
On the Parallel Complexity of Struc-
tural CSP Decomposition Methods
Zoltán Miklós

abstract. Constraint satisfaction problems are NP-complete in
general, but they can be solved in polynomial time and also in paral-
lel if their associated hypergraph is acyclic. It is often important for
applications to solve also non-acyclic problems, thus finding larger
tractable classes of CSPs is of high interest. Many structural de-
composition methods have been suggested, which enable that the
efficient techniques for acyclic hypergraphs can be applied to larger
problem classes as well. For some of these classes, e.g. for bounded
treewidth and bounded hypertreewidth also the recognition problem
is in LogCFL, thus it is highly parallelizable. In this paper we show
that all other tractable classes also posses this desirable property.
In particular, we show, that recognizing hypergraphs with bounded
biconnected width is in LogCFL. We also prove that recognizing
hypergraphs with bounded cycle cutset width is feasible in L.

1 Introduction

Many important problems in artificial intelligence, database theory and op-
erations research can be formulated as constraint satisfaction problems. A
constraint (Si, Ri) consists of a constraint scope, i.e. a set of variables Si

and a constraint relation Ri containing the allowed combinations of values
of the variables. A constraint satisfaction problem (CSP) is a set of con-
straints (S1, R1), . . . , (Sr, Rr), whose variables may overlap. A solution to
a CSP is an assignment of the variables, such that they simultaneously sat-
isfy all of the relations. Deciding whether there exists such an assignment
is often referred as solving the CSP.

We can associate a hypergraph H to a CSP in the following way: the
vertices of H correspond to the variables of the CSP while the hyperedges
correspond to the constraints, such that whenever a variable occurs in a con-
straint relation, the corresponding vertex is contained in the corresponding
hyperedge.

Solving constraint satisfaction problems is NP-complete in general, but
CSPs whose associated hypergraph is acyclic can be solved in polynomial

2 Zoltán Miklós

time and also in parallel. It is often important for applications to solve
also non-acyclic problems, thus finding larger tractable classes of CSPs is
of high interest. Many structural decomposition methods have been sug-
gested, which enable that the efficient techniques for acyclic hypergraphs
can be applied to larger problem classes as well. Solving a CSP with a
decomposition involves the following steps.

1. Recognizing structures of k-bounded width,

2. constructing a decomposition tree (of width k),

3. solving the CSP using the decomposition tree.

If a decomposition tree for a CSP is given, then the well-known algo-
rithm by Yannakakis [28] can be used to solve the problem in polynomial
time. Parallel algorithms have been suggested by Gottlob et al. in [11]
for an equivalent problem, for the evaluation problem of Boolean conjunc-
tive queries. In [11], the authors also show that solving CSPs with a given
decomposition tree is complete for LogCFL.

In this paper we concentrate on Step 1, on the problem of recognizing
bounded width structures: since efficient and parallel algorithms exists for
solving CSP if the decomposition tree is given, we study the question, how
to recognize such structures. For the bounded width classes we study here,
tractable algorithms are already known. Our contribution is to show con-
tainment in complexity classes, for which effective parallel algorithms exists.

For some of the bounded-width classes, e.g. for bounded treewidth (in-
dependently, by Wanke [27] and by Lautermann [18]) and bounded hyper-
treewidth (Gottlob et al. [12]), the recognition problem is known to be
in the low complexity class LogCFL. Bounded width structures defined by
subedge-based decompositions with a logspace computable subedge function
can also be recognized in LogCFL, see [13]. Thus, also bounded component
hypertreewidth hypergraphs can be recognized in LogCFL.

We study other known tractable classes and demonstrate how the proof
techniques of [12] can be applied to these classes as well. In particular,
we study hypergraphs with bounded biconnected cut width and show that
their recognition problem is in LogCFL. For bounded cycle cutset and cycle
hypercutset width we give an even better upper bound, we show that they
can be recognized in logspace. Bounded hinge width and bounded spread
cut width can also be tested in LogCFL.

The paper is organized as follows. In Section 2 we give some definitions
and we recall some relevant results from complexity theory. In Section 3,
we study biconnected components, in Section 4 we analyze the generalized
hypertreewidth recognition problem of bounded dimension hypergraphs. In

On the Parallel Complexity of Structural CSP Decomposition Methods 3

Section 5 we show that testing bounded cycle cutset-width is in L. In Section
6 we outline the proofs for hinge decomposition and spread cut decomposi-
tion, while Section 7 concludes the paper.

