bilingual training. It is produced 
by the Linguistic Data Consortium (LDC). Its catalog number is LDC2004T08 
and it has ISBN 1-58563-290-2. The corpus contains parallel articles in Chinese 
and English, together with specifications of the (many-to-many) sentence 
alignment in each pair of articles. There are three collections in the corpus, 
containing 59 million Chinese words and 49 million English words. Only the 
News collection is used for this thesis, which contains 27 million Chinese words 
and 15 million English words (in 2,681 thousand Chinese sentences and 2,952 
thousand English sentences, respectively).  
 
The Chinese Treebank version 4.0 is used as the Chinese mono-lingual grammar 
treebank. It is produced by LDC. Its catalog number is LDC2004T05 and it has 
ISBN 1-58563-287-2. The corpus contains a collection of Chinese articles, in 
which each sentence is manually segmented, POS tagged and annotated with a 
CFG parse tree. There are 664,633 characters (in 15,162 sentences) in the corpus.  
 
The English Treebank version 3.0 is used as the English mono-lingual grammar 
treebank. It is produced by LDC. Its catalog number is LDC99T42 and it has 
ISBN 1-58563-163-9. The corpus contains a collection of English articles, from 
which each sentence is manually POS tagged and parsed. The whole corpus 
contains over a million words, while this thesis uses only the Wall Street Journal 
(WSJ) sub collection.  
 
Three corpora provided by the first International Chinese Word Segmentation 
Bakeoff (from Academia Sinica, Hong Kong City University and Beijing 
University) are used for the Chinese segmentation task. These corpora contain 
segmented Chinese sentences. There are in total over 7 million words in the 
corpora.  
 
4.3.2 Testing data 
 
The Hong Kong Parallel Text corpus is used for part of the testing data. Parallel 
sentences in the corpus that are not used for training are extracted for testing.  
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The Multiple-Translation Chinese (MTC) Part 3 corpus is used for another part 
of the testing data. It was produced by LDC. Its catalog number is LDC2004T07 
and it has ISBN 1-58563-289-9. The corpus contains 100 Chinese articles, each 
having four independent English translations. The corpus is sentence-aligned, and 
there are 935 Chinese sentences in total.  
 
 
4.4 Details for a typical experiment 
 
Following the process of Section 403H4.2.1.2, this section records the detailed process 
of a typical experiment, including 6 steps for training, 3 steps for translation and 
1 step for evaluation. This process is used by most of the experiments.  
 
4.4.1 Input for training 
 
This section describes the details of training step (1) given in Section 404H4.2.1.2. 
Two files are produced in this step (L1.text and L2.text), each containing the 
training sentences in Chinese and English, respectively. The nth sentence in one 
file is the corresponding translation of the nth sentence in the other.  
 
The source files for this step are the Hong Kong Parallel Text data, which are 
formatted in loose XML, and separated into three folders containing Chinese text, 
English text and alignment information. A Python script (corpus_rfmt.py) is 
made to extract the corpus data and format them for output. During the process, 
we made two simplifications: (1) When there are sentences that are not in one-to-
one relationship (e.g. one English sentence corresponds to multiple Chinese 
sentences), they are discarded. (2) When there are quotations (i.e. there are 
Chinese quotations in the English version), they are discarded from both sides.  
 
Because the Kong Hong Parallel Text is in traditional Chinese (BIG5 encoded), it 
is first translated into simplified Chinese (GB2312 encoded) so that it can be used 
consistently with the Chinese Treebank. The translation is table-based3F

1, because 
the two character sets are almost many-to-one related. After this, all brackets (“(”, 
“)”) are converted to the Chinese version (GB-2312 encoded). This is to avoid 
clashing with the Stanford tagger, which uses brackets to hold tag information.  
 
 
 
                                                 
1 See http://freshmeat.net/projects/autoconvert/ for more details.  
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4.4.2 Pre-processing for training 
 
This section describes the details of training step (2) in Section 4.2.1.2. The input 
files of this step are the input texts from Section 4.4.1 (L1.text and L2.text). 
The productions of this step include two mono-lingual treebanks (L1.tb and 
L2.tb), two files containing segmented input Chinese text and tokenised input 
English text (L1.tok.text and L2.prep.text), as well as formatted files 
containing tokenised text (output.snt and output.snt). This step also 
produces interim outputs, such as tagged Chinese and English sentences.  
 
4.4.2.1 Mono-lingual treebanks  
 
The Bikel parser is used to produce mono-lingual treebanks for both Chinese and 
English. It is trained with the Chinese Treebank 4 and the English Treebank 3, 
respectively. Before training, the files from the Chinese Treebank are switched 
from “fid” format to “mrg” format for the parser. This is done by making a 
Python script (fid2mrg.py). After training, the output models are saved into 
ctb.obj.gz (Chinese) and etb.obj.gz (English). 
 
With the trained models, the Bikel parser can be used for mono-lingual parsing. 
Because the Bikel parser requires input sentence with POS information, both the 
Chinese (L1.text) and the English (L2.text) sentences need to be POS-tagged. 
Besides, the input Chinese sentences also need to be segmented.  
 
LingPipe is used for Chinese segmentation. Three corpora provided by the first 
International Chinese Word Segmentation Bakeoff teams (i.e. Academia Sinica, 
Hong Kong City University and Beijing University) are converted into simplified 
Chinese (GB2312 encoded), merged into one file, and then used to train the 
segmentor. The Chinese sentences in L1.text are segmented and saved into 
L1.tok.text. English sentences do not need segmentation. However, they also 
need tokenisation (e.g. separating punctuation marks from words by space). This 
task is also performed by the Stanford tagger, and processed together with POS 
tagging. The tokenised English sentences are saved as L2.prep.text.  
 
Both Chinese and English are tagged using the Stanford statistical tagger. The 
tagger is trained with tagged corpora from the Chinese Treebank 4 and the 
English Treebank 3, respectively. Before training, corpus data for each language 
are merged into one file, and transferred into the Stanford tagger file format. This 
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is done by making two Python scripts (cn_tag_form.py and en_tag_form.py).  
 
