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Abstract 

Classification of patient samples is a crucial aspect of 
cancer diagnosis and treatment. We present a method 
for classifying samples by computational analysis of gene 
expression data. We consider the classification problem 
in two parts: class discovery and class prediction. Class 
discovery refers to the process of dividing samples into 
reproducible classes that have similar behavior or prop- 
erties, while class prediction places new samples into 
already known classes. We describe a method for per- 
forming class prediction and illustrate its strength by 
correctly classifying bone marrow and blood samples 
from acute leukemia patients. We also describe how to 
use our predictor to validate newly discovered classes, 
and we demonstrate how this technique could have dis- 
covered the key distinctions among leukemias if they 
were not already known. This proof-of-concept experi- 
ment paves the way for a wealth of future work on the 
molecular classification and understanding of disease. 

Permission to make dtgttal or hard copras of all or part of th~s work for 
personal or classroom use is granted without tee provided that copras 
are not made or dlsmbuted for prolit ot commetcml advantage and that 
cop,es bear th,s notice and tile lull citation on the first page To copy 
otherwise, to repubhsh, to post on servers or to redistribute to hsts, 
reqmres prior specific perm~smn and,'or a fee 
RECOMB 2000 Tokyo Japan USA 
Copyright ACM 2000 1-58113-186-0/00/04 $5 00 

*Whitehead/MIT Center for Genome Research, One Kendall 
Square bldg 300, Cambridge, MA 02139. Contact author 's  email 
~fddress: slonim~genome.wi mit.edu 

2 6 3  

1 Introduction 

Classification of patient samples is a crucial aspect of 
cancer diagnosis and treatment. Current classification 
methods rely primarily on the cancer's tissue of ori- 
gin (for example, whether a tumor first developed in 
the lung or the brain) and on the microscopic appear- 
ance and location of cancerous cells. However, there 
are many clinically-relevant distinctions that can only 
be made in hindsight. For example, tumors of identical 
appearance may progress at very different speeds, some 
growing aggressively and demanding equally aggressive 
treatment, others remaining so inactive that the best 
course might be no treatment at all. Unfortunately, 
these often can be distinguished only by observing the 
patient over time and discovering whether or not the 
initial treatment was sufficiently aggressive. Thus, re- 
searchers continue to search for new methods of classi- 
fication that might predict the course of the disease at 
the time of diagnosis. 

Recent technological advances in monitoring gene 
expression may help. Although the blueprints encod- 
ing all human genes are present in each cell, only a 
fraction of the proteins they can produce are active in 
any particular cell. The process of transcribing a gene's 
DNA sequence into the RNA that serves as a template 
for protein production is known as gene expression. A 
gene's expression level indicates the approximate num- 
ber of copies of that gene's RNA produced in a cell; 
this is thought to correlate with the amount of the cor- 
responding protein made. While the traditional tech- 
nique for measuring gene expression, the Northern blot 
assay, is labor-intensive and produces only an approx- 
imate quantitative measure of expression, new tech- 
nologies have greatly improved the resolution and the 
scalability of gene expression monitoring. "Expression 
chips," manufactured using technologies derived from 
computer-chip production, can now measure the expres- 
sion of thousands of genes simultaneously. 

It has been suggested that gene expression may pro- 
vide the additional information needed to improve can- 



cer classification and diagnosis. In this paper, we present 
a proof-of-concept s tudy supporting the idea. Our ex- 
pression experiments are performed using Affymetrix 
oligonucleotide arrays [14, 20] that  measure the expres- 
sion of 6817 known human genes in each patient sample. 
However, our methods are not restricted to any partic- 
ular microarray technology. 

We present a method for performing classification of 
patient samples by gene expression analysis. We sep- 
arate the general classification problem into two chal- 
lenges: class discovery and class prediction. Class dis- 
covery refers to the process of dividing samples into 
groups with similar behavior or properties. For exam- 
ple, the determination of a system for grading tumors 
by degree of progression is a class discovery process. 
In contrast, the class prediction problem corresponds 
roughly to diagnosis: given a set of known classes, de- 
termine the correct class for a new patient. To see why 
this is called "prediction" rather than "diagnosis," con- 
sider the case where classes are based on how a patient 
will respond after two years of t reatment  with a cer- 
tain drug. A class predictor for this problem would 
suggest whether the patient would benefit from treat-  
ment before performing the two-year experiment to test 
the prediction. The development of such a prediction 
method would clearly have profound implications on the 
diagnosis and t reatment  of disease. 

