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Abstract

In recent years, DNA microarray technology has proven to be a very

powerful tool for simultaneously monitoring the expression of several

thousands of genes. Analysing the large amount of gene expression

data from microarray chips can play a very important role in biology

medicine, especially in cancer diagnosis. It also offers an opportunity

and a challenge for current machine learning research. Clustering

analysis and some other statistical methods have been established as

primary tools for the analysis of microarray data. Some other super-

vised learning approaches, such as Support Vector Machines (SVM),

Multi-Layer Perceptions (MLP) and Decision Trees (DT) are also

widely used in practice. In this study, we attempt to use a differ-

ent tool, Neuro-Fuzzy models (NF). For this aim, a NF model called

Adaptive-Network-Based Fuzzy Inference System (ANFIS) has been

applied for the first time to microarray data analysis. Then, we pro-

pose a Neuro-Fuzzy Ensemble model (NFE), in order to reduce the

computation cost and achieve better generalization ability. Two pro-

posed approaches were tested on three benchmark cancer gene expres-

sion data sets. The experimental results show that our NF and NFE

models can be used as efficient computational tools for microarray

data analysis. In addition, compared to some current most widely

used approaches, NF/NFE models not only give a good classification

result, but their behavior can also be explained and interpreted in

human understandable terms, which can provide the researchers with

a better understanding of the data. The report will also briefly review

related current work and intended future research directions.
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Chapter 1

Introduction

Even though the complete sequence of the human genome has been published

by both international publicly funded Human Genome Project (The-Genome-

International-Sequencing-Consortium (2001)) and a private corporation, Celera

Genomics (Venter (2001)) on February 11th, 2001, the analytical work has just

begun. Many new methods have been designed for discovering the mystery be-

hind the gene data. One of the most revolutionary techniques is called high-

density DNA microarray chips, or commonly called DNA chips or gene chips.

This technique can measure the activities of thousands of genes simultaneously

under different experimental environments and conditions. It allows us to have a

“global” view of the cell for first time (Gregory & Pablo (2003)).

The gene expression profiles from particular microarray experiments have been

recently used for cancer classification (Alon et al. (1999); Golub et al. (2002);

Slonim et al. (2000)). This approach promises to give a better therapeutic mea-

surement to cancer patients by diagnosing cancer types with improved accuracy

(Slonim et al. (2000)). However, the amount of data produced by this new tech-

nology is more than one can manually analyse. Hence, the need to automatically

analyse of the microarray data offers an opportunity for Machine Learning (ML)

methods to have a significant impact on cancer research (Molla et al. (2004)).

Machine learning approaches are suitable for microarray gene expression data

due to the learning ability to construct classifier/hypotheses that can explain

complex relationships within the data (Tan & Gilbert (2003)). Generally, there

are two types of learning schemes in machine learning (Mitchell (1997)):
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• Supervised learning, where the output has been given and labeled a priori,

or the learner has some prior knowledge of the data;

• Unsupervised learning, where no prior information is given to the learner

regarding the input data or the output.

Unsupervised methods, such as Clustering (Baumgartner et al. (1998)), Self-

Organizing Maps (SOM)(Kohonen (1997)), and others, are originally used to

analyse the relationships among different genes. Recently, supervised meth-

ods, such as Support Vector Machines (SVM) (Brown et al. (2000); Furey et al.

(2000)), Multi-Layer Perceptrons (MLP or NN) (Khan et al. (2001); Xu et al.

(2002)), K Nearest Neighbors (KNN)(Li et al. (2001)), Bayesian Network (BN)

(Hwang et al. (2002)) and Decision Trees (DT) (Peng & Flach (2001)) have been

successfully applied to classify different tissues. In this research, we mainly fo-

cus on using the supervised learning approaches to analyse microarray cancer

gene expression data. Some of the most popular supervised microarray analysis

methods will be discussed in details in Section 4.3.

A challenge in predicting the diagnostic categories by using microarray data

is that the number of genes is usually much greater than the number of tissue

samples available. Common approaches are to select a subset of most useful

genes, then classify the different samples as cancer or non-cancer, according to

the selected genes by using certain classifiers. The selection of relevant genes for

classification process is known as gene selection. In this report, two most popular

gene selection techniques, Information Gain (IG) and Signal to Noise Ratio (SNG)

will be introduced and adopted. In addition, microarray data often brings in mul-

tiple missing gene expression values and noisy signals from the experiments, which

usually degrade the performance of statistical and machine learning algorithms.

Therefore, classifying cancer microarray gene expression data can be regarded as

a high-dimensional-low-sample data set with lots of noisy/missing data. Most

of current methods in microarray data analysis are generally lacking robustness

with respect to noisy and missing data. Meanwhile, they can not completely

bring out the hidden information in the data (Prabakaran et al. (2005)). Fuzzy

set, as a novel way of characterizing non-probabilistic uncertainties, was firstly

published by Zadeh (Zadeh (1965)). Unlike general crisp set, fuzzy set provides
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us a relatively new concept for representing uncertain and imprecision in data

(Ohno-Machado et al. (2002)). Fuzzy Inference Systems (FIS) are built based on

this theory. Different from some black-box methods, fuzzy rule-based model can

not only provide simple classification results, but also easily be explained and in-

terpreted by human understandable fuzzy rules. This can provide the researchers

an insight of the models. Furthermore, FISs adapt numerical data (input/output

pairs) into human linguistic terms, which offer very good capabilities to deal with

noise and missing data.

Unfortunately, how to define the rules and membership functions also requires

a lot of prior knowledge. Sometimes it seems to be impossible to obtain them

in practice, e.g., especially in the case of large amount of gene expression data.

Meanwhile, FISs or some other rule-based systems have well-known limitations

in dealing with high dimensional data. Although some fuzzy-based applications

for microarray analysis have already been presented (Jiang & Gruenwald (2005);

Ressom et al. (2003); Guthke et al. (2002)), all those FISs are small models,

and only performing well on simple data sets. Because large rule-based models

require huge computational cost and long time, sometimes are unacceptable in

practice. To sum up, fuzzy-based methods have not attracted enough attentions

from researchers and have not being effectively applied to most of cancer gene

expression data problems.

But some recent developments in machine learning area provide us with some

good ways to resolve these conflicts. In this research, we attempt to construct

hybrid Neuro-Fuzzy models (NF) which combine the learning ability of neural

systems and the interpreting ability of fuzzy systems, so that classifiers can au-

tomatically generate and adjust the membership functions and linguistic rules

from the given microarray gene expression analysis data. We successfully applied

a well known NF model, Adaptive-Network-based Fuzzy Inference System (AN-

FIS) (Jang (1992); Jang & Sun (1995); Jang & Sun (1997)) to this problem for

the first time, which have not been published in any other’s work, according to

our knowledge. In order to improve the inherent weakness of ANFIS model, an-

other NF model, Neuro-Fuzzy Ensemble model (NFE) has also been developed.

Two proposed approaches are tested on three benchmark microarray cancer data

sets, including leukemia cancer data set, colon cancer data set, and lymphoma

3



1.1 Research Motivations

cancer data set. During the experiments, we found that the traditional training

and test strategies can not perform well, because a small number of available data

usually can not sufficiently represent the whole search space. As suggested by

many other researchers (Khan et al. (2001); Ding & Peng (2003)), we adopt Leave

One Out Cross Validation strategy (LOOCV) to evaluate models which will be

introduced later in Section 5.3. Experimental results show that our NF models

can be efficient computational tools for microarray data analysis, by not only giv-

ing classification results comparable to previous approaches, but also providing

an interaction between the problems and solutions. More motivations about this

research will be discussed in Section 1.1.

1.1 Research Motivations

1. Neuro-Fuzzy approach is necessary. There are over 200 different types of can-

cer, each of which has a unique set of clinical characteristics, a specific treatment

regime and a different chance of being cured (Khan et al. (2001)). Unfortunately,

it is sometimes difficult for even the experienced specialists to tell the difference

among particular cancer and their subtypes. The DNA microarray technology

provides a much more robust diagnosis than traditional approaches. However,

the thirst for a good computational analysis tool of the microarray data is still

unquenched. Current methods only provide simple classification results, which is

not as reliable as to be applied by clinicians. Neuro-fuzzy approaches combine

the advantages of both NNs and FISs, and have been emerged as a successful

practical technology in many areas, including control field (Jang & Sun (1995)),

signal and image processing (Al-Jarrah & Halawani (2001)), fault diagnosis of

industrial equipments (Palade et al. (2002) ), medical diagnosis (Carmona et al.

(2001)) and financial forecasting (Ringhut & Kooths (2003)). In most applica-

tion areas, NF systems can achieve a higher accuracy within a relatively shorter

training time (comparing with NNs). Unlike other approaches, NF models are

more transparent models. Their behavior can be explained in human understand-

able terms, such as linguistic terms and linguistic rules. This provides us with a

better understanding of the data and gives the researchers and clinicians a clear

explanation how the diagnose results are given . Meanwhile, NF models can also
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1.1 Research Motivations

easily incorporate prior knowledge, which helps obtaining more refined models.

In addition, NF methods offer good capabilities to deal with high noisy/missing

data. All these advantages show that NF models can be very strong and effective

tools in microarray data analysis study. The first motivation comes from the

question on how we can apply a NF model on microarray gene expression data,

and whether our NF models still generate a good classification result on this kind

of problems.

2. What is the optimal structure of neuro-fuzzy models for microarray gene

expression data classification? The first question has been answered by our cur-

rent research work. A classic NF model called ANFIS model and its ensemble

structure have been successfully applied to cancer microarray analysis. The ex-

perimental results show that our models perform well on most tested data sets, see

Chapter 7. However, ANFIS is not the only available solution for this problem.

There are some other different neuro-fuzzy combination systems in the literature.

Every type of neuro-fuzzy system has particular computational properties that

make them suitable for certain kind of particular problems but not for others. In

other words, their advantages and disadvantages are complementary. The second

research motivation is to study different NF combination models, by combining

the strong-points of different models, in order to obtain a better structure of

neuro-fuzzy models for microarray gene expression data classification

3. How to select informative genes? The third motivation comes from the

features of microarray data. In microarray data set, the number of samples is

usually less than 100 due to the cost of the microarray experiments, (e.g., there

are only 74 samples in leukemia cancer data set (Golub et al. (2002)), 62 samples

in colon data set(Alon et al. (1999)), 47 samples in lymphoma cancer data (Slonim

et al. (2000)), etc.), but the number of genes in each sample is around 103-104.

Using all genes to train classifiers requires huge computational cost for training

the classifiers, especially for rule based systems. Meanwhile, too many genes may

cause the models easily to be over-fitted. Common approaches for such tasks are

to select the smallest number of genes with most information before we train the

classifiers. But for different data sets, the optimal number of selected genes varies.

A good classification system is normally required to obtain a higher classification

accuracy with less number of selected genes. How to adopt or construct more
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1.1 Research Motivations

effective gene selection strategy for our models is also a big challenge for our

research. More details will be discussed in Chapter 3.

4. How to reduce the number of rules? During the experimental studies, we

found that some data requires a large gene subset to present its property. This

may cause too many rules than our model or machine can offer. The fourth

research motivation is how to reduce the number of rules if the minimal number

of gene is relatively large. Reducing the number of rules can also reduce the

computational cost and training time, meanwhile discovery the most important

knowledge from the data. Several machine learning techniques can be considered

for solving this problem, e.g., ensemble learning (Hansen & Sakamon (1990)),

hierarchical approaches (Berenji et al. (1991)), genetic algorithms (Bishop (1995),

and pruning algorithms (Fürnkranz (1997); Reed (1993)).

5. Ensemble learning is useful. Targeting the above problems, we construct

another NF model, Neuro-Fuzzy Ensemble (NFE) model. The advantage of this

new model is obvious. By applying ensemble learning, the number of fuzzy rules

in the model can be significantly reduced. It allows the model to study more

features when the optimal gene subset is large. Better classification performance

can be obtained according to the capability of ensemble learning at the same

time.

Ensemble learning is a very popular and important current issue in current

machine learning area. It can significantly improve the classification performance,

especially in less sample data case. Many different types of ensemble classifiers

have been published, for example, Neural Network Ensemble (NNE) (Kuncheva

& Whitaker (2003)), Support Vectors Machine Ensemble (SVME) (Kim et al.

(2002)), Bayesian Network Ensemble (BNE) (Valpola & Karhunen (2002)), etc.

But NFE is a relatively new topic. Constructing good NFE models and studying

the behavior of NFEs are also very attractive research topics.

6. How to deal with noisy data and missing values in cancer gene expression

data set by using NF approaches, and how good is our NF models. As we pre-

viously mentioned, microarray gene expression data is highly noisy data, while

missing data is very common in microarray experiments. Traditional approaches

can range from simple steps, such as filling the spot of the missing data with a

zero or row (gene) averaging, or using sophisticated interpolation techniques to
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1.2 Report Outline

fill in the missing data spots. None of them can promise to perform well when

the noise rate and missing rate are very high. But NF systems have strong capa-

bilities on dealing with the noise data and missing rate, which are very suitable

for microarray gene expression data. This can be looked as an important future

direction.

7. How to extract knowledge from NF model? The next motivation comes

from the interpretability of NF models. Firstly, a NF system is a rule based fuzzy

system. It can summarize the knowledge from data, it also can be interpreted

easily by using human linguistic rules. These features may help the biology

researchers to understand and summarize the knowledge behind gene expression

data. Combined with the learning ability of NNs, NF models can automatically

generate and adjust the linguistic rules from unknown data. This seems very

attractive in that it may give a brief outlook about the problem to biologists

before they even start to analyse gene-expression data. Meanwhile, some basic

and well-known prior knowledge from biological area may improve the learning

abilities of the models.

To sum up, the aim of this project is to develop a set of neuro-fuzzy based

bioinformatics tools which could be used by biomedical researchers to facilitate

the analysis of microarray gene expression data. The short term (first two year)

tasks include creating a simple and effective NF structure; analyse the behavior

of our model; comparing our model with other approaches, especially in the

highly noisy data and missing data case. The long term purpose is to construct

models that can not just give good classification results, but also discover useful

knowledge from the data for further cancer research. A software package of

Neuro-Fuzzy approaches for cancer microarray analysis, named GeneNeFu, is

also considered to be developed .

1.2 Report Outline

In Chapter 2, we shortly introduce some basic notions and important principles

of NNs, FISs and NF systems. Discussing the advantages and disadvantages of

NNs and FISs, and explaining why Neuro-Fuzzy combination is necessary. Some

recent developments in NF area are also represented.

7



1.2 Report Outline

In Chapter 3, we will introduce some basic notions of microarray technology

and microarray gene expression data. Some problems in current microarray data

usage are pointed out. How to use microarray gene expression data for cancer

classification and cancer prediction will also be described.

In Chapter 4, we formalize this problem as a high-dimensional-low-sample

data set with lots of noisy/missing values classification problem in machine learn-

ing. We also summarize current research work in this area in order to compare

with their work later. Two efficient genes selection methods, Information Gain

(IG), Signal to Noise Ratio (SNR), will be introduced. Both of them will be

adopted and compared in our study. Two special strategies of IG (IG2 and IG3),

are discussed and given as a case study. Next, we introduce some most popular

classifiers in microarray gene expression data application, including MLPs, SVMs

and KNNs.

In Chapter 5, we introduce a well known NF model to cancer microarray

gene expression data classification problem, called Adaptive-Network-based Fuzzy

Inference System (ANFIS). The advantages and weaknesses of this approach are

discussed. In order to obtain a better comparison with other’s work, a training

strategy, called leave one out cross validation (LOOCV), will be introduced.

Chapter 6 starts with introducing the notion of ensemble learning, and ex-

plaining why ensemble learning is better than individual models. Then we con-

struct a novel Neuro Fuzzy Ensemble Model (NFE), followed by discussing the

advantages/disadvantage of NFE by comparing with single NF model.

In Chapter 7, we test our NF and NFE models on three benchmark microarray

gene expression data sets, including Colon Cancer Data Set, Leukemia Cancer

Data Set and Lymphoma Cancer Data Set. Top 20 ranked genes of each data set

selected by IG2 and SNR are presented. Comparison and analysis work among

NF, NFE, and some other’s methods are also given in this chapter.

Conclusions, future direction, and research plan are described in the last two

chapters.