After training the tagger, we prepare the segmented Chinese file (L1.tok.text) 
and the input English file (L2.text) for tagging. For example, the newest 
version of the Stanford tagger supports Chinese by Unicode characters. However, 
the input Chinese text is encoded in GB-2312. Thus the input text (L1.tok.text) 
is first switched to Unicode (by making gb2utf.py), and then the tagged text is 
switched back to GB-2312 (by making utf2gb.py). After tagging, the output 
tagged Chinese and English sentences are saved into L1.tagged.text and 
L2.tagged.text, respectively.  
 
The tagged sentences are passed to the Bikel parser, which has just been trained. 
The output for the parser needs to be configured so that it will include lexical 
head information, which is necessary for the hierarchical alignment process. The 
following line is added to the parser’s setting file:   

parser.decoder.outputHeadLexicalizedLabels=true  
The above configuration is required for both Chinese and English parsing. For 
English parsing, an alternative choice is using the GenPar add-on setting file 
ws05Collins.properties instead of the default collins.properties file.  
 
The parsing process requires significant computational resource. For the aim of 
producing novel result for Chinese-English translation by parsing, the training 
data set is expected to be as large as possible. In order to derive parsed data 
within the time frame for this thesis, the tagged data are divided into 32 groups 
and processed on 32 separate machines, including jet1 and jet2, as well as booth3 
– booth32 in the Thom building. Parsing output files are then merged into one 
file (L1.text.tb for Chinese and L2.text.tb for English). Furthermore, 
earlier parsing outputs are used for translation experiments immediately, before 
all tagged sentences are parsed. In general, the GenPar translation experiments 
were performed with smaller training data simultaneously as larger training data 
was being prepared. It took around 2 months for all the sentences to be parsed.  
 
After parsing, mono-lingual treebanks are extracted from the output parse trees 
for hierarchical alignment. In each experiment, a specific number of parse trees 
are extracted from the parser’s output (by making extract_trees.py). During 
this process, the parse trees are filtered and unhelpful data are discarded. For 
example, when the Bikel’s parser fails to parse a sentence, it produces “null” as 
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the output. These null parse trees in either Chinese or English are removed, 
together with their corresponding translation. Also, to improve time and space 
efficiency, sentences that are longer than 30 words are filtered out. Such 
sentences are comparatively few, and testing shows that the GenPar framework is 
exponentially inefficient with such sentences during hierarchical alignment.  
 
Before the extracted parse trees are used by GenPar, the terminal symbols are 
replaced by integers, so that the generalised parsing process is more efficient. 
This is done by a Perl script (integerize_trees) provided by GenPar. The 
final Chinese and English parse trees are saved to L1.tb and L2.tb, respectively.  
 
4.4.2.2 Formatted sentence pairs and mono-lingual sentences 
 
For the use in the next steps, segmented Chinese sentences and tokenised English 
sentences are grouped into one file, where each Chinese sentence is paired with 
the corresponding English translation by <s> and </s> tags.  
 
This is achieved by making a Python script (weavefiles.py), which reads 
sentences from multiple files and groups corresponding lines by <s> and </s> 
tags. The input files for this script are the segmented Chinese text (L1.tok.text) 
and tokenised English text (L2.prep.text) from Section 4.4.2.1, and the output 
file is called output.snt.  
 
weavefiles.py is also applied to Chinese mono-lingual sentences, and the 
output texts are saved at output.snt.1D.  
 
4.4.3 Word alignment 
 
This section describes the details of training step (3) in Section 4.2.1.2. The input 
files for this step are L1.tok.text and L2.prep.text from Section 4.4.2. This 
step produces a word-to-word alignment model file (links).  
 
This step is based on the theory of Section 2.1.2. GIZA++ is used to derive word-
to-word alignments. The detailed steps are shown as follows: 

(1) Run plain2snt.output (which is compiled together with the GIZA++ 
package) on L1.tok.text and L2.prep.text, and get the following output 
files: 

L1.tok.text.vcb (vocabulary file for Chinese) 
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L2.prep.text.vcb (vocabulary file for English) 
L1.tok.text_L2.prep.text.snt (integerised sentence alignment file) 

This step replaces words with integers for both Chinese and English, so that 
they will be processed more efficiently.   

(2) Run mkcls (which is a separate package from GIZA++) on L1.tok.text 
and L2.prep.text and generate word classes L1.tok.text.vcb.classes 
(for Chinese) and L2.prep.text.vcb.classes (for English).  

This step is optional. It does bilingual word classification (i.e. group words 
into equivalent classes – not studied in this thesis; Och, 1999).  

(3) Run GIZA++:  
 GIZA++ -S L2.prep.text.vcb -T L1.tok.text.vcb \ 

 -C L2.prep.text_L1.tok.text.snt –o L1toL2 

The output file L1toL2.A3.final contains the word-to-word probabilities 
( | )P f e  (Section 411H2.1.2), where e represents an English word and f represents a 

Chinese word.  
 
After the above process, the output of GIZA++ is turned into the file format that 
GenPar can use. This is done by a Perl script provided by GenPar (giza2ww).  
 
This thesis also adapts a bi-directional alignment method, which was used by 
existing Arabic-English and French-English translations by GenPar (Burbank et 
al., 2005). This process includes the following steps: 

(1) Use GIZA++ to generate alignment in both Chinese-English and English-
Chinese direction.  

(2) Take the intersection of alignments for each sentence in step (1) as the 
training set for the output alignment.  

(3) Using the maximum likelihood estimation, calculate the joint-alignment 
probability as:  

,

( , )
( , )

( , )
x y

i j
i j

x y
c e

Count c e
P c e

Count c e
=
∑

 

In the above equation, ci and ej are a Chinese word and an English word that 
are aligned together, while cx represents any Chinese word in the training set 
and ey represents any English word in the training set.  

(4) Use all word pairs that have non-zero probability from step (3) as the word 



 

 62 

alignment model.   
 
In the above steps, step (2) can take the union or intersection of alignments from 
step (1). This thesis chooses to use intersection for the efficiency of later steps.   
 