This paper focuses on developing a method for class 
prediction. Class discovery by gene expression data  has 
been at tempted through a variety of clustering tech- 
niques [1, 7, 9, 12, 19]; in Section 5 we describe how our 
prediction technique can be used to improve the class 
discovery process as well. To develop these methods, we 
consider the simplified problem of predicting member- 
ship in one of just two classes. In Section 6, we discuss 
ways of extending the methods to construct multi-class 
predictors. 

In our experiments we measure the expression lev- 
els of approximately 6800 genes. Most of these genes, 
however, are probably not relevant to the class distinc- 
tion we want to predict. Thus, a class predictor needs a 
method, whether explicit or implicit, for focusing on the 
relevant genes. For our predictor, we select genes explic- 
itly using the methods described in Section 2. In Sec- 
tion 3 we describe how we use the chosen genes to pre- 
dict and how to evaluate the method's  success. Our pre- 
diction method is designed to be extremely robust and 
to permit experimentation with different schemes for 
gene selection, prediction, and confidence evaluation. 
Despite this strong empirical orientation the method 
can be viewed in a classical Bayesian framework, as dis- 
cussed in Section 3.3. 

Sections 4 and 5 describe experiments in which we 
applied the method to the classification of acute leukemia 
patients; Section 4 focuses on class prediction while Sec- 

tion 5 addresses the class discovery problem. Section 6 
proposes several directions for future work in this area. 

We need a few basic definitions before proceeding. 
A data  set consists of a set of gene expression measure- 
ments for m genes in each of n samples (generally, one 
from each patient).  Each gene in the data  set can be 
represented by a gene expression vector g E A n show- 
ing the gene's expression in each of the n samples. Note 
that  these measurements are actually estimates of the 
gene's expression level; even with the latest technology 
the process of measuring gene expression is somewhat 
noisy [14]. However, measurements are thought  to be 
reproducible within roughly a factor of two. In prac- 
tice, we restrict our expression values to be above some 
minimum positive threshold, so we never have negative 
gene expression, which would be difficult to interpret.  
A class vector c E ( - 1 ,  1} n represents the two-class dis- 
tinction we wish to predict; c~ -- 1 if sample i is in class 
1, and -1 otherwise. 

2 A method for choosing significantly correlated genes 

In this section we address the problem of choosing pre- 
dictive genes. We consider desirable characteristics of 
predictive genes and we define a quantitat ive metric 
for evaluating these characteristics. Not all interest- 
ing class distinctions are determined by gene expres- 
sion levels alone. Cellular differences may be regulated 
by al ternate splice variants or by methylation, neither 
of which would necessarily be evident from expression 
chip data. We must therefore ask whether there are any 
genes at all whose expression data  is likely to be pre- 
dictive of the specific class distinction. If there are such 
genes, we still face several issues in choosing the right 
set of genes to use as predictors. This section explores 
each of these aspects of gene selection. 

2.1 A metric for gene selection 

If the exact class distribution functions were known, the 
problem of metric selection and class prediction would 
be straightforward from a Bayesian perspective [3, 8, 10, 
15]. Unfortunately, this is not the case. We therefore 
take a more empirical approach. 

In choosing predictive genes, we look for two charac- 
teristics. First, a predictive gene's typical expression in 
one class should be quite different from its typical ex- 
pression in the other. Second, aside from the differences 
in expression that  are explained by the class distinction, 
there should be as little variation as possible. So we 
want a gene selection metric that  favors genes where 
the range of the expression vector is large, but  where 
most of that  variation is due to the class distinction. 

We designed a metric P with this property. Let c 
be a class vector and let g be the expression vector of a 
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Class I Class 2 Class 1 Class 2 Class I Class 2 

Figure 1: Expression profiles for 3 genes, each in ten 
samples (samples 1-5 are in Class 1, 6-10 are in Class 
2). Dark horizontal lines indicate within-class mean ex- 
pression levels. The gene profiled on the left is unlikely 
to predict well because the class means are quite close; 
the expression of this gene gives us little power to dis- 
tinguish between classes. The class means for the center 
gene profile are identical to those for the rightmost pro- 
file; both are well-separated. Of the two, the central 
one shows less variation around those means and so is 
likely to be a better  predictive gene. The relative class 
separation metric, P,  is designed to capture these prop- 
erties. 

gene over n samples. Define the within-class mean #1 
to be the mean expression level of samples in class 1, 
and the within-class standard deviation al  as the stan- 
dard deviation of expression in these samples. Define 
~t2 and a2 similarly for class 2. Then we can can define 
a correlation metric P(g, c) - ~ which measures 

o'1 "~'0"2 '~ 
relative class separation. 