Appendix A gives top the 50 ranked genes by using IG method, for future

usage. Appendix B summarizes the lectures, meetings, seminars I have attended

from 09/2004 to 09/2005.
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Chapter 2

Neuro-Fuzzy Systems

Artificial Neural Networks (ANNs/NNs) (Haykin (1994); Hertz et al. (1991);

Bishop (1995); Nguyen et al. (1997)) and Fuzzy Inference Systems (FISs) (Zadeh

(1965); Zadeh (1968); Zadeh (1985); Kandel (1987)) are two very important re-

search areas in today’s Artificial Intelligence (AI) studies. The success of FISs

is due to the fact that fuzzy “IF-THEN” rules are well-suited for capturing

the imprecise nature of human knowledge and reason processes. On the other

hand, NNs tackle the same problems with a different strategy; they are equipped

with a remarkable learning capability such that a desired input-output mapping

can be discovered through learning by examples. Combination between artifi-

cial neural network and fuzzy system is a very important research topic, called

Neuro-Fuzzy combination system (NF) (Nauck et al. (1997); Nauck (1997); Jang

& Sun (1997)). In this chapter, we will introduce the basic notions, operations,

and structures of NNs (Section 2.2), FISs (Section 2.1)and NFs (Section 2.3) in

short. The pros and cons of these schemes will also be listed and compared.

2.1 Fuzzy Systems

System modeling based on conventional mathematical tools (e.g., differential

equations) is not well suited for dealing with ill-defined and uncertain systems.

By contrast, a fuzzy based system employing fuzzy if-then rules can model the

qualitative aspects of human knowledge and reasoning processes without employ-

ing precise quantitative analysis. In this section, we will introduce some basic

knowledge about fuzzy sets, fuzzy rules, and fuzzy inference systems.
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2.1 Fuzzy Systems

2.1.1 Fuzzy Sets

In classical mathematics, a classical set is a set with crisp boundary. For example,

let X be a certain universe of discourse, where

X = {x1, x2, ...xn|x ∈ X} , (2.1)

and its elements x denote all the possible weight values (kg) of an adult male

human, x ∈ X. A classical crisp set CThin of X is defined as a function Φ called

characteristic function of CThin, as:

Φ : X → {0, 1} , (2.2)

for any element x of universe X, the characteristic function Φ is equal to 1 if x

is an element of set A, and is equal to 0 if x is not an element of A. The same

as Thin, another two similar crisp sets CAverage and CFat can be defined. The

characteristic functions of these crisp sets are depicted in Figure 2.1(left).

ΦCThin
(x) =

{

1, if less − than − 50(x),
0, otherwise.

(2.3)

ΦCAverage
(x) =

{

1, if between − 50 − and − 100(x),
0, otherwise.

(2.4)

ΦCF at
(x) =

{

1, if larger − than − 100(x),
0, otherwise.

(2.5)

One problem arises if we have to define a linguistic term “fat”. The use of any

crisp set above results in a stiff situation, when a person of 100kg is considered

to be a “fat man”, but a 99.9kg-person is said to be “not fat”. In contrast to a

classical set above, a fuzzy set is a set with fuzzy boundaries. The membership

function of a fuzzy set is allowed to have values between 0 and 1, and it expresses

the degree in which an element belongs to a given fuzzy set. This transition

makes fuzzy sets more flexible and intelligent for the interaction between human

and machine. Fuzzy sets were first introduced by Zadeh in his famous paper Zadeh

(1965). As Zadeh mentioned, “fuzzy sets can play a very important role in human

thinking, particularly in the domains of pattern recognition, communication of
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2.1 Fuzzy Systems
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Figure 2.1: Typical crisp sets (left) and typical fuzzy sets (right) characterizing
the human weight value (left), and typical fuzzy sets characterizing the human
weight value (right)

information, and abstraction” (Zadeh (1965)). Using the same example as above,

new fuzzy sets FThin, FAverage and FFat of X can be defined as:

FThin = {(x, ηFThin
(x)) , x ∈ X} , (2.6)

FAverage =
{(

x, ηFAverage
(x)

)

x ∈ X
}

, (2.7)

FFat = {(x, ηFF at
(x)) , x ∈ X} , (2.8)

where ηF is called the membership function (MF), and it gives the degree to

which x is an element of set F . This degree, a value between 0 and 1, denotes

the degree of membership, also called membership value, as shown in Figure 2.1

(right). Triangular, trapezoidal, gaussian,or bell-shaped functions (See Figure 2.1

(right)) are most frequently used functions in the application areas. When the

membership function takes only two values 0 and 1, F is identical to a crisp set

which is defined by a characteristic function. In this instance, crisp sets can be

looked as special cases of fuzzy sets. Several operators, e.g., “MAX”, “MIN” and

“COMPLEMENT”, can be defined on fuzzy sets in a similar manner as “AND”,

“OR”, “COMPLEMENT” in classical logic sets (Jang (1992)).
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2.1 Fuzzy Systems

2.1.2 Fuzzy Rules

Fuzzy rules, or Fuzzy if-then rules, are defined as a conditional statement in the

form “IF A THEN B”. The IF-part of the rule is called the premise or antecedent,

while the THEN-part of the rule is called the conclusion or consequence. There

are two basic forms of fuzzy rules that have been developed to date: Mamdani’s

fuzzy rules (Mamdani & Assilina (1975); Jang (1992)) and Takagi-Sugeno’s (TSK)

fuzzy rules (Sugeno & Kang (1988); Takagi & Sugeno (1985)). The differences

between these two types of fuzzy rules appear in the consequence part.

• In Mamdani fuzzy rules case, both A and B are described by linguistic

variables. An example of such kind of rules is this:

IF the distance is far, THEN the price of ticket is expensive. (2.9)

• In Takagi-Sugeno’s fuzzy rules case, fuzzy sets are only used in the an-

tecedent part, the consequence part is described by a non-fuzzy equation of

the input variables. An example is shown in the followings:

IF the distance is far, THEN the price of ticket = αfar×{distance/βfar}
2 .

(2.10)

Both types of fuzzy rules are widely used in system modeling and control

areas. Fuzzy inference systems can be divided into two types according to which

forms of fuzzy rules employ, called Mamdani-type FIS and Takagi-Sugeno-type

FIS. We will give a more detailed description on these in Section 2.1.3.

2.1.3 Fuzzy Inference Systems

Fuzzy inference systems have been successfully applied in many fields, such as

automatic control (Hegyi et al. (2000)), pattern classification (Berkan & Trubatch

(1997)), fault diagnosis (Schmidt (1989)), etc. Fuzzy inference systems have

different structures and different names associated with their application areas.

They are also known as fuzzy-rule-based systems, fuzzy expert systems, fuzzy

associative memory, or fuzzy controllers when it is used in control areas (Jang

& Sun (1995)). But all fuzzy inference systems can be divided into four basic

functional blocks, as shown in Figure 2.5:

12



2.1 Fuzzy Systems

Figure 2.2: The basic structure of a fuzzy inference system.

• A fuzzification interface which transfers crisp inputs to fuzzy sets according

to pre-defined membership functions;

• A database block and rule base which defines a number of membership

functions and fuzzy rules;

• A fuzzy inference engine block that applies a fuzzy reasoning mechanism to

obtain a fuzzy output;

• The fuzzy output is translated back to crisp value a via defuzzification

interface.

Many different types of FISs have been proposed in the past years. All fuzzy

inference systems perform the following four steps:

• Step 1. Fuzzification: Determine the degree with which crisp inputs belong

to each of the defined fuzzy sets;

• Step 2. Rule evaluation: Generate the weight of each rule by using related

operators between different membership values;

13
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2.1 Fuzzy Systems

Figure 2.3: Different types of fuzzy inference systems (Jang & Sun (1995))

• Step 3. Rule aggregation: Combine all weights of rules into a single output.

If the output is a fuzzy set, go to Step 4, otherwise, output the final crisp

value;

• Step 4. Defuzzification: Translate the fuzzy output into a single crisp num-

ber, because the final output of a fuzzy system has to be a crisp number.

As we described in Section 2.1.2, most FIS can be classified into two types:

Mamdani’s fuzzy inference method and Takagi-Sugeno-type fuzzy inference sys-

tems. In Figure 2.3, Mamdani-types fuzzy rules are used in the first two systems,

Takagi-Sugeno-type fuzzy rules are used in the last system. It is easy to see that

the major difference lies in the consequence part.

Normally, Mamdani’s method has more widespread acceptance, are more eas-

ily for human to understand, while the advantage of Takagi-Sugeno’s method is

that it has better computationally efficiency, it works well with optimization and

adaptive techniques, which makes it very attractive in control areas, particularly

for dynamic non-linear systems (Jang & Gulley (1997); Jang & Sun (1995)).

But which system is better for a certain problem is problem-dependent. Such

14
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2.2 Neural Systems

phenomenon is called “No Free Lunch Theorem” (NFL) (Wolpert & Macready

(1997)).

2.2 Neural Systems

In this section, we will introduce the basic structure of NN and explain how it

work in practice.

2.2.1 Neural Networks

NNs have emerged as a practical technology, which have been successfully ap-

plied in many fields: control field (Newton & Xu (1993)), speech recognition

(Diaz-Verdejo et al. (1991)), medical diagnosis (Wang et al. (2004)), signal and

image processing (Trussell & Vrhel (1999); Teschioni et al. (1999); Varoglu &

Hacioglu (1999)), etc. The main advantages of NNs include self-adaptivity, self-

organization, real time operation, etc. This model takes us a different approach

to problem solving from that of conventional computers. More details can be

found in the textbooks of Taylor (1993) and Bishop (1995).

A NN is made up of a set of artificial neurons which are called nodes, and

they have connections called weight between them. The simplest architecture of

artificial neural networks is single-layered network, also called Perceptron, where

inputs connect directly to the outputs through a single layer of weights. The

most commonly used form of NN is the Multi-layer Perceptron (MLP), see Figure

2.4. NNs offer a very powerful and very general framework for representing non-

linear mapping from several input variables to several output variables (Bishop

(1995)). If we look to a NN as a function approximater, a three-layered MLP

can approximate any function with any accuracy (Hagan et al. (1996)). A more

detailed introduction of MLPs will be given in Section 4.3.1

In a NN, each of these inputs are multiplied by a connection weight, these

weights are represented by Wn. In the common case, these products are simply

summed, (see Eq 2.11), and then fed through a transfer activation function to

generate a result.

15



2.2 Neural Systems

Figure 2.4: A standard three layers feed-forward NN.

Youtput = f(

N
∑

n=0

XnWn). (2.11)

The most frequently used activation function is logistic-sigmoid function,

shown in Eq 2.12:

g(a) =
1

1 + exp(−a)
, (2.12)

where the function generates outputs between 0 and 1 as the neuron’s input goes

from negative to positive infinity.

To obtain a trained network, we must adjust the weights of each unit in

such a way that the error between the desired output and the actual output is

reduced. There are many popular training algorithms in the literature, such as

Genetic Algorithms (GA) (Bishop (1995); Hagan et al. (1996); Jain et al. (1996);

Kitano (1990); David (1994)), Evolutionary Programming (EP) (Xin (1995); Yao

& Liu (1997); Curran & O’Riordan (2002)), Particle Swarm Optimization (PSO)

(Settles & Rylander (2002); Bergh & Engelbrecht (2000)), and their hybrids

(Manfred & Yee (1998), etc.. The classic backpropagation algorithm (BP) is
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2.3 Hybrid Neuro-Fuzzy Systems

the most popular supervised learning algorithms in practical application (Bishop

(1995); Ripley (1998)). In general, BP algorithm is a gradient descent technique,

the weight changes are made in proportion to the gradient of the error function.

The error function E and weight-update rule are defined as shown:

E =
1

2

n
∑

o

(zo − to)
2, (2.13)

Wij(t + 1) = Wij(t) − η
∂E

∂Wij

+ β(Woj(t) − Wij(t − 1)) (2.14)

where zo is the real output from nodes of the final layer, to is the expected

output, Wij(t) is the weight form node i to node j during the tth iteration, η and

∂ are two constants called the learning rate and the momentum rate.

But there are still some most common problems for BP algorithms: the NN

must be trained in a fixed structure and the training time is relatively long.

For this reason, we will apply a hybrid Backpropagation-Least Squares Estimate

approach (BP-LSE) to speed up the training process of our NF model, which will

be introduced in Chapter 5.

2.3 Hybrid Neuro-Fuzzy Systems

The basic idea behind neuro-fuzzy combination is to design a system that uses

a fuzzy system to represent knowledge in an interpretable manner and have the

learning ability derived from a NN to adjust its membership functions and para-

meters in order to enhance the system performance. The main drawbacks of both

individual systems could be avoided, i.e., the black box behavior of NNs, and the

problem of selecting suitable membership values for FISs. More details about this

issue will be discussed in this section, together with the current research work in

this area.

2.3.1 Neural Systems vs. Fuzzy Systems

Neural networks are trained automatically by certain learning algorithms until a

satisfying output is acquired. Because the data of input and output are connected

with the combination weights in the network, the concept or knowledge can not
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Table 2.1: Comparison between neural networks and fuzzy inference systems

Neural Networks Fuzzy Inference Systems
Prior knowledge can not be used Prior knowledge can be incorporated

Learning from data No learning algorithm
Black box Interpretable

Slow Quick
Difficult to extract knowledge Easy to extract Knowledge

be clearly expressed. It has been difficult to explain how they reach their results.

This is called “black box” phenomenon of NNs. Meanwhile, the learning process is

relatively slow. Neither is it possible to extract knowledge (rules) from the trained

NN, nor can we integrate some prior knowledge about the problem (normally in

the form of “IF... THEN...” rules) into the NN in order to simplify the learning

procedure.

In contrast, FISs are more favorable, in that their behaviors can be explained

using fuzzy rules. FISs can easily be structured to include prior knowledge. Also

FISs can easily be interpreted in human understandable terms during work. The

structural knowledge can be expressed in linguistic terms and hence provide an

understanding about the properties of the problem. But for building a FIS, we

have to define the membership functions, fuzzy operators and the knowledge base.

The problem of finding appropriate membership functions and fuzzy rules is often

a tiring process of trial and error. It requires users to understand the data before

training, which is usually difficult to achieve when the database is relatively large.

A simple comparison between NNs and FISs is shown in Table 2.1.

To overcome these problems, a hybrid of NN and FIS can combine the advan-

tages of two systems and avoid their disadvantages. This combination can consti-

tute an interpretable model that is capable of learning, as NNs, and reasoning, as

FISs (Kosko (1992)). On one hand, using this technique, it is possible to adjust

the membership functions automatically from data by using NN learning algo-

rithms. The trained membership functions can provide a better understanding

about the properties of the unknown database. On the other hand, the new sys-

tem can take advantage of the ability to embed a priori knowledge and constraints
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2.3 Hybrid Neuro-Fuzzy Systems

into the system. This can have the effect of shorter learning times and better

system performance. Therefore, hybrid systems of NNs and FISs are especially

suitable for applications, where user interaction in model design or interpretation

is desired.

2.3.2 Neuro-Fuzzy Systems

There are many different combinations between neural network system and fuzzy

system. All the combinations can be divided into two types (Nauck (1997)):

• NNs equipped with fuzzy capabilities. NN is basic structure and FIS is the

second. It is possible to fuzzify a NN by the extension principle in order

to be able to process fuzzy inputs. Or fuzzy techniques are adopted to

speed up the learning process. This system is usually called Fuzzy Neural

Network (FNN), and either the network inputs/outputs or the weights are

fuzzy sets.

• FISs augmented by neural networks. FIS is the basic structure and NN is

the second. The NN is used to provide inputs for a fuzzy system, or to

change the output of a fuzzy system. They can be seen as extensions of

FISs by NNs, and are usually called Neuro-Fuzzy Systems (NF).

In this study, we mainly considered the second case, NF systems. Many

different integrated neuro-fuzzy models have been published in literature. Some

of the major works in this area are GARIC (Zhang & Kandel (1993)), FALCON

(Lin & Lee (1991)), NEFCON (Nauck & Kruse (1997)), FUN (Sulzberger et al.

(1993)), SONFIN (Feng & Teng (1998)), FINEST (Tano et al. (1996)), EFuNN

(Kasabov & Song (1999)), EvoNF (Sulzberger et al. (1998)), and many others.

Some of these architectures are shown in Figure 2.5. A neuro-fuzzy system can be

viewed as a special three-layered feed-forward neural network. Some neuro-fuzzy

models use more than three layers (Jang & Gulley (1997)). A well known five

layered NF architectures, called ANFIS will be used in this work.
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2.3 Hybrid Neuro-Fuzzy Systems

Figure 2.5: The basic structure of GARIC (top left), EFuNN (top right), NEF-
CON (bottom left), SONFIN (bottom right).
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Chapter 3

Microarray Analysis

We begin this chapter by presenting a brief overview of DNA microarray gene

expression technology. A short introduction of how to apply microarray technol-

ogy for cancer classification is given in Section 3.2. Some current problems in

microarray usage are discussed in Section 3.3.