4.4.4 Hierarchical alignment 
 
This section describes the details of training step (4) in Section 4.2.1.2. The input 
data for this step are the parsed mono-lingual sentences from Section 4.4.2.1 
(L1.tb and L2.tb), the formatted sentences from Section 4.4.2.2 (output.snt), 
as well as the word-to-word alignment models from Section 4.4.3 (links). This 
step produces a hierarchically aligned bilingual treebank file (tb.out).  
 
This step is based on the theory of Section 3.2. The hierarchical alignment 
process is implemented by generalised parsing. A pseudo grammar is used to 
score candidate combined trees, according to mono-lingual grammars and word-
to-word alignments. The pseudo grammar is provided by GenPar, and was 
specifically designed so that apart from this grammar, all the other components 
for hierarchical alignment are the same as for bilingual parsing. The most 
important configuration files for GenPar hierarchical alignment are shown in 
Table 4-1.  
 

Configuration file Definition Value 
Grammar PseudoMTG 

(the pseudo grammar for 
hierarchical alignment, Section 

3.2.1 and Section 3.2.2) 
Sub 

grammar 0 
L1.tb 

(Chinese grammar) 

grammarbuilder.config

Sub 
grammar 1 

L2.tb 

(English grammar) 
grammar.config Word 

alignment 
links 

(Word-to-word alignments) 
LogicBuilder.config Logic C (the bilingual parsing logic, 

Section 3.2.3) 

Table 4-1: the GenPar configuration files for hierarchical alignment 
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4.4.5 Initialise grammar 
 
This section describes the details of training step (5) in Section 4.2.1.2. The input 
files for this step are the formatted sentence pairs from Section 4.4.2 
(output.snt) and the bilingual treebank from Section 4.4.4 (tb.out). This step 
produces a probabilistic grammar model (pmtg.mle).  
 
This step is based on the theory of Section 3.1.4.1. Bilingual trees from tb.out 
are scanned, and the production probabilities are estimated by the maximum 
likelihood principle.  
 
This step is achieved using the GenPar program trees2grammar.  
 
4.4.6 Optimise 
 
This section describes the details of training step (6) in Section 4.2.1.2. The input 
files for this step are the formatted sentence pairs from Section 4.4.2 
(output.snt) and the initialised grammar from Section 4.4.5 (pmtg.mle). This 
step produces the optimised probabilistic grammar model (model_final).  
 
This step is based on the theory from Section 3.1.4.2. The output grammar from 
the last step is taken as the initial value, and several EM iterations are taken to 
update the grammar to a local optimal value.   
 
This step is achieved using the GenPar program treeLearn.  
 
4.4.7 Input for translation 
 
This section describes the details of translation step (1) in Section 4.2.1.2. Two 
files are produced in this step (L1.text and L2.text), each containing testing 
sentences in Chinese and English, respectively. The nth sentence in one file is the 
corresponding translation of the nth sentence in the other.  
 
L1.text and L2.text make a testing set, where L1.text is the source text for 
translation and L2.text is the reference translation. Two testing sets are 
prepared using separate corpora. Firstly, parallel sentences from Hong Kong 
Parallel Text that are not used as training data are extracted as a test set. This is 
done by making a Python script (make_test_data.py). 983 sentence pairs are 
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extracted as the testing data. Secondly, in order to test different writing styles, 
Multiple-Translation Chinese (MTC) Part 3 is used as another test set. There are 
in all 935 sentences in this corpus, which is comparable to the first test set.  
 
4.4.8 Pre-process for translation 
 
This section describes the details of translation step (2) in Section 4.2.1.2. The 
input files of this step are the testing text from Section 4.4.7 (L1.text and 
L2.text). The productions of this step include two files containing segmented 
input Chinese text and tokenised input English text (L1.prep.text and 
L2.prep.text), as well as two formatted files containing the tokenised text 
(output.snt and output.snt.1D).  
 
Similar to Section 4.4.2, LingPipe libraries are used for Chinese segmentation. 
The library has been trained previously. L1.text is segmented and saved as 
L1.prep.text. L2.text is tokenised and saved as L2.prep.text. 
weavefiles.py, which has been written for Section 4.4.2, is used to format 
L1.prep.text and L2.prep.text into output.snt. Meanwhile, the mono-
lingual file L1.prep.text is formatted into output.snt.1D.  
 
4.4.9 Translation  
 
This section describes the details of translation step (3) in Section 4.2.1.2. The 
input files for this step are the formatted Chinese mono-lingual text from Section 
4.4.8 (output.snt.1D) and the probabilistic multitext grammar model trained 
by Section 4.4.6 (model_final). This step produces the translation output file 
(treePerc.tx), formatted parallel translation text (treePerc.snt), as well as 
interim outputs such as the bilingual parse tree (treePerc.tb).  
 
This step is based on the theory of Section 3.3. Translation is achieved by 
generalised parsing. A special logic is used to load terminal symbols from only 
one language, while generating bilingual items. The most important configuration 
files are illustrated in Table 4-2.   
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Configuration file Definition Value 
grammarbuilder.config Grammar HeadWMTGB  

(the bilingual parsing grammar, 
Section 3.1.3) 

LogicBuilder.config Logic F (the translation logic, Section 
3.3) 

Table 4-2: the GenPar configuration files for translation 
 
The output parse trees are de-integerised and flattened into Chinese and English 
sentences with several C++ programs (deinttree, appendSpansToTrees and 
linearize), which are provided by GenPar.  
 
4.4.10 Evaluation 
 
This section describes the details of the evaluation step in Section 4.2.1.2. The 
input files for this step include the translation output from Section 4.4.9 
(treePerc.tx) and the formatted test sentences and reference translations from 
Section 4.4.8 (L1.prep.text and L2.prep.text). This step produces standard 
evaluation scores by the Bleu metrics, the NIST metric (nist.text), and the F-
measure (FMS1-summary and FMS2-summary).  
 
This step is based on the theory of Section 2.2. The Bleu metrics and NIST 
measure are produced by making two Python scripts (evaluate.py and 
bleu.py) and using a standard Perl script provided by NIST (nist.pl). The F-
measures are produced by using the Generalised Text Matcher (GTM) tool, 
which is developed by the natural language processing group of the computer 
science department of New York University, and provided with GenPar.   
 
