

Neuro-Fuzzy Modeling and Control

Jyh-Shing Roger Jang, Chuen-Tsai Sun

Abstract— Fundamental and advanced developments in
neuro-fuzzy synergisms for modeling and control are re-
viewed. The essential part of neuro-fuzzy synergisms comes
from a common framework called adaptive networks, which
unifies both neural networks and fuzzy models. The fuzzy
models under the framework of adaptive networks is called
ANFIS (Adaptive-Network-based Fuzzy Inference System),
which possess certain advantages over neural networks. We
introduce the design methods for ANFIS in both modeling
and control applications. Current problems and future di-
rections for neuro-fuzzy approaches are also addressed.

Keywords— Fuzzy logic, neural networks, fuzzy modeling,
neuro-fuzzy modeling, neuro-fuzzy control, ANFIS.

I. INTRODUCTION

In 1965, Zadeh published the first paper on a novel way
of characterizing non-probabilistic uncertainties, which he
called fuzzy sets [118]. This year marks the 30th an-
niversary of fuzzy logic and fuzzy set theory, which has
now evolved into a fruitful area containing various disci-
plines, such as calculus of fuzzy if-then rules, fuzzy graphs,
fuzzy interpolation, fuzzy topology, fuzzy reasoning, fuzzy
inferences systems, and fuzzy modeling. The applications,
which are multi-disciplinary in nature, includes automatic
control, consumer electronics, signal processing, time-series
prediction, information retrieval, database management,
computer vision, data classification, decision-making, and
SO on.

Recently, the resurgence of interest in the field of artifi-
cial neural networks has injected a new driving force into
the “fuzzy” literature. The back-propagation learning rule,
which drew little attention till its applications to artificial
neural networks was discovered, is actually an universal
learning paradigm for any smooth parameterized models,
including fuzzy inference systems (or fuzzy models). As a
result, a fuzzy inference system can now not only take lin-
guistic information (linguistic rules) from human experts,
but also adapt itself using numerical data (input/output
pairs) to achieve better performance. This gives fuzzy in-
ference systems an edge over neural networks, which cannot
take linguistic information directly.

In this paper, we formalize the adaptive networks as
a universal representation for any parameterized mod-
els. Under this common framework, we reexamine back-
propagation algorithm and propose speedup schemes uti-
lizing the least-squared method. We explain why neural
networks and fuzzy inference systems are all special in-
stances of adaptive networks when proper node functions

This paper is to appear in the Proceedings of the IEEE, March 1995

Jyh-Shing Roger Jang is with the Control and Simulation
Group, The MathWorks, Inc., Natick, Massachusetts. Email:
jang@mathworks.com.

Chuen-Tsai Sun is with the Department of Computer and Infor-
mation Science, National Chiao Tung University, Hsinchu, Taiwan.
Email: ctsun@cis.nctu.edu.tw.

are assigned, and all learning schemes applicable to adap-
tive networks are also qualified methods for neural net-
works and fuzzy inference systems.

When represented as an adaptive network, a fuzzy in-
ference system is called ANFIS (Adaptive-Networks-based
Fuzzy Inference Systems). For three of the most commonly
used fuzzy inference systems, the equivalent ANFIS can be
derived directly. Moreover, the training of ANFIS follows
the spirit of the minimum disturbance principle [111]
and is thus more efficient than sigmoidal neural networks.

Once a fuzzy inference system is equipped with learning
capability, all the design methodologies for neural network
controllers become directly applicable to fuzzy controllers.
We briefly review these design techniques and give related
references for further studies.

The arrangement of this article is as follows. In Section 2,
an in-depth introduction to the basic concepts of fuzzy sets,
fuzzy reasoning, fuzzy if-then rules, and fuzzy inference sys-
tems are given. Section 3 is devoted to the formalization
of adaptive networks and their learning rules, where the
back-propagation neural network and radial basis function
network are included as special cases. Section 4 explains
the ANFIS architecture and demonstrates its superiority
over back-propagation neural networks. A number of de-
sign techniques for fuzzy and neural controllers is described
in Section 5. Section 6 concludes this paper by pointing out
current problems and future directions.

II. Fuzzy SeTs, Fuzzy RULES, Fuzzy REASONING,
AND Fuzzy MODELS

This section provides a concise introduction to and a
summary of the basic concepts central to the study of fuzzy
sets. Detailed treatments of specific subjects can be found
in the reference list.

A. Fuzzy Sets

A classical set is a set with a crisp boundary. For exam-
ple, a classical set A can be expressed as
A={z|z>6}, (1)

where there is a clear, unambiguous boundary point 6 such
that if « is greater than this number, then z belongs to the
set A, otherwise z does not belong to this set. In contrast
to a classical set, a fuzzy set, as the name implies, is a
set without a crisp boundary. That is, the transition from
“belonging to a set” to “not belonging to a set” is gradual,
and this smooth transition is characterized by member-
ship functions that give fuzzy sets flexibility in modeling
commonly used linguistic expressions, such as “the water is
hot” or “the temperature is high.” As Zadeh pointed out
in 1965 in his seminal paper entitled “Fuzzy Sets” [118],

such imprecisely defined sets or classes “play an impor-
tant role in human thinking, particularly in the domains
of pattern recognition, communication of information, and
abstraction.” Note that the fuzziness does not come from
the randomness of the constituent members of the sets,
but from the uncertain and imprecise nature of abstract
thoughts and concepts.

Definition 1: Fuzzy sets and membership functions
If X is a collection of objects denoted generically by z, then
a fuzzy set A in X is defined as a set of ordered pairs:

A= {(z.pa(2)) | 2 € X} (2)

pa(z) is called the membership function (MF for short) of
x in A. The MF maps each element of X to a continuous
membership value (or membership grade) between 0 and

1.
O

Obviously the definition of a fuzzy set is a simple exten-
sion of the definition of a classical set in which the char-
acteristic function is permitted to have continuous values
between 0 and 1. If the value of the membership function
pa(x) is restricted to either 0 or 1, then A is reduced to a
classical set and p4(x) is the characteristic function of A.

Usually X is referred to as the universe of discourse,
or simply the universe, and it may contain either discrete
objects or continuous values. Two examples are given be-
low.

Ezxample 1: Fuzzy sets with discrete X
Let X = {1, 2,3,4,5, 6,7, 8 be the set of numbers of
courses a student may take in a semester. Then the fuzzy
set A = “appropriate number of courses taken” may be
described as follows:

A={(1,0.1),(2,0.3),(3,0.8), (4

This fuzzy set is shown in Figure 1 (a).
O
Ezample 2: Fuzzy sets with continuous X
Let X = RT be the set of possibles ages for human be-
ings. Then the fuzzy set B = “about 50 years old” may be

expressed as
B = {(m,yB(x)|x € X}¢

where
1

z—50*
1+ (2520)
This is illustrated in Figure 1 (b).

pp(z) =

An alternative way of denoting a fuzzy set A is

Doeiex Balzi)/zs, if X is discrete.

A= { fX pa(z)/e, if X 1is continuous.

(3)

The summation and integration signs in equation (3) stand
for the union of (z, pa(z)) pairs; they do not indicate sum-
mation or integration. Similarly, “/” is only a marker and

membership value

does not imply division. Using this notation, we can rewrite
the fuzzy sets in examples 1 and 2 as

A =0.1/140.3/240.8/3+1.0/4+0.9/5+0.5/6-+0.2/7+0.1/8,

1
pef /s
r 1+ (5520)
respectively.

From example 1 and 2, we see that the construction of
a fuzzy set depends on two things: the identification of a
suitable universe of discourse and the specification of an
appropriate membership function. It should be noted that
the specification of membership functions is quite subjec-
tiwwe, which means the membership functions specified for
the same concept (say, “cold”) by different persons may
vary considerably. This subjectivity comes from the in-
definite nature of abstract concepts and has nothing to
do with randomness. Therefore the subjectivity and non-
randomness of fuzzy sets is the primary difference between
the study of fuzzy sets and probability theory, which deals
with objective treatment of random phenomena.

and

‘ (& MF on adiscrqe X (b) MFon agonti nuous X

1r * . q] 1+ q
!)
. ' s
| | o
1 k2
05+ i B g 05 B
\ | &
i ! £
0 * L 0
2 4 6 8 0 50 100
X = number of courses X =age
Fig. 1. (a) A = “appropriate number of courses taken”; (b) B =

“about 50 years old”.

,1),(5,0.9), (6,0.5),(7,0.2), (8,0.1)}.

Corresponding to the ordinary set operations of union,
intersection, and complement, fuzzy sets have similar oper-
ations, which were initially defined in Zadeh’s paper [118].
Before introducing these three fuzzy set operations, first we
will define the notion of containment, which plays a cen-
tral role in both ordinary and fuzzy sets. This definition of
containment is, of course, a natural extension of the case
for ordinary sets.

Definition 2: Containment or subset
Fuzzy set A is contained in fuzzy set B (or, equivalently,
A is a subset of B, or A is smaller than or equal to B) if
and only if pa(z) < pp(z) for all . In symbols,

AC B < pa(z) < pp(z). (4)

O

Definition 3: Union (disjunction)
The union of two fuzzy sets A and B is a fuzzy set C,
written as C = AUB or C = A OR B, whose MF is
related to those of A and B by

()

O

pe(x) = max(pa(z), pp(x)) = pa(z) V pp(z).

As pointed out by Zadeh [118], a more intuitive and ap-
pealing definition of union is the smallest fuzzy set contain-
ing both A and B. Alternatively, if D is any fuzzy set that
contains both A and B, then it also contains AU B. The
intersection of fuzzy sets can be defined analogously.

Definition 4: Intersection (conjunction)

The intersection of two fuzzy sets A and B is a fuzzy set
C, written as C = ANBorC=A AND B, whose MF
is related to those of A and B by

po(e) = min(pa(z), pp(z)) = pa(@) A pp(z). (6)
O

As in the case of the union, it is obvious that the intersec-
tion of A and B is the largest fuzzy set which is contained
in both A and B. This reduces to the ordinary intersection
operation if both A and B are nonfuzzy.

Definition 5: Complement (negation)

The complement of fuzzy set A, denoted by A (A,
NOT A), is defined as

p(x) =1 — pa(z). (7)
0

Figure 2 demonstrates these three basic operations: (a)
illustrates two fuzzy sets A and B, (b) is the complement
of A, (c) is the union of A and B, and (d) is the intersection
of A and B.

(a) two fuz;y setsA, B
A B

(b) "NOT A"

0.5F

(©)"A ORB" () "A AND B"

0.5F

Fig. 2. Operations on fuzzy sets: (a) two fuzzy sets A and B; (b) A;
(¢) AUB; (d) AnB.

Note that other consistent definitions for fuzzy AND and
OR have been proposed in the literature under the names
T-norm and T-conorm operators [16], respectively. Ex-
cept for min and max, none of these operators satisfy the
law of distributivity:

H(auB)n(auc)(z),
#(AnB)u(Anc)(l‘)~

MAu(Bnc)(l‘)
#An(Buc)(l‘)

However, min and maz do incur some difficulties in ana-
lyzing fuzzy inference systems. A popular alternative is to

use the probabilistic AND and OR:

pa(z)pp(z).
pa(z) + pp(x) — pa(z)ps(z).

panp(z) =
pauvp(z) =

In the following, we shall give several classes of parame-
terized functions commonly used to define MF’s. These pa-
rameterized MF’s play an important role in adaptive fuzzy
inference systems.

Definition 6: Triangular MF’s
A triangular MF is specified by three parameters {a, b, ¢},
which determine the z coordinates of three corners:

rT—a c—=x
triangle(z;a,b,c) = max) 0. (8
riangle(z; a,b, ¢) = max <mm<b_a, c—b)’ > (8)

Figure 3 (a) illustrates an example of the triangular MF

defined by triangle(x; 20, 60, 80).
O

Definition 7: Trapezoidal MF’s
A trapezoidal MF is specified by four parameters

{a,b,c,d} as follows:
r—a d—=
b—a’ ’d—c) ’0)
(9)
Figure 3 (b) illustrates an example of a trapezoidal MF

defined by trapezoid(z; 10,20, 60,95). Obviously, the tri-
angular MF is a special case of the trapezoidal MF.

trapezoid(z;a,b, c,d) = max (mzn (

O

Due to their simple formulas and computational effi-
ciency, both triangular MF’s and trapezoidal MF’s have
been used extensively, especially in real-time implementa-
tions. However, since the MF’s are composed of straight
line segments, they are not smooth at the switching points
specified by the parameters. In the following we introduce
other types of MF’s defined by smooth and nonlinear func-
tions.

Definition 8: Gaussian MF’s
A Gaussian MF is specified by two parameters {c, ¢}:

_ (m — c) !
gaussian(z;o,¢c) =€ ’ ; (10)

where ¢ represents the MF’s center and ¢ determines the
MF’s width. Figure 3 (¢) plots a Gaussian MF defined by
gaussian(x; 20, 50).

O

Definition 9: Generalized bell MF’s
A generalized bell MF (or bell MF) is specified by three
parameters {a, b, c}:

bell(z;a,b,¢) = (11)

where the parameter b is usually positive. Note that this
MF is a direct generalization of the Cauchy distribution

(a) trianguler MF (b) trapezoidal MF

o 1 o 1
E: E:
Sos Sos
£ E=
06 06
8 8
£0.4 £0.4
(7] Q
Eo2 Eo2

0 0

0 50 100 0 50 100
X X
(c) Gaussian MF (d) bell MF

o 1 o 1
E: E:
Sos Sos
2 E=
$06 ©06
8 8
£0.4 £0.4
[[
o2 Eo2

0 0

0 50 100 0 50 100
X X
Fig. 3 Ezamples of various classes of

MF’s: (a) triangle(z;20,60,80); (b) trapezoid(z;10,20,60,95);
(¢) gaussian(z; 20,50); (d) bell(x; 20,4, 50).

used in probability theory. Figure 3 illustrates a general-

ized bell MF defined by bell(z; 20,4, 50).
O

A desired generalized bell MF can be obtained by a
proper selection of the parameter set {a, b, ¢}. Specifically,
we can adjust ¢ and a to vary the center and width of the
MF, and then use b to control the slopes at the crossover
points. Figure 4 shows the physical meanings of each pa-
rameter in a bell MF.

Because of their smoothness and concise notation, Gaus-
sian MF’s and bell MF’s are becoming increasingly popu-
lar methods for specifying fuzzy sets. Gaussian functions
are well known in the fields of probability and statistics,
and they possess useful properties such as invariance un-
der multiplication and Fourier transform. The bell MF
has one more parameter than the Gaussian MF, so it can
approach a nonfuzzy set if b — oo.

MF

1.0 JS|0pe:'b/2a

T ‘

c-a Cc

f———2a—

c+a X

Fig.4. Physical meaning of parameters in a generalized bell function.

Definition 10: Sigmoidal MF’s
A sigmoidal MF is defined by

(12)

sigmoid(z; a,) = exp[—a(x —)]’

where a controls the slope at the crossover point x = c.
O

Depending on the sign of the parameter a, a sigmoidal
MF is inherently open right or left and thus is appropri-
ate for representing concepts such as “very large” or “very

negative.” Sigmoidal functions of this kind are employed
widely as the activation function of artificial neural net-
works. Therefore, for a neural network to simulate the
behavior of a fuzzy inference system, the first problem we
face is how to synthesize a close MF through a sigmoidal
function. There are two simple ways to achieve this: one
is to take the product of two sigmoidal MF’s; the other is
to take the absolute difference of two sigmoidal MF’s.

It should be noted that the list of MF’s introduced in this
section is by no means exhaustive; other specialized MF’s
can be created for specific applications if necessary. In
particular, any types of continuous probability distribution
functions can be used as an MF here, provided that a set of
parameters are given to specify the appropriate meanings

of the MF.

B. Fuzzy If-Then Rules

A fuzzy if-then rule (fuzzy rule, fuzzy implication
or fuzzy conditional statement) assumes the form

if z 1s A then y is B, (13)
where A and B are linguistic values defined by fuzzy sets
on universes of discourse X and Y, respectively. Often “z
1s A” is called the antecedent or premise while “y is B”
is called the consequence or conclusion. Examples of
fuzzy if-then rules are widespread in our daily linguistic
expressions, such as the following:

o If pressure is high then volume is small.

o If the road is slippery then driving is dangerous.

o If a tomato is red then it is ripe.

o If the speed is high then apply the brake a little.