Many other gene selection metrics could be used as 
well; we considered several. Most measure either the 
degree of similarity between gene expression and the 
class vector (correlation metrics), or the difference be- 
tween the two (distance metrics). These included the 
Pearson correlation coefficient (1/n ~-~ g~c,) between 
the class vector and the normalized gene expression vec- 
tors. We also considered a simple Euclidean distance 
(1In ~:(gi- e,)2), and some other distance-based met- 
rics such as the Manhat tan and Bat tacharyya distances 
which have traditionally been employed as measures of 
class separation [10, 15]. The best performance (i.e., 
the most accurate prediction) was obtained with the 
relative class separation metric defined above. This is 
probably a consequence of the fact that  it accounts for 
both the class separation and the spread around class 
means. The Euclidean distance achieved almost the 
same performance but the~other metrics were somewhat 
less accurate. 

2.2 Neighborhood analysis 

Having chosen a correlation metric, we consider whether 
there are any genes likely to be good predictors of the 
given class distinction. To answer this question, we use 
a permutat ion test we refer to as neighborhood analysis. 
Consider the class vector c and all the gene expression 

vectors as points in n-dimensional space. The idea of 
neighborhood analysis is simply to look at a neighbor- 
hood of a fixed size around c and count the number of 
gene expression vectors within it. We compare this to 
the number of expression vectors within the neighbor- 
hood of the same size around a random permutat ion of 
c. By trying many random permutations of c, we can 
determine if the neighborhood around c holds more gene 
expression vectors than we'd expect to see by chance. 
If so, we conclude tha t  the class distinction represented 
by c is likely to be predictable from the expression data. 

For example, Figure 2a shows the neighborhoods 
around a hypothetical  class distinction c and a random 
class distinction c'. Within the neighborhood of size k 
around c there are many more genes than appear in the 
same-sized neighborhood around c'. This distinction 
holds whether k is a measure of distance or of correla- 
tion; the only thing that  changes is the direction of the 
inequality. 

a) 

X Class Vector ( 1, 1, 1, 1, 1,-1,.1,-1,-1,-1) 

• Gene Expression Vector (X~,~,X~,X4,Xs,X~,XT,X~,X~,X~o) 
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Figure 2: Neighborhood analysis, a) A schematic dia- 
gram of neighborhoods around real and randomly per- 
muted class vectors, b) Plot  of observed P(g, c) distin- 
guishing 6 kidney samples from 6 renal cell carcinomas, 
compared to randomly permuted class distinctions. 
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Figure 2b shows a neighborhood analysis plot distin- 
guishing six normal kidney samples from six renal cell 
carcinomas, cancerous tumors derived from the same 
tissue. The y-axis shows the number of genes within 
the neighborhood around c (the vector representing the 
class distinction between normal and cancerous sam- 
ples) and the x-axis indicates the size of the neighbor- 
hood (i.e., P(g, c)). So an observed data  point at (1.3, 
10) indicates tha t  the gene g with the 10-th highest cor- 
relation with c has P(g, c) = 1.3, or that  there are 10 
genes within the neighborhood defined by P(g, c) > 1.3. 
The observed da ta  intersects the 5% significance line at 
72 genes, with P(g, c) = 0.85, indicating that  for 5% of 
the random vectors c', neighborhoods of size 0.85 con- 
tain as many genes as we saw in the neighborhood of 
size 0.85 around the real class distinction c. We inter- 
pret the existence of genes above the 5% significance 
level as an indication that  the class distinction is likely 
to be predictable by gene expression data. The 5% sig- 
nificance level is sufficient since we are examining only 
12 samples; if the distinction is truly predictable, as this 
plot implies, we should see the significance level increase 
as the data  set grows. 

2.3 Choosing a prediction set S 

Once the neighborhood analysis graph shows that  there 
are genes significantly correlated with class distinction 
c, there are some decisions to make in choosing a set 
of genes for prediction. Our goal is to choose a set 
S of k genes such that  most genes in S are likely to 
be predictive of the class distinction in future samples. 
We could simply choose the top k genes by the absolute 
value of P(g, c), but this allows for the possibility that ,  
for example, all genes might be expressed at a high level 
in class 1 and a low level (or not at all) in class 2. We've 
found that  predictors often do better  when they include 
some genes expressed at high levels in each class. So 
we perform separate neighborhood analyses for positive 
and negative P(g, c) scores, and we choose the top kl 
genes (highly expressed in class 1) and the bot tom ks 
genes (highly expressed in class 2). 