3.1 Microarray Technology

Cells are the most basic units of all organisms on earth, except for viruses, e.g.,

yeast has only one cell, while any of mammals, including humans beings, have

tons of cells. Inside a cell, there is a nucleus, and inside a nucleus, there are several

separated long segments called chromosomes1 which organized by deoxyribonu-

cleic acid (DNA). The basic units of DNA are nucleotides which consist of sugar

phosphate backbone and one of the four bases adenine(A), cytosine(C), guanine

(G), and thymine (T), see Brändle et al. (2003). A pairs with T, while C pairs

with G. DNA codes the hereditary information through particular order of these

base pairs on a double-stranded helix for making future organisms (see Figure

3.1).

DNA has coding and non-coding segments, and the coding segments are called

genes. The way from genes to proteins includes two steps: First, DNA is tran-

scribed into messenger ribonucleic acid, via mRNA or RNA for shorter. Second,

the mRNA is translated into proteins. Practically all cells in the same organism

1There are 46 chromosomes, viz 23 pairs, in a human cell, each parent contributes 23

chromosomes for their children.
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3.1 Microarray Technology

Figure 3.1: An overview of the relationship among cell, nucleus, chromosome,
gene, and DNA.

have the same genes, but these genes can be expressed differently at different

times and under different conditions. Most of the molecular biology research is

focused on mRNA level due to the fact that all major differences in cell state

or type are correlated with changes in the mRNA levels of many genes (Dettling

(2004)). More information can be found in other molecular biology textbooks (Al-

berts et al. (2002), Dubitzky et al. (2002)) and papers (Gregory & Pablo (2003),

Prabakaran et al. (2005)), etc.

Applying microarray experiments to study biological problems was firstly in-

troduced by a Stanford University research team in 1995. Nowadays, it has

become one of the strongest tools for biomedical research. Even though there

are some other technologies in use, the microarray technology seems to be more

promising than others (Gregory & Pablo (2003)). For example, Northern Hy-

bridization is labor-intensive and it only aims at a single gene in each experiment

(Sambrook et al. (1989)). Microarray techniques make it possible to simultane-

ously measure the expression of thousands of genes under different experimental

environments and conditions. It enables us to analyze the gene information very

rapidly and precisely by managing them at one time (Cho & Won (2003)).
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3.1 Microarray Technology

Figure 3.2: Affymetrix Gene Chip (from GeneticLab Co. Ltd, Japan)

Affymetrix Gene Chips (see Figure 3.2) are currently the most widely used

microarray products. There are two main types of microarray: oligonucleotide

microarray, using representative gene segments, and cDNA microarray, using en-

tire transcripts. Our study mainly focused on the gene expression data from the

latter category. The applications of microarray analysis research include: iden-

tification of differently expressed genes, cellular classification, disease subtype

identification, and inference of gene regulatory interactions (Prabakaran et al.

(2005)).

The whole process of a microarray experiment is shown in Figure 3.3. First,

design the microarray experiments according to a biological problem we want to

study. Generally, microarray experiments can be divided into two types. One

focuses on time series data which contains the gene expression data of various

genes under various course of time of an experiment (Prabakaran et al. (2005)).

Another type of microarray experiment consists of gene expression data of various

genes taken from various tissue samples or under different experimental condi-

tions, such as nutrition, temperature, or chemical environment (Dubitzky et al.

(2002)). Different conditions can be used to answer the question “which genes

are changed under this condition” (Paul & Kumar (2004)), while different tissues

used in similar conditions are helpful in the classification of different types of
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3.2 Cancer Gene Expression Classification

Figure 3.3: General process of acquiring the gene expression data from a typical
DNA microarray experiment.

tissues.

3.2 Cancer Gene Expression Classification

The determination of cancer type and stage is often very important to the as-

signment of the appropriate treatment. It is known that mutations in genes can

lead to cancer. Normal cells can evolve into malignant cancer cells through a

series of mutations in genes that control the cell cycle, apoptosis, and genome

integrity, to name only a few (Gregory & Pablo (2003)). These mutations are

absent in normal cells, and we would expect the expression levels of these genes,

and genes regulated by these genes, to be different in normal and cancerous cells.

By learning these differences, it is now possible to classify cells as cancerous or

normal by measuring the expression levels of various genes present in the cells.

For example, acute myeloid leukemia (AML) and acute lymphoblastoid leukemia

(ALL) cells look very similar, but they respond to different therapies. A correct

diagnosis is therefore essential for successful treatment. In the case of AML,
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3.2 Cancer Gene Expression Classification

Figure 3.4: The top 50 ranked genes with the ALL-AML class distinction are
shown. Each row corresponds to a gene, with the columns corresponding to
expression levels in different samples. The top panel shows genes highly expressed
in ALL, the bottom one shows genes more highly expressed in AML (Golub et al.
(2002)).

drugs such as daunorubicin and cytarabine are favored, in the case of ALL, pa-

tients respond better to drugs such as vincristine and methotrexate (Gregory &

Pablo (2003)). Traditionally, the correct diagnosis of leukemia subtypes (class

predication) has relied on a combination of techniques. Smears or biopsies are

studied by skilled clinicians to look for subtle differences in the cell shape (Golub

et al. (2002)). However, none of these tests is 100 percent accurate.

A central goal of the analysis of gene expression data is the identification

of sets of genes than can serve, via expression profiling assays, as classification

diagnostic platforms. In the case of AML and ALL it was found that an accurate

classification is possible by analyzing the expression of 50 genes on an array

representing nearly 7000 genes in total. In Golub et al. (2002), 36 out of 38

patients were classified correctly using this single test. In only two cases was the

diagnosis uncertain, see Figure 3.4.
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3.3 Some Problems in Microarray Data Usage

Figure 3.5: Experimental noisy and missing data are very common in microarray
experiments. The left figure is an overview of a gene chip with high noise. The
middle figure and right figure show how the experimental noisy and missing data
happened in the experiments (marked by red narrows).

3.3 Some Problems in Microarray Data Usage

Widely using microarray techniques as a clinical diagnosis is still a big challenge

for biologists and computer researchers. There are some practical problems which

limits its usage:

1. Missing values in the spots - sometimes not all spots have values because

there is no expression of the gene at that place, or because of improper

scanning, see Figure 3.5 (right).

2. Error and noise is brought in, due to various accessories such as scanners,

see Figure 3.5 (left and middle).

3. Microarray needs prior requirement to prepare samples by using other meth-

ods like Gel Electrophoresis. Quality of these samples has to be standard-

ized before using them in microarray, since different samples of the same

type may vary in quality (Gregory & Pablo (2003)).

4. A standard has to be developed and used to make the data obtained from

various experiments comparable.
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3.3 Some Problems in Microarray Data Usage

5. The data is only obtained at transcription level. For higher level application,

such as inferring gene regulatory network, additional information resources

should be integrated (Prabakaran et al. (2005)).
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Chapter 4

Machine Learning and

Microarray Analysis

In this chapter, we formalize cancer microarray gene expression classification

problem into a high-dimensional-low-sample data set with a lot of noisy/missing

values classification problem in machine learning. Some current work for this

problem is summarized. Two efficient gene selection methods and three most

widely used classifiers are introduced in Section 4.2 and Section 4.3.

4.1 Machine Learning in Microarray Analysis

In microarray experiments, different DNA samples are fixed to a glass microscope

slide, each at a pre-defined position in the array, known as “gene chip”. mRNAs

isolated from different tissue or under different conditions are labeled with two

different fluorochromes (generally the green Cy3 and the red Cy5), then hybridize

them with the arrayed DNA probes on the slide (Step 3 in Figure 3.3). Using a

fluorescent microscope and image analysis, the gene expression data (denoted as

G) is measured by computing the log ratio between the two intensities of each

dye.

G = log2
Int(Cy5)

Int(Cy3)
(4.1)

where Int(Cy5) is the intensity of red color, while Int(Cy3) is the intensity of

green color.
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4.1 Machine Learning in Microarray Analysis

Table 4.1: A typical gene expression matrix (m×n), where rows represent samples
obtained under different experimental conditions and columns represent genes

Gene 1 Gene 2 ... Gene m-1 Gene m Class
Sample 1 165.1 276.4 ... 636.6 784.9 1
Sample 2 653.6 1735.1 ... 524.1 104.5 -1

... ... ... ... ... ... ...
Sample n-1 675.0 45.1 ... 841.9 782.8 -1

Sample n 78.2 893.8 ... 467.9 330.1 1

The data from a series of n such experiments can be represented as a m × n

gene expression matrix, see Table 4.1. Each row represents a sample that consists

of m genes from one experiment. Each sample belongs to a certain class (normal

or tumor). In each data set, the researchers repeated the same experiment from

n different volunteers, each line in this data set representing a volunteer.

From Table 4.1, we can see that classifying microarray gene expression data

can be looked as a high-dimensional-low-sample problem. Common approaches

are to select a subset of the most useful features, then classify the different sam-

ples as cancer or non-cancer, according to the selected features, by using certain

classifiers. This can be summarized as follows. Let the given gene expression

data set as:

D̃ = {(g1, t1, ) , ..., (gn, tn, )} , (4.2)

where an input vector gi = (g1, ..., gm) denotes a gene expression pattern, m is

the number of genes in this pattern, ti represents which class the pattern belongs

to (see Section 4.2), and n denotes the number of patterns in the data set. Then,

choose m̃ genes out of m according to certain algorithms. Select ñ patterns with

m̃ genes to train the classifier, and leave n − ñ patterns (with m̃ genes) to test

the performance of trained model. Figure 4.1 gives a typical cancer classification

system.

Unsupervised methods do not use any tissue annotation (e.g., tumor vs nor-

mal) in the partitioning step. In contrast, supervised methods attempt to predict

the classification of new tissues based on their gene expression profiles after train-

ing on examples that have been classified by an external “supervisor”. In this
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Figure 4.1: A typical cancer classification system.

research, we are interested in using supervised learning technologies to cancer di-

agnosis and cancer discovery. Related published models are shown in Table 4.2,

and some of them will be discussed later in details (see Section 4.3).

4.2 Gene Selection

As we previously mentioned, the number of features (usually in the range of

2000-30000) is much bigger than the number of samples (usually in the range of

40-200). When such data is presented, many standard data analysis and machine

learning techniques are either inappropriate or become computational infeasible

(Rogers (2004)). Not all of the thousands of genes whose expression levels mea-

sured are needed for classification (Paul & Iba (2004)). Most genes are not related

to the performance of the classification. Taking such genes into account during

classification increases the dimension of the classification problem, poses com-

putational difficulties, and introduces unnecessary noise in the process. A major

goal for diagnostic research is to develop diagnostic procedures based on inexpen-

sive microarrays that have enough probes to detect diseases. Thus, it is crucial
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Table 4.2: Current work on cancer classification by using microarray gene ex-
pression data

Authors Year Dataset Gene Selection Classifiers
Ben-Dor et al 1999 Leukemia Cancer TNoM score KNN

Colon Cancer All genes SVM
Furey et al 2000 Leukemia Cancer SNR SVM

Colon Cancer
Li et al 2001 Leukemia Cancer GA KNN

Colon Cancer GA KNN
Khan et al 2001 Lymphoma Cancer PCA SVM
Yu et al 2004 Leukemia Cancer RBF/all gene DT

Colon Cancer RBF/all gene DT
Lung Cancer RBF /all gene DT
Breast Cancer RBF/all gene DT

to recognize whether a small number of genes can suffice for good classification.

This requires selection of some genes that are highly related to particular classes

for classification, which are called informative genes. This process is called gene

selection, or feature selection in machine learning in general

Some recent research has shown that a small number of genes is sufficient for

accurate diagnosis of most cancers, even though the number of genes vary greatly

between different diseases (Xiong et al. (2001); Krishnapuram & et al. (2004)).

Indeed, a large set of gene expression level may decrease the classification accuracy

due to the phenomenon known as curse of dimensionality, in which the risk of

over-fitting increases as the number of selected genes grows. It means each cancer

data set has an optimal subset of genes for classification, and the range of this

set should be small. More importantly, by using a small subset of genes, we can

not only get a better diagnostic accuracy, but also get an opportunity to further

analyse the nature of the disease and the genetic mechanisms responsible for

it. However, the best subset of genes is usually unknown (Yeung et al. (2005)).

Therefore, the microarray cancer classification problem can be classified as the

combinational optimization problem with two main objectives: minimizing the

number of selected genes and maximizing the classification accuracy.
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The problem of feature selection received a thorough treatment in pattern

recognition and machine learning. The gene expression data sets are problematic

in that they contain a large number of genes (features) and, thus, methods that

search over subsets of features can be prohibitively expensive. Moreover, these

data sets contain only a small number of samples, so the detection of irrelevant

genes can suffer from statistical instabilities. Two basic approaches for feature

selection are used in machine learning and information theory literature (Inza

et al. (2004); Xiong et al. (2001)): the filter and wrapper method.

• Filter methods calculate the goodness of the proposed feature subset based

on the relation of each single gene with the class label, by using some simple

statistics approaches. The most common way is to rank all features in terms

of the values of an univariate scoring metric. The top ranked features are

selected for classification.

• In wapper methods, a search is conducted in the space of genes (Xiong et al.

(2001)). Evaluate the goodness of each found gene subset by the estimation

of the accuracy percentage of the specific classifier to be used, then train

the classifier only with the found genes.

Filter procedures are used in most of the works in the area of microarray

analysis. The wrapper approach, which is popular in many machine learning ap-

plications, is not extensively used in DNA microarray tasks. Accordingly, some

most widely used filter methods are introduced and adopted in our work. More de-

tailed discussions about these two approaches was described in Inza et al. (2004).

Many gene selection strategies have been proposed in the literature. The

performance of feature selection methods seems to be problem-dependent. It

means if a strategy work well, often depends on the nature of the data and

expected results of the concerned microarray data. Generally, feature selection

is done by ranking genes on the basis of scores, correlation co-efficient, mutual

information and sensitivity analysis. Some special approaches like use of Signal to

Noise Data (SND) (Golub et al. (2002); Slonim et al. (2000)), Thershold Number

of Misclassification (TNoM) (Ben-Dor et al. (2000)), Genetic Algorithm (GA)(Li

et al. (2001)), voting technique and perception method are also in use (Prabakaran
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et al. (2005)). Two most widely used gene selection methods will be introduced

in Section 4.2.1 and Section 4.2.2.

4.2.1 Information Gain

Information Gain (IG) technique uses the concept of Shannon entropy (Xing et al.

(2001)). Given entropy E as a measure of impurity in a set of training samples, it

is possible to define a measure of the effectiveness of a feature/gene in classifying

the training data. This measure is simply the expected reduction in entropy

caused by partitioning the data according to this feature, so-called Information

Gain (Mitchell (1997); Yu & Liu (2004)). Assume a given set of microarray gene

expression data M , the information gain of a gene i is defined as:

IG(M, i) = E(M) −
∑

v∈V (i)

Mv

M
E(Mv), (4.3)

where V (i) is the set of all possible values of feature i, Mv is the subset of M for

which feature I has value v, E(M) is the entropy of the entire set, and E(Mv) is

the entropy of the subset Mv. The entropy function E is defined by:

E =

c
∑

j=1

−
|Cj |

|
∑

C|
log2

|Cj|

|
∑

C|
(4.4)

where |Cj| is the number of samples in class Cj . The entropy is supposed to give

the information required in bits, and is traditionally used to deal with boolean val-

ued features (hot/cold, true/false, etc). Fortunately, this method can be extended

to handle the data with continuous valued features, for example, microarray gene

expression data. A case study of applying this method to select best subset of

leukemia cancer data will be given in Section 4.2.3

4.2.2 Signal to Noise Ratio

Signal to Noise Ratio (SNR) is essentially uesd in (Golub et al. (2002)) and

(Slonim et al. (2000)). We also adopted this gene selection method in our work

to find out the set of the most informative genes for training and testing. Slonim
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Figure 4.2: Select three genes from one data set. Each of them has eight samples.
Samples 1-4 belong in one class, samples 5-8 belong in another class. The gene
on the top left is unlikely to predict well because the mean of the class is quite
close, this gene can not give us enough power to distinguish between classes. The
mean of top right one and bottom are the same, but the bottom one has less
variation around those means and so is likely to be a better classifiable gene.

et al. (2000) reported that the best performance was obtained with the relative

class separation metric defined by:

SNR(gi, c) =
µ1 − µ2

σ1 + σ2
, (4.5)

where c is the class vector, g is the gene expression vector, µ1 and µ2 denote

the mean expression level of gi for the samples in class 1 and class 2, σ1 and

σ2 is the standard deviation of expression for the samples in class 1 and class 2,

respectively. Then we take the gene with the highest scores as our top features

for the next classification task.