Before we can employ fuzzy if-then rules to model and
analyze a system, we first have to formalize what is meant
by the expression “if z is A then y s B”, which is some-
times abbreviated as A — B. In essence, the expression
describes a relation between two variables x and y; this
suggests that a fuzzy if-then rule be defined as a binary
fuzzy relation R on the product space X x Y. Note that
a binary fuzzy relation R is an extension of the classical
Cartesian product, where each element (z,y) € X x Y is
associated with a membership grade denoted by pgr(z,y).
Alternatively, a binary fuzzy relation R can be viewed as a
fuzzy set with universe X x Y, and this fuzzy set is char-
acterized by a two-dimensional MF pug(z,y).

Generally speaking, there are two ways to interpret the
fuzzy rule A — B. If we interpret A — B as A coupled
with B, then

R:AHB:AXBI/X Y/LA(-r)’Nk/iB(y)/(I:y)’

where % is a fuzzy AND (or more generally, T-norm) op-
erator and A — B is used again to represent the fuzzy
relation R. On the other hand, if A — B is interpreted
as A entails B, then it can be written as four different
formulas:

¢ Material implication: R=A — B=-AUB.

o Propositional calculus: R=A — B=-AU(ANB).

o Extended propositional calculus: R = A — B = (-AN
-B)UB.

o Generalization of modus ponens: pg(z,y) =
sup{c | pa(z) * ¢ < up(y) and 0 < ¢ < 1}, where
R= A — B and % is a T-norm operator.

Though these four formulas are different in appearance,
they all reduce to the familiar identity A — B = -AUB
when A and B are propositions in the sense of two-valued
logic. Figure 5 illustrates these two interpretations of a
fuzzy rule A — B. Here we shall adopt the first inter-
pretation, where A — B implies A coupled with B. The
treatment of the second interpretation can be found in [34],

[49], [50].

Y Y
B { B {
A X A X
(@ (b)

Fig. 5. Two interpretations of fuzzy implication: (a) A coupled with
B; (b) A entails B..

C. Fuzzy Reasoning (Approzimate Reasoning)

Fuzzy reasoning (also known as approximate rea-
soning) is an inference procedure used to derive conclu-
sions from a set of fuzzy if-then rules and one or more
conditions. Before introducing fuzzy reasoning, we shall
discuss the compositional rule of inference [119], which
is the essential rationale behind fuzzy reasoning.

The compositional rule of inference is a generalization
of the following familiar notion. Suppose that we have a
curve y = f(x) that regulates the relation between x and y.
When we are given # = a, then from y = f(z) we can infer
that y = b = f(a); see Figure 6 (a). A generalization of
the above process would allow @ to be an interval and f(z)
to be an interval-valued function, as shown in Figure 6 (b).
To find the resulting interval y = b corresponding to the
interval z = a, we first construct a cylindrical extension of
a (that is, extend the domain of a from X to X x Y) and
then find its intersection I with the interval-valued curve.
The projection of I onto the y-axis yields the interval y = b.

Y Y
1 y=f(x)

y=b b

x=a X a | X
(@ (b)

Fig. 6. Derivation ofy =b fromz =a andy = f(z): (a)a and b are
points, y = f(z) is a curve; (b) a and b are intervals, y = f(x)
is an interval-valued function.

Going one step further in our generalization, we assume
that A 1s a fuzzy set of X and F is a fuzzy relation on X XY,
as shown in Figure 7 (a) and (b). To find the resulting
fuzzy set B, again, we construct a cylindrical extension

¢(A) with base A (that is, we expand the domain of A
from X to X x Y to get ¢(A4)). The intersection of ¢(A)
and F' (Figure 7 (c)) forms the analog of the region of
intersection I in Figure 6 (b). By projecting ¢(A) N F onto
the y-axis, we infer y as a fuzzy set B on the y-axis, as
shown in Figure 7 (d).

Specifically, let pa, pic(a), B, and pp be the MF’s of A,
¢(A), B, and F, respectively, where fi.(4) is related to pa
through

/JC(A)('T’ y) = pa(x).
Then
,UC(A)OF(xa y) = min[)uc(A)(x: y)a :uF(xa y)]
= min[ua(z), pr(z,y)].
By projecting ¢(A) N F onto the y-axis, we have
pe(y) = maxy;minfpa(z), pr(z,y)]
= Volpa(2) Apr(z,y)).

This formula is referred to as max-min composition and
B is represented as

B=AoF,

where o denotes the composition operator. If we choose
product for fuzzy AND and maz for fuzzy OR, then
we have max-product composition and pg(y) is equal

Ve lpa(z)pr(z, y)].

(a) cylindrical extension of A (b) fuzzy relation F on x and y

membership grade
membership grade

membership grade

Fig. 7. Compositional rule of inference.

Using the compositional rule of inference, we can formal-
ize an inference procedure, called fuzzy reasoning, upon a
set of fuzzy if-then rules. The basic rule of inference in
traditional two-valued logic is modus ponens, according
to which we can infer the truth of a proposition B from
the truth of A and the implication A — B. For instance,
if A is identified with “the tomato is red” and B with “the
tomato is ripe,” then if it is true that “the tomato is red,”
it is also true that “the tomato is ripe.” This concept is
illustrated below.

premise 1 (fact): X is A,
premise 2 (rule): if xis A then y is B,
consequence (conclusion): 'y is B.

However, in much of human reasoning, modus ponens is
employed in an approximate manner. For example, if we
have the same implication rule “if the tomato is red then

it is ripe” and we know that “the tomato is more or less
red,” then we may infer that “the tomato is more or less
ripe.” This is written as

premise 1 (fact): x is A,

premise 2 (rule): if xis A then y is B,

consequence (conclusion): 'y is B,

where A’ is close to A and B’ is close to B. When A,
B, A’, and B’ are fuzzy sets of appropriate universes, the
above inference procedure is called fuzzy reasoning or ap-
proximate reasoning; it is also called generalized modus
ponens, since it has modus ponens as a special case.

Using the composition rule of inference introduced ear-
lier, we can formulate the inference procedure of fuzzy rea-
soning as the following definition.

Definition 11: Fuzzy Reasoning Based On Max-Min
Composition.

Let A, A’ and B be fuzzy sets of X, X, and Y, re-
spectively. Assume that the fuzzy implication A — B is
expressed as a fuzzy relation R on X x Y. Then the fuzzy

set B’ induced by “z is A”” and the fuzzy rule “if z is A
then y is B” is defined by
up(y) = maxy minfpa(z), ur(z,y)] (14)

= Velpa(2) A pr(z,y)l,
or, equivalently,

=A'oR=A"o (A — B). (15)

O

Remember that equation (15) is a general expression for
fuzzy reasoning, while equation (14) is an instance of fuzzy
reasoning where min and maz are the operators for fuzzy
AND and OR, respectively.

Now we can use the inference procedure of the gener-
alized modus ponens to derive conclusions, provided that
the fuzzy implication A — B is defined as an appropriate
binary fuzzy relation.

C.1 Single rule with single antecedent

For a single rule with a single antecedent, the formula is
available in equation (14). A further simplification of the
equation yields

[Ve(par(z) A pa()] A ps(y)
= wApus(y)

kB (Y)

In other words, first we find the degree of match w as the
maximum of pa:(2) A pa(z) (the shaded area in the an-
tecedent part of Figure 8); then the MF of the resulting B’
is equal to the MF of B clipped by w, shown as the shaded
area in the consequent part of Figure 8.

A fuzzy if-then rule with two antecedents is usually writ-
ten as “if x 1s A and y is B then z ts C.” The corresponding
problem for approximate reasoning is expressed as

min

Fig. 8. Fuzzy reasoning for a single rule with a single antecedent.

premise 1 (fact): zis A" and yis B’,

premise 2 (rule):

if xis A and y is B then z is C,

z is C'.

consequence (conclusion):

The fuzzy rule in premise 2 above can be put into the
simpler form “A x B — C.” Intuitively, this fuzzy rule can
be transformed into a ternary fuzzy relation R, which is
specified by the following MF:

pr(2,Y,2) = paxpyxc (T, y,2) = pa(@) A ps(y) A pe(2).
And the resulting C” is expressed as
C'=(A"xB')o(Ax B— ().

Thus

Vaylpa(z) A ps (y)] A
= Vag{lpa(z) App(y) Ap
= A{Ve[pa(z) Apa(z)]} A

Wi w2

A (z),

pe(2)

= wl/\wg
N——

firing
strength

(16)
where w; is the degree of match between A and A’; ws is
the degree of match between B and B’; and wiAws is called
the firing strength or degree of fulfillment of this fuzzy
rule. A graphic interpretation is shown in Figure 9, where
the MF of the resulting C’ is equal to the MF of C clipped
by the firing strength w, w = w1 A wa. The generalization
to more than two antecedents is straightforward.

min

Fig. 9. Approzimate reasoning for multiple antecedents.

C.2 Multiple rules with multiple antecedents

The interpretation of multiple rules is usually taken as
the union of the fuzzy relations corresponding to the fuzzy
rules. For instance, given the following fact and rules:

[pa(z) A pp(y) A pe(z)]
a(z) A ps(W)]} A pe(z)
Wylus (y) A ps)]} A pe(z)

premise 1 (fact): zis A" and y is B’,
premise 2 (rule 1):

premise 3 (rule 2):

if is A; and y is By then z is C
if z is As and y is By then z is

fuzzy logic controller [60], [49], [50], and simply (and
ambiguously) fuzzy system.

Clrhe basic structure of a fuzzy inference system consists
2
L]

z is (7,

consequence (conclusion):

we can employ the fuzzy reasoning shown in Figure 10 as
an inference procedure to derive the resulting output fuzzy
set C’.

min

Fig. 10. Fuzzy reasoning for multiple rules with multiple antecedents.

To verify this inference procedure, let Ry = A; x By —
Cq1 and Ry = Ay x By — (9. Since the max-min com-
position operator o is distributive over the U operator, it
follows that

c = (AI XBI)O(R1UR2)
= [(A"x BYo RjJU[(A" x B') o Ry] (17)
= ClucQy,
where C] and CY are the inferred fuzzy sets for rule 1

and 2, respectively. Figure 10 shows graphically the op-
eration of fuzzy reasoning for multiple rules with multiple
antecedents.

When a given fuzzy rule assumes the form “if x is A or
y is B then z is C,” then firing strength is given as the
maximum of degree of match on the antecedent part for a
given condition. This fuzzy rule is equivalent to the union
of the two fuzzy rules “if x is A then z is C” and “if y is
B then z is C” if and only if the max-min composition is
adopted.

D. Fuzzy Models (Fuzzy Inference Systems)

The Fuzzy inference system is a popular computing
framework based on the concepts of fuzzy set theory, fuzzy
if-then rules; and fuzzy reasoning. It has been successfully
applied in fields such as automatic control, data classifica-
tion, decision analysis, expert systems, and computer vi-
sion. Because of its multi-disciplinary nature, the fuzzy
inference system is known by a number of names, such as
fuzzy-rule-based system, fuzzy expert system [37],
fuzzy model [98], [91], fuzzy associative memory [47],

ot three conceptual components: a rule base, which con-
tains a selection of fuzzy rules, a database or dictionary,
which defines the membership functions used in the fuzzy
rules, and a reasoning mechanism, which performs the
inference procedure (usually the fuzzy reasoning introduced
earlier) upon the rules and a given condition to derive a
reasonable output or conclusion.

Note that the basic fuzzy inference system can take either
fuzzy inputs or crisp inputs (which can be viewed as fuzzy
singletons that have zero membership grade everywhere ex-
cept at certain points where the membership grades achieve
unity), but the outputs it produces are almost always fuzzy
sets. Often it is necessary to have a crisp output, especially
in a situation where a fuzzy inference system is used as a
controller. Therefore we need a defuzzification strategy
to extract a crisp value that best summarize a fuzzy set.
A fuzzy inference system with a crisp output is shown in
Figure 11, where the dashed line indicates a basic fuzzy
inference system with fuzzy output and the defuzzification
block serves the purpose of transforming a fuzzy output
into a crisp one. An example of a basic fuzzy inference
system is the two-rule two-input system of Figure 10. The
function of the defuzzification block will be explained at a
later point.

With crisp inputs and outputs, a fuzzy inference system
implements a nonlinear mapping from its input space to
output space. This mapping is accomplished by a num-
ber of fuzzy if-then rules, each of which describes the local
behavior of the mapping. In particular, the antecedent of
each rule defines a fuzzy region of the input space, and the
consequent specifies the corresponding outputs.

(crisp or |

I
aggregator }7%{ defuzzifier }%y

o fuzzy) |
X
Fig. 11. Block diagram for a fuzzy inference system.

In what follows, we will first introduce three types of
fuzzy inference systems that have been widely employed in
various applications. The differences between these three
fuzzy inference systems lie in the consequents of their fuzzy
rules, and thus their aggregation and defuzzification proce-
dures differ accordingly. Then we will introduce three ways
of partitioning the input space for any type of fuzzy infer-
ence system. Last, we will address briefly the features and
the problems of fuzzy modeling, which is concerned with
the construction of a fuzzy inference system for modeling
a specific target system.

D.1 Mamdani Fuzzy Model

The Mamdani fuzzy model [60] was proposed as the
very first attempt to control a steam engine and boiler com-
bination by a set of linguistic control rules obtained from
experienced human operators. Figure 12 is an illustration
of how a two-rule fuzzy inference system of the Mamdani
type derives the overall output z when subjected to two
crisp inputs z and y.

min
" A1 " B1 " Ci
Nl A] c
X Y A
H Az " B, " C,
A
N
X Y z
X y max
u
c

Fig. 12. The Mamdant fuzzy inference system using min and max
for fuzzy AND and OR operators, respectively.

If we adopt product and max as our choice for the
fuzzy AND and OR operators, respectively, and use max-
product composition instead of the original max-min com-
position, then the resulting fuzzy reasoning is shown in
Figure 13, where the inferred output of each rule is a fuzzy
set scaled down by its firing strength via the algebraic prod-
uct. Though this type of fuzzy reasoning was not employed
in Mamdani’s original paper, it has often been used in the
literature. Other variations are possible if we have differ-
ent choices of fuzzy AND (T-norm) and OR (T-conorm)
operators.

product
H A1 K B H Ci1
ol AR .
X Y z
H A, M B, K c,
/—\\ /\\\ '' : i C,
X Y z
X y max
U
L
! z
z
Fig. 13. The Mamdani fuzzy inference system using product and

mazx for fuzzy AND and OR operators, respectively.

In Mamdani’s application [60], two fuzzy inference sys-
tems were used as two controllers to generate the heat input
to the boiler and throttle opening of the engine cylinder,
respectively, in order to regulate the steam pressure in the
boiler and the speed of the engine. Since the plant takes
only crisp values as inputs, we have to use a defuzzifier to
convert a fuzzy set to a crisp value. Defuzzification refers
to the way a crisp value is extracted from a fuzzy set as
a representative value. The most frequently used defuzzi-
fication strategy is the centroid of area, which is defined
as

[, per(2)z de
fZ ,UC’(Z) dz’

where pi¢i(z) is the aggregated output MF. This formula is
reminiscent of the calculation of expected values in prob-
ability distributions. Other defuzzification strategies arise
for specific applications, which includes bisector of area,
mean of maximum, largest of maximum, and smallest of
maximum, and so on. Figure 14 demonstrate these de-
fuzzification strategies. Generally speaking, these defuzzi-
fication methods are computation intensive and there is no
rigorous way to analyze them except through experiment-
based studies. Other more flexible defuzzification methods
can be found in [73], [115], [80].

Both Figure 12 and 13 conform to the fuzzy reasoning
defined previously. In practice, however, a fuzzy inference
system may have certain reasoning mechanisms that do not
follow the strict definition of the compositional rule of infer-
ence. For instance, one might use either min or product for
computing firing strengths and/or qualified rule outputs.
Another variation is to use pointwise summation (sum)
instead of maz in the standard fuzzy reasoning, though
sum is not really a fuzzy OR operators. An advantage of
this sum-product composition [47] is that the final crisp
output via centroid defuzzification is equal to the weighted
average of each rule’s crisp output, where the weighting
factor for a rule is equal to its firing strength multiplied
by the area of the rule’s output MF, and the crisp output
of a rule is equal to the the centroid defuzzified value of
its output MF. This reduces the computation burden if we
can obtain the area and the centroid of each output MF in
advance.