Finally, we need to determine how sensiti~e our pre- 
diction method is to the exact number of genes used 
and to choose kl and k2 accordingly. There are several 
competing constraints. We want to limit the number 
of genes to those shown to be significantly correlated 
by the permutat ion test, perhaps at the 1% level. Fur- 
thermore, suppose that  there were a single gene whose 
expression level was perfectly correlated with the class 
distinction in the available data. We still might like a 
predictor that  includes more than one gene, in order to 
provide robustness against noise and to allow us to es- 
t imate prediction accuracy, as described in Section 3.1. 
Additional genes may be active in different biological 
pathways or may provide independent estimates of ac- 

tivity along the same pathway; in either case they can 
add information that  can be combined to improve pre- 
diction. 

On the other hand, this argument cannot be ex- 
tended indefinitely. If there are a thousand genes that  
are significantly correlated with a class distinction, it 's 
unlikely that  they all represent different biological mech- 
anisms. Their  expression patterns are probably depen- 
dent, so that  the thousandth gene would be unlikely to -  
add information not already provided by the previous 
999. However, tha t  thousandth gene does add noise to 
the system. 

In general, then, there is a tradeoff between the 
amount of additional information and robustness gained 
by adding more genes, and the amount of noise added. 
The optimal size of the prediction set is likely to vary 
somewhat due to the genetics of the class being pre- 
dicted (whether there are many independent classes of 
genes correlated with the class distinction, or just a sin- 
gle co-regulated pathway; whether many genes or few). 

We therefore evaluated two different methods for 
choosing k] and k2. The first chooses all genes above 
the 1% significance level in neighborhood analysis, but  
sets a maximum of 50 genes in each direction to avoid 
being dominated by noise. The second method tries 
many different values for ISh with constraint that  kl 
and k2 are roughly equal. These models are each eval- 
uated in cross-validation on roughly half the data. The 
performance of the best model is then tested on the 
remainder of the data. 

In Section 4 we use the second approach, but  pre- 
liminary results comparing the two methods indicate 
that  they provide roughly equivalent predictive ability. 
Similar results for predictors using different numbers 
of genes (as discussed in Section 4) indicate that  this 
prediction method is not highly sensitive to the exact 
number of genes used. This allows us to simply choose a 
reasonable-sized prediction set according to the guide- 
lines mentioned here. 

3 Prediction by weighted voting 

Once we've chosen S, we're ready to t ry  predicting new 
samples. We assume that  we have a set of samples 
called the training set whose correct classifications are 
already known, and a test set of additional samples 
whose classes are currently unknown, at least to the 
algorithm. 

To determine the classification of a new sample in 
the test set, we use a simple weighted voting scheme. 
Each gene in S gets to cast its vote for exactly one class. 
The gene's vote on a new sample x is weighted by how 
closely its expression in the training set correlates with 
c. The vote is the product  of this weight and a measure 
of how informative the gene appears to be for predicting 
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the new sample. 
Intuitively, we'd expect the gene's expression in x to 

look like that  of either a typical class-1 sample or a typ- 
ical class-2 sample in the training set. So we compare 
expression in the new sample to the class means in the 
training set. We define a "decision boundary" b halfway 
between the two class means. The vote corresponds 
to the distance between the decision boundary and the 
gene's expression in the new sample. So each gene casts 
a weighted vote V =weight(g) • distance(x, b). We use 
P ( g ,  c) as the weight of gene g; formal definitions of 
voting and normalization as implemented in [11] are 
described in Appendix A. (Note that  there is a consid- 
erable body of work on general approaches to prediction 
by combining the votes of many individual predictors; 
see [2, 5, 18] for examples.) 

The weights are defined so that  positive votes count 
as votes for membership in class 1, negative ones for 
membership in class 2. The votes for all genes in S are 
combined; V1 is the sum of all positive votes and V2 the 
sum of all negative votes. The winner, and the direction 
of the prediction, is simply the class receiving the larger 
total vote. 

3.1 The tradeoff of reliability vs. utility 

Intuitively, if one class receives most of the votes and 
the other class has only a token representation, it seems 
reasonable to predict with the majority. However, if the 
margin of victory is slight, a prediction for the majority 
class seems somewhat arbi t rary and can only be done 
with low confidence. We therefore define the "predic- 
tion strength" (PS) to measure the margin of victory: 

Vw . . . . .  - V ,  . . . .  