4.4.11 Summary 
 
The above sections record the detailed process of a typical experiment, including 
training, decoding and evaluation. Other work in the experiments that are not 
mentioned above includes the work of code review (e.g. through reading of the 
GenPar source code), the compiling of the systems and libraries (e.g. boost C++ 
library), as well as the development of auxiliary utilities (e.g. an HTTP based 
script to transfer files between different machines and operating systems).  
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Details having been recorded, the next section gives an overview of the research 
questions and the corresponding design of experiments.  
 
 

4.5 An overview of all the experiments 
 
The first experiment gives the standard evaluation scores of English-Chinese 
translation by parsing. The accuracy of SMT is expected to be higher after more 
training. Section 445H5.1.1 gives comparison to the translation accuracy with different 
amount of training data.  
 
Besides the amount, the genre of training data is also important to SMT. The 
difference in the domain and genre between the training and testing data is 
expected to influence the accuracy. Section 446H5.1.2 studies the influence of writing 
style by comparing the accuracy of Mandarin (the simplified Chinese language) 
and Cantonese (a Chinese dialect) translation.  
 
As introduced in Section 447H1.1.2.2, grammatical information is expected to be 
helpful in the development SMT models. One of the potential advantages of SMT 
by parsing is that this model is based on synchronous grammar trees, which are 
generated from Chinese and English grammatical information. Section 448H5.1.3 
studies the influence of Chinese and English mono-lingual syntactic information 
by varying the mono-lingual grammar trees during hierarchical alignment.  
 
Most current SMT systems are based on word-to-word translations, and the 
accuracy of word-to-word translation probabilities has a general influence on 
SMT accuracy. Section 449H5.1.3 studies the influence of word-to-word translation on 
Chinese-English SMT by parsing by varying the word-to-word probability model 
during hierarchical alignment.  
 
With observation and analysis of the above experiments, 450HChapter 5 summarises 
the advantages and disadvantages of Chinese-English SMT by synchronous 
parsing. By comparison with other SMT models, it proposes some future work.  
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Chapter 5  

The results and conclusions 

5.1 Test results and discussions 
 
5.1.1 Standard tests 
 
5.1.1.1 Standard tests with different training sets 
 
The standard tests show the accuracy and learning curves of the Chinese-English 
translation experiments. In these tests, five training sets were extracted from the 
Hong Kong Parallel Text, increasing in size. The same testing set was used, 
which contains around 1,000 sentences of unseen data extracted from the Hong 
Kong Parallel Text.  
 
The automatic evaluation scores are shown in 451HTable 5-1. In this table, FMS-e 
stands for the F-measure with weighing factor e (Equation 452H2-12), where e=1 
(unigram only) and e=2 (favouring phrases). BLEU stands for the standard Bleu 
metrics (Section 453H2.2.1) and NIST stands for the NIST score (Section 454H2.2.2).  
 

Training set size 
(sentence pairs) FMS-1 FMS-2 BLEU NIST 

1k  0.2477 0.1457 0.0155 0.5382 
5k  0.3196 0.1711 0.0394 2.0645 

10k  0.3310 0.1720 0.0437 2.8120 
50k  0.3687 0.1841 0.0604 4.0294 

100k  0.3742 0.1850 0.0605 4.1228 

Table 5-1: test results for the Chinese-English translation experiment 
 
It can be seen that as the training set size increases, all standard scores increase, 
while the rate of increase falls. The learning curves are illustrated in 455HFigure 5-1.  
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Figure 5-1: the learning curves 
 
5.1.1.2 Example sentences from translation output 
 
The following table contains randomly extracted example translations. For each 
source sentence, the output translations with different training sets are contrasted.  
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Original Chinese sentence 
training 
set size

English translation 

1k 一九九八年 六月 3 ( Wednesday ) 一九九八年 六月 三日 

( 星期三 ) 
 

5k 1998 June 3 ( Wednesday ) 

1k ventillation 素质  : conditions 
  : 空气 素质 良好 

5k air quality : good 

1k Executive opening meet States 国会  entourage

5k 
Chief Executive addresses States 国会  

delegations 

 行政 长官 会见 美国 

国会 代表团
 

50k Chief Executive meets US delegation 

1k new will “ Hong international ” 

5k 
new Airport will 命名为  “ Hong international 

Airport ” 

50k new Airport will “ Hong International Airport ”

    
"    "
新 机场 将 命名为

香港 国际 机场
 

100k 
New Airport will named Hong International 

Airport ” 

1k additional Profiles and 初中  Students 

5k increase and students allowances allowance 

10k 
increase primary and Junior students objection 

簿  allowance applied 

50k 
increase primary and junior students CTRs 

allowances applied 

增加 小学 及 初中 

学生 书 簿 津贴 额
 

100k 
increase primary and junior students Guidebook 

allowances applied 

1k 
Appeal members of the public Information 
( Wednesday ) in risks a cases information 

5k 
Police urged the public information The 

( Wednesday ) 8.08 in occurred a information 

10k 
Police urged the public provide The So 

( Wednesday ) 8.08 in 慈云山  occurred 's a 
cases 爆窃案  information 

50k 
Police urged the public provide the this 

( Wednesday ) Tseun at Tsz occurred 's cases 
burglary information 

  警方 呼吁 市民 提供

有关 今 ( 星期三 ) 

晨 在 慈云山 发生 

的 一 宗 爆窃案 资料

 

100k 
Police urged the public provide The this 

Wednesday morning Tsz occurred fatal burglary 
information 
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1k Chau-Huanggang new down will ( in ) 

5k 
advent SHWF new Airport different phase 

Operation persons n't will persons ( including 
arrive in ) 

10k 
Attached SHWF new Airport entering different 

's Operation persons deal Final will persons 
( including in ) 

50k 
With hygiene new Airport hoped different 
Phase 's operated were manpower final will 

increased 150 were ( including ambulance in ) 

    
  

随着 新 机场 投入 不同

阶段 的 运作 , 人 手

最终 将 增至 一百五十

人 ( 包括 救护员 在内 )

 

100k 

With Estate New Airport operation different 
stages 's operations persons hands final will 

increased 150 persons ( including ambulance in 
in) 

1k 
spokesman said : “ Anyone contact Anyone can 

call classes hotline Enquiry is . ” 

5k 
spokesman said : “ Anyone For External elector 

job-seekers have any asked can call Electoral 
Office hotline Tel. is 2891 . ” 

10k 
spokesman said : “ Anyone are follows voters 

registered has any asked can call Electoral 
Office hotline Tel numbers for addressed . 