SNR hints that the separation between two classes of expression data is pro-

portional to distance between their mean (Golub et al. (2002)). Further more,

this distance is normalized by the standard deviation of the classes. A large stan-

dard deviation value implies that we find points in the group far away from the

mean value and that the separation would not be strong. For example, Figure

4.2 shows the selected gene on the top left is unlikely to predict well because

the mean of the class is quite close, this gene can not give us enough power to
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distinguish between classes. The mean of top right one and bottom are the same,

but the bottom one has less variation around those means and so is likely to be

a better classifiable gene. Unfortunately, this method is only expected to work

well when the data is normally distributed in each class of samples (Golub et al.

(2002)).

4.2.3 A Case Study

Unlike boolean attributes, every numeric attribute, like microarray gene expres-

sion data, has many possible split points. Targeting this problem, we sorted

instances by the values of the numeric attribute, the place split points halfway

between values to divide instances into several subsets , but the potential optimal

split point is usually hard to find, and the breakpoints between values of the same

class can not be optimal, in addition, the same class on both sides can not be

optimal point. In order to find good breakpoints, we design two experiments.

• Study One: Sort instances according to the values of the gene. Then divide

the attribute into two subsets at the value most close to the average value

(without the same class on both sides), denoted as IG2.

• Study Two: Sort instances according to the values of the gene. Then divide

the attribute into three subsets at the points most close to the 1/3 and 2/3

of the attribute (without the same class on both sides), denoted as IG3.

IG2 has been often widely used in many others’s work. In this report, we adopt

IG2 in order to compare the classification performance with other classifiers.

Because our NF models use three membership functions to label the input as

high/medium/low, IG3 seems more suitable for future analysis purposes. Top 20

ranked leukemia genes selected by IG2 and IG3 are shown in Table 4.3 and Table

4.4.

4.3 Classifiers

Several different supervised classifiers from machine learning area have been per-

viously used in classifying cancer-based gene expression data. In this section, we
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Table 4.3: Top 20 ranked leukemia genes selected by IG2

Rank ID Gene name Description
1 4050 X03934 GB DEF = T-cell antigen receptor gene

T3-delta
2 6510 U23852 GB DEF = T-lymphocyte specific protein

tyrosine kinase p56lck (lck) abberant mRNA
3 4342 X59871 TCF7 Transcription factor 7 (T-cell specific)
4 4055 X04145 CD3G CD3G antigen, gamma polypeptide

(TiT3 complex)
5 5542 M37271 T-CELL ANTIGEN CD7 PRECURSOR
6 5543 M37271 T-CELL ANTIGEN CD7 PRECURSOR
7 5466 X58072 GATA3 GATA-binding protein 3
8 6606 X00437 TCRB T-cell receptor, beta cluster
9 1694 M12886 TCRB T-cell receptor, beta cluster
10 6696 X76223 GB DEF = MAL gene exon 4
11 1893 M28826 CD1B CD1b antigen (thymocyte antigen)
12 2833 U16954 (AF1q) mRNA
13 4357 X60992 T-CELL DIFFERENTIATION ANTIGEN

CD6 PRECURSOR
14 4847 X95735 Zyxin
15 1106 J04132 CD3Z CD3Z antigen, zeta polypeptide

(TiT3 complex)
16 3332 U50743 Na,K-ATPase gamma subunit mRNA
17 6236 U83239 CC chemokine STCP-1 mRNA
18 4484 X69398 CD47 CD47 antigen (Rh-related antigen,

integrin-associated signal transducer)
19 4291 X56468 14-3-3 PROTEIN TAU
20 2454 S65738 Actin depolymerizing factor [human, fetal

brain, mRNA, 1452 nt]
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Table 4.4: Top 20 ranked leukemia genes selected by IG3

Rank ID Gene name Description
1 4050 X03934 GB DEF = T-cell antigen receptor gene

T3-delta
2 6510 U23852 GB DEF = T-lymphocyte specific protein

tyrosine kinase p56lck (lck) abberant mRNA
3 4342 X59871 TCF7 Transcription factor 7 (T-cell specific)
4 4055 X04145 CD3G CD3G antigen, gamma polypeptide

(TiT3 complex)
5 5542 M37271 T-CELL ANTIGEN CD7 PRECURSOR
6 5543 M37271 T-CELL ANTIGEN CD7 PRECURSOR
7 5466 X58072 GATA3 GATA-binding protein 3
8 6606 X00437 TCRB T-cell receptor, beta cluster
9 1694 M12886 TCRB T-cell receptor, beta cluster
10 6696 X76223 GB DEF = MAL gene exon 4
11 1893 M28826 CD1B CD1b antigen (thymocyte antigen)
12 2833 U16954 (AF1q) mRNA
13 4357 X60992 T-CELL DIFFERENTIATION ANTIGEN

CD6 PRECURSOR
14 4847 X95735 Zyxin
15 1106 J04132 CD3Z CD3Z antigen, zeta polypeptide

(TiT3 complex)
16 3332 U50743 Na,K-ATPase gamma subunit mRNA
17 6236 U83239 CC chemokine STCP-1 mRNA
18 4484 X69398 CD47 CD47 antigen (Rh-related antigen,

integrin-associated signal transducer)
19 4291 X56468 14-3-3 PROTEIN TAU
20 2454 S65738 Actin depolymerizing factor [human, fetal

brain, mRNA, 1452 nt]
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introduce three most widely used models, including MLP (Xu et al. (2002) and

Khan et al. (2001)), KNN (Li et al. (2001); Jirapech-Umpai & Aitken (2005)),

and SVM (Brown et al. (2000); Shi & Chen (2005)).

4.3.1 Multi-Layer Perceptron

Multi-Layer Perceptrons (MLP) are also known as three layered forward neural

networks. A feed-forward MLP consists of one input layer of nodes, one output

layer of nodes, and one or more layers of hidden nodes. A node is only connected

with the units in its next neighboring layers, it only allows signals to travel one

way, from input to output. There is no feedback, the output of any layer does

not affect that same layer (see Figure 2.4). MLPs are back-box systems training

by certain learning algorithms. The most popular one is Backpropagation (BP).

The weight between different neurons is adjusted by BP according to the error

value between the real output and expected output. More details can be found

in Section 2.2.

4.3.2 Support Vector Machine

Support Vector Machines (SVMs) were developed in early 1990s (Boser et al.

(1992)), and they have become one of the standard tools for machine learning

and data mining along with neural networks. The successful applications include

hand-written character recognition, text categorisation, image classification, etc.

They have also been used for the classification of microarray gene expression

data by (Brown et al. (2000)). Excellent descriptions of SVMs can be found

in the books of Vapnik (1995); Vapnik (1999). Here we just provide an short

introduction of using SVMs for classification of gene expression data.

Let M be the given gene expression vectors, where a kernel function is defined

as Equation 4.6, and is often chosen as a polynomial of degree d.

K(M, mi) = (mT mi + 1)d, (4.6)

The discriminant function is defined by:

L(M) =

T
∑

i=1

αiciK(M, mi), (4.7)
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where mi
T
i=1 is a set of gene vectors and ci

T
i=1 is the corresponding class, αi is the

weight of training sample yi. It denotes the strength with which that sample is

embedded in the final decision function. Only a part of the training vectors will be

associated with a non-zero αi. These vectors are so-called support vectors. The

training process is to update the weights αi to maximize the distance between

the samples from two classes, viz., maximize the following object function:

F (a) =

T
∑

i=1

αi(2 − βiL(mi)) = 2

T
∑

i=1

αi −

T
∑

i=1

T
∑

j=1

αiαjβibetaiK(yi, yj) (4.8)

where αi ≥ 0. The disadvantages of SVMs are that it can only be used for two-

class classification problems. If one wants to use it for multi-class classification

problems, it has to be treated as a series of dichotomous classification problems

(Bennett & Campbell (2000)).

4.3.3 K Nearest Neighbour

K Nearest Neighbours (KNN) is one of the simplest classifiers in use. It was first

introduced in 1951 by (Bressan & Vitri; (2003)), and since then there have been

many extensions and variations proposed, e.g., the probabilistic nearest neighbour

model (Holmes (2002)). KNN methods do not have a training phase and the class

of a new sample is simply predicted to be the most common class among the k

nearest neighbours. In our case, the decision function is defined by:

L(M) =

T
∑

i=1

αiciK(M, mi), (4.9)

where K is the set of neighbours closest to the new point, x. The time complexity

of this method is O(N), where N is the number of training samples. Compared

to SVMs, this method can easily be extended to multi-class classification with

the class of a new point determined by the consensus of its neighbours. The set of

nearest neighbours is determined by a distance metric, e.g., Euclidean Distance

(ED), see Equation 4.10, or the Cosine Coefficient (CC) between the two gene

expression vectors, see Equation 4.11:

ED =
√

∑

(mi − mj)2, (4.10)
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CC =

∑

mimj
√

∑

m2
i

∑

m2
j

, (4.11)

where mi and mj represent two gene expression vectors. Generally it is best

to scale the influence of each neighbour depending on the distance from the

new point. This is easily accomplished by multiplying the class labels of each

neighbour by a weighting term.

40



Chapter 5

Neuro-Fuzzy Modeling

Adaptive-Network-based Fuzzy Inference System (ANFIS) was first proposed by

Jang (Jang (1992); Jang & Sun (1995); Jang & Sun (1997)). ANFIS can be

easily implemented for a given input/ouput task, and hence is attractive for

many application purposes. It has been successfully applied in many different

areas (Garzon et al. (2002); Belal et al. (2002); Virant-Klun & Virant (1999)). In

this chapter, we will give a more detailed introduction (Section 5.1) and apply it

to microarray cancer data (Section 5.2). The analytical work about this method

will also be given.

5.1 Adaptive-Network-based Fuzzy Inference Sys-

tem

Adaptive-Network-based Fuzzy Inference System (ANFIS) is a Sugeno-like fuzzy

system in a five-layered network structure (see Figure 5.1). Back-propagation

strategy is used to train the membership functions, while the least mean squares

algorithm determines the coefficients of the linear combinations in the consequent

part of the model. Takagi and Sugeno type fuzzy if-then rules (TSK) (Sugeno &

Kang (1988); Takagi & Sugeno (1985)) are used in ANFIS model, for example:

If (x is A1) and (y is B1), thenf1 = p1x + q1y + r1, (5.1)

If (x is A2) and (y is B2), thenf2 = p2x + q2y + r2, (5.2)
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Figure 5.1: ANFIS architecture Jang & Sun (1997)

where x and y are the inputs, fi is the output, pi, qi and ri are the design

parameters that are determined by the users during the training process. Ai and

Bi are the fuzzy sets according to pre-defined membership function. An ANFIS

model with two inputs and two fuzzy rules are implemented in Figure 5.1.

The first hidden layer is for fuzzification of the input variables. The outputs

of layer 1 are fuzzy membership grade of the inputs, which are given by:

O1
i = αAi

(x), i = 1, 2 (5.3)

O1
i = αBi−2

(y), i = 3, 4 (5.4)

where αAi
(x), αBi−2

(y) are membership function. If the bell-shaped membership

function is employed, αAi
(x) is defined by:

αAi
(x) =

1

1 +

{

(

x−ci

ai

)2
}bi

(5.5)

where ai,bi and ci are the parameters of bell-shaped function, and can be used

to define the region of the fuzzy sets.
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There are fixed number of nodes in the second layer, labeled with M. The

outputs of the second layer can be defined as:

O2
i = wi = αAi

(x)αBi
(y), i = 1, 2 (5.6)

where wis are so-called firing strength of the rules.

In the third layer, the number of nodes is also fixed, labeled with N. It nor-

malizes the rule strengths from the second layer. The output of this layer can be

defined as:

O3
i = w̄i =

wi

w1 + w2

, i = 1, 2 (5.7)

which are the so-called normalized firing strengths.

The consequent parameters of the rule are determined in the fourth layer. The

output of each node in this layer is the product of the normalized firing strength

and the polynomial defined in fuzzy rule, shown as:

O4
i = w̄ifi = w̄i(pix + qiy + ri), i = 1, 2 (5.8)

The fifth layer computes the overall output as the summation of all incoming

signals. There is only one node in this layer, labeled with S. Hence, the output

of this layer can be presented as:

O5
i =

2
∑

i=1

w̄ifi =

(
∑2

i=1 wifi

)

w1 + w2
(5.9)

There are two adaptive layers in the ANFIS architecture, namely the first

layer and the fourth layer. There are three modifiable parameters in the first

layer ai, bi, ci, so-called premise parameters, which are related to the shape of

the membership function. In the fourth layer, there are also three modifiable

parameters pi, qi, ri, so-called consequent parameters, which are related to the

output of the first order polynomial.

A training process of ANFIS is to tune all these six parameters, so that the

model can give a satisfying output. If we apply the standard backpropagation

method to adjust the parameters, the method is generally slow and likely to

become trapped in local minima. Suggested by Jang (1992), we combined the
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gradient method and the least squares estimate (LSE) to identify the parameters

of the network.

When the premise parameters are fixed, the output of the ANFIS can be

written as:

f =
w1

w1 + w2
f1 +

w2

w1 + w2
f2 = w̄1f1 + w̄2f1 (5.10)

Substituting the Equation 5.8 into the Equation 5.10:

f = w̄1(p1x + q1y + r1) + w̄2(p2x + q2y + r2) (5.11)

Rearrange the Equation 5.12, we get:

f = (w̄1x)p1 + (w̄1y)q1 + (w̄1)r1 + w̄2x)p2 + (w̄2y)q2 + (w̄2)r2 (5.12)

which is a linear combination of the modifiable consequent parameters p1, q1, r1,

p2, q2 and r2. The least squares method can be used to identify the optimal values

of these parameters easily. In each epoch, the LSE method is used to optimize

the consequent parameters, while the premise parameters are fixed. The output

of the ANFIS is calculated by employing the consequent parameters found in

the forward pass. Once the optimal consequent parameters are found, the BP

method will immediately start to adjust the premise parameters corresponding

to the fuzzy sets in the input domain immediately, according to the output error.

It has been proven that this hybrid algorithm is highly efficient comparing with

a standard gradient method in training the ANFIS (Nauck (1997)).

5.2 Apply ANFIS to Microarray Analysis

We apply a single NF model, ANFIS to microarray cancer classification, and test

it on three benchmark microarray cancer data sets. It can be observed that there

are several advantages of applying ANFIS to microarray gene expression data.

• Firstly, ANFIS is relatively fast to convergence, due to its hybrid learning

strategy, and it is easy to interpret. Users can adjust the output results by

adding or deleting rules.
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• Secondly, a Neuro-Fuzzy system can always (i.e. before, during, and after

learning) be interpreted as a system of fuzzy rules. It is possible to create

the system out of training data from scratch, and it is possible to initialize

it by prior knowledge in the form of fuzzy rules.

• Thirdly, the trained membership function and rules can help researchers to

better understand unknown data.

As we described in Chapter 3, microarray gene expression data analysis is

a high-dimensional-low-sample problem. The collection of well-distributed, suf-

ficient, and accurately measured input data is the basic requirement to obtain

an accurate model (Belal et al. (2002)). Selection of the ANFIS inputs is the

most important task of designing the classifier, since even the best classifier will

perform poorly if the inputs are not selected well enough. It is difficult for AN-

FIS to handle high dimensional problems, as this leads to a large number of

input nodes, rules, and, hence, consequent parameters. Some important research

questions appear:

• How many inputs can a single ANFIS model deal with when the model is

trained on a regular personal computer?

• Is it enough to represent a given microarray gene expression data set?

• If not, how to fit the data better and get better classification results?

The number of selected genes is the same as the number of ANFIS inputs.

If the number of input is N , the number of membership function for each input

variable is K, then the number of the fuzzy rules R is given by:

R = KN (5.13)

The number of the adaptive parameters P is given by:

P = KN+1 + KN × N (5.14)

where KN+1 is called non-linear adaptive parameters, KN ×N is called linear

adaptive parameters. When the number of membership functions for each input
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Number of inputs Number of rules Number of parameters
2 9 45
3 27 108
4 81 360
5 243 774
6 729 2484
7 2187 7008
... ... ...