2CO0A =

(18)

> VA
smallest of max.—/ centroid of area
largest of max bisecter of area

mean of max.

Fig.14. Various defuzzification schemes for obtaining a crisp output.

D.2 Sugeno Fuzzy Model

The Sugeno fuzzy model (also known as the TSK
fuzzy model) was proposed by Takagi, Sugeno, and

Kang [98], [91] in an effort to develop a systematic ap-
proach to generating fuzzy rules from a given input-output
data set. A typical fuzzy rule in a Sugeno fuzzy model has
the form

ifzis A and y is B then z = f(z,y),

where A and B are fuzzy sets in the antecedent, while
z = f(z,y) is a crisp function in the consequent. Usu-
ally f(z,y) is a polynomial in the input variables z and y,
but it can be any function as long as it can appropriately
describe the output of the system within the fuzzy region
specified by the antecedent of the rule. When f(z,y) is a
first-order polynomial, the resulting fuzzy inference system
is called a first-order Sugeno fuzzy model, which was
originally proposed in [98], [91]. When f is a constant, we
then have a zero-order Sugeno fuzzy model, which can
be viewed either as a special case of the Mamdani fuzzy in-
ference system, in which each rule’s consequent is specified
by a fuzzy singleton (or a pre-defuzzified consequent), or a
special case of the Tsukamoto fuzzy model (to be introduce
later), in which each rule’s consequent is specified by an
MF of a step function crossing at the constant. Moreover,
a zero-order Sugeno fuzzy model is functionally equivalent
to a radial basis function network under certain minor con-
straints [32].

It should be pointed out that the output of a zero-order
Sugeno model is a smooth function of its input variables as
long as the neighboring MF’s in the premise have enough
overlap. In other words, the overlap of MF’s in the con-
sequent does not have a decisive effect on the smoothness
of the interpolation; it is the overlap of the MF’s in the
premise that determines the smoothness of the resulting
input-output behavior.

min or
product

Wy Z1=p X+qy+n

W Z2=P, X+ QY+,

weighted average

WypZ1+WpZp
Wi + Wo

zZ=

Fig. 15. The Sugeno fuzzy model.

Figure 15 shows the fuzzy reasoning procedure for a first-
order Sugeno fuzzy model. Note that the aggregator and
defuzzifier blocks in Figure 11 are replaced by the operation
of weighted average, thus avoiding the time-consuming
procedure of defuzzification. In practice, sometimes the
weighted average operator is replaced with the weighted
sum operator (that is, z = wyz; + weze in Figure 15)
in order to further reduce computation load, especially in
training a fuzzy inference system. However, this simplifica-
tion could lead to the loss of MF linguistic meanings unless

the sum of firing strengths (that is, >, w;) is close to unity.

D.3 Tsukamoto Fuzzy Model

In the Tsukamoto fuzzy models [101], the consequent
of each fuzzy if-then rule is represented by a fuzzy set with a
monotonical MF, as shown in Figure 16. As a result, the in-
ferred output of each rule is defined as a crisp value induced
by the rule’s firing strength. The overall output is taken
as the weighted average of each rule’s output. Figure 16
illustrates the whole reasoning procedure for a two-input
two-rule system.

min or
product

weighted average

W1Z3+W32Zp
Wi+ Wy

Z=
Fig. 16. The Tsukamoto fuzzy model.

Since each rule infers a crisp output, the Tsukamoto
fuzzy model aggregates each rule’s output by the method of
weighted average and thus also avoids the time-consuming
process of defuzzification.

D.4 Partition Styles for Fuzzy Models

By now it should be clear that the spirit of fuzzy infer-
ence systems resembles that of “divide and conquer” — the
antecedents of fuzzy rules partition the input space into a
number of local fuzzy regions, while the consequents de-
scribe the behavior within a given region via various con-
stituents. The consequent constituent could be an output
MF (Mamdani and Tsukamoto fuzzy models), a constant
(zero-order Sugeno model), or a linear equation (first-order
Sugeno model). Different consequent constituents result
in different fuzzy inference systems, but their antecedents
are always the same. Therefore the following discussion
of methods of partitioning input spaces to form the an-
tecedents of fuzzy rules is applicable to all three types of
fuzzy inference systems.

o Grid partition: Figure 17 (a) illustrates a typical
grid partition in a two-dimensional input space. This
partition method is often chosen in designing a fuzzy
controller, which usually involves only several state
variables as the inputs to the controller. This partition
strategy needs only a small number of MF’s for each
input. However, it encounters problems when we have
a moderately large number of inputs. For instance,
a fuzzy model with 10 inputs and two MF’s on each
input would result in 2'° = 1024 fuzzy if-then rules,
which is prohibitively large. This problem, usually

10

referred to as the curse of dimensionality, can be
alleviated by the other partition strategies introduced
below.

o Tree partition: Figure 17 (b) shows a typical tree
partition, in which each region can be uniquely speci-
fied along a corresponding decision tree. The tree par-
tition relieves the problem of an exponential increase
in the number of rules. However, more MF’s for each
input are needed to define these fuzzy regions, and
these MF’s do not usually bear clear linguistic mean-
ings such as “small,” “big,” and so on.

o Scatter partition: As shown in Figure 17 (c), by
covering a subset of the whole input space that char-
acterizes a region of possible occurrence of the input
vectors, the scatter partition can also limit the number
of rules to a reasonable amount.

e

@ (b) ©

Fig. 17. Various methods for partitioning the input space: (a) grid
partition; (b) tree partition; (b) scatter partition.

D.5 Neuro-Fuzzy Modeling

The process for constructing a fuzzy inference system is
usually called fuzzy modeling, which has the following
features:

o Due to the rule structure of a fuzzy inference system, it
is easy to incorporate human expertise about the tar-
get system directly into the modeling process. Namely,
fuzzy modeling takes advantage of domain knowl-
edge that might not be easily or directly employed in
other modeling approaches.

o When the input-output data of a system to be modeled
is available, conventional system identification tech-
niques can be used for fuzzy modeling. In other words,
the use of numerical data also plays an important
role in fuzzy modeling, just as in other mathematical
modeling methods.

A common practice is to use domain knowledge for
structure determination (that is, determine relevant
inputs, number of MF’s for each input, number of rules,
types of fuzzy models, and so on) and numerical data for
parameter identification (that is, identify the values of
parameters that can generate best the performance). In
particular, the term neuro-fuzzy modeling refers to the
way of applying various learning techniques developed in
the neural network literature to fuzzy inference systems. In
the subsequent sections, we will apply the concept of the
adaptive network, which is a generalization of the common
back-propagation neural network, to tackle the parameter
identification problem in a fuzzy inference system.

III. ADAPTIVE NETWORKS

This section describes the architectures and learning pro-
cedures of adaptive networks, which are a superset of all
kinds of neural network paradigms with supervised learning
capability. In particular, we shall address two of the most
popular network paradigms adopted in the neural network
literature: the back-propagation neural network (BPNN)
and the radial basis function network (RBFN). Other net-
work paradigms that can be interpreted as a set of fuzzy
if-then rules are described in the next section.

A. Architecture

As the name implies, an adaptive network (Figure 18)
is a network structure whose overall input-output behav-
ior is determined by the values of a collection of modifi-
able parameters. More specifically, the configuration of an
adaptive network is composed of a set of nodes connected
through directed links, where each node is a process unit
that performs a static node function on its incoming sig-
nals to generate a single node output and each link spec-
ifies the direction of signal flow from one node to another.
Usually a node function is a parameterized function with
modifiable parameters; by changing these parameters, we
are actually changing the node function as well as the over-
all behavior of the adaptive network.

In the most general case, an adaptive network is het-
erogeneous and each node may have a different node func-
tion. Also remember that each link in an adaptive network
are merely used to specify the propagation direction of a
node’s output; generally there are no weights or parameters
associated with links. Figure 18 shows a typical adaptive
network with two inputs and two outputs.

T T Tt 1

input layer layer 1 layer 2 layer 3

(output layer)

Fig. 18. A feedforward adaptive network in layered representation.

The parameters of an adaptive network are distributed
into the network’s nodes, so each node has a local param-
eter set. The union of these local parameter sets is the
network’s overall parameter set. If a node’s parameter set
is non-empty, then its node function depends on the pa-
rameter values; we use a square to represent this kind of
adaptive node. On the other hand, if a node has an
empty parameter set, then its function is fixed; we use a
circle to denote this type of fixed node.

Adaptive networks are generally classified into two cat-
egories on the basis of the type of connections they have:
feedforward and recurrent types. The adaptive network
shown in Figure 18 is a feedforward network, since the out-
put of each node propagates from the input side (left) to the

Fig. 19. A recurrent adaptive network.

output side (right) unanimously. If there is a feedback link
that forms a circular path in a network, then the network
is a recurrent network; Figure 19 is an example. (From the
viewpoint of graph theory, a feedforward network is rep-
resented by an acyclic directed graph which contains no
directed cycles, while a recurrent network always contains
at least one directed cycle.)

In the layered representation of the feedforward adap-
tive network in Figure 18, there are no links between nodes
in the same layer and outputs of nodes in a specific layer are
always connected to nodes in succeeding layers. This rep-
resentation is usually preferred because of its modularity,
in that nodes in the same layer have the same functional-
ity or generate the same level of abstraction about input
vectors.

Another representation of feedforward networks is the
topological ordering representation, which labels the
nodes in an ordered sequence 1, 2, 3, ..., such that there are
no links from node ¢ to node j whenever ¢ > j. Figure 20
is the topological ordering representation of the network
in Figure 18. This representation is less modular than the
layer representation, but it facilitates the formulation of the
learning rule, as will be seen in the next section. (Note that
the topological ordering representation is in fact a special
case of the layered representation, with one node per layer.)

Fig. 20. A feedforward adaptive network in topological ordering rep-
resentation.

Conceptually, a feedforward adaptive network is actu-
ally a static mapping between its input and output spaces;
this mapping may be either a simple linear relationship or
a highly nonlinear one, depending on the structure (node
arrangement and connections, and so on) for the network
and the function for each node. Here our aim is to con-
struct a network for achieving a desired nonlinear mapping
that is regulated by a data set consisting of a number of
desired input-output pairs of a target system. This data
set is usually called the training data set and the pro-
cedure we follow in adjusting the parameters to improve
the performance of the network are often referred to as the
learning rule or learning algorithm . Usually an adap-
tive network’s performance is measured as the discrepancy
between the desired output and the network’s output un-
der the same input conditions. This discrepancy is called
the error measure and it can assume different forms for

11

different applications. Generally speaking, a learning rule
is derived by applying a specific optimization technique to
a given error measure.

Before introducing a basic learning algorithm for adap-
tive networks, we shall present several examples of adaptive
networks.

Ezample 3: An adaptive network with a single linear
node.

Figure 21 is an adaptive network with a single node speci-

fied by
z3 = fa(z1, 22501, a2,a3) = a121 + as2 + as,

where x; and x5 are inputs and ai, as, and as are modi-
fiable parameters. Obviously this function defines a plane
in 1 — 2 — x3 space, and by setting appropriate values
for the parameters, we can place this plane arbitrarily. By
adopting the squared error as the error measure for this
network, we can identify the optimal parameters via the
linear least-squares estimation method.

O

Xy

=%

Xz

Fig. 21. A linear single-node adaptive network.
Ezample 4: A building block for the perceptron or the

back-propagation neural network.

If we add another node to let the output of the adaptive

network in Figure 21 have only two values 0 and 1, then the

nonlinear network shown in Figure 22 is obtained. Specifi-

cally, the node outputs are expressed as

z3 = fa(z1, 22501, a2,a3) = a121 + a229 + as,

and
1 ifzs>0

24 = Ja(2s) = { 0 ifes<0

where f3 is a linearly parameterized function and f4 is a
step function which maps z3 to either 0 or 1. The overall
function of this network can be viewed as a linear classi-
fier: the first node forms a decision boundary as a straight
line in xy — x2 space, and the second node indicates which
half plane the input vector (21, 22) resides in. Obviously we
can form an equivalent network with a single node whose
function is the composition of f3 and f4; the resulting node
is the building block of the classical perceptron.

Since the step function is discontinuous at one point and
flat at all the other points, it is not suitable for learning pro-
cedures based on gradient descent. One way to get around
this difficulty is to use the sigmoid function:

1

4= falzs) = =

which is a continuous and differentiable approximation to
the step function. The composition of f3 and this differ-
entiable fs is the building block for the back-propagation
neural network in the following example.

12

Fig. 22. A nonlinear single-node adaptive network.
Ezample 5: A back-propagation neural network.
Figure 23 is a typical architecture for a back-propagation
neural network with three inputs, two outputs, and three
hidden nodes that do not connect directly to either inputs
or outputs. (The term back-propagation refers to the way
the learning procedure is performed, that is, by propagat-
ing gradient information from the network’s outputs to its
inputs; details on this are to be introduced next.) Each
node in a network of this kind has the same node function,
which is the composition of a linear f3 and a sigmoidal f4
in example 4. For instance, the node function of node 7 in
Figure 23 is

1
1+ exp[—(war2a + ws 725 + we 726 + 7))

L7

where z4, 25, and zg are outputs from nodes 4, 5, and 6,
respectively, and {ws4 7, ws 7, we 7,t7} is the parameter set.
Usually we view w; ; as the weight associated with the link
connecting node ¢ and j and ¢; as the threshold associated
with node j. However, it should be noted that this weight-
link association is only valid in this type of network. In
general, a link only indicates the signal flow direction and
the causal relationship between connected nodes, as will
be shown in other types of adaptive networks in the subse-
quent development. A more detailed discussion about the
structure and learning rules of the artificial neural network
will be presented later.

O

layer 2
(output layer)

layer 0
(input layer)

layer 1
(hidden layer)

Fig. 23. A 3-3-2 neural network.

B. Back-Propagation Learning Rule for Feedforward Net-
works

The central part of a learning rule for an adaptive net-
work concerns how to recursively obtain a gradient vector
in which each element is defined as the derivative of an
error measure with respect to a parameter. This is done
by means of the chain rule, and the method is generally re-
ferred to as the back-propagation learning rule because

the gradient vector is calculated in the direction opposite
to the flow of the output of each node. Details follow below.

Suppose that a given feedforward adaptive network in
the layered representation has L layers and layer ! (I =
0,1, ..., L; I = 0 represents the input layer) has N ()
nodes. Then the output and function of node i (i =
1, ..., N(1)) of layer { can be represented as z;; and fi;,
respectively, as shown in Figure 24 (a). Without loss of
generality, we assume there are no jumping links, that is,
links connecting non-consecutive layers. Since the output
of a node depends on the incoming signals and the parame-
ter set of the node, we have the following general expression
for the node function f; ;:

(19)

where «, 3, v, etc. are the parameters pertaining to this
node.

i = fri(Ti-11, . ®_1Ng-1), 5,7, -,

(b)

Fig. 24. Our notational conventions: (a) layered representation; (b)
topological ordering representation.

Assuming the given training data set has P entries, we
can define an error measure for the p-th (1 < p < P)
entry of the training data as the sum of squared errors:

N(L)

E, = Z (dr —xLk)?,

k=1

(20)

where dj, is the k-th component of the p-th desired output
vector and z 1, is the k-th component of the actual output
vector produced by presenting the p-th input vector to the
network. (For notational simplicity, we omit the subscript
p for both dy and zr ;.) Obviously, when E, is equal to
zero, the network is able to reproduce exactly the desired
output vector in the p-th training data pair. Thus our
task here is to minimize an overall error measure, which is
defined as F = Ele E,.

Remember that the definition of E, in equation (20) is
not universal; other definitions of £, are possible for spe-
cific situations or applications. Therefore we shall avoid
using an explicit expression for the error measure £, in
order to emphasize the generality. In addition, we assume
that F, depends on the output nodes only; more general
situations will be discussed below.

To use the gradient method to minimize the error mea-
sure, first we have to obtain the gradient vector. Before
calculating the gradient vector, we should observe that

change in the output
of node containing «

change in

=
parameter «

change in the
€ITOr Measure

change in the output

of the final layer =

where the arrows = indicate causal relationships. In other
words, a small change in a parameter a will affect the out-
put of the node containing «; this in turn will affect the
output of the final layer and thus the error measure. There-
fore the basic concept in calculating the gradient vector of
the parameters is to pass a form of derivative information
starting from the output layer and going backward layer
by layer until the input layer is reached.