2 Preliminaries

2.1 CSP decompositions
In [10], Gottlob et al. compare tractable CSP decomposition methods and
study which of the decomposition concepts capture larger classes of hyper-
graphs. Cohen et al. [4] give a unified theory for structural CSP decompo-
sitions, they show, that all of the decomposition methods follow the same
definition scheme, they only differ in one condition, characteristic for the
particular method. The Figure 1 is adapted from [10], and also reflects he
latest development in the field.

Cycle hypercutset

Cycle cutset

Spread cut

Generalized hypertree decomposition
=Acyclic guarded cover

Component hypertree decomposition

Fractional hypertree decomposition

Hypertree decomposition

Hinge decomposition Tree clustering =
tree decomposition

Biconnected components

Hinge decomposition
+ tree clustering

Figure 1. Hierarchy of decomposition methods.

We recall that an arrow on the figure has the following meaning: if there
is an arrow from decomposition method A to method B, then there exists
structures with bounded width defined by B, but unbounded width defined
by A. Arrows with dotted line have a different semantic: if there is an arrow

4 Zoltán Miklós

form A to B with a dotted line then the width of hypergraphs defined by
the method B is less or equal than the width defined by the method A.
By the results in [2], hypergraphs with bounded generalized hypertreewidth
cannot have unbounded hypertreewidth:

THEOREM 1. ([2])
For a hypergraph H, ghw(H) ≤ hw(H) ≤ 3ghw(H) + 1.

Generalized hypertree decomposition is depicted with a bold line on the
figure, because –as it was shown recently in [13]– testing whether a hyper-
graph has generalized hypertreewidth at most 3 is NP-complete. Fractional
hypertree decompositions were introduced by Grohe and Marx [15]. It is
an open problem whether recognizing bounded fractional hypertreewidth
structures is tractable, therefore we depicted the class with a dotted bor-
derline. Given a fractional hypertree decomposition of a CSP, it can be
solved in polynomial time. The polynomial time algorithm for constraint
solving defined in [15] however is different from the algorithms in [28] and
[11], and it is not known to be parallelizable.

2.2 LOGCFL

LogCFL is the class of decision problems logspace reducible to a context-
free language. There is a number of problems, including some very natural
problems, which are complete for LogCFL, e.g. Greibach’s hardest context-
free language [14], the problem of evaluating a Boolean acyclic conjunctive
query over a relational database [11], computing pure Nash equilibria of
certain games [8], evaluating a positive core XPath query over an XML
document [9] and the uniform membership problem for nondeterministic
tree automata [19].

The relationship between LogCFL and other well-known complexity
classes is summarized as follows:

AC0 (NC1 ⊆ L = SL ⊆ NL ⊆ LogCFL ⊆ AC1 ⊆ NC2 ⊆ P ⊆ NP

Here, L is logspace, SL is symmetric logspace, NL is nondeterministic
logspace, P is polynomial time, NP is nondeterministic polynomial time.
ACi is the class of languages recognized by a logspace-uniform circuit fam-
ily of Boolean circuits of depth O(login), while NCi denotes the class of
languages recognized by a logspace-uniform circuit family of Boolean cir-
cuits of depth O(login) having bounded fan-in. For an overview of this
concepts, see e.g. [11].

Since LogCFL ⊆ AC1 ⊆ NC2, the problems in LogCFL are highly
parallelizable. Figure 2 summarizes the computational models characteriz-
ing the class LogCFL, compared with polynomial time. In this models,
LogCFL is a basic computational resource restricted class, which also un-

On the Parallel Complexity of Structural CSP Decomposition Methods 5

derlines its central place among complexity classes.

PTIME LogCFL

Alternating Turing machine Alternating Turing machine
using logarithmic space [22] using logarithmic space

with a polynomial size witness tree [24]
Nondeterministic Turing machine Nondeterministic Turing machine
using logarithmic space using logarithmic space
with an auxiliary pushdown [17] with an auxiliary pushdown

halting in polynomial time [25]
Logspace-uniform family of Logspace-uniform family of
unbounded Boolean circuits [22] semi-unbounded Boolean circuits

of logarithmic depth [26]

Figure 2. Computational models: PTIME vs. LogCFL

2.3 On logspace computations

The following breakthrough result of Reingold simplifies our investigations.

THEOREM 2. ([23]) L = SL

We also use the following property of logspace computations.

THEOREM 3. (Nisan, Ta-Shma [21]) LSL = SLSL = SL

ConnectedComponentsEqual is the following decision problem:
Input: Two undirected graphs G1 = (V1, E1), G2 = (V2, E2)
Question: Is the number of connected components of G1 equal to the
number of connected components G2?