Table 5.1: The relationship among the number of input features, the number of
fuzzy rules, and the number of parameters need to be updated in each epoch.

is set to three, the relationship between the inputs and rules are shown in Table

5.1. From Equation 5.13, Equation 5.14 and Table 5.1, we can see that the

computation cost increases very quickly while the number of inputs grows. We

simulated the models on an IBM R51 laptop (CPU: PIV-1.5G, Memory: 1G).

The computer is out of memory when the number of input is larger than 6. So

for the first question, it’s very inconvenient for a common user to use ANFIS

model to analysis microarray cancer gene expression data, when the number of

selected gene is larger than 6 the result will be given in Chapter 7. The same

as current fuzzy based models, our ANFIS model is a small model, and only can

deal with small data sets. For the last question, we need to design some strategies

to enable the model to accept more inputs with less computation cost. Common

approaches include (Nauck (1997)):

1. Evaluate and select rules: if the system creates too many rules, it is possible

to evaluate them and to keep only the best rules. If the learning process

starts with a large number of rules, and many of them have a poor perfor-

mance measure (Nauck et al. (1997)), these can be deleted from the rule

base. This strategy usually is very useful. ANFIS model is easy to inter-

pret. The users can define the number of useful rules as k, several machine

learning techniques can be applied here: start the models with 1 or 2 rules,

then increase the number of rules by adding the useful rules one by one until

k, so-called constructive algorithms (Burgess (1994); Wang et al. (2004));

or start the models with a large number of rules, decrease the number of
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5.3 Training and Testing Strategy

rules by deleting the useless rules one by one until k, so-called pruning al-

gorithms (Fürnkranz (1997); Reed (1993)); or use evolutionary algorithms

or some other optimization algorithms to select the best k rules (Yao & Liu

(1997); (Xin (1995))). More details will be discussed in Chapter 8.

2. Delete antecedents: for each rule, some “IF” conditions in the antecedents

part are repeatedly defined or have negative performance for the final deci-

sion The user can delete these conditions from the rule. But this strategy

leads to an inconsistent rule base, therefore the rule has to be repaired

before being used.

3. Delete fuzzy sets: if a variable is partitioned by more than two fuzzy sets,

sometimes the support for one or more of them can become quite large

during learning. This can be seen as evidence that such a fuzzy set is

superfluous. The user can specify a percentage value, and all fuzzy sets

that cover more percent of the domain can be deleted, which leads to a

reduction of variables in the antecedents. This procedure can also lead to

an inconsistent rule base, which will be noticed by the rule editor.

Besides the approaches above, we design a novel model, called Neuro-Fuzzy

Ensemble (NFE), which uses several ANFIS models to learn different parts of

the data, in order to let the whole system to have the ability to accept higher

input dimensions. The next model allows the model to fit the data better if small

number of genes can not well present the data, and it can also obtain an extra

classification accuracy by applying the nature of ensemble learning. More details

about ensemble learning and NFE will be introduced in Chapter 6. Both ANFIS

model and NFE model will be tested, and the experimental results will be given

in Chapter 7.

5.3 Training and Testing Strategy

We train our model in order to obtain a good generalization ability, but using

the testing data to do this would clearly be cheating (Schaffer (1993)). Usually,

users divide the database into three sub-databases. One of them is used for the
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5.3 Training and Testing Strategy

Figure 5.2: K-fold Cross Validation (left) and LOOCV (right)

training the networks, another one is used for testing the training performance,

and last one is used for withhold over-fitting, called validation set. For large data

sets, this strategy works quite well.

For microarray gene expression data sets, it is difficult to show which model

is significantly better than another with such a small number of samples. We

abandon the traditional training strategies from machine learning (three sub-

sets method) for two reasons: firstly, one incorrect classification may cause the

accuracy decrease greatly. The variety of accuracy can not represent the true

difference between two methods, since small number of incorrect classification

always happen even we use the same model by different experiments. Secondly,

due to the fact that the number of samples is too small, each subset can not

fully represent the space, it is not meaningful to train on one space, but test on

another very different one. In order to train on as many examples as possible

(Ding & Peng (2003)), another strategy has been considered, leave one out cross

validation (LOOCV or jackknife strategy). We divide all samples at random into

K distinct subset, where K equals to the number of samples (see Figure 5.2).

Train the model using K − 1 subsets, and test the training performance on the

Kth sample. The LOOCV accuracy is obtained by:

LOOCV accuracy =
Acs

K
(5.15)
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5.3 Training and Testing Strategy

where Acs is the number of correctly classified samples in K experiments. LOOCV

accuracy is strongly suggested to be used as an evaluation of microarray data clas-

sification by many other researchers.
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Chapter 6

Neuro-Fuzzy Ensemble Modeling

In recent years, ensemble learning attracts the attention of more and more re-

searchers in machine learning, several ensemble techniques have been proposed,

as it has been shown that they can significantly enhance the accuracy of classi-

fication tasks. Here we construct a Neuro-Fuzzy Ensemble model by combining

several single NF models to learn the same data with different subset of genes.

This approach not just allow the models to study more genes when small gene

subset can not well represent the whole data set, but also obtain a better classifi-

cation performance due to the good generalization ability of the ensemble model

itself. Some basic notions of ensemble learning and the reasons of why ensemble

learning can perform well is explained from several different views.

6.1 Ensemble Learning

Classifier Ensemble (CE) is a collection of finite numbers of individual classifiers

that are trained for the same tasks (Hansen & Sakamon (1990)), see Figure 6.2.

CE is expected to fuse a better overall decision from its constituents or experts,

and the overall decision should be better than the result given by any individual

expert. Such kind of knowledge appeared in the classic machine learning area

is Committee Machine. Committee machines can be classified into two major

categories (Haykin (1996)):

• First, dynamic structures: The input signal is directly involved in actuating

the mechanism that integrates or combines the constituent outputs. The
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6.1 Ensemble Learning

Figure 6.1: The structure of a mixture of experts.

main example is a mixture of experts, see Figure 6.1.

• Second, static structures: where the output of several expert network are

combined by a mechanism that does not involve the input signal, for exam-

ple, classifier ensemble, see Figure 6.2.

Some recent work shows that the ability of a neural network ensemble is deter-

mined by the accuracy and diversity of the individual networks in the ensemble

(Kuncheva & Whitaker (2003); Liu et al. (2003); Thomas (2000)). Further details

about “why ensemble is better than individual?” is given in the next section.

6.1.1 Ensemble vs. Individual

In this section, we will further explain why an ensemble of classifiers is bet-

ter than one individual classifier. Consider the standard supervised learning

problem. A learning algorithm is given training patterns(examples) of the form

(x1, t1), (x1, t1), ..., (xq, tq) to learn some unknown function t = f(x). The t values

are typically approximated to a discrete set of classes in case of classification prob-

lems or from the real line in the case of regression problems (Thomas (2000)).
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6.1 Ensemble Learning

Figure 6.2: The structure of an ensemble classifier.

(In this stage, we only consider classification problem, i.e., medical diagnosis

problems). The xi values are typically vectors of the form xk1, xi2, ..., xkm, whose

components are discrete- or real-valued variables such as height, weight, color,

age, and so on, the so called features of xi.

Now given a set of S training patterns, a learning algorithm generates a classi-

fier (using the training set). The classifier is a hypothesis about the true function

f . Given new x values (test set), it predicts the corresponding y values. We can

denote classifiers by h1, h2, ..., hl. With this in mind, an ensemble of classifiers

can be redefined as a set of classifiers whose individual decisions are combined in

some way to classify new examples.

There are three fundamental reasons (Thomas (2000)) from different points

of view for the question “why ensemble may be better than individual?”

The first reason is from a statistical point of view. A learning algorithm can

be seen as searching a space H of hypotheses to identify the best hypothesis

(nearest to true hypotheses f) in the search space. When the training example

available is not sufficient, the ensemble can find many different hypotheses in H

that all give the same accuracy on the training data. Then different hypotheses
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6.1 Ensemble Learning

Figure 6.3: Three fundamental reasons for the Question: “why an ensemble
may work better than an individual classifier?” The outer curve denotes the
hypothesis space H ; The inner cure denotes the set of hypotheses that all give
good accuracy (< 0.5) on the training data. The point labeled f is the true
hypothesis, i.e., global optimum (Thomas (2000)).

“average” their votes and reduce the risk of choosing the wrong classifier or give

the worst hypothesis. From Figure 6.3 (top left), we can see that by averaging

the accurate hypotheses, we can find a good approximation to f .

The second reason is a computational reason. The ensemble randomly initial-

izes weights of individual classifier. This means all the individual classifiers run

local search from different starting points. Combine such work helps avoid being

tricked by local optima, and might be able to provide a better approximation

to the true function f than any of the individual classifiers (see Figure 6.3 (top

right)).

Representational reason serves as the third reason. In the most application

of machine learning, the true function f can not be exactly represented by any

of the hypotheses in H . The combination of a set of classifiers can expand the

space of representational limitation, see Figure 6.3 (bottom).
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6.2 Neuro-Fuzzy Ensemble

6.1.2 Output of Ensemble

How to determine the output of the ensemble? There are three main strategies.

The first one is Simple Averaging (SA), where the output of ensemble is formed

by a simple averaging of output of individual NNs in the ensemble. The second

strategy is Majority Voting (MV), where the output of the greatest number of

individual NNs will be the output of the ensemble. If there is a tie, the output of

the ensemble is rejected. The last one is winner-takes-all (WTA). For each pattern

of the testing set, the output of the ensemble is only decided by the individual

NN whose output has the highest activation. In this report, we adopt MV as

the output strategy of our NFE model. Future study about how to combine this

result is also very necessary, see Chapter 8.

6.2 Neuro-Fuzzy Ensemble

The main problem of our single NF models is that they hardly cope with a large

number of genes, because of the high computation cost. In order to deal with

this problem, we propose a new NF models, called Neuro-Fuzzy Ensemble mod-

els, which consists of several different single ANFIS models. Each model learns

different subsets of genes, so that the whole model can work with a relatively

large number of genes. Meanwhile, extra good performance can be obtained by

the nature of the ensemble learning itself. We assume the maximum number of

inputs for an individual in NFE is 4. Because we believe an individual NF model

can perform very well on small number of genes, there is no need to construct

an ensemble structure, when the number of selected genes is smaller than 5. The

output strategy of our NFE model is MV. The main structure of NFE is shown

in Figure 6.4. The NFE model is tested on three benchmark microarray data sets

by using LOOCV training strategy.

The advantages of our NFE models can be summarized as follows:

• It allows the model to learn more features when the optimal subset of genes

is relatively large.

• Normally, several classifiers have bigger computational cost than the indi-

vidual classifier. Our NFE model seems to have much less computational
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6.2 Neuro-Fuzzy Ensemble

Figure 6.4: The main structure of NFE. N single ANFIS classifier in the ensemble,
each single model has R inputs, so the whole model can use R ∗ N genes. The
output of the ensemble is taken by simply majority voting (MV).

cost than the individual NF model when the necessary number of inputs is

relatively large. Comparisons of computational cost between individual NF

model and NFE are shown in Table6.1.

• NFE can significantly improve the generalization ability (classification per-

formance) compared to single NF model, and they can also help address

three classic machine learning problems: lack of data, local optima, and

representational limitations. Lack of data is one of the main problems of

microarray analysis.

• NFE can relieve the trial-and-error process by tuning architectures. To

obtain a good model, the architecture of the model and the parameters of

the model must be finely tuned, which is usually very difficult in practice.

Use of a collection of models without finely tuning their architectures may

still produce good performance.

But there are still some disadvantages: Firstly, bigger ensemble will increase

the storage cost for generating and storing more models. Some worse individual
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6.2 Neuro-Fuzzy Ensemble

Table 6.1: Comparisons of computational cost between individual NF and NFE
models. We compare the number of rules and parameters of individual NF and
NFE models by using the same number of genes. We use two individual NF
models with 3 inputs when the number of selected genes equals to 6. NoG denotes
the number of selected genes, NoR denotes the number of rules, NoP denotes the
number of parameters needed to be updated in each epoch.

NoG NF NFE
NoR NoP NoR NoP

2 9 45 N/A N/A
3 27 108 N/A N/A
4 81 360 N/A N/A
6 729 2484 54 216
8 6.6 × 104 7.9 × 105 162 720
12 1.7 × 107 2.7 × 108 243 1080
16 4.3 × 109 8.6 × 1010 324 1440
20 1.1 × 1012 2.6 × 1013 405 1800
... ... ... ... ...

not only waste the system resource, but also decrease the whole ability of the

ensemble. It’s important to find the necessary number of individual NF models

and select the most useful individuals. Secondly, the performance of NFE can

be further enhanced by using other ensemble training techniques, i.e., bagging

and boosting at the next stage, which will increase the comprehensibility of the

learning process. Thirdly, the model becomes more complex than a single NF,

and therefore more difficult for analysis.
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Chapter 7

Experimental Results

In this chapter, we test NF model and NFE model on three benchmark gene

expression microarray data sets: leukemia cancer data set, colon cancer data

set, and lymphoma cancer data set. A short introduction about the data sets

can be found in Section 7.1. The classification results of NF and NFE models

are compared with some other popular classifiers in Section 7.3. Top 20 ranked

genes selected by IG2 and SNR are listed in Section 7.2. The performances of

these two gene selection methods are very similar, due to the fact that many

overlapped genes are selected, especially in colon cancer data set and lymphoma

cancer data set. Different from some approaches, our models not only just give the

classification result, but also extract knowledge from the data, for example, the

adjustment of membership function and fuzzy rules. Related analytical work is

also given in Section 7.3.3. Here we adopt three important criteria to empirically

evaluate the performance of our models:

• Number of selected genes

• Predictive accuracy on selected genes.

• Extracted knowledge from the trained model.

Before the experiments, we linearly scale all data in a small range [0, 1]. If y

is a gene expression value of a gene g, the scaled value would be

g(a′) =
y − min(g)

max(g) − min(g)
(7.1)

57



7.1 Cancer Data sets

where min(g) and max(g) is the minimum and maximum values of gene expres-

sions in the database.

7.1 Cancer Data sets

There are many different benchmark microarray data sets, reported in published

cancer gene expression studies, including leukemia cancer data set, colon cancer

data set, lymphoma data set, breast cancer data set, NC160 data set, and ovarian

cancer data set. In this study, the proposed models are tested on three data sets:

leukemia cancer data set, colon cancer data set, lymphoma cancer data set. The

aim of testing on several different data sets is not only to show that our models

are better or worse, but also to find out when our models performs better (or

worse) and why, what are the reasons causing the unsatisfying results, and how

to solve the problems. Meanwhile, these data sets have been studied in many

papers, so a comparison work can be made.

7.1.1 Colon Cancer Data Set

The data set we used here was firstly reported in Cho & Won (2003). The “can-

cer” biopsies were collected from tumors, and the “normal” biopsies were col-

lected from healthy parts of the colons of the same patients Cho & Won (2003).

This data set contains 62 samples. There are 40 tumor samples, and 22 nor-

mal samples. About 6000 genes represented in each sample in original data

set, only 2000 genes were selected. The data is available at http://sdmc.i2r.a-

star.edu.sg/rp/ColonTumor/ColonTumor.html.

7.1.2 Leukemia Cancer Data Set

The data set we used here was reported in Golub et al. (2002). The gene expres-

sion measurements were taken from 63 bone marrow samples and 9 peripheral

blood samples Golub et al. (2002). This data set contains 72 samples. All sam-

ples can be divided into two subtypes: 25 samples of acute myeloid leukemia

(AML) and 47 samples of acute lymphoblastic leukemia (ALL). The expression
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7.2 Gene Selection Results

levels of 7129 genes were reported. The data is available at http://sdmc.i2r.a-

star.edu.sg/rp/Leukemia/ALLAML.html.

7.1.3 Lymphoma Cancer Data Set

The data set we used here was reported in Lossos et al. (2000). This data set con-

tains 47 samples. B cell diffuse large cell lymphoma (B-DLCL) data set includes

two subtypes: germinal center B cell-like DLCL and active B cell-like DLCL. The

expression levels of 4026 genes were reported. 24 samples are germinal center B-

like DLCL and 23 samples are active B cell-like DLCL. The data is available at

http://www.genome.wi.mit.edu/MPR.

7.2 Gene Selection Results

In this section, we list the top 20 ranked genes selected by using IG2 and SNR

methods. Top 4 ranked genes are selected for classification by using the single

NF model. Top 20 ranked genes are used for classification by using the NFE

model. The boldface data in Table 8.1, Table 4.3, Table 7.2, and Table 8.1 are

overlapped genes by both IG2 and SNR methods.