To facilitate the discussion, we define the error signal
€1,; as the derivative of the error measure £, with respect
to the output of node 7 in layer [, taking both direct and
indirect paths into consideration. In symbols,

otE,
€= axu . (21)

This expression was called the ordered derivative by
Werbos [109]. The difference between the ordered deriva-
tive and the ordinary partial derivative lies in the way we
view the function to be differentiated. For an internal node

output z;; (where [# L), the partial derivative gﬂf” is

equal to zero, since £, does not depend on x;; direétly.
However, it is obvious that £, does depend on z;; indi-
rectly, since a change in z7; will propagate through indirect
paths to the output layer and thus produce a corresponding
change in the value of E,. Therefore ¢;; can be viewed as
the ratio of these two changes when they are made infinites-
imal. The following example demonstrates the difference
between the ordered derivative and the ordinary partial
derivative.

Ezample 6: Ordered derivatives and ordinary partial
derivatives
Consider the simple adaptive network shown in Figure 25,
where z is a function of # and y, and y is in turn a function

o { (=)
y = f(=),

9(z,y).
For the ordinary partial derivative 9z

O We assume that all
the other input variables (in this case, y) are constant:

0z 0g(x,y)
0r Oz
In other words, we assume the direct inputs x and y are
independent, without paying attention to the fact that y
is actually a function of z. For the ordered derivative, we

take this indirect causal relationship into consideration:

otz Og(z, f(2))
ox oz
2 TE) dg(x,y) of(z)
- 9r t oy . 0r
T ly=s() Yoo ly=s@)

13

Therefore the ordered derivative takes into consideration
both the direct and indirect paths that lead to the causal
relationship.

O

y
X @ z

Fig. 25. Ordered derivatives and ordinary partial derivatives (see
text for details).

The error signal for the i-th output node (at layer L) can
be calculated directly:

_0*E, 0E,
© Oaxp; Owpy

€L

, (22)
This is equal to € ; = —2(d; — ;) if E, is defined as in
equation (20). For the internal (non-output) node at the
t-th position of layer [, the error signal can be derived by
the chain rule:

Ao ot I,

R Y *p _ N+ Ofit1,m
€l = 31‘172' - Em:l ang—l,m CETH
——
error signal error signal
at layer [at layer [+ 1
= Tl g e,
(23)

where 0 < { < L — 1. That is, the error signal of an inter-
nal node at layer [can be expressed as a linear combination
of the error signal of the nodes at layer [+ 1. Therefore
for any l and i (0 <! < L and 1 < i < N(I)), we can

+
find €; = %xf? by first applying equation (22) once to get
error signals at the output layer, and then applying equa-
tion (23) iteratively until we reach the desired layer {. Since

the error signals are obtained sequentially from the output

layer back to the input layer, this learning paradigm is
called the back-propagation learning rule by Rumelhart,
Hinton and Williams [79].

The gradient vector is defined as the derivative of the
error measure with respect to each parameter, so we have
to apply the chain rule again to find the gradient vector.
If @ is a parameter of the i-th node at layer [, we have

OYE, O0YE,0fii . Of
o al‘u da b da

(24)

Note that if we allow the parameter « to be shared between
different nodes, then equation (24) should be changed to a
more general form:

otE, _
Oo

0* 1y 05"
Oz* Oa’

(25)
z*eS

where S is the set of nodes containing « as a parameter
and f* is the node function for calculating z*.

14

The derivative of the overall error measure £ with re-
spect to a is

OYE < OE,
da da

(26)

Accordingly, the update formula for the generic param-
eter « is
ote
ar
in which 7 is the learning rate, which can be further
expressed as

Ao = (27)

K

ey

where & is the step size, the length of each transition along

(28)

the gradient direction in the parameter space. Usually we
can change the step size to vary the speed of convergence;
two heuristic rules for updating the value of k are described
in [29].

When an n-node feedforward network is represented in
its topological order, we can envision the error measure F,
as the output of an additional node with index n+1, whose
node function f,4+1 can be defined on the outputs of any
nodes with smaller indices; see Figure 24 (b). (Therefore
E, may depend directly on any internal nodes.) Applying
the chain rule again, we have the following concise formula
for calculating the error signal ¢, = 0E,/dz;:

O%YE, 0fusr 0+ E, 0f;
8.’]32' - &’L‘Z + Z 81‘]’ 8—:132-’ (29)
i<j<n
or 8 8

&m 81‘2 ’

i<j<n

where the first term shows the direct effect of z; on £, via
the direct path from node i to node n+ 1 and each product
term in the summation indicates the indirect effect of z;
on E,. Once we find the error signal for each node, then
the gradient vector for the parameters is derived as before.

Another simple and systematic way to calculate the er-
ror signals is through the representation of the error-
propagation network (or sensitivity model), which is
obtained from the original adaptive network by reversing
the links and supplying the error signals at the output layer
as inputs. The following example illustrates this idea.

Ezample 7: Adaptive network and its error-propagation
model
Figure 26 (a) is an adaptive network, where each node is
indexed by a unique number. Again, we use f; and z;
to denote the function and output of node i. In order
to calculate the error signals at internal nodes, an error-
propagation network is constructed in Figure 26 (b), where
the output of node i is the error signal of this node in the
original adaptive network. In symbols, if we choose the
squared error measure for F,, then we have the following:

_O0YE, 0E,

€9 = = =
3x9 6x9

-2 (dg — $9),

o — OtE, 0E,

8~ al‘s a a;l‘g a
(Thus nodes 9 and 8 in the error-propagation network are
only buffer nodes.)

—2 (dg — xg),

_OYE, 0YE,dfs L 9YE,0fs 0fs | 0fo
= (91‘7 - (9;1’38 (9;1’37 31‘9 (91‘7 o 6881‘7 € 31‘7’
_ OB, _0TE,0fs OTE, 0fo _ Ofs | Of
6= 6;136 o al‘g 81‘6 81‘9 81‘6 _6881‘6 6981‘6.

Similar expressions can be written for the error signals of
node 1, 2, 3, 4 and 5. It is interesting to observe that in
the error-propagation net, if we associate each link con-
necting nodes 7 and j (¢ < j) with a weight w;; = gii,
then each node performs a linear function and the error-
propagation net is actually a linear network. The error-
propagation network is helpful in correctly formulating the
expressions for error signals. The same concept applies to
recurrent networks with either synchronous or continuous
operations [34].

O

(b)

(a) An adaptive network and (b) its error-propagation

Fig. 26.
model.

Depending on the applications we are interested in, two
types of learning paradigms for adaptive networks are avail-
able to suit our needs. In off-line learning (or batch
learning), the update formula for parameter « is based
on equation (26) and the update action takes place only
after the whole training data set has been presented, that
is, only after each epoch or sweep. On the other hand, in
on-line learning (or pattern learning), the parameters
are updated immediately after each input-output pair has
been presented, and the update formula is based on equa-
tion (24). In practice, it is possible to combine these two
learning modes and update the parameter after £ training
data entries have been presented, where k is between 1 and
P and it is sometimes referred to as the epoch size.

C. Back-Propagation Learning Rule for Recurrent Net-
works

For recurrent adaptive networks, the back-propagation
learning rule is still applicable if we can transform the net-
work configurations to be of the feedforward type. To sim-
plify our notation, we shall use the network in Figure 27 for

our discussion, where z1 and x5 are inputs and x5 and g
are outputs. Because it has directional loops 3-4-5, 3-4-6-5,
and 6 (a self loop), this is a typical recurrent network with
node functions denoted as follows:

r3 = f3(1‘1,1‘5)
Ty = f4(1‘2,1‘3)
s = f5(=’L‘4,1‘6) (31)
e = f6(l‘4,336)

. O

g XG
Fig. 27. A simple recurrent network.

In order to correctly derive the back-propagation learn-
ing rule for the recurrent net in Figure 27, we have to distin-
guish two operating modes through which the network may
satisfy equation (31). These two modes are synchronous
operation and continuous operation.

For continuously operated networks, all nodes continu-
ously change their outputs until equation (31) is satisfied.
This operating mode is of particular interest for analog cir-
cuit implementations, where a certain kind of dynamical
evolution rule is imposed on the network. For instance,
the dynamical formula for node 3 can be written as

dIg

T3—— + 23 = fa(x1, 25).

7 (32)

Similar formulas can be devised for other nodes. It is obvi-
ous that when z3(¢) stops changing (i.e., % = 0), equa-
tion (32) leads to the correct fixed points satisfying equa-
tion (31). However, this kind of recurrent networks do pose
some problems in software simulation, as the stable fixed
point satisfying equation (31) may be hard to find. Here
we shall not go into details about continuously operated
networks. A detailed treatment of continuously operated
networks which use the Mason gain formula [62] as a learn-
ing rule can be found in [34].

On the other hand, if a network is operated syn-
chronously, all nodes change their outputs simultaneously
according to a global clock signal and there is a time delay
associated with each link. This synchronization is reflected
by adding the time ¢ as an argument to the output of each
node in equation (31) (assuming there is a unit time delay
associated with each link):

za(t+1) = fs(za(t),z5(1))
za(t +1) = fa(za(t),z3(1)) (33)
zs(t+1) = fs(za(t), z6(?))
zs(t+1) = fo(za(t), zs(t))

C.1 Back-Propagation Through Time (BPTT)

When using synchronously operated networks, we usu-
ally are interested in identifying a set of parameters that

15

will make the output of a node (or several nodes) follow
a given trajectory (or trajectories) in a discrete time do-
main. This problem of tracking or trajectory following
is usually solved by using a method called unfolding of
time to transform a recurrent network into a feedforward
one, as long as the time ¢ does not exceed a reasonable
maximum 7. This idea was originally introduced by Min-
sky and Papert [64] and combined with back-propagation
by Rumelhart, Hinton, and Williams [79]. Consider the re-
current net in Figure 27, which is redrawn in Figure 28 (a)
with the same configuration except that the input variables
z1 and x5 are omitted for simplicity. The same network in
a feedforward architecture is shown in Figure 28 (b) with
the time index ¢ running from 1 to 4. In other words, for a
recurrent net that synchronously evaluates each of its node
functions from ¢t = 1, 2, ..., T, we can simply duplicate
all units 7" times and arrange the resulting network in a
layered feedforward manner.

)
@ (b)

Fig. 28. (a) A synchronously operated recurrent network and (b) its
feedforward equivalent obtained via unfolding of time.

It is obvious that the two networks in Figure 28 (a) and
(b) will behave identically for ¢t = 1 to 7', provided that
all copies of each parameter at different time steps remain
identical. For instance, the parameter in node 3 of Fig-
ure 28 (a) must be the same at all time instants. This is
the problem of parameter sharing; a quick solution is
to move the parameters from node 3 and 6 into the so-
called parameter nodes, which are independent of the
time step, as shown in Figure 29. (Without loss of gener-
ality, we assume nodes 3 and 6 both have only one param-
eter, denoted by a and b, respectively.) After setting up
the parameter nodes in this way, we can apply the back-
propagation learning rule as usual to the network in Fig-
ure 29 (which is still feedforward in nature) without the
slightest concern about the parameter sharing constraint.
Note that the error signals of parameter nodes come from
the error signals of nodes located at layers of different time
instants; thus the BP for this kind of unfolded network is
often called back-propagation through time (BPTT).

C.2 Real Time Recurrent Learning (RTRL)

BPTT generally works well for most problems; the only
complication is that it requires extensive computing re-
sources when the sequence length 7' is large, because the
duplication of nodes makes both memory requirements and
simulation time proportional to 7'. Therefore for long se-
quences or sequences of unknown length, real time recur-

16

Fig. 29. An alternative representation of Figure 28 (b) that auto-
matically satisfies the parameter-sharing requirement.

rent learning (RTRL) [114] is employed instead to per-
form on-line learning, that is, to update parameters while
the network is running rather than at the end of the pre-
sented sequences.

To explain the rationale behind the RTRL algorithm,
we take as an example the simple recurrent network in Fig-
ure 30 (a), where there is only one node with one parameter
a. After movingthe parameter out of the unfolded architec-
ture, we obtain the feedforward network shown in Figure 30
(b). Figure 30 (c) is the corresponding error-propagation
network. Here we assume £ = EZT E; = ET(dZ —z;)?,

(3

where 1 1s the index for time and d; and z; are the desired
and the actual node output, respectively, at time instant 2.

OX, 8x, 8x, 06x,

(b)

Fig. 30. A simple recurrent adaptive network to illustrate RTRL:
(a) a recurrent net with single node and single parameter; (b)
unfolding-of-time architecture; (c) error-propagation network.

To save computation and memory requirements, a sen-
sible choice is to minimize F; at each time step instead of
trying to minimize F at the end of a sequences. To achieve
this, we need to calculate 1 E/da recursively at each time
step i. For ¢ = 1, the error-propagation network is as shown

in Figure 31 (a) and we have
3+;7:1 o % an 6+E1 _ %a+l‘1 (34)
da ~ da da ~ Oz, Oa

For ¢ = 2, the error-propagation network is as shown in
Figure 31 (b) and we have

Orzy _ Oay
da Oa

8x2 8+x1 6+E2

4+ 222 an 8E2 a+‘£2
Jz, Ja da

:E fa

(35)

For ¢ = 3, the error-propagation network is as shown in
Figure 31 (c) and we have

6+x3 6353

_ o&3 aéL‘g 8+=’L‘2 6+E3 o 8E3 a+‘173
da Oa

Yoz, 90 ™ 84 T Ozs 0a

(36)

SE,
» OO OO0 GO
0 O o i
@) (b) (©) (d)

Error-propagation networks at different time steps: (a)
1 =1; (b) 1 = 2; (c) 1 = 3; (d) a general situation, where the

oE, SE

OE,

. OTx;_
thick arrow represents —=t—L

In general, for the error-propagation at time instant i,
we have
3+IZ’ &m + &l‘z a+éL‘Z'_1 8+Ei aEZ 3+1‘3
= — an =
da da = Oz;_, Oa da Ox; Oa ’
(37)

is already available from the calculation at

a+l‘i_1

where

the previous time instant. Figure 31 shows this general

. . . 8+ l’i_l .
.s1tuat10n, Whe.re the thick a?row. represelllts —a which
is already available at the time instant ¢ — 1.

Therefore, by trying to minimize each individual E;, we

can recursively find the gradient a+aEi at each time instant;
there is no need to wait until the end of the presented
sequence. Since this is an approximation of the original
BPTT, the learning rate n in the update formula

ot E;
Oa

should be kept small and, as a result, the learning process
usually takes longer.

Aag=—n

D. Hybrid Learning Rule: Combining BP and LSE

It is observed that if an adaptive network’s output (as-
suming only one) or its transformation is linear in some of
the network’s parameters, then we can identify these linear
parameters by the well-known linear least-squares method.
This observation leads to a hybrid learning rule [24], [29]
which combines the gradient method and the least-squares
estimator (LSE) for fast identification of parameters.

D.1 Off-Line Learning (Batch Learning)

For simplicity, assume that the adaptive network under
consideration has only one output

output = F(f, S), (38)
where I is the vector of input variables and S is the set
of parameters. If there exists a function H such that the
composite function H o F' is linear in some of the elements
of S, then these elements can be identified by the least-
squares method. More formally, if the parameter set S can
be decomposed into two sets

S=5 &8, (39)

(where @ represents direct sum) such that H o F' is linear
in the elements of Sy, then upon applying H to equation

(38), we have

H(output) = H o F(f, S), (40)
which is linear in the elements of Sa. Now given values of
elements of S1, we can plug P training data into equation
(40) and obtain a matrix equation:

A6 =1B (41)
where 6 is an unknown vector whose elements are param-
eters in S3. This equation represents the standard linear
least-squares problem and the best solution for 8, which
minimizes || A8 — B||?, is the least-squares estimator (LSE)
6":

6" = (AT A1 AT B, (42)

where AT is the transpose of A and (AT A)~1AT is the
pseudo-inverse of A if AT A is non-singular. Of course, we
can also employ the recursive LSE formula [23], [1], [58].
Specifically, let the i-th row vector of matrix A defined in
equation (41) be a and the i-th element of B be b7; then
0 can be calculated iteratively as follows:

Biy1 = 0i+ Siyraip1(biyy — af}16;)
Siait1a¥, | S; .
Siy1 = G — et o i=0,1,---,P—1 [’

1+af,, Siaiy1’

(43)
where the least-squares estimator 8" is equal to 8p. The
initial conditions needed to bootstrap equation (43) are
6o = 0 and Sy = I, where v is a positive large number
and [is the identity matrix of dimension M x M. When we
are dealing with multi-output adaptive networks (output in
equation (38) is a column vector), equation (43) still applies
except that b7 is the i-th row of matrix B.

