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ABSTRACT
The generalized hypertree width GHW (H) of a hypergraph
H is a measure of its cyclicity. Classes of conjunctive queries
or constraint satisfaction problems whose associated hyper-
graphs have bounded GHW are known to be solvable in
polynomial time. However, it has been an open problem
for several years if for a fixed constant k and input hyper-
graph H it can be determined in polynomial time whether
GHW (H) ≤ k. Here, this problem is settled by proving
that even for k = 3 the problem is already NP-hard. On
the way to this result, another long standing open problem,
originally raised by Goodman and Shmueli in 1984 in the
context of join optimization is solved. It is proven that de-
termining whether a hypergraph H admits a tree projection
with respect to a hypergraph G is NP-complete. Our in-
tractability results on generalized hypertree width motivate
further research on more restrictive tractable hypergraph
decomposition methods that approximate general hypertree
decomposition (GHD). We show that each such method is
dominated by a tractable decomposition method definable
through a function that associates a set of partial edges to a
hypergraph. By using one particular such function, we de-
fine the new Component Hypertree Decomposition method,
which is tractable and strictly more general than other ap-
proximations to GHD published so far.

Categories and Subject Descriptors
H.2.4 [Information systems]: Database Management Sys-
tems[Query processing, Relational databases]; F.2 [Theory
of Computation]: Analysis of algorithms and problem
complexity

General Terms
Algorithms, Theory

Keywords
conjunctive query, hypergraph, acyclic, NP-complete, hy-
pertree decomposition, tractable, Tree Projection Problem
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1. INTRODUCTION AND OVERVIEW
Nearly Acyclic Hypergraphs and Hypergraph De-
compositions. It is well-known that acyclic conjunctive
queries, i.e. queries with an acyclic query hypergraph, are
solvable in polynomial time [7]. A similar result holds for
many other problems that can be structurally characterized
through hypergraphs. Intensive efforts have been made
in the last decade to generalize the class of acyclic hyper-
graphs to significantly larger classes and to extend the pos-
itive complexity results for hypergraph-based problems to
the cover instances whose associated hypergraphs belong
to these larger classes. This was motivated by two facts.
Firstly, it was often observed that many relevant queries
are not precisely acyclic but in some sense nearly acyclic –
experimental support for this was recently given in [27]. Sec-
ondly, there exists a very successful generalization of graph
acyclicity, namely, bounded treewidth [25]. A large number of
graph-based problems are tractable on instances of bounded
treewidth [10, 4, 5, 22, 11]. There has been a quest for a
suitable hypergraph decomposition method M and associ-
ated M -width that would be a good measure of the degree
of cyclicity of a hypergraph. To be usable in the context of
conjunctive query processing, such a decomposition method
must fulfill two important criteria:

– Polynomial Query Evaluation. Boolean conjunc-
tive query evaluation must be tractable for queries
whose M -width is bounded by a constant.

– Polynomial Recognizability. For each constant k,
hypergraphs (and thus queries) of M -width (MW )
bounded by k must be recognizable in polynomial time,
and for such queries an M -decomposition of width at
most k must be computable in polynomial time.

In the database and in the constraint satisfaction commu-
nities, various methods of hypergraph decompositions have
been defined. These methods all amount to clustering the
query hypergraph in a tree-like form and to using such a
clustering for transforming the original cyclic query into an
acyclic query over a modified database whose relations are
obtained by taking for each cluster the natural join of the re-
lations corresponding to the edges of that cluster. The width
of the decomposition is the maximum cluster size, that is,
the maximum number of edges per cluster. The different
decomposition methods differ in the way the edge clusters
are determined.
An overview and comparison of most of these methods

can be found in [17]. In recent years, more general decom-
position methods were studied, that yield better decompo-
sitions (of smaller width) for larger classes of hypergraphs.



The most general of these decompositions is the generalized
hypertree decomposition (GHD) [20, 3], also called acyclic
guarded cover in [9].
Generalized Hypertree Decompositions. The concept
of a GHD is intuitively explained by the following example,
adapted from [2, 3].
Consider the Boolean conjunctive query over a database

with a binary relation r and a ternary relation s:

Q0 : r(X1, X2) ∧ s(X2, X3, X9) ∧ s(X3, X4, X10)∧
r(X4, X5) ∧ s(X5, X6, X9) ∧ s(X6, X7, X10)∧
s(X7, X8, X9) ∧ s(X1, X8, X10).

The hypergraph H0 = (V0, E0) associated with the query,
depicted in Figure 1, has the vertex set V0 = {v1, v2, . . . , v10},
where for each query variable Xi there is a vertex vi and and
an edge set E0 which consists of the following edges:

e1 = {v1, v2}, e2 = {v2, v3, v9}, e3 = {v3, v4, v10},
e4 = {v4, v5}, e5 = {v5, v6, v9}, e6 = {v6, v7, v10},
e7 = {v7, v8, v9}, e8 = {v1, v8, v10}.