7.2.1 Colon Cancer Data Set

In colon cancer data set, 20 genes with highest scores obtained by IG2 and SNR

method were selected for classification. 13 in 20 genes are overlapped by using

IG2 and SNR methods, see Table 8.1.

7.2.2 Leukemia Cancer Data Set

In leukemia cancer data set, 20 genes with highest scores obtained by SNR method

were selected for classification. Gene selection results of using IG2 and IG3 are

listed in Section 4.2.3. Different from other tested data sets, only 2 genes are

overlapped by using IG2 and SNR methods, see Table 7.2.
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7.2 Gene Selection Results

Table 7.1: Top 20 ranked colon genes selected by IG2 and SNR. The boldface
data are overlapped by the two methods.

IG SNR
Rank ID Gene Name ID Gene Name

1 249 M63391 249 M63391

2 493 R87126 765 M76378

3 1042 R36977 1772 H08393

4 1423 J02854 493 R87126

5 267 M76378 1423 J02854

6 245 M76378 245 M76378

7 399 U30825 1582 X63629

8 1772 H08393 267 M76378

9 765 M76378 513 M22382
10 467 H40560 780 H40095
11 822 T92451 1771 J05032
12 258 M16937 377 Z50753

13 66 T71025 515 T56604
14 1067 T70062 822 T92451

15 1325 T47377 138 M26697
16 62 T48804 1325 T47377

17 377 Z50753 1042 R36977

18 1892 U25138 625 X12671
19 1808 U21090 1060 U09564
20 1582 X63629 399 U30825

60



7.2 Gene Selection Results

Table 7.2: Top 20 ranked leukemia genes selected by SNR

Rank ID Gene Description
1 2642 U05259 MB-1 gene
2 2335 M89957 IGB Immunoglobulin-associated beta (B29)
3 6225 M84371 CD19 gene
4 758 D88270 GB DEF = (lambda) DNA for

immunoglobin light chain
5 4680 X82240 TCL1 gene (T cell leukemia) extracted from H.sapiens

mRNA for Tcell leukemia/lymphoma 1
6 1685 M11722 Terminal transferase mRNA
7 5171 Z49194 OBF-1 mRNA for octamer binding factor 1
8 1078 J03473 ADPRT ADP-ribosyltransferase (NAD+;

poly (ADP-ribose) polymerase)
9 6855 M31523 TCF3 Transcription factor 3 (E2A

immunoglobulin enhancer binding factors E12/E47)
10 4318 X58529 IGHM Immunoglobulin mu
11 6974 M28170 CD19 CD19 antigen
12 6236 U83239 CC chemokine STCP-1 mRNA
13 3469 U59878 Low-Mr GTP-binding protein (RAB32) mRNA,

partial cds
14 4847 X95735 Zyxin
15 5552 L06797 PROBABLE G PROTEIN-COUPLED RECEPTOR

LCR1 HOMOLOG
16 2288 L33930 DF D component of complement (adipsin)
17 1882 M27891 CST3 Cystatin C (amyloid angiopathy

and cerebral hemorrhage)
18 2010 M38690 CD9 CD9 antigen
19 5300 L08895 MEF2C MADS box transcription enhancer factor 2,

polypeptide C (myocyte enhancer factor 2C)
20 1962 M33680 26-kDa cell surface protein TAPA-1 mRNA
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7.3 Results and Comparisons

Table 7.3: Top 20 ranked lymphoma genes selected by IG2 and SNR, the boldface
data are overlapped by the two methods

IG SNR
Rank ID Gene Name ID Gene Name

1 1279 GENE3330X 1277 GENE3328X

2 1281 GENE3332X 1279 GENE3330X

3 1277 GENE3328X 1281 GENE3332X

4 1247 GENE3355X 1291 GENE3314X

5 1291 GENE3314X 1316 GENE3256X

6 2244 GENE1252X 2439 GENE3968X

7 1206 GENE3228X 2417 GENE3985X

8 1316 GENE3256X 2244 GENE1252X

9 1287 GENE3338X 2438 GENE3967X
10 3861 GENE1720X 1312 GENE3258X
11 2439 GENE3968X 3861 GENE1720X

12 2263 GENE1296X 1274 GENE3325X
13 2243 GENE1251X 3860 GENE1719X
14 1634 GENE2704X 1247 GENE3355X

15 1616 GENE2662X 3020 GENE3608X
16 2415 GENE3987X 2205 GENE1212X
17 2200 GENE1207X 2243 GENE1251X

18 34 GENE4006X 2845 GENE740X
19 3137 GENE392X 3420 GENE3821X
20 2417 GENE3985X 2437 GENE3966X

7.2.3 Lymphoma Cancer Data Set

In lymphoma cancer data set, 20 genes with highest scores obtained by IG2 and

SNR method were selected for classification. 11 in 20 genes are overlapped by

using IG2 and SNR methods, see Table 8.1.

7.3 Results and Comparisons

We trained and tested NF and NFE models on three cancer gene expression data

sets by using LOOCV strategy. Each variable has three membership functions

in both NF models and NFE models, the initial membership function is bell-
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Figure 7.1: Initial membership function (bell-shaped function)

shaped function, see Figure 7.1. The proposed models were trained with the

backpropagation method in combination with the least squares method, and bell-

shaped membership functions were used during the training process. The cost

function is the mean least-squares error (MSE), which measures the difference

between the outputs and the targets. The number of selected genes and LOOCV

accuracy are used to evaluate the effectiveness of the models. The final trained

model is obtained by averaging all parameters of correctly classified models.

7.3.1 Results of ANFIS

We test ANFIS model on three data sets by using 2 genes and 4 genes, respec-

tively. The classification results are shown in Table 7.4. The models with 4 genes

performed better than the models with 2 genes on all three data sets, though the

models with 2 genes concluded quite good results on colon and lymphoma data

sets.

7.3.2 Results of NFE

Top 20 ranked genes are selected for classification by using the NFE model. There

are 5 individual NF models in our NFE model, each NF model has 4 inputs. It
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Table 7.4: Classification results of ANFIS model by using 2 and 4 genes selected
respectively on colon cancer data set, leukemia cancer data set and lymphoma
cancer data set. IG and SNR denote two different gene selection methods, infor-
mation gain method and signal to noise ratio method. NoG denotes number of
selected genes. LOOCV accuracies are used to evaluate the classification perfor-
mance.

NoG IG SNR
LOOCV accuracy LOOCV accuracy

Colon 2 80.65 82.56
Leukemia 2 73.61 69.44

Lymphoma 2 76.09 78.26
Colon 4 93.55 90.32

Leukemia 4 87.5 83.33
Lymphoma 4 87.23 89.13

totally allows the NFE to learn the data by using 5 ∗ 4 genes. The output of

ensemble is obtained by using Majority Voting (MV). Other experimental sets,

like initial membership function and cost function are the same as single NF model

in Section 7.3.1. In colon cancer data set, all samples are accurately classified.

In leukemia cancer data set, only 2 samples are inaccurately classified when the

gene selection method is IG, and only 3 sample is inaccurately classified when

the gene selection method is SNR. In lymphoma cancer data set, NFE accurately

classified 45 samples out of a total of 46 by using either the IG or SNR method.

The classification results also show that the IG method performed better than

the SNR method. But there is no significant difference between IG2 and SNR

methods, the number of accurate classified samples is usually only distinguished

between 1 and 3. The reason for this phenomena can be explained by taking

a look at the Table 8.1 and Table 7.3. The top 20 genes with higher mark of

colon cancer and lymphoma cancer selected by IG and SNR are very similar, 23

overlapped genes in colon cancer data sets and 11 overlapped genes in lymphoma

cancer data. It is very common to get similar results when we use very similar

data sets.
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7.3 Results and Comparisons

Table 7.5: Classification results of NFE model by using 20 genes, on colon
cancer data set, leukemia cancer data set and lymphoma cancer data set. NoG
denotes number of selected genes. ATE denotes average training error. LOOCV
accuracies are used to evaluate the classification performance.

NoSG IG SNR
Colon 20 100.0 100.00

Leukemia 20 95.83 93.06
Lymphoma 20 95.65 95.65
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Figure 7.2: Adjusted membership function of ANFIS model in Colon Cancer Data
Set. Number of selected genes = 2, gene selection method = IG.

7.3.3 Knowledge Extraction

Furthermore, different from other black-box approaches, NF models can extract

some useful knowledge from the data, for example, adjusted membership function

(see Figure 7.5, Figure 7.2, Figure 7.3, Figure 7.4, Figure 7.6, Figure 7.7 and

Figure 7.8), and trained fuzzy rules (see Table 7.6, Table 7.7 and Table 7.8). All

these knowledge is presented in human understandable form. This seems very

attractive for the researcher to understand the data or explain how the result

were obtained.

When the gene selection strategy is IG, and the number of selected genes is

2, the trained membership functions of ANFIS models in three tested data sets

are shown in Figure 7.2, Figure 7.3 and Figure 7.4.
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Figure 7.3: Adjusted membership function of ANFIS model in Leukemia Cancer
Data Set. Number of selected genes = 2, gene selection method = IG.
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Figure 7.4: Adjusted membership function of ANFIS model in Lymphoma Cancer
Data Set. Number of selected genes = 2, gene selection method = IG.
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Figure 7.5: The fuzzy surface of train models when the number of selected genes
= 2, gene selection method = IG.
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Figure 7.6: Adjusted membership functions of ANFIS model in Colon Cancer
Data Set. Number of selected genes = 4, gene selection method = IG.

When the gene selection strategy is IG, and the number of selected genes is

4, the trained membership functions of ANFIS models in three tested data sets

are shown in Figure 7.6, Figure 7.7 and Figure 7.8.

The classification results can be changed by modifying the rules. Here we

select 5 rules from each trained models in order to give an insight of how the

classification results are given.

7.3.4 Comparisons

The performance of our NF model and NFE model are compared with some

previous studies, see Table 7.9. Our models obtained better results on Colon

cancer data set, and similar results on Leukemia and Lymphoma data set, but

both ANFIS and ANFIS ensemble models use less number of genes comparing
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Figure 7.7: Adjusted membership function of ANFIS model in Leukemia Cancer
Data Set. Number of selected genes = 4, gene selection method = IG.

Table 7.6: Five rules selected from colon data set by using an individual NF
model, when the number of selected genes is 2. If the output value is larger than
0, we consider the output result as cancer.

Rank Descriptions of Rules
1 If (M63391 is small) and (R87126 is small) then (output is Cancer)
2 If (M63391 is small) and (R87126 is medium) then (output is Cancer)
3 If (M63391 is small) and (R87126 is large) then (output is Normal)
7 If (M63391 is large) and (R87126 is small) then (output is Cancer)
9 If (M63391 is large) and (R87126 is large) then (output is Cancer)
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Figure 7.8: Adjusted membership function of ANFIS model in Lymphoma Cancer
Data Set, Number of selected genes = 4, gene selection method = IG.

Table 7.7: Five rules selected from leukemia data set by using an individual NF
model, when the number of selected genes is 2.

Descriptions of Rules
1 If (U05259 is small) and (M89957 is small) then (output is Normal)
2 If (U05259 is small) and (M89957 is medium) then (output is Cancer)
3 If (U05259 is small) and (M89957 is large) then (output is Normal)
7 If (U05259 is large) and (M89957 is small) then (output is Cancer)
9 If (U05259 is large) and (M89957 is large) then (output is Normal)
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Table 7.8: Five rules selected from Lymphoma data set by using an individual
NF model, when the number of selected genes is 2.

Descriptions of Rules
1 If (GENE3330X is small) and (GENE3332X is small) then (output is Normal)
2 If (GENE3330X is small) and (GENE3332X is medium) then (output is Normal)
3 If (GENE3330X is small) and (GENE3332X is large) then (output is Cancer)
7 If (GENE3330X is large) and (GENE3332X is small) then (output is Cancer)
9 If (GENE3330X is large) and (GENE3332X is large) then (output is Normal)

Table 7.9: Compare the performance of different classifiers in Leukemia data set
The results are averaged over 30 runs.

GSMethod NoSG Colon Leukemia Lymphomia
Single NF IG 4 93.55 87.5 87.23

NFE IG 20 100 95.85 95.65
SVM (Furey et al) IG 50 90.30 94.10 N/A
SVM (Chao et al) SNR 50 65.0 59.0 76.0

LLE 50 85.0 95.0 91.0
KNN (Jirapech et al) EA 50 N/A 72.64 N/A

C4.5 (Yu et al) ReliefF 4-60 85.48 81.94 N/A

with other approaches. NFE model performance is much better than that of a

single NF model on three cancer data sets (see Table 7.9).

NFE model allows us to study a large range of genes. By combining the

advantage of ensemble learning, the classification performance is significantly

improved. Meanwhile, comparing with a single NF model, less computational

cost is required by using NFE model if we implement the model to bigger data

sets (the optimal number of selected genes is large). But compared with single

NF models, NFE models are more difficult to extract knowledge.

To sum up, the classification performance obtained by our NF and NFE mod-

els is very competitive. Different from other approaches, NFE models are more

transparent. Their behavior can be explained in human understandable terms,

such as linguistic terms and linguistic rules. This provides us with a better under-
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7.3 Results and Comparisons

standing of the data and gives the researchers and clinicians a clearer explanation

on how the diagnose results are given. All these experimental results show that

NF and NFE models can be very effective tools for microarray gene expression

data classification problems.
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Chapter 8

Future Work

This chapter describes the challenge and intended future research directions.

8.1 Future Directions

In this report, we constructed two NF models for cancer microarray data analysis,

and tested them on three benchmark data sets. We compared and analysed the

models with respect to classification accuracy, number of selected genes, and

knowledge extraction. Although the simulation studies show that our models can

be good tools for this application, there is still large space to improve. In future

work, we will mainly focus on how to use NF-based approaches to overcome three

inherent problems of microarray gene expression data, i.e., a lack of available

training samples, high dimensional input space, and large amount of noisy and

missing values. Theoretical analysis of our models is also necessary.

1. A better single NF model.

Firstly, we can extend our single NF model with respect to the following

aspects:

• A better structure of single NF model. ANFIS model is just one type of NF

combinations. Many other different combination methods can be found in

the literature, like GARIC, EFuNN, SONFIN, etc (see Section 2.3.2). Ana-

lyzing the behavior of other different NF models is necessary. By combining

their strong-points, we hope to build more feasible and efficient models for

this application.
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8.1 Future Directions

Usually, for a certain data set, the optimal structure and specified parame-

ters of the classifier are unknown. By using some optimization techniques,

we can dynamically determine the optimal structures and parameters of

NF models during the training process, which allows models to better fit

the data. Therefore, an Evolutionary Neuro-Fuzzy (ENF) model for can-

cer microarray analysis is considered for this purpose. Similar work can be

found in Evolutionary Neural Networks (ENN) (Manfred & Yee (1998); Xin

(1995)), Evolutionary Fuzzy System (Hoffmann (2001)).

• A more efficient training algorithm. ANFIS models use a Hybrid BP-LSE

algorithm to speed up the training process. But some recent developments

in this area promise to provide a better train performance and also a shorter

convergence time. Some advanced training algorithms can be introduced

to our model, e.g., Optimal BP Algorithm, Conjugate Gradient Algorithm,

and Levenberg-Marquardt Algorithm.

• Multi-class classification problems. By now we only apply ANFIS to two-

class classification problem. But multiple cancer co-existing in one data is

very common. How to apply NF models for multi-class classification prob-

lems may also require us to design a new structure and training algorithms

of NF models.

2. A better multi-NF model.

Multi-classifier techniques have been widely used in microarray analysis, be-

cause of their strong abilities in dealing with the problem of a small number

of samples and high dimensional input space. We mainly focus on two multi-

classifier techniques in our future research, i.e., ensemble methods, and hierarchi-

cal methods.

• Neuro-Fuzzy Ensemble model. Ensemble learning is a hot topic in current

machine learning research. Our current NFE model is a relatively simple

ensemble model so far, although it can obtain a good classification per-

formance. We can further improve our NFE with respect to the following

aspects:
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8.1 Future Directions

– Good generalization ability lies in good model structure. Therefore,

structure optimization of NFE can improve the generalization per-

formance further. It includes optimization of the whole ensemble,

optimization of the individuals, and optimization of the parameters.

Several optimization techniques can be applied here, e.g., genetic al-

gorithms (GA) (Jain et al. (1996); Kitano (1990); David (1994)), evo-

lutionary programming (EP) (Xin (1995); Yao & Liu (1997); Curran

& O’Riordan (2002)), and particle swarm optimization (PSO) (Settles

& Rylander (2002); Bergh & Engelbrecht (2000)).