THEOREM 4. ([3, 21] and Theorem 2)
ConnectedComponentsEqual is complete for L.

A direct consequence of the above Theorem is that we can decide in
logarithmic space whether a graph has exactly 2 connected components, by
using a “dummy” graph containing only two isolated vertices.

3 Biconnected components and LOGCFL

Biconnected components were introduced in [7].1 In a hypergraph H =
(V, E) a vertex v is separating, if removing v from H, the number of con-
nected components of H increases. A biconnected component C is a set of
vertices which has no separating vertex.

1In [7], the concept was defined for graphs, whereas here we concentrate on hyper-
graphs.

6 Zoltán Miklós

A

B

D E

F

G

C

A B C

B

B D E

C

C F G

Figure 3. Biconnected components decomposition.

Biconnected decomposition 〈T, χ〉 of H is a tree with a labeling function
that associates either a biconnected component of H or a singleton vertex
to the nodes of T , such that there is an edge btw. two nodes p and q in T , if
χ(p) is a biconnected component, and χ(q) is a separating vertex contained
in χ(p). Without loss of generality we can assume that the root node of a
biconnected decomposition is corresponds to a biconnected component.

On Figure 4 we give a high level description of the algorithm k-biconnected
that decides whether a hypergraph has k-bounded biconnected components
width. The algorithm can be effectively implemented on an alternating Tur-
ing machine, as we show later (Theorem 7). The following lemmas show
that the algorithm k-biconnected indeed recognizes hypergraphs with bi-
connected width k. Note, that the description of the algorithm refers to two
different types of components: to biconnected components (a set of vertices
without separating vertex) and to connected components of H[V \ S] (the
connected components of the induced subgraph on vertices V \ S).

LEMMA 5. For any hypergraph H, such that biconnected-width of H is at
most k, k-biconnected accepts H.

Proof. Let 〈T, χ〉 a biconnected decomposition of H. We show, that there
exists an accepting computation tree τ for k-biconnected. The accepting
computation and the tree τ can be constructed using the decomposition
〈T, χ〉 as follows.

For the initial call of k − biconn(V, ∅, ∅), we choose the set S in Step 1
as χ(root(T)). For a call k − biconn(CR, R, W), where R corresponds to a
biconnected component at some vertex r of T , and s is a descendant node
of r such that the only node on the unique path from r to s in T is p that
corresponds to a vertex P separating the biconnected components R and S,
where S is the biconnected component corresponding to s, then we choose
S in Step 1. and we choose the vertex P as the parameter in the procedure
call at step 4.

We use induction to show that in this way we defined an accepting com-
putation.

On the Parallel Complexity of Structural CSP Decomposition Methods 7

ALTERNATING ALGORITHM k-biconnected
Input: hypergraph H, (non-empty)
Result: Accept, if the biconnected width of H is at most k, Reject other-
wise.
Procedure k − biconn(CR : ConnectedComponent,R : SetOfV ertices,W :
V ertex)
begin
1) Guess a set S of size at most k
2) Check whether S is a biconnected component and whether W ∈ S
3) If the check above fails Then Halt and Reject; Else
Let C = {(C, Z) | C is a connected component of H[V \ S], Z is a separating
vertex such that Z ∈ S and C ⊆ CR}
4) If, for each (C, Z) ∈ C, k − biconn(C, S, Z)
then Accept else Reject
end;
begin (∗Main∗)
Accept if k − biconn(V, ∅, ∅)
end.

Figure 4. Recognizing k-bounded biconnected component width hyper-
graphs

Basis: If the tree contains only a root node, then clearly, we define an ac-
cepting computation.
Induction step: Assume that the computation we defined above reaches the
vertex r. Let s be a node of T such that s is a descendant node of r such that
the only node on the unique path from r to s in T is p that corresponds to
a vertex P , separating the biconnected components R and S. By the choice
of S in Step 1, and by the choice of the parameters at the procedure call 4,
the check in Step 2 does not fail, as S is a biconnected component of size
at most k with P ∈ S as a separating vertex. Thus, the computation also
reaches the vertex s. Therefore, by induction, the defined computation is
accepting. ¥

LEMMA 6. For any hypergraph H, such that k-biconnected accepts H,
the biconnected-width of H is at most k.

Proof. Let 〈F, ρ〉 be a witness tree of an accepting computation of
k-biconnected with input H. We can construct a biconnected decomposi-
tion 〈T, χ〉 of with k as follows.