Now we can combine the gradient method and the least-
squares estimator to update the parameters in an adaptive
network. For hybrid learning to be applied in a batch mode,
each epoch is composed of a forward pass and a backward
pass. In the forward pass, after an input vector is pre-
sented, we calculate the node outputs in the network layer
by layer until a corresponding row in the matrices A and
B in equation (41) are obtained. This process is repreated
for all the training data entries to form the complete A
and B; then parameters in S5 are identified by either the
pseudo-inverse formula in equation (42) or the recursive
least-squares formulas in equation (43). After the parame-
ters in Ss are identified, we can compute the error measure
for each training data entry. In the backward pass, the er-
ror signals (the derivative of the error measure w.r.t. each
node output, see equations (22) and (23)) propagate from
the output end toward the input end; the gradient vector
is accumulated for each training data entry. At the end of
the backward pass for all training data, the parameters in
Sy are updated by the gradient method in equation (27).

For given fixed values of the parameters in S, the pa-
rameters in S» thus found are guaranteed to be the global
optimum point in the S; parameter space because of the
choice of the squared error measure. Not only can this
hybrid learning rule decrease the dimension of the search

17

space in the gradient method, but, in general, it will also
substantially reduce the time needed to reach convergence.

It should be kept in mind that by using the least-squares
method on the data transformed by H(-), the obtained pa-
rameters are optimal in terms of the transformed squared
error measure instead of the original one. In practice, this
usually will not cause a problem as long as H(-) is mono-
tonically increasing and the training data are not too noisy.
A more detailed treatment of this transformation method
can be found in [34].

D.2 On-Line Learning (Pattern Learning)

If the parameters are updated after each data presen-
tation, we have a on-line learning or pattern learning
scheme. This learning strategy is vital to on-line parameter
identification for systems with changing characteristics. To
modify the batch learning rule to obtain an on-line version,
it is obvious that the gradient descent should be based on
E, (see equation (24)) instead of E. Strictly speaking, this
is not a truly gradient search procedure for minimizing ¥,
yet it will approximate one if the learning rate is small.

For the recursive least-squares formula to account for
the time-varying characteristics of the incoming data, the
effects of old data pairs must decay as new data pairs be-
come available. Again, this problem is well studied in the
adaptive control and system identification literature and a
number of solutions are available [20]. One simple method
is to formulate the squared error measure as a weighted
version that gives higher weighting factors to more recent
data pairs. This amounts to the addition of a forgetting
factor A to the original recursive formula:

_ T T
Oiy1 = 60:+ Si+51ai+1(£i+sl —a;,,6;) (49)
X — lyg _ 2i%i41@iga0i)
Sz+1 —)\[Sz)\+alT+1Slaz+1]

where the typical value of A in practice is between 0.9 and
1. The smaller X is, the faster the effects of old data decay.
A small A sometimes causes numerical instability, however,
and thus should be avoided. For a complete discussion and
derivation of equation (44), the reader is referred to [34],
[58], [20].

D.3 Different Ways of Combining GD and LSE

The computational complexity of the least-squares esti-
mator (LSE) is usually higher than that of the gradient de-
scent (GD) method for one-step adaptation. However, for
achieving a prescribed performance level, the LSE is usu-
ally much faster. Consequently, depending on the available
computing resources and required level of performance, we
can choose from among at least five types of hybrid learn-
ing rules combining GD and LSE in different degrees, as
follows.

1. One pass of LSE only: Nonlinear parameters are fixed
while linear parameters are identified by one-time ap-
plication of LSE.

2. GD only: All parameters are updated by GD itera-
tively.

18

3. One pass of LSE followed by GD: LSE is employed
only once at the very beginning to obtain the initial
values of linear parameters and then GD takes over to
update all parameters iteratively.

4. GD and LSE: This is the proposed hybrid learning
rule, where each iteration (epoch) of GD used to up-
date the nonlinear parameters is followed by LSE to
identify the linear parameters.

5. Sequential (approximate) LSE only: The outputs of
an adaptive network are linearized with respect to its
parameters, and then the extended Kalman filter algo-
rithm [21] is employed to update all parameters. This
method has been proposed in the neural network lit-
erature [85], [84], [83].

The choice of one of the above methods should be based
on a trade-off between computational complexity and per-
formance. Moreover, the whole concept of fitting data to
parameterized models is called regression in statistics lit-
erature, and there are a number of other techniques for
either linear or nonlinear regression, such as the Guass-
Newton method (linearization method) and the Marquardt
procedure [61]. These methods can be found in advanced
textbooks on regression and they are also viable techniques
for finding optimal parameters in adaptive networks.

E. Neural Networks as Special Cases of Adaptive Networks

Some special cases of adaptive networks have been ex-
plored extensively in the neural network literature. In par-
ticular, we will introduce two types of neural networks: the
back-propagation neural network (BPNN) and the radial
basis function network (RBFN). Other types of adaptive
networks that can be interpreted as a set of fuzzy if-then
rules are investigated in the next section.

E.1 Back Propagation Neural Networks (BPNN’s)

A back-propagation neural network (BPNN), as already
mentioned in examples 4 and 5, is an adaptive network
whose nodes (called neurons) perform the same function
on incoming signals; this node function is usually a com-
posite function of the weighted sum and a nonlinear func-
tion called the activation function or transfer func-
tion. Usually the activation functions are of either a sig-
moidal or a hyper-tangent type which approximates the
step function (or hard limiter) and yet provides differ-
entiability with respect to input signals. Figure 32 depicts
the four different types of activation functions f(z) defined
below.

. 1ifx > 0.
Step function: flx) = { Oifx <0
. . . B 1
Sigmoid function: flz) = TFe7 3
Hyper-tangent function: f(z) = tanh(z/2) = ﬁ.
Identity function: flz) = .

When the step function (hard-limiter) is used as the ac-
tivation function for a layered network, the network is of-
ten called a perceptron [78], [70], as explained in exam-
ple 4. For a neural network to approximate a continuous-

(a) step function

] I

1 : 1

(b) sigmoid function

-2
1

-10 0 10 0 0 10

(c) hyper-tangent function
2

1 5

Of i

1 : -5
0 0 1

0 10 0 10

(d) identity function

Fig. 32. Activation functions for BPNN’s: (a) step function; (b)
sigmoid function; (c) hyper-tangent function; (d) identity func-
tion.

Xl
W14

W —
Xz%x %X‘;

/{
X

3

node 4

Fig. 33. A BPNN node.

valued function not necessarily limited to the interval [0, 1]
or [1,—1], we usually let the node function for the output
layer be a weighted sum with no limiting-type activation
functions. This is equivalent to the situation where the ac-
tivation function is an identity function, and output nodes
of this type are often called linear nodes.

For simplicity, we assume the BPNN in question uses the
sigmoidal function as its activation function. The net input
z of a node is defined as the weighted sum of the incoming
signals plus a threshold. For instance, the net input and
output of node j in Figure 33 (where j = 4) are

Tj =2l wijri + 1,

zj = f(z;) = ﬁ’

(45)
where z; is the output of node i located in the previous
layer, w;; is the weight associated with the link connecting
nodes ¢ and j, and ¢; is the threshold of node j. Since
the weights w;; are actually internal parameters associated
with each node j, changing the weights of a node will alter
the behavior of the node and in turn alter the behavior
of the whole BPNN. Figure 23 shows a two-layer BPNN
with 3 inputs in the input layer, 3 neurons in the hidden
layer, and 2 output neurons in the output layer. For sim-
plicity, this BPNN will be referred to as a 3-3-2 structure,
corresponding to the number of nodes in each layer. (Note
that the input layer is composed of three buffer nodes for
distributing the input signals; therefore this layer is con-
ventionally not counted as a physical layer of the BPNN.)

BPNN'’s are by far the most commonly used NN struc-

Fig. 34. A radial basis function network (RBFN) .

ture for applications in a wide range of areas, such as
speech recognition, optical character recognition (OCR),
signal processing, data compression, and automatic con-
trol.

E.2 Radial Basis Function Networks (RBFN’s)

The locally-tuned and overlapping receptive field is a
well-known structure that has been studied in the regions
of the cerebral cortex, the visual cortex, and so forth.
Drawing on the knowledge of biological receptive fields,
Moody and Darken [66], [67] proposed a network struc-
ture that employs local receptive fields to perform func-
tion mappings. Similar schemes have been proposed by
Powell [74], Broomhead and Lowe [7], and many others in
the areas of interpolation and approximation theory; these
schemes are collectively called radial basis function approx-
imations. Here we shall call this network structure the ra-
dial basis function network or RBFN. Figure 34 shows
a schematic diagram of an RBFN with five receptive field
units; the activation level of the i-th receptive field unit (or
hidden unit) is

w; = Ry(Z) = Ri(||F = él|/os), i=1,2,.... H (46)

where ¥ is a multi-dimensional input vector, ¢; is a vector
with the same dimension as ¥, H is the number of radial
basis functions (or equivalently, receptive field units), and
R;(-) is the ¢-th radial basis function with a single maxi-
mum at the origin. Typically, R;(-) is chosen as a Gaussian
function

(47)

or as a logistic function

Ri(%) = (48)

1+ expl||& - &|I*/o7]
Thus the activation level of the radial basis function w;
computed by the i-th hidden unit is maximum when the
input vector Z is at the center ¢; of that unit.

The output of a radial basis function network can be
computed in two ways. In the simpler method, as shown
in Figure 34, the final output is the weighted sum of the
output value associated with each receptive field:

f(@) = Zfiwz- = Zfz’Ri(f), (49)

19

where f; is the output value associated with the i-th re-
ceptive field. A more complicated method for calculating
the overall output is to take the weighted average of the
output associated with each receptive field:

. Eil fiw; Eil JiRi(%)
(%) = = .
D= S Y R

This mode of calculation, though has a higher degree of
computational complexity, possesses the advantage that
points in the overlapping area of two receptive fields will
have a well interpolated output value between the output
values of the two receptive fields. For representation pur-
poses, if we change the radial basis function R;(Z) in each
node of layer 2 in Figure 34 by its normalized counter-
part R;(ZX)/)", Ri(Z), then the overall output is specified
by equation (50).

Several learning algorithms have been proposed to iden-
tify the parameters (¢;, o; and f;) of an RBFN. Note that
the RBFN 1is an ideal example of the hybrid learning de-
scribed in the previous section, where the linear param-

(50)

eters are f; and the nonlinear parameters are ¢; and o;.
In practice, the ¢; are usually found by means of vector
quantization or clustering techniques (which assume simi-
lar input vectors produce similar outputs) and the o; are
obtained heuristically (such as by taking the average dis-
tance to the first several nearest neighbors of ¢;’s). Once
these nonlinear parameters are fixed, the linear parameters
can be found by either the least-squares method or the gra-
dient method. Chen et al. [8] used an alternative method
that employs the orthogonal least-squares algorithm to de-
termine the ¢;’s and f;’s while keeping the o;’s at a pre-
determined constant.

An extension of Moody-Darken’s RBFN is to assign a
linear function as the output function of each receptive
field; that is, f; is a linear function of the input variables
instead of a constant:

fi=d; - ¥+ b, (51)

where d; is a parameter vector and b; is a scalar parameter.
Stokbro et al. [89] used this structure to model the Mackey-
Glass chaotic time series [59] and found that this extended
version performed better than the original RBFN with the
same number of fitting parameters.

It was pointed out by the authors that under certain
constraints, the RBFN is functionally equivalent to the the
zero-order Sugeno fuzzy model. See [32] or [34] for details.

IV. ANFIS: ADAPTIVE NEURO-FUZzZY INFERENCE
SYSTEMS

A class of adaptive networks that act as a fundamental
framework for adaptive fuzzy inference systems is intro-
duced in this section. This type of networks is referred
to as ANFIS [25], [24], [29], which stands for Adaptive-
Network-based Fuzzy Inference System, or seman-
tically equivalently, Adaptive Neuro-Fuzzy Inference
System. We will describe primarily the ANFIS architec-
ture and its learning algorithm for the Sugeno fuzzy model,

20

fL = px +ayy +n

fo=pX +ay +1, =w i+ wf,

layer 2 layer 3 L

Fig. 35. (a) A two-input first-order Sugeno fuzzy model with two
rules; (b) equivalent ANFIS architecture.

with an application example of chaotic time series predic-
tion.

Note that similar network structures were also pro-
posed independently by Lin and Lee [55] and Wang and
Mendel [106]).

A. ANFIS Architecture

For simplicity, we assume the fuzzy inference system un-
der consideration has two inputs # and y and one output
z. For a first-order Sugeno fuzzy model [98], [91], a typical
rule set with two fuzzy if-then rules can be expressed as

Rule 1: If z is A; and y is By, then f; = piz + q1y + r1,
Rule 2: If z is Ay and y is Bs, then fo = pax + g2y + 1.

Figure 35 (a) illustrates the reasoning mechanism for this
Sugeno model. The corresponding equivalent ANFIS ar-
chitecture is as shown in Figure 35(b), where nodes of
the same layer have similar functions, as described below.
(Here we denote the output node ¢ in layer [as O;;.)
Layer 1: Every node i in this layer is an adaptive node
with a node output defined by

O1; = pa,(2), fori=1,2, or (52)
O1; =pB, ,(y), fori=3 4,

where z (or y) is the input to the node and A; (or
B;_5) is a fuzzy set associated with this node. In other
words, outputs of this layer are the membership values
of the premise part. Here the membership functions
for A; and B; can be any appropriate parameterized
membership functions introduced in Section II. For
example, A; can be characterized by the generalized
bell function:

B
T+ (=T

a;

pa(z) = (53)

where {a;, b;, ¢;} is the parameter set. Parameters in
this layer are referred to as premise parameters.

f = w, fo+w,f,
W, T W,

Layer 2: Every node in this layer is a fixed node labeled
IT, which multiplies the incoming signals and outputs
the product. For instance,

OQ,i:'wi:/LA,(m) X,”B,(y)a 7= 1,2 (54)

Each node output represents the firing strength of a
rule. (In fact, any other T-norm operators that per-
form fuzzy AND can be used as the node function in
this layer.)

Layer 3: Every node in this layer is a fixed node labeled
N. The ¢-th node calculates the ratio of the i-th rule’s
firing strength to the sum of all rules’ firing strengths:

W

)
w1 + Wy

O3; =w; = 1=1,2. (55)
For convenience, outputs of this layer will be called
normalized firing strengths.

Layer 4: Every node i in this layer is an adaptive node
with a node function

Oui = Wi f; = Wi(pix + ¢y +73), (56)

where w; is the output of layer 3 and {p;, ¢;, r;} is
the parameter set. Parameters in this layer will be
referred to as consequent parameters.

Layer 5: The single node in this layer is a fixed node
labeled X, which computes the overall output as the
summation of all incoming signals:

Os1 = overall output = Zmifi = M (57)

- 2w

K3

Thus we have constructed an adaptive network that has
exactly the same function as a Sugeno fuzzy model. Note
that the structure of this adaptive network is not unique;
we can easily combine layers 3 and 4 to obtain an equivalent
network with only four layers. Similarly, we can perform
weight normalization at the last layer; Figure 36 illustrates
an ANFIS of this type.

Fig. 36. Another ANFIS architecture for the two-input two-rule
Sugeno fuzzy model.

Figure 37 (a) is an ANFIS architecture that is equivalent
to a two-input first-order Sugeno fuzzy model with nine
rules, where each input is assumed to have three associated
MF’s. Figure 37 (b) illustrates how the 2-D input space
is partitioned into nine overlapping fuzzy regions, each of
which is governed by fuzzy if-then rules. In other words,
the premise part of a rule defines a fuzzy region, while the
consequent part specifies the output within this region.

For ANFIS architectures for the Mamdani and
Tsukamoto fuzzy models, the reader is referred to [29] and
[34] for more details.

’ consequent parameters
premise parameters

@

Fig. 37. (a) ANFIS architecture for a two-input first-order Sugeno
fuzzy model with nine rules; (b) partition of the input space into
nine fuzzy regions.