– A more complex ensemble training strategy can be used, e.g., Boosting

(Hansen & Sakamon (1990)), Negative Correlation Learning(Liu et al.

(2003)), etc.

– A more efficient output strategy can be also be considered.

– As we mentioned previously, a necessary condition for an ensemble of

classifiers to be more accurate than any of its individual members is:

diversity among individual classifiers. From this point of view, further

analysis of NFE model is possible and necessary. more details can be

found in (Thomas (2000); Kuncheva & Whitaker (2003); Liu et al.

(2003)).

• Hierarchical Neuro-Fuzzy model. One of biggest problem in the NF model-

ing for microarray data analysis is the conflict between computational cost

and classification accuracy. Some data sets require a large number of genes

to present their properties. This number may cause too many rules, which

may result in unfeasible computational cost in practice, (see Section 5.2).

How to reduce the number of rules is an important issue of our model.

Targeting at this problem, we created a NFE model which allows the sys-

tem to study more informative genes, (see Chapter 6). But some other

approaches also can be used, for example, pruning algorithms (Fürnkranz

(1997); Reed (1993)), construction algorithms (Wang et al. (2004)), hier-

archical approaches (Berenji et al. (1991)), etc. Hierarchical Neuro-Fuzzy

model (HNF) can overcome two main weakneses of current NF models:
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8.1 Future Directions

Figure 8.1: The main structure of a possible hierarchical neuro-fuzzy model.

fixed structure and limited number of inputs. It has been proven that a

rule-based system using a hierarchical structure leads to a linear growth

in the number of rules (Souza et al. (2002)). A possible structure of HNF

is shown in Figure 8.1. Simulation work will be given in the future, see

Timetable.

NFE methods seem to be better at dealing with the problem of a small num-

ber of samples available, while HNF methods seem to be better at dealing with

the problems of high dimensional space. We can define a simple criterion in

analysising cancer gene expression data in later work. If the number of the sam-

ples is very small, we prefer to use NFE-Priority methods; If the number of the

samples is relatively large, but the number of input is still high, we prefer to use

HNF-Priority methods. Or we can combine these two methods.

3. Noisy and missing data

Missing data problem is one of the major problems which restrict the usage

of microarray techniques. Microarray experiments often generate expression data

arrays with some missing values. Many techniques, such as SVM and MLP,

require a complete data matrix to do the analysis. It is important to recognize
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8.1 Future Directions

the fact that such methods require a complementary pre-processing algorithm to

fill in an estimate for the missing data. Various interpolation algorithms can be

used for this purpose with varying degrees of success. NF models can deal with

this problem easily. We can design some experiments to test our NF model on

the data sets with high noise and lots of missing values, and then compare the

classification performance with other methods.

4. Fuzzy-based pre-processing techniques

Develop some fuzzy-based pre-processing techniques, for example:

• Fuzzy based gene selection methods. For example, fuzzy C mean method

can be used to select the informative genes, similar works can be found in

Basak et al. (1998), Chakraborty & Pal (2004);

• Fuzzy based gene expression measure. As we mentioned previously in Sec-

tion 3.1, the gene expression data (G) is measured by computing the log

ratio between the two intensities of each dye, shown as follows:

G = log2
Int(Cy5)

Int(Cy3)
(8.1)

where Int(Cy5) is the intensity of red color, while Int(Cy3) is the intensity

of green color. The collected gene expression data set for analysis is a nu-

merical matrix, which is very difficult for the users to read and understand.

If we can ignore this step, and allow NF model to study the data using

linguistic red/yellow/green directly, the outcome of the trained model will

be in the following form:

IF the Gene a is red and Gene b is green, THEN output = cancer. (8.2)

This technique may allow the users to read and apply some trained knowl-

edge directly on the gene image at the early biological research stage. A

possible model is presented in Figure 8.2. Each selected gene is classified as

red/ yellow/ green by a certain color estimation system. Then a NF model

is trained to perform classification task by using these new inputs (red/

yellow/ green). The color estimation system can be a FIS system.
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8.1 Future Directions

Figure 8.2: A possible NF model by using linguistic red/ yellow/ green as inputs

5. Study the interpretation ability of Neuro-Fuzzy model.

Related biological background knowledge is necessary for this propose. Design

some experiments to answer the following two research questions:

• Can we generalize some useful rules for biological researchers, or find the

satisfying result to prove their ideas?

• Can we add some knowledge from biological research to our system to see

if it can improve the performance?

Possible experiment designs can be:

• 1. Apply NF models for some well-studied small microarray gene expression

data sets;

• 2. Add some well-known biological knowledge in form of “IF... THEN...”

rules to one model;

• 3. Compare the performance of the model with prior knowledge and the

model without prior knowledge.

6. Computational complexity
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Theoretical analysis of above models is necessary. Using NF method for mi-

croarray cancer gene data classification can be looked as a “NP-complete” prob-

lem (Ezziane (2006); Garey et al. (1974)). By studying the computational com-

plexity of our model, we hope to found out the efficiency of our systems, and the

inherent ”difficulty” of problems which we are trying to resolve.

7. GeneNeFu

We plan to develop a software package, called GeneNeFu, which can be used

for cancer gene expression data classification. The outputs of the systems include

both classification results and some trained rules in human linguistic terms. Prior

knowledge can also be easily embedded into the model in order to improve the

classification performance further. And it also can help biologists to test-proof

their idea. The package will include six modules:

• Gene Selection Module;

• Single Neuro-Fuzzy Module;

• Evolutionary Neuro-Fuzzy Module;

• Neuro-Fuzzy Ensemble Module;

• Hierarchical Neuro-Fuzzy Module;

• Hierarchical Neuro-Fuzzy Ensemble Module.

Different modules target different user requirements from the users. Gene

selection module is used to select informative genes. Single neuro-fuzzy module

and evolutionary neuro-fuzzy module target the users who are interested to know

some useful knowledge behind the data more than the classification results. Evo-

lutionary neuro-fuzzy module may give a better output than single neuro-fuzzy

module, but it may take more computational time. Neuro-fuzzy ensemble module

and hierarchical neuro-fuzzy module target the users who are more interested to

know the classification results rather than hidden knowledge. While neuro-fuzzy

ensemble module is suggested to be used when the number of available samples is

small, hierarchical neuro-fuzzy module is suggested to be used when the number

of available samples is relatively large. Hierarchical neuro-fuzzy ensemble module
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is a combination of neuro-fuzzy ensemble module and Hierarchical neuro-fuzzy

module. A friendly users’ interface is also required.

8.2 Timetable
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8.2 Timetable

Table 8.1: Timetable for Year 2006 - Year 2007

Time Research Problems Outcomes
Hilary 2006 A. Summarize current work a. Paper Submitted

B. Optimize the structure of
single NF models

Easter 2006 A. Develop new Gene Selection a. Simulation work
methods (GS) (GS module done)

Trinity 2006 A. Develop advanced learning a1. Simulation work
algorithms for single NF models. (NF module done)

a2. Submit paper

B.Develop an Evolutionary NF b1. Simulation work
model (ENF) (ENF Module done)

b2. Submit paper

Summer 2006 A. Optimize a new NF Ensemble a. Simulation work
model (NFE) (NFE Module done)

Michaelmas 2007 A. Develop a Hierarchical NF a1. Simulation work
model (HNF) (HNF Module done)

a2. Submit paper

Hilary 2007 A. Develop a Hierarchical NF a1. Simulation work
Ensemble Module (HNFE Module done)
(HNFE) a2. Submit paper
B. Study at interpretation B1. Simulation work
ability of models

Easter 2007 A. Develop users’ interface a. GeneNeFu
of GeneNeFu

B. Develop users’ guide
document of GeneNeFu

Trinity 2007- A. Thesis written up a. Final Phd Thesis
Summer 2007
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Chapter 9

Conclusions

In this report, we have constructed two NF models for the classification and

analysis of highly dimensional cancer microarray data. In this chapter we recap

the work described in the above chapters and draw some conclusion.

Microarray data analysis is a novel and hot topic in current biological and

medical research, especially when using this technology for cancer diagnoise. But

it is also a big challenge for today’s machine learning research. Firstly, we intro-

duced some basic notions of microarray technology, microarray gene expression

data, and described how to use microarray gene expression data for cancer clas-

sification. We formalized this problem as a high-dimension-low-sample data set

with lots of noisy/missing data classification problem in machine learning.

According with our knowledge, we applied the ANFIS model for cancer mi-

croarray data classification problem for the first time. Then we tested this model

on three benchmark cancer microarray data set, including colon cancer data set,

leukemia cancer data set, and lymphoma cancer data set. The simulation work

shows that the ANFIS model can obtain very good classification performance as

other widely used models. But ANFIS only allows the system to use a small

number of genes due to it’s high computational cost. Targeting at this prob-

lem, we proposed a new NF model, called Neuro-Fuzzy Ensemble model (NFE),

which uses a group of ANFIS models to learn different parts of the data, and

then combine the classification results from different individual classifiers. The

experimental results showed that NFE allowed the classifier to cope a larger data

set, and better accuracy was obtained on most tested data sets. The reason of
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Figure 9.1: The structure of a good NF model for microarray gene expression

data classification

why NFE performed better and more efficient with respect to training time is

also given.

We also introduced some important related notions and techniques about

microarray data analysis. Some most popular models, such as SVM, KNN, and

MLP, were introduced and compared with our NF models. Two efficient genes

selection methods were adopted in our experimental study, i.e., Information Gain

(IG) and signal to Noise Ratio (SNR). LOOCV accuracy were used to evaluate

the effectiveness of the classifiers, because traditional strategies could not well

distinguish the ability of different classifiers by using such a small number of

training patterns.

From previous work and our experimental results, we can conclude that: A

good model for microarray gene expression data classification should contain the

following six parts: A good gene expression data source from biological exper-

iments; an efficient gene selection strategy; an efficient individual classifier, a

reasonable training algorithm, a good classifier combination, and a good strategy

to process the outputs of individual classifiers, shown in Figure 9.1. Future work
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will focus on improving our models with respect to those aspects (the data source

part is excepted).
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Appendix A

Top Selected Genes

Top 50 ranked genes from colon cancer data set, leukemia cancer data set, and

lymphoma cancer data set, are selected for future usage.
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Table A.1: Top 50 ranked genes from colon cancer data set, leukemia cancer data

set, and lymphoma cancer data set, are selected by IG method

Colon Leukemia Lymphoma

Rank ID Gene name ID Gene name ID Gene name

1 249 M63391 4050 X03934 1279 GENE3330X

2 493 R87126 6510 U23852 1281 GENE3332X

3 1042 R36977 4342 X59871 1277 GENE3328X

4 1423 J02854 4055 X04145 1247 GENE3355X

5 267 M76378 5542 M37271 1291 GENE3314X

6 245 M76378 5543 M37271 2244 GENE1252X

7 399 U30825 5466 X58072 1206 GENE3228X

8 1772 H08393 6606 X00437 1316 GENE3256X

9 765 M76378 1694 M12886 1287 GENE3338X

10 467 H40560 6696 X76223 3861 GENE1720X

11 822 T92451 1893 M28826 2439 GENE3968X

12 258 M16937 2833 U16954 2263 GENE1296X

13 66 T71025 4357 X60992 2243 GENE1251X

14 1067 T70062 4847 X95735 1634 GENE2704X

15 1325 T47377 1106 J04132 1616 GENE2662X

16 62 T48804 3332 U50743 2415 GENE3987X

17 377 Z50753 6236 U83239 2200 GENE1207X

18 1892 U25138 4484 X69398 34 GENE4006X

19 1808 U21090 4291 X56468 3137 GENE392X

20 1582 X63629 2454 S65738 2417 GENE3985X

21 652 R10066 6228 M26692 3860 GENE1719X

22 47 T58861 6575 U49835 3421 GENE3820X
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Colon Leukemia Lymphoma

Rank ID Gene name ID Gene name ID Gene name

23 1002 R08183 6180 M16336 1312 GENE3258X

24 1843 H06524 2433 S34389 2207 GENE1214X

25 1247 X74295 1630 L47738 1282 GENE3333X

26 415 T60155 2794 U14603 3018 GENE461X

27 1790 U10362 6732 X89399 1274 GENE3325X

28 625 X12671 6462 X73358 2438 GENE3967X

29 515 T56604 5567 D13720 2437 GENE3966X

30 1494 X86693 4061 X04391 35 GENE4007X

31 43 T57619 2324 M88108 3015 GENE464X

32 26 T95018 6126 L40386 2593 GENE867X

33 513 M22382 3594 U67171 675 GENE2297X

34 444 T59878 6516 U26312 36 GENE4008X

35 440 M94556 5191 Z69881 64 GENE3940X

36 360 L09604 4017 X00274 2435 GENE51X

37 127 T51529 1541 L38696 683 GENE2291X

38 1897 U19969 3969 U93049 2137 GENE3923X

39 1635 M36634 6571 U47686 1017 GENE2105X

40 1411 H77597 4133 X13482 276 GENE3760X

41 897 H43887 976 HG4128 2845 GENE740X

42 1326 M94203 2061 M59807 2205 GENE1212X

43 1058 M80815 5130 Z35227 1144 GENE3214X

44 1060 U09564 3307 U49395 809 GENE2106X

45 413 H25136 1268 L10373 1337 GENE3240X
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Colon Leukemia Lymphoma

Rank ID Gene name ID Gene name ID Gene name

46 384 T56940 6168 M13560 3892 GENE1543X

47 138 M26697 5995 X52979 3149 GENE374X

48 72 H55758 4156 X14975 1633 GENE2703X

49 15 U14971 6555 X93511 704 GENE2326X

50 1900 X56597 1373 L19686 213 GENE3512X
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Appendix B

Lectures, Meetings, Seminars

and Teaching

Lecture Courses Attended

• Prof. Samson Abramsky, Intelligent System I. This course introduced some

fundamental issues in intelligent system: Search, logic, knowledge, repre-

sentation and reasoning. It also included 10 classes, 4 assignments, 1 Prolog

practical and 1 examination.

• Dr Ian Sobey, Practical Numerical Analysis. This course covered a range

of numerical analysis topics: interpolation, integration, gobal optimization,

finite difference methods, iterative solvers, and finite element method. It

includes 8 classes, 6 assignments.

• Dr Stephen Cameron, Intelligent System II. Topics covered uncertain infor-

mation, timeliness, and inexact control that are found when dealing with
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embodied agents (e.g., robots). It includeed 10 lectures, 4 assignments, and

1 examination.

• Dr Vasile Palade, Machine Learning for ECS. Topics covered decision and

regression trees, learning using neural networks, probabilistic modeling and

fuzzy systems. It included 4 classes, and 1 practical report.

Project Meetings

Weekly meetings with my supervisor, Dr. Vasile Palade.

Seminars and Reading Groups

I have attended about 10 seminars each term in both Computing Laboratory

and Department of Engineering Science. Since May, 2005, I have attended Bioin-

formatics Discussion Group in Welcome Trust Centre for Genetics (WTCHG).

Teaching

• Michaelmas Term 2004: Demonstrator for Computing Design-Built-Test;

• Michaelmas Term 2004: Demonstrator for Object-Oriented Programming;

• Hilary Term 2005: Demonstrator for Computing Design-Built-Test;

• Michaelmas Term 2005: Demonstrator for Computing Design-Built-Test;

• Michaelmas Term 2005: Demonstrator for Compilers;

• Michaelmas Term 2005: Marker for Intelligent Systems I.
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Inza, I., Larrañaga, P., Blanco, R. & Cerrolaza, A.J. (2004). Filter

versus wrapper gene selection approaches in dna microarray domains. Artificial

Intelligence in Medicine, 91–103. 4.2

Jain, L., Johnson, R. & van Rooij, A. (1996). Neural Network Training

Using Genetic Algorithms. World Scientific. 2.2.1, 8.1

Jang, J.S.R. (1992). Neuro-Fuzzy Modeling: Architectures, Analyses and Appli-

cation. Phd thesis, University of California Berkeley. 1, 2.1.1, 2.1.2, 5, 5.1

Jang, J.S.R. & Gulley, N. (1997). MATLAB/Fuzzy Logic Toolbox, Math-

Works. Inc. Natick, MA. 2.1.3, 2.3.2

Jang, J.S.R. & Sun, C.T. (1995). Neuro-fuzzy modeling and control. Proceed-

ings of the IEEE . (document), 1, 1.1, 2.1.3, 2.3, 2.1.3, 5

Jang, J.S.R. & Sun, C.T. (1997). Neuro-fuzzy and soft computing: a com-

putational approach to learning and machine intelligence. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA. (document), 1, 2, 5, 5.1

Jiang, X.R. & Gruenwald, L. (2005). Microarray gene expression data as-

sociation rules mining based on bsc-tree and fis-tree. Data Knowl. Eng., 53,

3–29. 1

Jirapech-Umpai, T. & Aitken, S. (2005). Feature selection and classification

for microarray data analysis: Evolutionary methods for identifying predictive

genes. Bioinformatics , 6, 168–174. 4.3

98



BIBLIOGRAPHY

Kandel, A., ed. (1987). Fuzzy Expert Systems . Addison–Wesley, Reading, MA.