For the root node of F we define a node of T and we label it with
ρ(root(F)). This node is the root of T . For each node r in F we add a

8 Zoltán Miklós

node pr with label χ(pr) = ρ(r) in T . For each node r of F , let children(r)
denote the child nodes of r in F . For each vertex in {v | v ∈ ρ(r) ∩ ρ(s),
where s ∈ children(r)} we define a vertex pv with label χ(pv) = {v} in T ,
and add as a child node of pr in T . If s is a child node of r and v ∈ ρ(r)∩ρ(s),
then ps is a child node of pv in T .

We prove that the tree constructed in this way indeed a biconnected
decomposition of width at most k. We have to show the following.

1. If s is a child node of r in F , then the set ρ(r)∩ ρ(s) contains exactly
one vertex Z, which is a separating vertex in H and Z ∈ ρ(r) and
Z ∈ ρ(r).

2. T is a tree graph.

3. 〈T, χ〉 is a biconnected decomposition of width at most k.

1. Since 〈F, ρ〉 be a witness tree of an accepting computation, both
ρ(r) and ρ(s) are biconnected components of H and there is a separating
vertex Z ∈ ρ(r), which is also in ρ(s), since the test in Step 2 does not
fail. Indirectly, if for two different vertices Z1 and Z2, the containment
{Z1, Z2} ⊆ ρ(r) ∩ ρ(r) holds, then neither of them is a separating vertex.
Contradiction.

2. We constructed T in a way that each node has exactly one parent
node, therefore it is a tree.

3. The tree T is labeled with biconnected components and singleton
vertices. By the construction, if χ(p) is a biconnected component and q is a
child of p then χ(q) is a separating vertex contained in χ(p). The width of
the decomposition is clearly at most k. Thus the tree is indeed a biconnected
decomposition of H. ¥

THEOREM 7. Deciding whether a hypergraph H has biconnected width at
most k is feasible in LogCFL.
Proof. The theorem follows from Ruzzo’s characterization of LogCFL
[24], and from the Lemmas 5, 6, since k-biconnected can be implemented
on a logspace alternating Turing machine with polynomially bounded tree
size in the following way (see also Gottlob et al. [12], Lemma 5.15.) We can
represent biconnected components of size at most k in logarithmic space.
For a biconnected component S (≤ k), also the connected components of
V \S can be represented in logspace: we need to store the set S, which is of
size k and one vertex in the component. For each vertex of H, we can test in
logarithmic space whether a vertex is in a connected component. Before the
procedure call at Step 4. we have to test whether a vertex is a separating
vertex in H. This test can also be performed by a logspace algorithm, by
Theorem 4. ¥

On the Parallel Complexity of Structural CSP Decomposition Methods 9

4 Bounded dimension hypergraphs

A hypergraph has bounded dimension, if the size of its hyperedges bounded
by a constant d. The following result is in contrast with the NP-completeness
result of testing generalized hypertreewidth [13]. The theorem is easy to
prove, nevertheless it shows an important parametrization of the general-
ized hypertreewidth test, which not only makes the problem tractable, but
also parallelizable.

THEOREM 8. Let H = (V,E) be a bounded dimension hypergraph H, i.e.
d = max{|e| | e ∈ E}. Testing whether H has bounded generalized hyper-
treewidth, i.e. ghw(H) ≤ k is in LogCFL.

Proof. Let us given a hypergraph H. Let H∗ denote the hypergraph
obtained from H by adding all possible subedges of H, i.e. H∗ = H ∪ {e′ |
∃e ∈ E, e′ ⊆ e}. It has been observed by Adler [1], that ghw(H) = hw(H∗).
Since H has bounded dimension, H∗ can be computed in logspace (because
each edge has 2d –a constant number of– subedges), and testing whether
hw(H∗) ≤ k is feasible in LogCFL, see [12]. ¥

5 Cycle cutset and cycle hypercutset in L

Cycle cutset [6] (a.k.a feedback vertex set) of a hypergraph H = (V, E) is
a set of vertices, such that the induced subhypergraph on vertices V \ S
is acyclic. The cycle cutset width of H is 0 if H is acyclic, otherwise the
minimal size over all of its cycle cutsets.

THEOREM 9. Deciding whether a hypergraph H = (V, E) has cycle cutset
width at most k is complete for L under NC1 reductions.

Before we prove this result we show, recognizing acyclic hypergraphs is
also complete in logspace logspace.