B. Hybrid Learning Algorithm

From the ANFIS architecture shown in Figure 35 (b),
we observe that when the values of the premise parameters
are fixed, the overall output can be expressed as a linear
combination of the consequent parameters. In symbols, the
output f in Figure 35 (b) can be rewritten as

= 8o h+ 5350

witwz witwsa

w1 f1 + Wa f2

= (Wa)p1 + (W1y)q1 + (W1)r1 + (Wa2)p2 + (Way)qz + (Wa)ra,

(58)
which is linear in the consequent parameters p1, qi1, 71,
P2, q2, and ro. Therefore the hybrid learning algorithm
developed in the previous section can be applied directly.
More specifically, in the forward pass of the hybrid learning
algorithm, node outputs go forward until layer 4 and the
consequent parameters are identified by the least-squares
method. In the backward pass, the error signals propagate
backward and the premise parameters are updated by gra-
dient descent. Table I summarizes the activities in each
pass.

TABLE I
TWwO PASSES IN THE HYBRID LEARNING PROCEDURE FOR ANFIS.

|| Forward Pass Backward Pass |

Premise Fixed Gradient
Parameters Descent
Consequent || Least-Squares Fixed
Parameters Estimate

Signals Node Outputs | Error Signals

As mentioned earlier, the consequent parameters thus
identified are optimal under the condition that the premise
parameters are fixed. Accordingly, the hybrid approach
converges much faster since it reduces the dimension of the
search space of the original back-propagation method.

If we fix the membership functions and adapt only
the consequent part, then ANFIS can be viewed as a
functional-link network [46], [71] where the “enhanced rep-
resentations” of the input variables are obtained via the
membership functions. These “enhanced representations”,
which take advantage of human knowledge, apparently ex-

21

press more insight than the functional expansion and the
tensor (outer product) models [71]. By fine-tuning the
membership functions, we actually make this “enhanced
representation” also adaptive.

From equations (49), (50), and equation (57), it is not
too hard to see the resemblance between the radial basis
function network (RBFN) and the ANFIS for the Sugeno
model. Actually these two computing framework are func-
tionally equivalent under certain minor conditions [32]; this
cross-fertilize both disciplines in many respects.

C. Application to Chaotic Time Series Prediction

ANFIS can be applied to a wide range of areas, such as
nonlinear function modeling [24], [29], time series predic-
tion [33], [29], on-line parameter identification for control
systems [29], and fuzzy controller design [26], [28]. In par-
ticular, GE has been using ANFIS for modeling correction
factors in steel rolling mills [6]. Here we will briefly re-
port the application of ANFIS to chaotic time series pre-
diction [33], [29].

The time series used in our simulation is generated by
the Mackey-Glass differential delay equation [59]:

i(t) = 0.2z(t—1)

= 13200 = 7 2100 = 1) —0.1x(t).

(59)

The prediction of future values of this time series is a bench-
mark problem that has been used and reported by a num-
ber of connectionist researchers, such as Lapedes and Far-
ber [48], Moody [67], [65], Jones et al. [35], Crower [77], and
Sanger [81]. The simulation results presented here were re-
ported in [33], [29]; more details can be found therein.

The goal of the task is to use past values of the time series
up to the point & = ¢ to predict the value at some point
in the future x = ¢t + P. The standard method for this
type of prediction is to create a mapping from D points
of the time series spaced A apart, that is, (z(t — (D —
DAY, ., z(t—A), (1)), to a predicted future value z(t +
P). To allow comparison with earlier work (Lapedes and
Farber [48], Moody [67], [65], Crower [77]), the values D =
4 and A = P = 6 were used. All other simulation settings
were arranged to be as similar as possible to those reported
in [77].

From the Mackey-Glass time series (t), we extracted
1000 input-output data pairs of the following format:

[x(t —18),z(t — 12),2(t — 6), z(t); z(t + 6)], (60)

where t = 118 to 1117. The first 500 pairs (training data
set) were used for training ANFIS, while the remaining 500
pairs (checking data set) were used for validating the model
identified. The number of membership functions assigned
to each input of the ANFIS was set to two, so the number
of rules is 16. The ANFIS used here contains a total of 104
fitting parameters, of which 24 are premise parameters and
80 are consequent parameters

Figure 38 shows the results after about 500 epochs of
learning. The desired and predicted values for both train-
ing data and checking data are essentially the same in Fig-

22

14 @) Mackey-Glass Time Series

200

400 600

time

800 1000

(b) Hegjmwon Errors

200 400 600

time

800

Fig. 38. (a) Mackey-Glass time series from ¢ = 124 to 1123 and six-
step ahead prediction (which is indistinguishable from the time
series here); (b) prediction error. (Note that the first 500 data
points are training data, while the remaining are for validation.)

ure 38 (a); the differences between them can only be seen
on a much finer scale, such as that in Figure 38 (b).

TABLE II
GENERALIZATION RESULT COMPARISONS FOR P = 6.

Methods H Training Data | NDEI |
ANFIS 500 0.007
AR Model 500 0.19
Cascade-Correlation NN 500 0.06
Back-Prop NN 500 0.02
6th-order Polynomial 500 0.04
Linear Predictive Method 2000 0.55

Table II lists the generalization capabilities of other
methods, which were measured by using each method to
predict 500 points immediately following the training set.
The last four row of Table IT are from [77] directly. The
non-dimensional error index (NDEI) [48], [77] is defined
as the root mean square error divided by the standard de-
viation of the target series. The remarkable generalization
capability of ANFIS is attributed to the following facts:

o ANFIS can achieve a highly nonlinear mapping, there-
fore it 1s well-suited for predicting nonlinear time se-
ries.

o The ANFIS used here has 104 adjustable parameters,
far fewer than those used in the cascade-correlation
NN (693, the median) and back-prop NN (about 540)
listed in Table II.

o Though not based on a priori knowledge, the initial
parameter settings of ANFIS are intuitively reason-
able and results in fast convergence to good parameter
values that captures the underlying dynamics.

o ANFIS consists of fuzzy rules which are actually local
mappings (which are called local experts in [36]) in-
stead of global ones. These local mappings facilitate
the minimal disturbance principle [111], which
states that the adaptation should not only reduce

the output error for the current training pattern but
also minimize disturbance to response already learned.
This is particularly important in on-line learning. We
also found the use of least-squares method to deter-
mine the output of each local mapping is of particular
importance. Without using LSE, the learning time
would be ten times longer.

Other generalization tests and comparisons with neural
network approaches can be found in [29].

The original ANFIS C codes and several exam-
ples (including this one) can be retrieved via anony-
mous ftp in user/ai/areas/fuzzy/systems/anfis at
ftp.cs.cmu.edu (CMU Artificial Intelligence Reposi-

tory).

V. NEURO-FUzZZYy CONTROL

Once a fuzzy controller is transformed into an adaptive
network, the resulting ANFIS can take advantage of all
the NN controller design techniques proposed in the liter-
ature. In this section we shall introduce common design
techniques for ANFIS controllers. Most of these method-
ologies are derived directly from their counterparts for NN
controllers. However, certain design techniques apply ex-
clusively to ANFIS, which will be pointed out explicitly.

As shown in Figure 39, the block diagram of a typical
feedback control system consists of a plant block and a con-
troller block. The plant block is usually represented by a
set of differential equations that describe the physical sys-
tem to be controlled. These equations govern the behavior
of the plant state x(¢), which is assumed to be accessible in
our discussion. In contrast, the controller block is usually
a static function denoted by g; it maps the the plant state
x(t) into a control action u(t) that can hopefully achieve a
given control objective. Thus for a general time-invariant
control system, we have the following equations:

x(1) £(x(1), u(?))
u(t) g(x(1))

The control objective here is to design a controller function
g(+) such that the plant state x(¢) can follow a desired
trajectory x4(t) as closely as possible.

-

Block diagram for a continuous time feedback control sys-

(plant dynamics),
(controller).

u(t) plant

dynamics

x(t)

controller

Fig. 39.
tem.

A simple example of a feedback control system is the
inverted pendulum system (Figure 40) where a rigid pole
is hinged to a cart through a free joint with only one degree
of freedom, and the cart moves on the rail tracks to its right
or left depending on the force exerted on it. The control
goal is to find the applied force u as a function of the state
variable x = [0, 0, z, z] (where 0 is the pole angle and z is
the cart position) such that the pole can be balanced from
a given non-zero initial condition.

Fig. 40. The inverted pendulum system.

For a feedback control system in a discrete time domain,
a general block diagram representation is as shown in Fig-
ure 41. Note that the inputs to the plant block include the
control action u(k) and the previous plant output x(k), so
the plant block now represents a static mapping. In sym-
bols, we have

x(k+1) = f(x(k),u(k)) (plant),
u(k) = g(x(k)) (controller).
x(k) controller uk) —= x(k+1)

plant

Fig. 41. Block diagram for a discrete-time feedback control system.

A central problem in control engineering is that of find-
ing the control action u as a function of the plant output
x in order to achieve a given control goal. Each design
method for neuro-fuzzy controllers corresponds to a way of
obtaining the control action; these methods are discussed
next.

A. Mimicking Another Working Controller

Most of the time, the controller being mimicked is an ex-
perienced human operator who can control the plant satis-
factorily. In fact, the whole concept of mimicking a human
expert is the original intention of fuzzy controllers whose
ultimate goal is to replace human operators who can con-
trol complex systems such as chemical reaction processes,
subway trains, and traffic systems. An experienced hu-
man operator usually can summarize his or her control ac-
tions as a set of fuzzy if-then rules with roughly correct
membership functions; this corresponds to the linguistic
information. Prior to the emergence of neuro-fuzzy ap-
proaches, refining membership function is usually obtained
via a lengthy trial-and-error process. Now with learning al-
gorithms, we can further take advantage of the numerical
information (input/output data pairs) and refine the mem-
bership functions in a systematic way. Note that the ca-
pability to utilize linguistic information is specific to fuzzy
inference systems; it is not always available in neural net-
works. Successful applications of fuzzy controller based on
linguistic information plus trial-and-error tuning includes
steam engine and boiler control [60], Sendai subway sys-
tems [117], container ship crane control [116], elevator con-
trol [54], nuclear reaction control [5], automobile transmis-
sion control [40], aircraft control [14], and many others [90].

23

With the availability of learning algorithms, a wider range
of applications is expected.

Note that this approach is not only for control appli-
cations. If the target system to be emulated is a human
physician or a credit analyst, then the resulting fuzzy in-
ference systems become a fuzzy expert system for diagnosis
and credit analysis, respectively.

B. Inverse Control

Another scheme for obtaining desired control action is
the inverse control method shown in Figure 42. For sim-
plicity, we assume that the plant has only one state (k)
and one input u(k). In the learning phase, a training set
is obtained by generating inputs u(k) at random, and ob-
serving the corresponding outputs z(k) produced by the
plant. The ANFIS in Figure 42 (a) is then used to learn
the inverse model of the plant by fitting the data pairs
(x(k), (k4 1);u(k)). In the application phase, the ANFIS
identifier is copied to the ANFIS controller in Figure 42
for generating the desired output. The input to the AN-
FIS controller is (z(k), za(k)); if the inverse model (ANFIS
identifier) that maps (z(k), z(k + 1)) to u(k) is accurate,
then the generated u(k) should result in z(k + 1) that is
close to x4(k). That is, the whole system in Figure 42 will
behave like a pure unit-delay system.

This method seems straightforward and only one learn-
ing task is needed to find the inverse model of the plant.
However, it assumes existence of the inverse of a plant,
which is not valid in general. Moreover, minimization of
the network error ||e,(k)||> does not guarantee minimiza-
tion of the overall system error ||zq4(k) — z (k)|

Using ANFIS for adaptive inverse control can be found

in [42].

u(k)

x(k) x(k+1)
i
identjfier
@
x(K) ANFIS | u(k)
Xq (k) controller plant %X(k"'l)

(b)

Fig. 42. Block diagram for inverse conirol method: (a) learning
phase; (b) application phase.

C. Specialized Learning

The major problem with the inverse control scheme is
that we are minimizing the network error instead of the
overall system error. An alternative is to minimize the sys-
tem error directly; this is called specialized learning [76].
In order to back-propagate error signals through the plant
block in Figure 43, we need to find a model representing

24

the behavior of the plant. In fact, in order to apply back-
propagation learning, all we need to know is the Jacobian
matrix of the plant, where the element at row i and col-
umn j is equal to the derivative of the plant’s i-th output
with respect to its j-th input.

If the Jacobian matrix is not easy to find, an alternative
is to estimate it on-line from the changes of the plant’s
inputs and outputs during two consecutive time instants.
Other similar methods that aim at using an approximate
Jacobian matrix to achieve the same learning effects can
be found in [41], [11], [103]. Applying specialized learning
to find an ANFIS controller for the inverted pendulum was
reported in [27].

X4 (k+1)
e +
x(k) ANHIS u(k)
conifoller plant x(K+1)
(@
X, (k+1
desired model o (k1)
x(k) — ANHIS u(k)
controller plant x(k+1)

(b)

Fig. 43. Block diagram for (a) specialized learning; (b) specialized
learning with model reference.

It is not always convenient to specify the desired plant
output z4(k) at every time instant k. As a standard ap-
proach in model reference adaptive control, the desired be-
havior of the overall system can be implicitly specified by
a (usually linear) model that is able to achieve the control
goal satisfactorily. This alternative approach is shown in
Figure 43 (b), where the desired output z4(k + 1) is gener-
ated through a desired model.

D. Back-Propagation Through Time and Real Time Recur-
rent Learning

If we replace the controller and the plant block in Fig-
ure 39 with two adaptive networks, the feedback control
system becomes a recurrent adaptive network discussed
in Section III. Assuming the synchronous operation is
adopted here (which virtually convert the system into the
discrete time domain), we can apply the same scheme of
unfolding of time to obtain a feedforward network, and
then use the same back-propagation learning algorithm to
identify the optimal parameters.

In terms of the inverted pendulum system (pole only),
Figure 41 becomes Figure 44 if the controller block is re-
placed with a four-rule ANFIS and the plant block is re-
placed with a two-node adaptive network. To obtain the
state trajectory, we cascade the network in Figure 44 to
obtain the trajectory network shown in Figure 45. In
particular, the inputs to the trajectory network are initial

controller block

plant block

x4(t)
X,(t)

Fig. 44. Network implementation of Figure 41 .
actual desired
trajectory trajectory
error o
o
ial o |measure| o
initial
conditions <:|
% -

parametet
Set

Fig. 45. A trajectory network for control application (FC stands for
“fuzzy comtroller”).

conditions of the plant; the outputs are the state trajectory
from £ = 1 to k = m. The adjustable parameters are all
pertaining to the FC (fuzzy controller) block implemented
as an four-rule ANFIS. Though there are m FC blocks,
all of them refer to the same parameter set. For clarity,
this parameter set is shown explicitly in Figure 45 and it
is updated according to the output of the error measure
block.

Each entry of the training data is of the following format:

(initial conditions; desired trajectory),

and the corresponding error measure to be minimized is

E = an

where x4(k) is a desired state vector at ¢t = k+ T (T is the
sampling period). If we take control efforts into considera-
tion, a revised error measure would be

E="|x(k) ||2+AZ (k)]

where u(k) is the control action at time step k. By a proper
selection of A, a compromise between trajectory error and
control efforts can be obtained.

Use of back-propagation through time to train a neural
network for backing up a tractor-trailer system is reported
in [69]. The same technique was used to design an ANFIS
controller for balancing an inverted pendulum [28]. Note
that back-propagation through time is usually an off-line
learning algorithms in the sense that the parameters will
not be updated till the sequence (k = 1 to m) is over. If the
sequence is too long or if we want to update the parameters
in the middle of the sequence, we can always apply RTRL
(real time recurrent learning) introduced earlier.

—xq(k)I*,

—xq(k

E. Feedback Linearization and Sliding Control

The equations of motion of a class of dynamic systems in
continuous time domain can be expressed in the canonical
form:

2(t) = fla(t),é(2), - 2" (0) + bu(?),

where f is an unknown continuous function, b is the control
gain, and u € R and y € R are the input and output of
the system, respectively. The control objective is to force
the state vector & = [z, &, ..., (" ~D]T to follow a specified
desired trajectory ®4 = [24, T4, - - .,;L‘Eln_l)]T. If we define
the tracking error vector as e = x — x4, then the control
objective is to design a control law u(t) which ensures e— 0
ast — oo. (For simplicity, we assume b = 1 in the following
discussion.)