50k 
spokesman said “ Anyone are For on Voter 

registration are any doubt that can call Electoral 
Office telephone hotline that numbers for 1001 .

发言人 说 : " 任何 人士 如

对 选民 登记 有 任何 疑问 ,

可 致电 选举 事务处 热线 

电话 , 号码 为 二八九一 

一零零一 "

100k 
spokesman said Any person For to Voter 
registration further any doubt that can call 

Electoral Office hotline Tel number for 1001 . 

Table 5-2: sentences extracted from the translation output 
 
It can be seen that generally the translation becomes more accurate with more 
training data, although there are exceptions with some sentences. Also, the 
translations are generally much less accurate compared to human translators. 
Moreover, for longer sentences, the grammatical structures are comparatively 
less accurate.  
 
5.1.1.3 Comparison with existing experiments of translation by parsing 
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This Section shows the results of existing experiments done on SMT by parsing. 
Table 5-3 shows the results of Arabic-English translation by parsing, while Table 
5-4 shows the results of French-English translation by parsing.  
 

Training set size FMS-1 FMS-2 BLEU NIST 
7k  0.1720 0.0831 0.0151 1.7606 

Table 5-3: existing test result of Arabic-English translation by GenPar, adapted 
from (Burbank et al., 2005). The only training set has 7,000 sentences.  

 
Training set size FMS-1 FMS-2 BLEU NIST 

5k 0.2824 0.1170 0.0409 2.6369 
10k 0.2996 0.1217 0.0499 2.8515 
50k 0.3247 0.1270 0.0625 3.0895 

100k 0.3639 0.1332 0.0799 3.3484 

Table 5-4: existing test result of French-English translation by GenPar, adapted 
from (Burbank et al., 2005). 

 
From the above tables, it can be seen that the accuracy of Chinese-English 
translation by parsing of this thesis is comparable to the accuracy of existing 
translation by parsing experiments.  
 
5.1.2 The influence of the writing style 
 
5.1.2.1 Test summary 
 
Apart from the size, the content of training data is also important to the accuracy. 
In order to test the influence of different writing styles, two test sets are used in 
the experiments. The first test set contains around 1,000 unseen sentences from 
the Hong Kong Parallel Text, which has been written in Cantonese. The second 
test set contains around 1,000 unseen sentences from the MTC Corpus Part 3, 
which has been written in Mandarin. The training set is in Cantonese.  
 
Table 5-5 shows the test results. Test set HK stands for the Cantonese test set 
from Hong Kong Parallel Text, while test set MTC stands for the Mandarin test 
set from Multiple-Translation Chinese.  
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Training set size Test set FMS-1 FMS-2 BLEU NIST 
HK 0.2477 0.1457 0.0155 0.5382 

1k 
MTC 0.1599 0.0861 0.0070 0.0319 
HK 0.3196 0.1711 0.0394 2.0645 

5k 
MTC 0.2095 0.0984 0.0132 0.2667 
HK 0.3310 0.1720 0.0437 2.8120 

10k 
MTC 0.2278 0.1016 0.0184 0.7242 
HK 0.3687 0.1841 0.0604 4.0294 

50k 
MTC 0.2672 0.1042 0.0179 2.1368 
HK 0.3742 0.1850 0.0605 4.1228 

100k 
MTC 0.2794 0.1072 0.0181 2.3334 

Table 5-5: test results for the influence of writing styles. The training set is in 
Cantonese, while the two test sets are in Cantonese and Mandarin, respectively. 

 
The scores from the first F-measure (FMS-1) are illustrated in the figure below.  
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Figure 5-2: influence of writing styles 
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459HFigure 5-2 shows that as the training set size increases, the FMS-1 accuracy of the 
MTC test increases in a curve that is similar to the HK test. However, it is always 
smaller than the HK test.  
 
5.1.2.2 Discussion 
 
It can be seen from the test results that writing style has an influence on 
translation accuracy. The most import reason may be that the bilingual grammar 
model, which is trained on one style of sentences, does not analyse another style 
as accurately. The use of Chinese words is comparatively flexible, and each word 
can take many types of part-of-speech. This makes the influence of writing style 
more obvious.  
 
Another reason may be the difference in the use of words. For example, in Hong 
Kong Parallel Text, “air quality” is expressed as “空气 素质”, while the same 
phrase in the Multiple-Translation Chinese is expressed as “空气 质量 ”. Such 
cases of different expressions are not rare. Another example may be “computer 
program”, in which “program” is translated into “程式” in Cantonese but “程序 ” 
in Mandarin.   
 
Writing style has a general influence on SMT. This influence is apparent between 
different domains and subjects. For example, manual tests on mainstream public 
translation systems (e.g. Google Translation) shows that the translation between 
English and Chinese performs comparatively better with news articles than with 
essays on information technology. This is probably because these systems are 
trained more frequently on general news articles.  
 
5.1.3 The role of syntactic information 
 
As introduced in the end of Section 460H1.1.2.2, being high-level human abstractions 
of languages, syntax is expected to help improving the SMT models. A potential 
advantage of SMT by parsing is the use of syntactic information. This experiment 
tests the influence of syntactic information. However, in the absence of manually 
parsed bilingual treebanks, it is impossible to test the influence of bilingual 
GMTG directly. Instead, this experiment tests the influence of its components in 
hierarchical alignment – Chinese and English mono-lingual syntactic information.  
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In both the following experiments, the source bilingual texts for the training set 
are 10,000 sentence pairs from Hong Kong Parallel Text. Meanwhile, different 
amounts of mono-lingual syntactic information are used for hierarchical 
alignment, from which the bilingual treebank for GMTG training is generated. 
The rest of the process is the same as a standard test.  
 