THEOREM 10. Deciding whether a hypergraph is acyclic is complete in L
under NC1 reductions.

Proof. Gottlob et al. [11] have shown that testing hypergraph acyclicity
is in SL, therefore, by theorem 2 it is in L. The hardness follows form the
fact, that testing graph acyclicity is is hard for deterministic logspace [5],
under NC1 reductions. An acyclic graph is at the same time an acyclic
hypergraph. ¥

Proof. (of Theorem 9) Containment. A logspace algorithm can go through
all subsets of V of size k and test whether the removal of the subset makes
the hypergraph acyclic. Hypergraph acyclicity can be tested in logspace
oracle, by Theorem 10. Thus, by Theorems 2 and 3, testing bounded cycle
cutset width of a hypergraph is feasible in logspace.

10 Zoltán Miklós

Hardness. Testing, whether a hypergraph H is acyclic, i.e. whether H has
cycle cutset width 0, is hard for L, see Theorem 10. ¥

A simple modification of the concept cycle cutset is a cycle hypercutset,
where we remove hyperedges, instead vertices. A cycle hypercutset of a
hypergraph H = (V,E) is a set of edges S, such that the hypergraph induced
by the vertices of V \ vertices(S) is acyclic. The cycle hypercutset width
of a hypergraph is the minimum cardinality over all of its possible cycle
hypercutsets.

THEOREM 11. Deciding whether a hypergraph H = (V, E) has cycle hy-
percutset width at most k is complete for L under NC1 reductions.
Proof. Analogous to the proof of Theorem 9. ¥

6 Hinge decomposition and spread cut decomposition

Using similar techniques as in Section 3, which are adaptations of the tech-
nique first applied in Gottlob et al. [12] to the particular problems, we can
obtain similar results for hinge decompositions and spread cut decomposi-
tions. Here we only outline the results, the full proofs can be found in the
full version of this paper and in [20].

Hinge decompositions were introduced in [16].

THEOREM 12. Deciding whether a hypergraph H has hinge width at most
k is feasible in LogCFL.
Proof. (sketch) The nodes of a hinge decomposition of H correspond to
some of the hinges of H. Given a set S of at most k hyperedges, we can
test in logarithmic space, whether S is a hinge of H. We can design a non-
deterministic algorithm, running on an alternating Turing machine, using
only logarithmic space and having a polynomial size witness tree. ¥

Spread cut decompositions were introduced recently by Cohen et al. [4].

THEOREM 13. Deciding whether a hypergraph H has spread cut width at
most k is feasible in LogCFL.
Proof. (sketch) We can relate a spread cut decomposition of H of width
at most k to a hypertree decomposition of an another hypergraph, H ∪
∆k, where ∆k is a set of subedges allowed by a spread cut decomposition.
A generalized hypertree decomposition D in normal form is a spread cut
decomposition of H, iff D is a hypertree decomposition of H∪∆k satisfying
some additional conditions: the components respect labels, there are no
unbroken components, for definitions see [4]. The set ∆k can be computed
in logspace and the additional conditions can also be tested in logspace,
thus an alternating logspace algorithm can be designed in a similar way, as
in [12]. ¥

On the Parallel Complexity of Structural CSP Decomposition Methods 11

7 Conclusion and future work

We studied upper bounds for the complexity of various recognition prob-
lems for tractable CSP decomposition methods and we have demonstrated
that all of these problems are contained in low parallel complexity classes.
In all of the cases we were able to design an nondeterministic recognition
algorithm, which can be implemented on an alternating Turing machine us-
ing only logarithmic space. Furthermore, in each case, the ATM has only
polynomial size witness tree. A more detailed discussion and the complete
proofs can be found in the full version of this paper and in [20].

To our best knowledge, no better upper bounds are known for the recog-
nition problems. We leave it as an open question whether for any of the
LogCFL cases, also LogCFL-hardness holds.

We believe that there is a unified theory of the CSP decompositions,
similar to [4], which also gives deeper explanations for containment of the
recognition problems in LogCFL. This theory could rely on the connection
between tractable CSP decompositions, and context-free hyperedge replace-
ment grammars, as presented e.g. in [18], but this connection needs to be
further explored.

Acknowledgements

The author was partially supported by the Wolfgang Pauli Institute, in the
project “Foundations of Knowledge and Information Handling”.