Equation (61) is a typical feedback linearizable sys-
tem since it can be reduced to a linear system if f is known
exactly. Specifically, the following control law

u(t) =

would transform the original nonlinear dynamics into a lin-
ear one:

(61)

—f(a(t) + 20 + ke (62)

() + ke 4 ke =0,

where k=[k,,...,k1]7 is an appropriately chosen vector
that ensures satisfactory behavior of the close-loop linear
system in equation (63).

Since f is unknown, an intuitive candidate of u would be

(63)

u= —F(m,p)—{—xgln)—i—kTe—i—v, (64)
where v is an additional control input to be determined
later, F'is an parameterized function (such as ANFIS, neu-
ral networks, or any other types of adaptive networks) that
is rich enough to approximate f. Using this control law,
the close-loop system becomes

e 4 ke 4 ke =(f—F)+ v (65)
Now the problem is divided into two tasks:
o How to update the parameter vector p incrementally
so that F'(x, p) ~ f(x) for all .
o How to apply v to guarantee global stability while F
is approximating f during the whole process.
The first task is not too difficult as long as F', which could
be a neural network or a fuzzy inference system, is equipped
with enough parameters to approximate f. For the second
task, we need to apply the concept of a branch of nonlin-
ear control theory called sliding control [102], [86]. The
standard approach is to define an error metrics as

s(t) = (i + M) te(t), with A > 0.

7 (66)

The equation s(t) = 0 defines a time varying hyper-
plane in R™ on which the tracking error vector e(t)

25

= [e(t),e(t),...,e" 1(t)]T decays exponentially to zero,
so that perfect tracking can be obtained asymptotically.
Moreover, if we can maintain the following condition:

(67)

then |s(t)| will approach the hyperplane |s(¢)] = 0 in a fi-
nite time less than or equal to |s(0)|/n. In other words,
by maintain the condition in equation (67), s(¢) will ap-
proaches the sliding surface s(¢) = 0 in a finite time, and
then the error vector e(t) will converge to the origin expo-
nentially with a time constant (n — 1)/A.

From equation (66), s can be rearranged as follows:

s=(A+ i)n_le =" (n— DAL

1e.
o e

(68)

Differentiate the above equation and plug in ¢ from equa-
tion (65), we obtain

s = 40,4 (- DA, Me
= f_F+‘U_|:kTLJkTL—1J...’ 1]e (69)
+[0, A7 (n — 1)A"=2 ... A]e
By setting [kn, kn—1, -, k1] = [0, A" 7L (n—=1)A"=2 ... }],

we have

E = f—F-{—’L’,
and
dls
= Bsan(s)

(f = F +v)sgn(s).

That is, equation (67) is satisfied if and only if
(f = F +v)sgn(s) < —n.

If we assume the approximation error |f — F| is bounded
by a positive number A, then the above equation is always
satisfied if

v=—(A+n)sgn(s).

To sum up, if we choose the control law as
u(t) = —F(x,p)+ay 40, "7 (n=)A" 2

where F(x,p) is an adaptive network that approximates
f(x) and A is the error bound, then the close-loop system
can achieve perfect tracking asymptotically with global sta-
bility.

This approach uses a number of nonlinear control de-
sign techniques and possesses rigorous proofs for global
stability. However, its applicability is restricted to feed-
back linearizable systems. The reader is referred to [86] for
a more detailed treatment of this subject. Applications of
this technique to neural network and fuzzy control can be
found in [82] and [104], respectively.

Me—(A+n)sgn(s),

26

F. Gain Scheduling

Under certain arrangements, the first-order Sugeno fuzzy
model becomes a gain scheduler that switches between
several sets of feedback gains. For instance, a first-order
Sugeno fuzzy controller for an hypothetical inverted pen-
dulum system with varying pole length may have the fol-
lowing fuzzy if-then rules:

If pole is short, then fi = k110 + k120 + k132 + k142,
If pole is medium, then f; = k210 + kzzé + kosz + koaz,

If pole is long, then f3 = k3160 + k320 + kszz + ksaz.
(70)
This is in fact a gain scheduling controller, where the
scheduling variable is the pole length and the control ac-
tion is switching smoothly between three sets of feedback
gains depending on the value of the scheduling variable. In
general, the scheduling variables only appear in the premise
part while the state variables only appear in the consequent
part. The design method here is standard in gain schedul-
ing: find several nominal points in the space formed by
scheduling variables and employ any of the linear control
design techniques to find appropriate feedback gains. If
the number of nominal points is small, we can construct
the fuzzy rules directly. On the other hand, if the number
of nominal points is large, we can always use ANFIS to fit

desired control actions to a fuzzy controller.

Examples of applying this method to both one-pole and
two-pole inverted pendulum systems with varying pole
lengths can be found in the demo programs in [31].

G. Others

Other design techniques that do not use the learning
algorithm in neuro-fuzzy modeling are summarized here.

For complex control problems with perfect plant mod-
els, we can always use gradient-free optimization schemes,
such as genetic algorithms [22], [19], simulated anneal-
ing [44], [45], downhill Simplex method [68], and random
method [63], [88]. In particular, use of genetic algorithms
for neural network controllers can be found in [113]; for
fuzzy logic controllers, see [39], [52], [38].

If the plant model is not available, we can apply rein-
forcement learning [2] to find a working controller directly.
The close relationship between reinforcement learning and
dynamic programming was addressed in [3], [L110]. Other
variants of reinforcement learning includes temporal dif-
ference methods (TD()) algorithms) and Q-learning [108].
Representative applications of reinforcement learning to

fuzzy control can be found in [4], [51], [12], [56].

Some other design and analysis approaches for fuzzy
controllers include cell-to-cell mapping techniques [13],
[87], model-based design method [99], self-organizing con-
trollers [75], [100], and so on. As more and more people
are working in this field, new design methods are coming
out sooner than before.

VI. CoNCLUDING REMARKS
A. A. Current Problems and Possible Solutions

A typical modeling problem includes structure deter-
mination and parameter identification. We address
the parameter identification problem for ANFIS in this
paper, which is solved via the back-propagation gradient
descent and the least-squares method. The structure de-
termination problem, which deals with the partition style,
the number of MF’s for each input, and the number of
fuzzy if-then rules, and so on, is now an active research
topic in the field. Work along this direction includes Jang’s
fuzzy CART approach [30], Lin’s reinforcement learning
method [57], Sun’s fuzzy k-d trees [93], Sugeno’s iterative
method [92] and various clustering algorithms proposed by
Chiu [15], Khedkar [43] and Wang [105]. Moreover, ad-
vances on the constructive and destructive learning of neu-
ral networks [18], [53] can also shed some lights on this
problem.

Though we can speed up the parameter identification
problem by introducing the least-squares estimator into
the learning cycle, gradient descent still slows down the
training process and the training time could be pro-
hibitively long for a complicated task. Therefore the need
to search for better learning algorithms hold equally true
for both neural networks and fuzzy models. Variants of
gradient descent proposed in the neural network litera-
ture; including second-order back-propagation [72], quick-
propagation [17], and so on, can be used to speed up train-
ing. A number of techniques used in nonlinear regres-
sion can also contribute in this regard, such as the Guass-
Newton method (linearization method) and the Marquardt
procedure [61]. Another important resource is the rich lit-
erature of optimization, which offers many better gradient-
based optimization routines, such as quadratic program-
ming and conjugate gradient descent.

B. FPuture Directions

Due to the extreme flexibility of adaptive networks, AN-
FIS can have a number of variants that are different from
what we have proposed here. For instance, we can replace
the II nodes in layer 2 of ANFIS with the parameterized
T-norm operator [16] and let the learning algorithm decide
the best T-norm function for a specific application. By em-
ploying the adaptive network as a common framework, we
have also proposed other adaptive fuzzy models tailored for
different purposes, such as the neuro-fuzzy classifier [94],
[95] for data classification and the fuzzy filter scheme [96],
[97] for feature extraction. There are a number of possible
extensions and applications and they are currently under
investigation.

During the past years, we have witnessed the rapid
growth of the application of fuzzy logic and fuzzy set the-
ory to consumer electronic products, automotive industry
and process control. With the advent of fuzzy hardware
with possibly on-chip learning capability, the applications
to adaptive signal processing and control are expected. Po-
tential applications within adaptive signal processing in-

cludes adaptive filtering [21], channel equalization [9], [10],
[107], noise or echo cancelling [112], predictive coding [53],
and so on.

ACKNOWLEDGMENTS

The authors wish to thank Steve Chiu for providing nu-
merous helpful comments. Most of this paper was finished
while the first author was a research associate at UC Berke-
ley, so the authors would like to acknowledge the guidance
and help of Professor Lotfi A. Zadeh and other members
of the ”fuzzy group” at UC Berkeley. Research supported
in part by the BISC Program, NASA Grant NCC 2-275,
EPRI Agreement RP 8010-34 and MICRO State Program
No. 92-180.

(1]

10]

(11]

(12]

(13]

(14]

15]
[16]
(17]

18]

(19]

REFERENCES

K. J. Astrom and B. Wittenmark. Computer Controller Sys-
tems: Theory and Design. Prentice-Hall, 1984.

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuron-
like adaptive elements that can solve difficult learning control
problems. IEEE Trans. on Systems, Man, and Cybernetics,
13(5):8347846, 1983.

A. G. Barto, R. S. Sutton, and C.J.C.H Watkins. Learning and
sequential decision making. In M. Gabriel and J. W. Moore,
editors, Learning and Computational Neuroscience. MIT Press,
Cambridge, 1991.

H. R. Berenji and P. Khedkar. Learning and tuning fuzzy logic
controllers through reinforcements. IEFEE Trans. on Neural
Networks, 3(5):724-740, 1992.

J. A. Bernard. Use of rule-based system for process control.
IEEE Control Systems Magazine, 8(5):3-13, 1988.

P. Bonissone, V. Badami, K. Chiang, P. Khedkar, K. Marcelle,
and M. Schutten. Industrial applications of fuzzy logic at gen-
eral electric. The Proceedings of the IEEFE, March 1995.

D. S. Broomhead and D. Lowe. Multivariable functional inter-
polation and adaptive networks. Complex Systems, 2:321-355,
1988.

S. Chen, C. F. N. Cowan, and P. M. Grant. Orthogonal least
squares learning algorithm for radial basis function networks.
IEEE Trans. on Neural Networks, 2(2):302-309, March 1991.

S. Chen, G. J. Gibson, C. F. N. Cowan, and P. M. Grant.
Adaptive equalization of finite nonlinear channels using multi-
layer perceptrons. Signal Processing, 20:107-119, 1990.

S. Chen, G. J. Gibson, C. F. N. Cowan, and P. M. Grant.
Reconstruction of binary signals using an adaptive radial-basis-
function equalizer. Signal Processing, 22:77—93,1991.

V. C. Chen and Y. H. Pao. Learning control with neural net-
works. In Proc. of International Conference on Robotics and
Automation, pages 1448-1453, 1989.

Y.-Y. Chen. A self-learning fuzzy controller. In Proc. of IEEE
international conference on fuzzy systems, March 1992.

Y.-Y. Chen and T.-C. Tsao. A description of the dynamic
behavior of fuzzy systems. IEEE Trans. on Systems, Man,
and Cybernetics, 19(4):745-755, July 1989.

S. Chiu, S. Chand, D. Moore, and A. Chaudhary. Fuzzy logic
for control of roll and moment for a flexible wing aircraft. IEEE
Control Systems Magazine, 11(4):42—-48,1991. 1991.

S. L. Chiu. Fuzzy model identification based on cluster estima-
tion. Journal of Intelligent and Fuzzy Systems, 2(3), 1994.

D. Dubois and H. Prade. Fuzzy Sets and Systems: Theory and
Applications. Academic press, New York, 1980.

S. E. Fahlman. Faster-learning variations on back-propagation:
an empirical study. In D. Touretzky, G. Hinton, and T. Se-
jnowski, editors, Proc. of the 1988 Connectionist Models Sum-
mer School, pages 38—51, Carnegic Mellon University, 1988.

S. E. Fahlman and C. Lebiere. The cascade-correlation learning
architecture. In D. S. Touretzky, G. Hinton, and T. Sejnowski,
editors, Advances in Neural Information Processing Systems
II. Morgan Kaufmann, 1990.

D. E. Goldberg. Genetic algorithms in search, optimiza-
tion, and machine learning. Addison-Wesley, Reading, Mas-
sachusetts, 1989.

(20]
(21]
(22]
(23]
(24]

(23]

26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

35]

(43]

[44]

27

G. C. Goodwin and K. S. Sin. Adaptive filtering prediction and
control. Prentice-Hall, Englewood Cliffs, N.J., 1984.

S. S. Haykin. Adaptive filter theory. Prentice Hall, Englewood
Cliffs, NJ, 2nd edition, 1991.

J. H. Holland. Adaptation in natural and artificial systems.
The University of Michigan Press, 1975.

T. C. Hsia. System Identification: Least-Squares Methods. D.C.
Heath and Company, 1977.

J.-S. Roger Jang. Fuzzy modeling using generalized neural net-
works and Kalman filter algorithm. In Proc. of the Ninth Na-
tional Conference on Artificial Intelligence (AAAI-91), pages
762-767, July 1991.

J.-S. Roger Jang. Rule extraction using generalized neural net-
works. In Proc. of the 4th IFSA World Congress, pages 82—86
(in the Volume for Artificial Intelligence), July 1991.

J.-S Roger Jang. A self-learning fuzzy controller with ap-
plication to automobile tracking problem. In Proc. of IEEE
Roundtable Discussion on Fuzzy and Neural Systems, and Ve-
hicle Application, page paper no. 10, Tokyo, Japan, November
1991. Institute of Industrial Science, Univ. of Tokyo.

J.-S. Roger Jang. Fuzzy controller design without domain ex-
perts. In Proc. of IEEE international conference on fuzzy sys-
tems, March 1992.

J.-S. Roger Jang. Self-learning fuzzy controller based on tem-
poral back-propagation. IEEE Trans. on Neural Networks,
3(5):714-723, September 1992.

J.-S. Roger Jang. ANFIS: Adaptive-network-based fuzzy infer-
ence systems. IEEE Trans. on Systems, Man, and Cybernetics,
23(03):6657685, May 1993.

J.-S. Roger Jang. Structure determination in fuzzy modeling:
a fuzzy CART approach. In Proc. of IEEFE international con-
ference on fuzzy systems, Orlando, Florida, June 1994.

J.-S. Roger Jang and N. Gulley. The Fuzzy Logic Toolbox
for use with MATLAB. The MathWorks, Inc., Natick, Mas-
sachusetts, 1995.

J.-S. Roger Jang and C.-T. Sun. Functional equivalence be-
tween radial basis function networks and fuzzy inference sys-
tems. IEEE Trans. on Neural Networks, 4(1):156-159, January
1993.

J.-S. Roger Jang and C.-T. Sun. Predicting chaotic time se-
ries with fuzzy if-then rules. In Proc. of IEEFE international
conference on fuzzy systems, San Francisco, March 1993.

J.-S. Roger Jang and C.-T. Sun. Neuro-fuzzy modeling: an
computational approach to intelligence, 1995. Submitted for
publication.

R.D. Jones, Y. C. Lee, C. W. Barnes, G. W. Flake, K. Lee, and
P. S. Lewis. Function approximation and time series prediction
with neural networks. In Proc. of IEEE International Joint
Conference on Neural Networks, pages [-649-665, 1990.

M. I. Jordan and R. A. Jacobs. Hierarchical mextures of experts
and the EM algorithm. Technical report, M.I.T., 1993.

A. Kandel, editor. Fuzzy expert systems. CRC Press, Boca
Raton, FL, 1992.

C. L. Karr. GAs for fuzzy controllers. Al Ewxpert, 6(2):26-33,
February 1991.

C. L. Karr and E. J. Gentry. Fuzzy control of pH using ge-
netic algorithms. IEEE Trans. on Fuzzy Systems, 1(1):46-53,
February 1993.

Y. Kasai and Y. Morimoto. Electronically controlled continu-
ously variable transmission. In Proc. of International Congress
Transportation FElectronics, Dearborn, Michigan, 1988.

M. Kawato, K. Furukawa, and R. Suzuki. A hierarchical neural
network model for control and learning of voluntary movement.
Biological Cybernetics, 57:169-185, 1987.