5.1.3.1 The influence of Chinese (source language) syntactic information 
 
This section tests the influence of Chinese syntactic information by comparing 
two different methods for hierarchical alignment – one with Chinese syntactic 
information (Section 3.2.2) and the other without it (Section 3.2.1). The 
comparison is illustrated in Table 5-6.  
 

Chinese syntactic 
information 

FMS-1 FMS-2 BLEU NIST 

Used 0.3310 0.1720 0.0437 2.8120 
Not used 0.3384 0.1773 0.0471 2.7091 

Table 5-6: the influence of Chinese (source language) syntactic information 
 
It can be seen from the table that the standard scores are comparable in the two 
test cases. No significant influence of Chinese syntactic information is observed.  
 
5.1.3.2 The influence of English (target language) syntactic information 
 
This section tests the influence of English syntactic information by using a 
different method from the last section. In this experiment, different accuracies of 
English syntactic information are used to produce the bilingual treebank, and the 
effect is compared. This is done by varying the size of English training data for 
the Bikel parser before producing the mono-lingual treebanks with it. Table 5-7 
illustrates the comparison between English training sets of three different sizes.  
 

Training set size 
for Bikel parser 

FMS-1 FMS-2 BLEU NIST 

1k 0.3338 0.1731 0.0442 2.9169 
10k 0.3282 0.1712 0.0414 2.7526 
50k 0.3310 0.1720 0.0437 2.8120 

Table 5-7: the influence of English (target language) syntactic information 
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It can be seen from the table that the standard scores are comparable in the three 
test cases. No significant influence of English syntactic information is observed.  
 
5.1.3.3 Conclusion 
 
In the above experiments, neither English nor Chinese mono-lingual syntactic 
information has a significant influence on the standard evaluation scores.  
 
There are two possible reasons for this. Firstly, the accuracy of GMTG may have 
no significant impact on translation. That is to say, syntactic information does not 
play an important role in Chinese-English SMT by GMTG parsing. In 
comparison, Och et al. (2004) examined the influence of various features on a 
maximum entropy SMT model, and found no significant influence of syntactic 
information. However, recent research by Quirk and Corston-Oliver (2006) 
shows the influence of English syntactic information on a different tree-based 
SMT model, which combines phrase-based information with syntactic treelets. 
Therefore, it may be concluded that the role of syntactic information on SMT is 
dependent on the probabilistic model, and with probabilistic GMTG, syntax 
information is comparatively less influential. However, the above conclusion can 
only be confirmed with the availability of confidently accurate (i.e. manually 
parsed) bilingual treebanks.  
 
The second possible reason for the experiment result is the noise in hierarchical 
alignment, which is currently a necessary step to derive bilingual treebanks. This 
noise may come from the inaccuracy of mono-lingual parsers, the word 
alignment algorithm, as well as the hierarchical alignment process. What is more, 
sentence pairs from the Hong Kong Parallel Text are correspondent in meaning, 
instead of CFG structures. By observation, there are over 20% sentence pairs that 
are not syntactically correspondent to each other. The noise in the resulting 
bilingual treebank can be significant enough to outweigh the influence of mono-
lingual syntactic information.  
 
5.1.4 The importance of word-to-word probabilities 
 
5.1.4.1 Test summary 
 
Most current SMT systems are based on word-to-word translations. In the 
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experiments of Chinese-English SMT by parsing, word-to-word translation 
probabilities are a basis for hierarchical alignment. This experiment tests the 
influence of word-to-word translations.  
 
The following experiments use different amounts of sentence pairs from the 
Hong Kong Parallel Text for word alignment. Meanwhile, they use 10,000 
sentence pairs from Hong Kong Parallel Text for the other training steps. The rest 
of the process is the same as the standard test.  
 
The test results are illustrated in Table 5-8.  
 

Size of word 
alignment data 

FMS-1 FMS-2 BLEU NIST 

10k 0.3310 0.1720 0.0437 2.8120 
50k 0.3560 0.1758 0.0500 3.6036 

100k 0.3596 0.1772 0.0520 3.5906 

Table 5-8: the influence of word alignment 
 
It can be seen from the table that as more sentence pairs are used for word 
alignment, the automatic evaluation scores generally increase.  
 
5.1.4.2 Discussion 
 
The word alignment algorithm is based on the EM iteration in Section 2.1.2. 
When more sentence pairs are used, the output word alignment model should 
include more words, while the accuracy of the model increases. The experiment 
shows that the translation accuracy increases with more word alignment data. 
This is mainly because the accuracy of word-to-word probabilities is a crucial 
starting point for the bottom-up hierarchical alignment algorithm (Section 3.2).       
 
It should be noticed that the rate of increase of the evaluation score drops as more 
sentence pairs are used for word alignment. One of the reasons is that 
hierarchical alignment only makes use of words that appear in its training 
sentence pairs, which is fixed to 10,000 in size. Thus the accuracy of word 
alignment within the 10,000 sentence pairs is more important to translation than 
the total number of words included in the alignment model. The above reasoning 
can also be an explanation of the exceptions in Table 5-8, such as the NIST score 



 

 77 

with 100k sentence pairs.   
 
Word-to-word translation is generally crucial to SMT. From the human 
translation’s point of view, words and unbreakable phrases are also the basic 
elements to be translated.  
 
Finally, it should be noted that SMT by GMTG parsing is based on words instead 
of phrases – phrases are not considered separately as terminal symbols in GMTG, 
but integrated into the production rules. This is a potential disadvantage to the 
model. As a result, SMT by GMTG parsing may also have the problem of word-
based models discussed in Section 469H2.1.3. What is more, the word based alignment 
may result in lower Bleu scores than phrase-based models, since the Bleu 
evaluation is based on n-grams. This is less important, however, as long as the 
translation is reasonable by the human evaluation.   
 