P S  = 
V., . . . . .  + 1 , 1 ,  . . . .  " 

Since P .  ..... is always greater than V~o .... PS varies be- 
tween 0 and 1. 

As one might expect, typical prediction strengths for 
incorrect predictions tend to be much lower than those 
for correct predictions. Thus, the PS measure provides 
a quantitative way of defining a tradeoff between a "re- 
liable" predictor (one that  is almost always correct but  
sometimes refuses to predict), and a "useful" predictor 
(one that  makes a prediction in every case, but may 
be incorrect sometimes) [~6]. If it is essential to make 
a prediction every time, one can always predict in fa- 
vor of the winning class, however small the margin of 
v.ictory. If the cost of an incorrect prediction is high, 
one can choose a PS threshold below which predictions 
are not made. For example, when the predictions are 
used to diagnose or direct t reatment  of cancer patients, 
as in Section 4, an incorrect prediction could have po- 
tentially devastating results. Therefore, we choose a 
conservatively high PS threshold (0.3) to minimize the 

chance of making an incorrect diagnosis (and poten- 
tially treating a patient with the wrong chemotherapy 
regimen). 

3.2 Evaluating the method 

The preceding discussion suggests two criteria for eval- 
uating a predictor: the error rate, or percentage of in- 
correct predictions from the total  number of predictions 
made; and the "no-call" rate,  or the percentage of sam- 
ples for which no prediction was made (due to a PS 
below the threshold). 

When the number of samples is limited, we evaluate 
the model by n-way cross-validation: remove a single 
sample from the data  set, use the remaining n - 1 sam- 
ples as the training set, and test  the algorithm's ability 
to predict the withheld sample. This process is repeated 
for each of the n samples in turn, and the error and no- 
call rates are calculated over the entire data  set. 

When additional samples become available, we use 
them to test the best model found in the cross-validation 
step. If the initial data  set is large enough to divide in 
two, we may still benefit from a cross-validation step 
in a number of ways. We can t ry  models with different 
numbers of genes in cross-validation, and pick the best 
one as the final model to apply to future data. We may 
also evaluate the tradeoff between error and no-call rate 
at the cross-validation stage. By plotting the cumula- 
tive cross-validation error ra te  (with a PS threshold of 
zero) against the prediction strength, one can determine 
a reasonable choice for the PS cutoff to use in the test 
set. 

3.3 The prediction scheme from a Bayesian perspective 

Our approach of separating gene selection, prediction, 
and confidence evaluation can be cast in a Bayesian 
framework [3, 8, 10, 15]. In this formalism, the predic- 
tion of new samples is based on the log likelihood ratio. 
For example, if we assume that  the class distributions 
pl and P2 are normal with equal variances -and  that  
the mean and variance of the classes can be effectively 
estimated using the training se t -  then the vote for gene 
g is the log likelihood ratio: Vg = (x - r',~+~2 ~t ~m--=2-z~ 

2 / k  a ~  / "  

(The derivation of this expression is outlined in Ap- 
pendix B.) In this expression one can identify the two 
factors (distance and weight) used in our voting scheme. 
A Bayesian rule that  minimizes the error assigns the 
predicted class according to the sign of Vg. Prediction 
is based on the sign of the sum of Vg (assuming inde- 
pendence) over all genes (i.e., the prediction strength is 
Z:,, v /Z:g IVgl). 

A number of potential improvements of the method 
can be identified from this perspective: fitting non- 
normal empirically-determined distributions to the data  
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(e.g., the LaPlace distribution); removing the symme- 
try assumption so that the class boundary is shifted 
as a function of the class distributions; removing the 
independence assumption in the voting scheme by us- 
ing linearly-independent gene components rather than 
the genes themselves; etc. These enhancements have 
the potential to increase the accuracy of the prediction 
scheme at the cost of sacrificing robustness and simplic- 
ity. More work will be needed to evaluate their effects 
and practical potential. 

4 Application: Classifying patient samples 

We applied this approach to the problem of classifying 
acute leukemias [11]. Acute leukemias can broadly be 
divided into two classes, acute myeloid leukemia (AML) 
and acute lymphoblastic leukemia (ALL), that respec- 
tively originate from cells of either myeloid or lymphoid 
origin [17]. The two diseases appear identical under 
the microscope, and indeed were thought to be a sin- 
gle disease for many years. However, correct diagnosis 
is critical, since they respond best to different treat- 
ment regimens. Diagnosis currently requires a number 
of distinct clinical tests, each performed by specialized 
labs and analyzed by experts. While most diagnoses 
are correct, mistakes still occasionally occur. Because 
the acute leukemias are well understood and can gen- 
erally be predicted correctly, they are a good test case 
for class prediction methods. Furthermore, a few genes 
whose expression serves as a marker of acute leukemia 
type are already known, indicating that the class dis- 
tinction is likely to be predictable from gene expression 
data. 