D. J. Kelly, P. D. Burton, and M.A. Rahman. The application
of a neural fuzzy controller to process control. In Proc. of the
International Joint Conference of the North American Fuzzy
Information Processing Society Biannual Conference, the In-
dustrial Fuzzy Control and Intelligent Systems Conference, and
the NASA Joint Technology Workshop on Neural Networks and
Fuzzy Logic, San Antonio, Texas, December 1994.

P. S. Khedkar. Learning as Adaptive Interpolation in Neural
Fuzzy Systems. PhD thesis, Computer Science Division, De-
partment of EECS, University of California at Berkeley, 1993.
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. Research Report 9335 IBM T. J. Watson
Center, 1983.

28
[45]

[46]

(47]

48]

(49]

[50]

[51]

(52]

(53]

(54]

53]

[56]

(57]

(58]
[59]

[60]

(67]
(68]

(69]

(70]

(71]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
by simulated annealing. Science, 220(4598):671-680, May 1983.
M. S. Klassen and Y.-H. Pao. Characteristics of the functional-
link net: A higher order delta rule net. In IEEE Proc. of the
International Conference on Neural Networks, San Diego, June
1988.

B. Kosko. Neural networks and fuzzy systems: a dynamical
systems approach. Prentice Hall, Englewood Ciffs, NJ, 1991.
A. S. Lapedes and R. Farber. Nonlinear signal processing using
neural networks: prediction and system modeling. Technical
Report LA-UR-87-2662, Los Alamos National Laboratory, Los
Alamos, New Mexico 87545, 1987.

C.-C. Lee. Fuzzy logic in control systems: fuzzy logic controller-
part 1. IEEE Trans. on Systems, Man, and Cybernetics,
20(2):40474187 1990.

C.-C. Lee. Fuzzy logic in control systems: fuzzy logic controller-
part 2. IEEE Trans. on Systems, Man, and Cybernetics,
20(2):41974357 1990.

C.-C. Lee. A self-learning rule-based controller employing ap-
proximate reasoning and neural net concepts. International
Journal of Intelligent Systems, 5(3):71-93, 1991.

M. A. Lee and H. Takagi. Integrating design stages of fuzzy sys-
tems using genetic algorithms. In Proc. of the second IEEE In-
ternational Conference on Fuzzy Systems, pages 612—617, San
Francisco, 1993.

T.-C. Lee. Structure level adaptation for artificial neural net-
works. Kluwer Academic Publishers, 1991.

Fujitec Company Limited. FLEX-8800 series elevator group
control system, 1988. Osaka, Japan.

C.-T. Lin and C. S. G. Lee. Neural-network-based fuzzy logic
control and decision system. [IEEE Trans. on Computers,
40(12):1320-1336, December 1991.

C.-T. Lin and C.-S. G. Lee. Reinforcement structure/parameter
learning for neural-network-based fuzzy logic control systems.
In Proc. of IEEE International Conference on Fuzzy Systems,
pages 88-93, San Francisco, March 1993.

C.-T. Lin and C.-S. G. Lee. Reinforcement structure/parameter
learning for neural-network-based fuzzy logic control systems.
IEEE Trans. on Fuzzy Systems, 2(1):46-63, 1994.

L. Ljung. System identification: theory for the user. Prentice-
Hall, Englewood Cliffs, N.J., 1987.

M. C. Mackey and L. Glass. Oscillation and chaos in physio-
logical control systems. Science, 197:287—-289, July 1977.

E. H. Mamdani and S. Assilian. An experiment in linguistic
synthesis with a fuzzy logic controller. International Journal
of Man-Machine Studies, 7(1):1-13, 1975.

D. W. Marquardt. An algorithm for least squares estimation of
nonlinear parameters. Journal of the Society of Industrial and
Applied Mathematics, 2:431-441, 1963.

S. J. Mason. Feedback theory — further properties of signal flow
graphs. Proc. IRE, 44(7):920-926, July 1956.

J. Matyas. Random optimization. Automation and Remote
Control, 26:246-253, 1965.

M. Minsky and S. Papert. Perceptrons. MIT Press, MA, 1969.
J. Moody. Fast learning in multi-resolution hierarchies. In D. S.
Touretzky, editor, Advances in Neural Information Processing
Systems I, chapter 1, pages 29-39. Morgan Kaufmann, San
Mateo, CA, 1989.

J. Moody and C. Darken. Learning with localized receptive
fields. In D. Touretzky, G. Hinton, and T. Sejnowski, edi-
tors, Proc. of the 1988 Connectionist Models Summer School.
Carnegie Mellon University, Morgan Kaufmann Publishers,
1988.

J. Moody and C. Darken. Fast learning in networks of locally-
tuned processing units. Neural Computation, 1:281-294, 1989.
J. A. Nelder and R. Mead. A simplex method for function
minimization. Computer Journal, 7:308-313, 1964.

D. H. Nguyen and B. Widrow. Neural networks for self-learning
control systems. IEEE Control Systems Magazine, pages 18—
23, April 1990.

N.J. Nilsson. Learning machines: foundations of trainable pat-
tern classifying systems. McGraw-Hill, New York, 1965.
Y.-H. Pao. Adaptive Pattern Recognition and Neural Networks,
chapter 8, pages 197-222. Addison-Wesley Publishing Com-
pany, Inc., 1989.

D. B. Parker. Optimal algorithms for adaptive networks: Sec-
ond order back propagation, second order direct propagation,

(78]

(79]

(86]

(87]

(88]

(89]

[90]
[91]

[92]

(93]

[94]

[95]

[96]

and second order Hebbian learning. In Proc. of IEEE Interna-
titonal Conference on Neural Networks, pages 593—600, 1987.
N. Pfluger, J. Yen, and R. Langari. A defuzzification strategy
for a fuzzy logic controller employing prohibitive information in
command formulation. In Proc. of IEEE international confer-
ence on fuzzy systems, pages 717-723, San Diego, March 1992.
M.J.D. Powell. Radial basis functions for multivariable inter-
polation: a review. In J. C. Mason and M. G. Cox, editors,
Algorithms for Approzimation, pages 143-167. Oxford Univer-
sity Press, 1987.

T. J. Procyk and E. H. Mamdani. A linguistic self-organizing
process controller. Automatica, 15:15-30, 1978.

D. Psaltis, A. Sideris, and A. Yamamura. A multilayered neural
network controller. IEEE Control Systems Magazine, 8(4):17—
21, April 1988,

IIT R. S. Crowder 'Predicting the Mackey-Glass timeseries with
cascade-correlation learning. In D. Touretzky, G. Hinton, and
T. Sejnowski, editors, Proc. of the 1990 Connectionist Models
Summer School, pages 117-123, Carnegic Mellon University,
1990.

F. Rosenblatt. Principles of Neurodynamics: Perceptrons and
the theory of brain mechanisms. Spartan, New York, 1962.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
internal representations by error propagation. In D. E. Rumel-
hart and James L. McClelland, editors, Parallel Distributed
Processing: FExplorations in the Microstructure of Cognition,
volum I, chapter 8, pages 318-362. The MIT Press, 1986.

T. A. Runkler and M. Glesner. Defuzzification and ranking
in the context of membership value semantics, rule modality,
and measurement theory. In Furopean Congress on Fuzzy and
Intelligent Technologies, Aachen, September 1994.

T. D. Sanger. A tree-structured adaptive network for func-
tion approximate in high-dimensional spaces. IEEE Trans. on
Neural Networks, 2(2):285-293, March 1991.

R. M. Sanner and J. J. E. Slotine. Gaussian networks for direct
adaptive control. IEEE Trans. on Neural Networks, 3:837-862,
1992.

S. Shah, F. Palmieri, and M. Datum. Optimal filtering algo-
rithms for fast learning in feedforward neural networks. Neural
Networks, 5(5):779-787, 1992.

S. Shar and F. Palmieri. MEKA-a fast, local algorithm for
training feedforward neural networks. In Proc. of International
Joint Conference on Neural Networks, pages 111 41-46, 1990.
S. Singhal and L. Wu. Training multilayer perceptrons with the
extended kalman algorithm. In David S. Touretzky, editor, Ad-
vances in neural information processing systems I, pages 133—
140. Morgan Kaufmann Publishers, 1989.

J.-J. E. Slotine and W. Li. Applied nonlinear control. Prentice
Hall, 1991.

S. M. Smith and D. J. Comer. Automated calibration of a
fuzzy logic controller using a cell state space algorithm. IEEE
Control Systems Magazine, 11(5):18-28, August 1991.

F. J. Solis and J. B. Wets. Minimization by random search
techniques. Mathematics of Operations Research, 6(1):19-30,
1981.

K. Stokbro, D. K. Umberger, and J. A. Hertz. Exploiting neu-
rons with localized receptive fields to learn chaos. Complex
Systems, 4:603-622, 1990.

M. Sugeno, editor. Industrial applications of fuzzy control. El-
sevier Science Pub. Co., 1985.

M. Sugeno and G. T. Kang. Structure identification of fuzzy
model. Fuzzy Sets and Systems, 28:15-33, 1988.

M. Sugeno and T. Yasukawa. A fuzzy-logic-based approach to
qualitative modeling. IEEE Trans. on Fuzzy Systems, 1(1):7—
31, February 1993.

C.-T. Sun. Rulebase structure identification in an adaptive
network based fuzzy inference system. IEEE Trans. on Fuzzy
Systems, 2(1):64-73, 1994.

C.-T Sun and J.-S. Roger Jang. Adaptive network based fuzzy
classification. In Proc. of the Japan-U.S.A. Symposium on
Flexible Automation, July 1992.

C.-T. Sun and J.-S. Roger Jang. A neuro-fuzzy classifier and
its applications. In Proc. of IEEFE international conference on
fuzzy systems, San Francisco, March 1993.

C.-T. Sun, J.-S. Roger Jang, and C.-Y. Fu. Neural network
analysis of plasma spectra. In Proc. of the International Con-
ference on Artificial Neural Networks, Amsterdam, September
1993.

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[107]

[108]

[109]

[110]

[111]

[112]

[113

[114]

[115]

[116]

[117]

[118]

[119]

C.-T. Sun, T.-Y. Shuai, and G.-L. Dai. Using fuzzy filters as
feature detectors. In Proc. of IEEE international conference on
fuzzy systems, pages 406-410 (Vol I), Orlando, Florida, June
1994.

T. Takagi and M. Sugeno. Fuzzy identification of systems and
its applications to modeling and control. IEEE Trans. on Sys-
tems, Man, and Cybernetics, 15:116-132, 1985,

K. Tanaka and M. Sugeno. Stability analysis and design of
fuzzy control systems. Fuzzy Sets and Systems, 45:135-156,
1992.

R. Tanscheit and E. M. Scharf. Experiments with the use of
a rule-based self-organizing controller for robotics applications.
Fuzzy Sets and Systems, 26:195-214, 1988.

Y. Tsukamoto. An approach to fuzzy reasoning method. In
Madan M. Gupta, Rammohan K. Ragade, and Ronald R.
Yager, editors, Advances tn Fuzzy Set Theory and Applications,
pages 137-149. North-Holland, Amsterdam, 1979.

V. L. Utkin. Variable structure systems with sliding mode: a
survey. IEEE Trans. on Automatic Control, 22:212, 1977.

K. P. Venugopal, R. Sudhakar, and A. S. Pandya. An improved
scheme for direct adaptive control of dynamical systems using
backpropagation neural networks. Journal of Circuits, Systems
and Signal Processing, 1994. (Forthcoming).

L.-X. Wang. Stable adaptive fuzzy control of nonlinear systems.
IEEE Trans. on Fuzzy Systems, 1(1):146-155, 1993.

L.-X. Wang. Traning fuzzy logic systems using nearest neigh-
borhood clustering. In Proc. of the IEEE International Con-
ference on Fuzzy Systems, San Francisco, March 1993.

L.-X. Wang and J. M. Mendel. Back-propagation fuzzy systems
as nonlinear dynamic system identifiers. In Proc. of the IEEE
International Conference on Fuzzy Systems, San Diego, March
1992.

L.-X. Wang and J. M. Mendel. Fuzzy adaptive filters, with
application to nonlinear channel equalization. IEEFE Trans. on
Fuzzy Systems, 1(3):161-170, 1993.

C.J.C.H Watkins and P. Dayan. Q-learning. Machine Learning,
8:279-292, 1992.

P. Werbos. Beyond regression: New tools for prediction and
analysis in the behavioral sciences. PhD thesis, Harvard Uni-
versity, 1974.

Paul J. Werbos. A menu of designs for reinforcement learning
over time. In III W. Thomas Miller, Richard S. Sutton, and
Paul J. Werbos, editors, Neural Networks for Control, chap-
ter 3. The MIT Press, Bradford, 1990.

B. Widrow and M. A. Lehr. 30 years of adaptive neural net-
works: Perceptron, madline, and backpropagation. Proceedings
of the IEEE, 78(9):1415-1442, 1990.

B. Widrow and D. Stearns. Adaptive Signal Processing.
Prentice-Hall, Englewood Cliffs, N.J., 1985.

Alexis P. Wieland. Evolving controls for unstable systems. In
D. Touretzky, G. Hinton, and T. Sejnowski, editors, Proc. of
the 1990 Connectionist Models Summer School, pages 91-102,
Carnegie Mellon University, 1990.

R. J. William and D. Zipser. A learning algorithm for contin-
ually running fully recurrent neural networks. Neural Compu-
tation, 1:270-280, 1989.

R. R. Yager and D. P. Filev. SLIDE: A Simple Adaptive De-
fuzzification Method. IEEE Transactions on Fuzzy Systems,
1(1):69-78, February 1993.

S. Yasunobu and G. Hasegawa. Evaluation of an automatic con-
tainer crane operation system based on predictive fuzzy control.
Control Theory and Advanced Technology, 2(2):419-432, 1986.
1986.

S. Yasunobu and S. Miyamoto. Automatic train operation by
predictive fuzzy control. In M. Sugeno, editor, Industrial Ap-
plications of Fuzzy Control, pages 1-18. North-Holland, Ams-
terdam, 1985.

L. A. Zadeh. Fuzzy sets. Information and Control, 8:338-353,
1965.

L. A. Zadeh. Outline of a new approach to the analysis of com-

plex systems and decision processes. IEEFE Trans. on Systems,
Man, and Cybernetics, 3(1):28—44, January 1973.

29

Jyh-Shing Roger Jang was born in Taipei,
Taiwan in 1962. He received the B.S. degree
in electrical engineering from National Taiwan
University in 1984, and the Ph.D. degree in
the Department of Electrical Engineering and
Computer Sciences at the University of Cali-
fornia, Berkeley, in 1992.

During the sumiper of 1989, he was a summer student in NASA
Ames Research Center, working on the design and implementation of
fuzzy controllers. Between 1991 and 1992 he was a research scientist
n the Lawrence Livermore National Laboratory, working on spec-
trum modeling and analysis using neural networks and fuzzy logic.
After obtaining his Ph.D. degree, he was a research associate in in
the same department, working on machine learning techniques using
fuzzy logic. Since September 1993, he has been with The MathWorks,
Inc., working on the Fuzzy Logic Toolbox used with MATLAB.

His interests lie in the area of neuro-fuzzy modeling, system iden-
tification, machine learning, nonlinear regression, optimization, and
computer aided control system design.

Dr. Jang is a member of IEEE.

Chuen-Tsai Sun received his B.S. degree in
FElectrical Engineeringin 1979 and his M.A. de-
gree in History in 1984, both from National
Taiwan University, Taiwan. He received his
Ph.D degree in Computer Science from the
University of California at Berkeley in 1992.
His Ph.D. research advisor was Professor Lotfi
A. Zadeh, the initiator of fuzzy set theory.

During the perigd of 1989 and 1990 he worked as a consultant
with the Pacific Gas and Electric Company, San Francisco, in charge
of designing and implementing an expert system for protective de-
vice coordination in electric distribution circuits. Between 1991 and
1992 he was a research scientist in the Lawrence Livermore National
Laboratory, working on plasma analysis using neural networks and
fuzzy logic. Since August 1992, he has been on the faculty of the
Department of Computer and Information Science at National Chiao
Tung University. His current research interests include computational
intelligence, system modeling, and computer assisted learning.

Dr. Sun is a member of IEEE. He was the Arthur Gould Tasheira
Scholarship winner in 1986. He was also honored with the Phi Hua
Scholar Award in 1985 for his publications in history.