5.2 Summary 
 
Like human translation, machine translation has two essential factors – unit 
element (unbreakable word or phrase that carries meaning) translation and target 
sentence organisation. The simplest models for SMT are word-based, where the 
unit elements are words and sentence organisation is modelled by comparatively 
simple mechanisms such as word reordering. One of the main improvements of 
phrase-based models over the word-based models is on the definition of unit 
elements, which includes phrases. Hierarchical phrase based and tree-based 
models further improved the target sentence organisation. The models have 
improved translation accuracy by evolving towards a higher level of abstraction, 
while word alignment often serves as the basis for more complex models.    
 
SMT by parsing can be seen as using a tree-based model. It also makes use of 
syntactic information, which has been helpful to SMT systems in modelling 
hierarchical constituent movement and target language generation. The decoding 
process for SMT by parsing is special in that the translation sentence is generated 
as a by-product of parsing with bilingual synchronous grammars, which requires 
recursive correspondence between the grammatical structures of the two 
languages. The advantages of this decoding process include the reuse of existing 
parsing algorithms to save engineering cost.  
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Chinese-English SMT is a special instance of statistical machine translation. 
While it benefits from general SMT methods, it is also influenced by the specific 
properties of both languages. Based on the GenPar system and other pieces of 
software, this thesis studies Chinese-English SMT by bilingual GMTG parsing 
with large-scale experiments. The results show that the accuracy of Chinese-
English translation by parsing is comparable with existing French-English and 
Arabic-English translations by GMTG parsing from the literature. What is more, 
although word-alignment has significant influence on translation, mono-lingual 
syntactic Chinese and English information is not as influential in the experiments.  
 
The experiments also reveal that SMT systems have much to improve. For 
example, the overall accuracy is still far below human translation, and the effect 
of translation is considerably influenced by writing style and topic. From the 
above experiments, several possible further improvements can be suggested. 
They are discussed in the next section.  
 
 

5.3 Future work 
 
This section presents possible improvements to SMT models. The possible future 
works are organised by the two main factors summarised in the last section – unit 
element translation and sentence organisation.  
 
The word-to-word and phrase-to-phrase alignment models are crucial to any 
SMT system. Because words and phrases are the atomic elements that carry the 
meaning of a sentence, it is likely that a translation is understandable with words 
and phrases correctly translated, even if the order is inaccurate. Currently most 
SMT systems use EM based learning methods, while there are Chinese-English 
dictionaries available without probabilities. A possible improvement is making 
use of off-the-shelf dictionaries during the training of word and phrase 
alignments.  
 
Another observation from the experiments is that word translations can be 
dependent on context. A word can have many different translations, while for a 
certain source sentence there is a best choice. Thus it is reasonable to consider a 
word-to-word model that includes contextual information explicitly. The 
difficulty is the choice of context. When grammar is considered, an example 
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context may be the head word.  
 
Sentence organisation can be improved by better models, while syntactic 
information is an important factor. In the experiments of Chinese-English SMT 
by synchronous GMTG parsing, mono-lingual syntactic information did not 
prove to have a significant influence. Apart from the noise introduced by the 
hierarchical alignment, some further thoughts arise about the model itself:  
 
Firstly, there is the possibility that the accuracy of bilingual GMTG (or combined 
CFG) does not have a significant influence. The above possibility can only be 
demonstrated when the corresponding Chinese-English bilingual treebank is 
available in a reasonable size in the future. Meanwhile, it is meaningful to think 
of potentially better representation of the correspondence between Chinese and 
English sentences. As was seen from the Hong Kong Parallel Text, a significant 
amount of parallel sentences are correspondent in meaning, but not in CFG 
syntactic structures. Therefore, the candidates which express more common 
structural alignment between translation pairs may include more semantic-prone 
grammar structures, such as the lexical functional grammar (LFG; Dalrymple, 
2001) and combinatory categorical grammar (CCG; Steedman, 2000).  
 
Secondly, potentially better models may also use no hierarchical structural 
combination. On the one hand, the same meaning can be best carried out by 
completely different syntactic structures in Chinese and English. On the other 
hand, mono-lingual syntactic information is clearly helpful in the generation of 
sentences. Therefore, it may be useful to consider a two-phase decoding model 
that does not include any recursive structural correspondence, but separates 
source sentence analysis and target sentence generation. In this way the target 
language grammar can be used specifically for generating translations. What is 
more, grammatical information for only one language, such as the tense of 
English sentences, can be explicitly modelled. The difficulty is the intermediate 
representation, and the disadvantage of this model is that existing techniques in 
generalised parsing may be inapplicable for reuse.   
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Sample code 

1. bleu.py – implementing the Bleu metrics (Section 470H2.2.1)  
 

g_sWelcome = """ 
Bleu.py - the bleu metrics for machine translation.  
Yue Zhang @ Oxford. 2006. 
""" 
g_sUsage = "Bleu.py [-d] [-c] [-v] [--N=n-gram] \ 
candidate reference1 [reference2, ...]" 
 
#================================================= 
# 
# Import 
# 
#================================================= 
 
import sys 
import getopt 
import math 
 
#================================================= 
# 
# The global variables 
# 
#================================================= 
 
N = 4                           # N for N-Gram 
NGramsCandidate = []            # candidate ngrams 
NGramsMatch = []                # reference ngrams 
lengthCandidate = 0             # candidate length 
lengthReference = 0             # reference length 
 
g_Debug = 0                     # debug switch 
g_Verbose = 0                   # verbose switch 
g_CaseSensitive = 0             # case sensitive/n 
 
#------------------------------------------------- 
# 
# readOneLine - read one line from a candidate  
#               file and a list of reference files.                                     
# 
# Input: fileCandidate - the candidate file 
#        fileReferences - the reference files 
# 
# Return: list of lines 
# 
#------------------------------------------------- 
 
def readOneLine(fileCandidate, fileReferences): 
   lData = [] # the return value 
   # Read one line from candidate. 
   sLine = fileCandidate.readline() 
   if not sLine: 
      return None 
   if g_CaseSensitive: 
      lData.append(sLine.strip()) 
   else: 
      lData.append(sLine.strip().lower()) 
   # Read one line from each reference file. 
   for fileReference in fileReferences: 
      sLine = fileReference.readline() 

      if not sLine: 
         return None 
      if g_CaseSensitive: 
         lData.append(sLine.strip()) 
      else: 
         lData.append(sLine.strip().lower()) 
   return lData 
 