BIBLIOGRAPHY
[1] Isolde Adler. Marshals, monotone marshals, and hypertree-width. Journal of Graph

Theory, 47(4):275–296, 2004.
[2] Isolde Adler, Georg Gottlob, and Martin Grohe. Hypertree-width and related hyper-

graph invariants. In Proceedings of the 3rd European Conference on Combinatorics,
Graph Theory and Applications (EUROCOMB’05), volume AE of DMTCS Proceed-
ings Series, pages 5–10, 2005.

[3] C. Alvarez and R. Greenlaw. A Compendium of Problems Complete for Symmetric
Logarithmic Space. Computational Complexity, 9:73–95, 2000.

[4] David Cohen, Marc Gyssens, and Peter Jeavons. A unifying theory
of structural decompostions for the constraint satisfaction problems. In
Complexity of Constraints, number 06401 in Dagstuhl Seminar Proceedings,
http://drops.dagstuhl.de/opus/volltexte/2006/801, 2006.

[5] Stephen A. Cook and Pierre McKenzie. Problems Complete for Deterministic Loga-
rithmic Space. Journal of Algorithms, 8(5):385–394, 1987.

[6] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[7] Eugene C. Freuder. A sufficient condition for backtrack-bounded search. Journal of

the ACM, 32(4):755–761, 1985.
[8] Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Pure Nash Equilibria: Hard

and Easy Games. Journal of Artificial Intelligence Research, 24:357–406, 2005.
[9] Georg Gottlob, Christoph Koch, Reinhard Pichler, and Luc Segoufin. The complexity

of XPath query evaluation and XML typing. Journal of the ACM, 52(2):284–335,
March 2005.

12 Zoltán Miklós

[10] Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of structural
CSP decomposition methods. Artifical Intelligence, 124(2):243–282, 2000.

[11] Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of acyclic
conjunctive queries. Journal of the ACM, 48(3):431–498, 2001.

[12] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and
tractable queries. Journal of Computer and System Sciences (JCSS), 64(3):579–627,
May 2002.

[13] Georg Gottlob, Zoltán Miklós, and Thomas Schwentick. Generalized hypertree de-
compositions: NP-hardness and tractable variants. In Proceedings of the 26th ACM
SIGMOD-SICACT-SIGART Symposium on Principles of Database Systems, 2007.

[14] S. H. Greibach. The hardest context-free language. SIAM Journal on Computing,
2:304–310, 1973.

[15] Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. In
SODA, pages 289–298, 2006.

[16] Marc Gyssens, Peter G. Jeavons, and David A. Cohen. Decomposing constraint satis-
faction problems using database techniques. Artificial Intelligence, 66(1):57–89, March
1994.

[17] O.H. Ibarra. Characterizations of some tape and time complexity classes of turing
machines in terms of multihead and auxiliary stack automata. J. Comput. System
Sci., 5(2):88–117, 1971.

[18] Clemens Lautemann. The complexity of graph languages generated by hyperedge
replacement. Acta Informatica, 27(5):399–421, 1990.

[19] Markus Lohrey. On the parallel complexity of tree automata. In Proceedings of
the 12th International Conference on Rewriting Techniques and Applications, volume
2051 of Lecture Notes In Computer Science, pages 201–215. Springer, 2001.

[20] Zoltán Miklós. Understanding tractable constraints. PhD thesis, University of Oxford,
2007.

[21] Noam Nisan and Amnon Ta-Shma. Symmetric Logspace is Closed Under Complement.
Chicago Journal of Theoretical Computer Science, 1, 1995.

[22] C. H. Papadimitriou. Computational Complexity. Addison-Wesledy, 1994.
[23] Omer Reingold. Undirected st-connectivity in log-space. In Proceedings of the thirty-

seventh annual ACM Symposium on Theory of computing, pages 376–385, 2005.
[24] W. L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System Sci-

ences (JCSS), 21(2):218–235, 1980.
[25] I. H. Sudborough. On the tape complexity of deterministic context-free laguages.

Journal of the ACM, 25(3):405–414, 1978.
[26] H. Venkateswaran. Properties that characterize LOGCFL. Journal of Computer and

System Sciences (JCSS), 43(2):380–401, 1991.
[27] Egon Wanke. Bounded Tree-Width and LOGCFL. Journal of Algorithms, 16(3):470–

491, 1994.
[28] M. Yannakakis. Algorithms for acyclic database schemes. In C. Zaniolo and C. De-

lobel, editors, Proceedings of the International Coference on Very Large Data Bases
(VLDB’81), pages 82–94, Cannes, France, 1981.

Zoltán Miklós
University of Oxford and
Technische Universität Wien
zoltan.miklos@comlab.ox.ac.uk