We obtained a set of 38 leukemia samples (11 AML, 
27 ALL). Samples were derived from bone marrow (BM) 
taken at time of diagnosis (i.e., before treatment). We 
used these samples as our training set. For further 
testing, we later obtained an additional 34 samples (14 
AML, 20 ALL) as a test set. While 25 of the test sam- 
ples were derived from bone marrow, 9 came from pe- 
ripheral blood (PB) samples, which are thought to be 
considerably more heterogeneous than t h e  bone mar- 
row samples. It thus remained to be seen whether they 
could be predicted accurately by a model trained on 
cleaner data. 

We first performed neighborhood analysis in the train- 
ing set and found many genes significantly correlated 
with the ALL/AML distinction• Figure 3 shows that 
there are about 700 genes above the 1% level in each 
direction. 

We then performed cross-validation, with a PS cutoff 
of 0.3. All trials with at least 3 genes had an error rate 
of zero with from 1 to 4 no-calls. Since there were sev- 
eral hundred genes correlated with the ALL/AML dis- 
tinction at the 1% level, we somewhat arbitrarily chose 
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to use a 50-gene predictor. This model made 36 pre- 
dictions, all correct, out of 38 samples; one of the two 
no-calls would have been an error if predicted. 

We went on to evaluate the performance of the method 
on a test set of 34 additional leukemia samples• The 
50-gene model (trained on all 38 of the samples in the 
training set) predicted 29 of the 34 samples, all of them 
correctly. Of the remaining 5 (4 BM, 1 PB), only two 
(including the PB sample) would have been predicted 
incorrectly had the PS threshold been set at zero. A 
complete breakdown of the samples, their origins (PB or 
BM), their predictions and prediction strengths can be 
found on our web site (www.genome.wi.mit.edu/MPR). 

Next, we built a predictor to distinguish between the 
two key subclasses of ALL, those arising from T-cells 
and those arising from B-cells. While the distinctions 
between AML and ALL are fairly dramatic, those be- 
tween T-ALL and B-ALL are more subtle, leading us 
to expect that prediction might be more difficult. How- 
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ever, neighborhood analysis (Figure 4) showed about 
200 genes significantly correlated with the distinction. 
In cross-validation, a single predictor built with 50 genes 
made 32 calls (PS > .3) out of 33 samples; all 32 were 
correct. A predictor built with all 200 significant genes 
gave essentially the same results: 32 samples were cor- 
rect with PS > .3, and the same sample fell below 
the PS threshold as in the 50-gene model. This il- 
lustrates one of the strengths of the weighted voting 
scheme - its relatively low dependence on the exact 
number of genes chosen. In general, the average pre- 
diction strength drops as the number of genes increases 
above a certain point, but the drop is gradual enough 
to allow some flexibility in gene selection. 
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Figure 4: Neighborhood analysis for the B-cell / T-cell 
distinction in ALL samples. 

Finally, in a set of 15 AML samples for which we 
had long-term follow-up information, we attempted to 
predict which patients would go into remission following 

chemotherapy. The 15 samples were divided into "treat- 
ment failure" and "treatment success" groups (8 and 
7 samples, respectively). Neighborhood analysis, how- 
ever, showed no genes correlated with the distinction 
at the 1% or even the 5% significance level. Only the 
top gene out of 6800 looked more highly correlated than 
we'd expect to see by chance, but at roughly the 10% 
significance level. Despite this, we attempted prediction 
and found that the only good predictor (making two 
errors in 15 samples) contained only this single gene, 
HOXA9. Interestingly, HOXA9 was already known to 
be involved in AML pathogenesis [4]; overexpression of 
HOXA9 causes leukemia in transgenic mice [13]. Thus, 
we suspect that this gene may truly be predictive of 
outcome despite the lack of statistical significance in 
our permutation test; more samples are needed to test 
this hypothesis. Error rates for predictors with addi- 
tional genes were generally above 30%. We also con- 
clude, therefore, that prediction with genes that show 
n o  correlation in excess of that expected by chance is 
unlikely to succeed. This supports our proposal for us- 
ing neighborhood analysis to determine whether a class 
distinction is predictable. 