#------------------------------------------------- 
# 
# processOneLine - process one line 
# 
#------------------------------------------------- 
 
def processOneLine(lLines): 
   global lengthCandidate, lengthReference 
   sCandidateLine = lLines[0] 
   lWords = sCandidateLine.split(" ") 
   # Count each N-Gram. 
   for n in xrange(1, N+1): 
      setCandidateNGrams = set([]) 
      for m in xrange(0, len(lWords)+1-n): 
         setCandidateNGrams.add(\ 

" ".join(lWords[m:m+n])) 
      for sNGram in setCandidateNGrams: 
         countCandidate = nGramCount(\ 

sCandidateLine, sNGram) 
         countReference = 0 
         for sReferenceLine in lLines[1:]: 
            countReference = max(countReference, \ 

nGramCount(sReferenceLine, sNGram)) 
         NGramsMatch[n-1] += min(countReference, \ 

countCandidate) 
         NGramsCandidate[n-1] += countCandidate 
   # Count length. 
   lengthCandidate += len(lWords) 
   lengthTemp = lLines[1].count(" ") + 1 
   for sReferenceLine in lLines[2:]: 
      lengthTemp = min(lengthTemp, \ 

sReferenceLine.count(" ") + 1) 
   lengthReference += lengthTemp 
 
#------------------------------------------------- 
# 
# nGramCount - count n-grams from string 
# 
# Input: sString - the string 
#        sNGram - the n-gram 
# 
# Return: count 
# 
#------------------------------------------------- 
 
def nGramCount(sString, sNGram): 
   if g_Verbose: 
      print "N-gram count for %s in %s is %d" % \  

(sNGram, sString, sString.count(sNGram)) 
   return sString.count(sNGram) 
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#------------------------------------------------- 
# 
# computeBleu - compute the bleu score 
# 
# Return: bleu 
# 
#------------------------------------------------- 
 
def computeBleu(): 
   # List of N-Gram precisions. 
   precision = [] 

for n in xrange(0, N): 
      if NGramsMatch[n] == 0: 
         precision.append(1) 
      else: 
         precision.append(float(NGramsMatch[n]) \ 

/NGramsCandidate[n]) 
   # The precision. 
   fPrecision = 0 
   for n in xrange(0, N): 
      fPrecision += math.log(precision[n])/N 
   fPrecision = math.exp(fPrecision) 
   if g_Debug: 
      print "Modified n-gram precision is:", \ 

fPrecision 
   # The brevity penalty score. 
   BP = 1 
   if (lengthReference > lengthCandidate): 
      BP = math.exp(1 - \ 

float(lengthReference)/lengthCandidate) 
   if g_Debug: 
      print "Brevity penalty is:", BP 
   # The Bleu score here. 
   return fPrecision * BP 
 
 
 
 

#================================================= 
# 
# The main entry.  
# 
#================================================= 
 
if __name__ == '__main__': 
   # Show welcome.  
   print g_sWelcome 
   # Get system arguments.  
   optlist, args = getopt.getopt(sys.argv[1:], \ 

"dvc", ["N="]) 
   if len(args) < 2: 
      print g_sUsage 
      sys.exit(1) 
   for opt, val in optlist: 
      if opt == "-d": 
         g_Debug = 1 
      elif opt == "-v": 
         g_Verbose = 1 
      elif opt == "-c": 
         g_CaseSensitive = 1 
      elif opt == "--N": 
         N = int(val) 
   for n in xrange(0, N): 
      NGramsCandidate.append(0) 
      NGramsMatch.append(0) 
   # Get candidate and reference files.  
   fileCandidate = open(args[0]) 
   fileReferences = [] 
   for sReference in args[1:]: 
      fileReferences.append(open(sReference))  
   # Analyse sentences. 
   lLines = readOneLine(fileCandidate, \ 

fileReferences) 
   while lLines: 
      processOneLine(lLines) 
      lLines = readOneLine(fileCandidate, \ 

fileReferences) 
   # Print the Bleu score. 
   print computeBleu() 
   # Close candidate and reference files. 
   fileCandidate.close() 
   for fileReference in fileReferences: 
      fileReference.close() 
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2. weavefiles.py – the module to join lines together   
(Section 471H4.4.2.2) 

 
#******************************************************************** 
# 
# weavefiles.py - A file joining script. 
# 
# Provide a list of files to join as the system arguments. 
# Output to the standard system output device by default.  
# 
# Yue Zhang 
# Comlab, Oxford. 
# 2006 
# 
#******************************************************************** 
 
#==================================================================== 
# 
# Global settings - which symbols are used to group corresponding lines 
# 
#==================================================================== 
 
g_lInput = [] 
g_sStart = '<s>\n' 
g_sEnd = '</s>' 
 
#-------------------------------------------------------------------- 
# 
# weaveFiles - weave the input files with designated start and end symbols 
# 
#-------------------------------------------------------------------- 
 
def weaveFiles(lInputNames, sStartSt = "", sEndSt = ""): 
   # Open files. 
   lInput = [] 
   for sInput in lInputNames: 
      lInput.append(open(sInput, "r")) 
   # Weave lines. 
   bRunning = True 
   while bRunning: 
      lLine = ["%s" % sStartSt] 
      for oInput in lInput: 
         sLine = oInput.readline() 
         if sLine: 
            lLine.append(sLine) 
         else: 
            bRunning = False 
      if bRunning: 
         lLine.append("%s" % sEndSt) 
         print "".join(lLine) 
   # Close files. 
   for oInput in lInput: 
      oInput.close() 
 
#==================================================================== 
# 
# The main methods 
# 
#==================================================================== 
 
if __name__ == "__main__": 
   import sys 
   if len(sys.argv) > 1: 
      for nIndex in xrange(1, len(sys.argv)): 
         g_lInput.append(sys.argv[nIndex]) 
   weaveFiles(g_lInput, g_sStart, g_sEnd) 
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