2

Kasabov, N. & Song, Q. (1999). Dynamic evolving fuzzy neural networks with

’m-out-of-n’ activation nodes for on-line adaptive systems. Technical TR99/04,

Department of information science University of Otago. 2.3.2

Khan, J., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., West-

ermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peter-

son, C. & Meltzer, P.S. (2001). Classification and diagnostic prediction of

cancers using gene expression profiling and artificial neural networks. Nature

Medicine, 7, 673–679. 1, 1.1, 4.3

Kim, H.C., Pang, S., Je, H.M., Kim, D. & Bang, S.Y. (2002). Pattern

classification using support vector machine ensemble. In ICPR (2), 160–163.

1.1

Kitano, H. (1990). Designing neural networks using genetic algorithms with

graph generation system. Complex Systems , 461–476. 2.2.1, 8.1

Kohonen, T., ed. (1997). Self-organizing maps. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA. 1

Kosko, B. (1992). Neural networks and fuzzy systems: a dynamical systems

approach to machine intelligence. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA. 2.3.1

99



BIBLIOGRAPHY

Krishnapuram, B. & et al. (2004). Joint classifier and feature optimiza-

tion for comprehensive cancer diagnosis using gene expression data. Journal of

Computational Biology , 227–242. 4.2

Kuncheva, L.I. & Whitaker, C. (2003). Measure of diversity in classifer

ensemble. Machine learning , 51, 181–207. 1.1, 6.1, 8.1

Li, L., Weinberg, C.R., Darden, T.A. & Pedersen, L.G. (2001). Gene

selection for sample classification based on gene expression data: study of sen-

sitivity to choice of parameters of the ga/knn method. Bioinformatics , 17,

1131–1142. 1, 4.2, 4.3

Lin, C.T. & Lee, C.S.G. (1991). Neural network based fuzzy logic control and

decision system. IEEE Teansaction on Comput., 40, 1320–1336. 2.3.2

Liu, Y., Yao, X. & Higuchi, T. (2003). Evolutionary ensemble with negative

correlation learning. IEEE Transactions on Evolutoinary Computation, 4, 380–

387. 6.1, 8.1

Lossos, I.S., Alizadeh, A.A., Eisen, M.B., Chan, W.C., Brown, P.O.,

Bostein, D., Staudt, L.M., & Levy, R. (2000). Ongoing immunoglobulin

somatic mutation in germinal center b cell-like but not in activated b cell-like

diffuse large cell lymphomas. In Proc. of the Natl. Acad. of Sci. USA, vol. 97,

10209–10213. 7.1.3

Mamdani, E. & Assilina, S. (1975). An experiment in linguistic synthesis

with a fuzzy logic controller. International Journal of Man-Machine Studies,

7, 1–13. 2.1.2

100



BIBLIOGRAPHY

Manfred, F. & Yee, L. (1998). A genetic-algorithms based evolutionary com-

putational neural network for modelling spatial interaction data. Annals of

Regional Science, 32, 437–458. 2.2.1, 8.1

Mitchell, T. (1997). Machine learning . McGraw-Hill, New York. 1, 4.2.1

Molla, M., Waddell, M., Page, D. & Shavlik, J. (2004). Using machine

learning to design and interpret gene-expression microarrays. AI Mag., 25,

23–44. 1

Nauck, D. (1997). Neuro-fuzzy systems: Review and prospects. Proc. Fifth

European Congress on Intelligent Techniques and Soft Computing (EUFIT’97).

2, 2.3.2, 5.1, 5.2

Nauck, D. & Kruse, R. (1997). Neuro-fuzzy systems for function approxima-

tion. In 4th International Workshop Fuzzy-Neuro Sy stems. 2.3.2

Nauck, D., Klawonn, F., Kruse, R. & Klawonn, F. (1997). Foundations

of Neuro-Fuzzy Systems. John Wiley & Sons, Inc., New York, NY, USA. 2, 1

Newton, R. & Xu, Y. (1993). Neural network control of a space manipulator.

IEEE Control Systems , 13, 14–22. 2.2.1

Nguyen, H.S., Szczuka, M.S. & Slezak, D. (1997). Neural networks design:

Rough set approach to continuous data. In PKDD ’97: Proceedings of the First

European Symposium on Principles of Data Mining and Knowledge Discovery ,

359–366, Springer-Verlag, London, UK. 2

101



BIBLIOGRAPHY

Ohno-Machado, L., Vinterbo, S.A. & Weber, G. (2002). Classification

of gene expression data using fuzzy logic. Journal of Intelligent and Fuzzy

Systems , 12, 19–24. 1

Palade, V., Patton, R.J., Uppal, F., Quevedo, J. & Daley, S. (2002).

Fault diagnosis of an industrial gas turbine using neuro-fuzzy methods. In Proc.

of the 15th IFAC World Congress, 2477–2482. 1.1

Paul, S. & Kumar, T. (2004). Gene expression based cancer classification using

evolutionary and non-evolutionary methods. Technical 041105A1, Department

of Frontier Informatics The University of Tokyo. 3.1

Paul, T.K. & Iba, H. (2004). Selection of the most useful subset of genes for

gene expression-based classification. In Proceedings of the IEEE Congress on

Evolutionary Computation, 2076–2083, Portland USA. 4.2

Peng, Y. & Flach, P. (2001). Soft discretization to enhance the continuous

decision tree induction. In C. Giraud-Carrier, N. Lavrac & S. Moyle, eds.,

Integrating Aspects of Data Mining, Decision Support and Meta-Learning , 109–

118, ECML/PKDD’01 workshop notes. 1

Prabakaran, S., Sahu, R. & S.Verma (2005). Genomic signal processing

using micro arrays, submitted to hybrid system. 1, 3.1, 3.1, 3.1, 5, 4.2

Reed, R. (1993). Pruning algorithms - a survey. IEEE Trans. Neural Networks,

4, 740–747. 1.1, 1, 8.1

102



BIBLIOGRAPHY

Ressom, H., Reynolds, R. & Varghese, R.S. (2003). Increasing the effi-

ciency of fuzzy logic-based gene expression data analysis. Physiol. Genomics ,

13, 107–117. 1

Ringhut, E. & Kooths, S. (2003). Modeling expectations with genefer c an

artificial intelligence approach. Comput. Econ., 21, 173–194. 1.1

Ripley, R.M. (1998). Neural Network Models for Breast Cancer Prognosis. Phd

thesis, Oxford University. 2.2.1

Rogers, S. (2004). Machine learning techniques for microarray analysis. Ph.D.

thesis, University of Bristol, UK. 4.2

Sambrook, J., Fritsch, E.F. & T. Maniatis, T. (1989). Cloning: A Labo-

ratory Manual . Cold Spring Harbor Laboratory Press, New York, USA. 3.1

Schaffer, C. (1993). Selecting a classification method by cross-validation. Ma-

chine learning , 13, 135–143. 5.3

Schmidt, T.H. (1989). Model-based fault diagnosis: knowledge acquisition and

system design. In IEA/AIE ’89: Proceedings of the 2nd international conference

on Industrial and engineering applications of artificial intelligence and expert

systems , 21–25, ACM Press, NY, USA. 2.1.3

Settles, M. & Rylander, B. (2002). Neural network learning using particle

swarm optimizers. Advances in Information Science and Soft Computing,, 224–

226. 2.2.1, 8.1

Shi, C. & Chen, L. (2005). Feature dimension reduction for microarray data

analysis using locally linear embedding. In APBC , 211–217. 4.3

103



BIBLIOGRAPHY

Slonim, D.K., Tamayo, P., mesirov, J.P., Golub, T.R. & Lander,

E.S. (2000). Class prediction and discovery using gene expression data. In

RECOMB , 263–272. 1, 1.1, 4.2, 4.2.2

Souza, F.J., Vellasco, M.M.R. & Pacheco, M.A.C. (2002). Hierarchical

neuro-fuzzy quadtree models. Fuzzy Sets Syst., 130, 189–205. 8.1

Sugeno, M. & Kang, G.T. (1988). Structure identification of fuzzy model.

Fuzzy Sets and Systems , 26, 15–33. 2.1.2, 5.1

Sulzberger, S.M., Tschicholg-Gurman, N.N. & Vestli (1993). Fun: Op-

timization of fuzzy rule based systems using neural networks. In Proceedings of

IEEE Conference on Neural Networks, 312–316. 2.3.2

Sulzberger, S.M., Tschicholg-Gurman, N.N. & Vestli, S.J. (1998).

Optimization of fuzzy rule based systems using neural network. IEEE Trans-

actions on NN , 9, 83–105. 2.3.2

Takagi, T. & Sugeno, M. (1985). Fuzzy identification of systems and its

applications to modelling and control. IEEE Transactions on Systems, Man

and Cybernetics, SMC-15, 116–132. 2.1.2, 5.1

Tan, A.C. & Gilbert, D. (2003). Ensemble machine learning on gene expres-

sion data for cancer classification. Applied Bioinformatics, 2, S75CS83. 1

Tano, S., Oyama, T. & Arnould, T. (1996). Deep combination of fuzzy

inference and neural network in fuzzy inference. Fuzzy Sets and Systems , 82,

151–160. 2.3.2

104



BIBLIOGRAPHY

Taylor, J.G. (1993). The Promise of Neural Networks. Springer-Verlag New

York, Inc., Secaucus, NJ, USA. 2.2.1

Teschioni, A., Oberti, F. & Regazzoni, C.S. (1999). A neural network ap-

proach for moving objects recognition in color image sequences for surveillance

applications. In NSIP , 28–32. 2.2.1

The-Genome-International-Sequencing-Consortium (2001). Initial se-

quencing and analysis of the human genome. Nature,, 409, 860–921. 1

Thomas, G.D. (2000). Ensemble methods in machine learning. In Proc. of the

first International Workshop on Multiple Classifier System (MCS 2000), 1–15.

(document), 6.1, 6.1.1, 6.3, 8.1

Trussell, H.J. & Vrhel, M.J. (1999). Modelling of color scanners using

neural networks. In NSIP , 19–22. 2.2.1

Valpola, H. & Karhunen, J. (2002). An unsupervised ensemble learning

method for nonlinear dynamic state-space models. Neural Comput., 2647–2692.

1.1

Vapnik, V. (1995). The Nature of Statistical Learning Theory . Springer-Verlag,

New York, USA. 4.3.2

Vapnik, V. (1999). Statistical Learning Theory . John Wiley and Sons, New York,

USA. 4.3.2

Varoglu, E. & Hacioglu, K. (1999). A recurrent neural network speech

predictor based on dynamical systems approach. In NSIP , 316–320. 2.2.1

105



BIBLIOGRAPHY

Venter, J. (2001). The sequence of the human genome. Science, 291,

1304C1351. 1

Virant-Klun, I. & Virant, J. (1999). Fuzzy logic alternative for analysis in

the biomedical sciences. Computers and Biomedical Research, 32, 305C321. 5

Wang, Z., Yao, X. & Xu, Y. (2004). An improved constructive neural net-

work ensemble approach to medical diagnoses. In Proc. of the Fifth Interna-

tional Conference on Intelligent Data Engineering and Automated Learning

(IDEAL’04), vol. 3177, 572–577, Lecture Notes in Computer Science, UK.

2.2.1, 1, 8.1

Wolpert, D. & Macready, W. (1997). No free lunch theorems for optimiza-

tion. IEEE Transactions on Evolutionary Computation, 1, 67–82. 2.1.3

Xin (1995). Evolutionary artificial neural networks. In A. Kent & J.G. Williams,

eds., Encyclopedia of Computer Science and Technology , vol. 33, 137–170, Mar-

cel Dekker Inc. 2.2.1, 1, 8.1

Xing, E.P., Jordan, M.I. & Karp, R.M. (2001). Feature selection for high-

dimensional genomic microarray data. In ICML ’01: Proceedings of the Eigh-

teenth International Conference on Machine Learning , 601–608, Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA. 4.2.1

Xiong, M., Li, W., Zhao, J., Jin, L. & Boerwinkle, E. (2001). Feature

(gene) selection in gene expression-based tumor classification. Molecular Ge-

netics and Metabolism, 239–247. 4.2

106



BIBLIOGRAPHY

Xu, Y., Selaru, M., Yin, J., Zou, T.T., Shustova, V., Mori, Y., Sato,

F., Liu, T.C., Olaru, A., Wang, S., Kimos, M.C., Perry, K., Desai,

K., Greenwood, B.D., Krasna, M.J., Shibata, D., Abraham, J.M. &

Meltzer, S.J. (2002). Artificial neural networks and gene filtering distinguish

between global gene expression profiles of barrett’s esophagus and esophageal

cancer. Cancer Research, 62, 3493–3497. 1, 4.3

Yao, X. & Liu, Y. (1997). A new evolutionary system for evolving artificial

neural networks. IEEE Transactions on Neural Networks, 8, 694–713. 2.2.1, 1,

8.1

Yeung, K.Y., Bumgarner, R.E. & Raftery, A.E. (2005). Bayesian model

averaging: development of an improved multi-class, gene selection and classifi-

cation tool for microarray data. Bioinformatics 21(10):, 21, 2394–2402. 4.2

Yu, L. & Liu, H. (2004). Redundancy based feature selection for microarray

data. Technical, Department of Computer Science and Engineering Arizona

State University. 4.2.1

Zadeh, L. (1965). Fuzzy sets. Information and Control , 3, 338–353. 1, 2, 2.1.1

Zadeh, L. (1968). Fuzzy algorithms. Information and Control , 12, 94–102. 2

Zadeh, L. (1985). Making computers think like people. IEEE. Spectrum,, 8,

26–32. 2

Zhang, Q.Y. & Kandel, A. (1993). Compensatory neurofuzzy systems with

fast learning algorirhms. In Proceedings of IEEE Conference on Neural Net-

works, 312–316, San Francisco. 2.3.2

107


	1 Introduction
	1.1 Research Motivations
	1.2 Report Outline

	2 Neuro-Fuzzy Systems
	2.1 Fuzzy Systems
	2.1.1 Fuzzy Sets
	2.1.2 Fuzzy Rules
	2.1.3 Fuzzy Inference Systems

	2.2 Neural Systems
	2.2.1 Neural Networks

	2.3 Hybrid Neuro-Fuzzy Systems
	2.3.1 Neural Systems vs. Fuzzy Systems
	2.3.2 Neuro-Fuzzy Systems


	3 Microarray Analysis
	3.1 Microarray Technology
	3.2 Cancer Gene Expression Classification
	3.3 Some Problems in Microarray Data Usage

	4 Machine Learning and Microarray Analysis
	4.1 Machine Learning in Microarray Analysis
	4.2 Gene Selection
	4.2.1 Information Gain
	4.2.2 Signal to Noise Ratio
	4.2.3 A Case Study

	4.3 Classifiers
	4.3.1 Multi-Layer Perceptron
	4.3.2 Support Vector Machine
	4.3.3 K Nearest Neighbour


	5 Neuro-Fuzzy Modeling
	5.1 Adaptive-Network-based Fuzzy Inference System
	5.2 Apply ANFIS to Microarray Analysis
	5.3 Training and Testing Strategy

	6 Neuro-Fuzzy Ensemble Modeling
	6.1 Ensemble Learning
	6.1.1 Ensemble vs. Individual
	6.1.2 Output of Ensemble

	6.2 Neuro-Fuzzy Ensemble

	7 Experimental Results
	7.1 Cancer Data sets
	7.1.1 Colon Cancer Data Set
	7.1.2 Leukemia Cancer Data Set
	7.1.3 Lymphoma Cancer Data Set

	7.2 Gene Selection Results
	7.2.1 Colon Cancer Data Set
	7.2.2 Leukemia Cancer Data Set
	7.2.3 Lymphoma Cancer Data Set

	7.3 Results and Comparisons
	7.3.1 Results of ANFIS
	7.3.2 Results of NFE
	7.3.3 Knowledge Extraction
	7.3.4 Comparisons


	8 Future Work
	8.1 Future Directions
	8.2 Timetable

	9 Conclusions
	A Top Selected Genes
	B Lectures, Meetings, Seminars and Teaching
	C Related Publications
	References