5 Application: Verifying proposed classes 

Class discovery (as opposed to class prediction) for the 
acute leukemias required many years of medical research, 
and cancer classification is still an active area of re- 
search today. It has been suggested that computa- 
tional analysis of gene expression may be a useful ap- 
proach to expediting the discovery of new, clinically- 
significant classes. To this end, a variety of approaches 
to sorting and clustering gene expression data have been 
proposed [1, 7, 9, 12, 19]. However, regardless of the 
method used for class discovery (whether self-organizing 
maps (SOMs) or cluster trees or conclusions drawn from 
years of clinical observation), the challenge we face is in 
validating the clusters. Any clustering algorithm will 
find clusters of samples in expression data. However, 
given relatively few samples and thousands of gene ex- 
pression vectors, one needs to show that the class dis- 
tinctions discovered are real and b!ologically interesting, 
rather than coincidental artifaats of the data. We pro- 
pose improving and validating the clusters by testing 
predictability. 

We expect that if clusters reflect true biological struc- 
ture, the distinction should be predictable in additional 
samples. We therefore clustered the 38 leukemia sam- 
ples in our training set using the self-organizing map 
method implemented in our GENECLUSTER software 
[19]. When we asked for two clusters of samples, the 
dominant distinction was nearly that of ALL/AML: 
cluster A contained 1 AML and 24 ALL samples, while 
cluster B contained 10 AML and 3 ALL samples. Thus, 
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all but four of the samples were consistent with the 
known ALL/AML distinction. 

Were the four remaining samples anomalies or were 
they actual improvements over the ALL/AML distinc- 
tion? To investigate this question, we tested the pre- 
dictability of the SOM-derived classes (A and B rather 
than ALL and AML). Testing prediction of derived class- 
es is different from predicting known classes in that we 
do not know the correct answers for new data. How- 
ever, we can test consistency by examining prediction 
strengths in cross-validation. When we performed cross- 
validation on the SOM-derived classes, two of the four 
anomolous samples were not called (PS < .3), and a 
third, the lone AML sample in class A, was incorrectly 
predicted to come from class B (the class containing the 
majority of the AML samples). These errors account 
for three of the four samples not predicted correctly in 
cross-validation, showing that the majority of the class 
distinction, that part consistent with ALL/AML, is still 
predictable. In this way, cross-validation can be used to 
refine classes discovered by other means. 

Furthermore, the distribution of prediction strengths 
for distinguishing classes A and B by cross-validation 
was significantly higher than we'd expect for a random 
class distinction. We predicted 100 random permuta- 
tions of the class distinction using the same data and 
generated a histogram showing the median PS (over 
the 38 samples) for predicting each of the random dis- 
tinctions (Figure 5). In contrast, the median PS for 
the SOM-derived class distinction was 0.86, noticeably 
higher than the highest (0.66) of the 100 random dis- 
tinctions tried. 
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Figure 5: Histogram of median prediction strengths 
(over 38 samples) in each of 100 random class distinc- 
tions. By comparison, the median prediction strength 
for the class distinction derived by our clustering algo- 
rithm was 0.86. 

Next, we asked GENECLUSTER to divide the set of 

leukemia samples into four clusters. This time the clus- 
tering method not only discovered the ALL/AML dis- 
tinction, but also divided the ALL samples largely by T- 
cell or B-cell lineage. There were two clusters of B-cell 
ALLs, one of T-cell ALLs, and one of AMLs. The key 
question was whether the distinction between the two 
B-cell classes was a new but meaningful biological dif- 
ference, or simply an artifact resulting from our asking 
the algorithm to produce more clusters than the data 
would support. We tested this by building predictors 
for all six possible pairwise class comparisons between 
the four clusters. The median prediction strength for 
distinguishing the two B-cell clusters (0.40) was much 
lower than for any of the other distinctions (0.65-0.94), 
suggesting that the distinction is more likely to be an 
artifact of the clustering method than a true new dis- 
covery. 

6 Discussion and Conclusion 

We have described a method for class prediction from 
gene expression data and illustrated its potential by pi- 
lot experiments in of cancer classification. However, it 
is worth stressing that these results are not limited to 
diagnosis, nor even to the field of cancer research. We 
have already mentioned the possibility of using these 
methods to predict patient outcomes or responses to 
treatment. Notably, the genes selected for our method 
often appear to be directly relevant to the process be- 
ing studied, and thus may provide clues to gene func- 
tion or leads for drug development. In general, one 
can imagine using similar methods to predict any trait 
or characteristic that is evident at the transcriptional 
level. Furthermore, neighborhood analysis allows us to 
determine which distinctions are evident transcription- 
ally. The number of potential applications is unlimited. 

However, a great deal remains to be done. We have 
been fortunate in that in the majority of our test cases, 
classes are distinguished by a large number of genes 
whose expression indicates class membership for all the 
samples we tested. However, one could imagine pre- 
dicting more subtle distinctions where no one biological 
pathway is responsible for all the cases in either class. 

Furthermore, to be universally applicable a predic- 
tion method must be able to distinguish between mul- 
tiple classes. Certainly, there are ad-hoc methods for 
combining the binary class predictors described here 
into multi-class predictors. As we did in Section 5, one 
can do pairwise comparisons between a set of classes; 
however, this becomes time-consuming as the number 
of classes grows. Another approach is to predict each 
sample's membership in either a class or its complement 
and repeat the process for each of the known classes. 
Ideally, a sample will show strong evidence (indicated 
by a high PS) for membership in one class only. In prac- 
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tice, this is moderately effective when the sample sizes 
for each class are sufficiently large, but the method still 
scales linearly with the number of classes. The desir- 
able solution, an elegant extension of the weighted vot- 
ing scheme for distinguishing multiple classes, is non- 
trivial since individual genes that distinguish between 
all classes simultaneously are unlikely to exist. 

Thus, a useful extension of the method would allow 
different sets of genes to be responsible for predicting 
various subsets of the target classes. Califano, et al. 
have suggested the application of a Bayesian approach 
to find all maximal patterns of correlated genes [6]. We 
have also considered using canonical discriminant anal- 
ysis to provide an approach intermediate in complex- 
ity and, potentially, in predictive power. We plan to 
compare the strengths of these and other methods in a 
future paper. 
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Appendix A: Weighted voting 

This appendix provides details of the weighted voting 
scheme used for prediction. Recall from Section 3 that  
each gene casts a vote V =weight(g) distance(x, b). 

Formally, consider a single gene represented by gene 
expression vector g, and let x be the raw expression level 
of that  gene in a new sample whose class we want to pre- 
dict. Let ~ --- log10 x, and let .~ = ( log l0(g l ) , . . . ,  lOgl0(gn)). 
Let 1. and a represent the mean and standard deviation 
of .~. Then we define the normalized vector ~ . . . .  by 

g norm ~ , • • • ,  - -  
a or 

~ - 1 .  
and X.o,m = - -  

(Note that  ~ . . . .  is normalized by the mean and stan- 
dard deviation over the training set only.) We define 
the class means for ~,o,r,: 

Z ( 3E C|~A-qS 1) ~ . . . . .  

1.1 = {Class 1{ 

and 1.2 similarly. Finally, we set the "decision bound- 
ary" b = (1'1 +1.2)/2 halfway between the average class 1 
expression level and the average class 2 expression level. 
Then the gene's vote V is simply the gene's weight in 
the training set (in this case, its correlation with c), 
multiplied by the distance of the new sample from the 
decision boundary: 

in class 1, & . . . .  > b, so ~ . . . .  - b > 0 and the weighted 
vote will be positive. However, if x looks like a typi- 
cal class 2 sample, ~ . . . .  - b < 0 and the weighted vote 
will be negative. A similar argument holds if 1.1 < 1.2: 
the signs of (~ . . . .  - b) are reversed but  cancel with the 
negative sign of P(g, c), so the weighted votes are still 
positive for class 1 and negative for class 2. 

Appendix B: Derivation of Bayesian log likelihood 

Recall tha t  in Section 3.3 we've assumed that  the two 
class distributions of gene expression, Pl and P2, are nor- 
mal distributions with equal s tandard deviations repre- 
sented by a. Then 

V 9 = - In P-L1 = 1 (x - 1.1)2 1 (x - 1.2) 2 
P2 2 a 2 - 2 a 2 

1 
Yg = ~ (2x(1.2 - 1.1) + 1.~ - 1.I)) 

In our framework, the first term can be interpreted 
as the distance between the new sample and the decision 
boundary, while the second term can be viewed as the 
gene's weight. 

V = P(g,c)(~ . . . .  - b). 

Positive votes are counted as votes for the new sam- 
ple's membership in class 1, negative votes for class 2. 
To see why this works, recall that  P(g, c) = ~ .  So 
P(g, c) is positive if p] > p2 and negative if/~1 < p2- 
Suppose that  1.1 > 1.2- If x looks like a typical sample 
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