GHDs of width 2 and 3 of H0 (and of query Q0) are depicted
in Figure 2.a and 2.b, respectively. A GHD of a hypergraph
H (in our example, H0) consists of a tree T such that each
node p of T is labeled with a set λ(p) of edges of H and a set
χ(p) of vertices of H. Each edge of H must be covered by at
least one χ(p). For each node p of the tree T , the set χ(p) is
covered by the union of the edges in λ(p). For each vertex i
of H, the set of all nodes of T , where i occurs in the χ-part
induces a connected subtree of T . The width GHW (D),
also denoted by |D|, of a GHD D is the maximum cardi-
nality of λ(p) over all nodes p of the decomposition tree of
D. The generalized hypertree width GHW (H) of H is the
minimum width over all possible GHDs of H. Note that a
hypergraph H is acyclic iff GHW (H) = 1. In [19] it was
shown that GHDs satisfy the Polynomial Query Evaluation
property. In particular, given a Boolean query Q, with a
GHD D of width k and size g, of (the hypergraph of) Q,
and a database DB whose largest relation has size r, then
Q can be answered on DB in time O(r + g)k × log(r + g).
Therefore, computing hypertree decompositions of smaller
width leads to better query answering algorithms.
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Figure 1: Hypergraph H0 of the query Q0.

Is Bounded GHW Polynomially Recognizable? A
major question was whether for a fixed constant k and an in-
put hypergraph H, it can be determined in polynomial time
if GHW (H) ≤ k, i.e. whether bounded GHW is polynomi-
ally recognizable, and if so, whether a GHD of H of width k

{e1, e2, e6}{v1, v2, v3, v6, v7, v9, v10}

{e3, e5}{v3, v4, v5, v6, v9, v10} {e7, e8}{v1, v7, v8, v9, v10}

b)

{e2, e6}{v3, v6, v7, v9, v10}

{e3, e7}{v3, v7, v8, v9, v10}

{e2, e8}{v1, v2, v3, v8, v9, v10}
a)

{e3, e5}{v3, v4, v5, v6, v9, v10}

Figure 2: a) A generalized hypertree decomposi-
tion of width 2 and b) a hypertree decomposition of
width 3 of the hypergraph H0.

can be computed in polynomial time. These questions were
first posed as open problems in 2001 (in the PODS’01 con-
ference version of [20]) and have since been re-posed several
times by various authors, for example, in [9].
The analysis of generalized hypertree decompositions is

combinatorially involved. Rather than attacking the GHW
recognition problem directly, we first dealt with a conceptu-
ally and combinatorially somewhat simpler related problem,
namely, the problem of determining whether a hypergraph
H admits a tree projection with respect to another hyper-
graph G.
Tree Projections. For two hypergraphs H1 and H2 we
write H1 ≤ H2 iff each edge of H1 is contained in at least
one edge of H2. Let G and H be hypergraphs such that
G ≤ H. A tree projection of H with respect to G is an
acyclic hypergraph H ′ such that G ≤ H ′ ≤ H. Tree pro-
jections were studied in [15, 24, 26] in the context of query
optimization. In particular, in [15] the following Tree Pro-
jection Theorem was shown. A query program P consisting
of a sequence of projections, selections, or semi-joins,solves
a relational query Q over a database whose schema is de-
scribed by a hypergraph H1 iff the output schema of the
query is described by a hypergraph H2 such that there ex-
ists a tree projection of H2 with respect to H1.
The Tree Projection Problem has as instance a pair (G, H)

of hypergraphs and asks whether H has a tree projection
with respect to G. If such a tree projection exist, it is also
called an acyclic hypergraph sandwich, and the Tree Projec-
tion Problem is also referred to as the Acyclic Hypergraph
Sandwich Problem [16]. For other types of “sandwich” prob-
lems, see [13, 14]. The complexity of the Tree Projection
Problem has been repeatedly stated as an open problem for
over twenty years [15].
Relating Tree Projections to GHW. As already pointed
out in [20], there is an interesting connection between tree
projections and generalized hypertree width. For a hyper-
graph H = (V, E), denote by Hk the hypergraph (V, Ek),
where Ek are all unions of k or less hyperedges from H. The
following lemma, implicit in [20], follows directly from the
definitions of GHD and of tree projections:



Lemma 1.1 ( [20]). For each hypergraph H,
GHW (H) ≤ k if and only if Hk has a tree projection with
respect to H.

Lemma 1.1 can be seen as an easy polynomial-time reduc-
tion from the GHW recognition problem to the tree projec-
tion problem. This means that if checking “GHW (H) ≤ k”
turned out to be NP-complete for some constant k, then the
tree projection problem would be NP-complete, too. Con-
versely, if the tree projection problem is tractable, then so
is the GHW recognition problem. Given that, in addition,
the tree projection problem appeared to be simpler, we first
attacked this problem.
Complexity of the Tree Projection Problem. We are
able to exhibit a polynomial-time transformation from 3SAT
into the tree projection problem. We thus obtain the follow-
ing result:

The tree projection problem is NP-complete.

This result is of independent interest. It entails hardness
results for problems of query optimization discussed in [15,
24, 26].
Complexity of GHW recognition. By using a similar

but noticeably more involved construction as for the tree
projection problem, we are able to polynomially transform
3SAT into the problem of checking whether a hypergraph
has generalized hypertree width at most 3. The additional
difficulty arises from the fact that now it is no longer suf-
ficient to polynomially transform a 3SAT instance into a
pair of hypergraphs (G, H) such that H has tree projection
with respect to G. Instead, according to Lemma 1.1, we
shall transform 3SAT into an instance of the tree projection
problem of the form (G, G3). To achieve this, we make use
of involved coding and padding methods. We thus obtain
the following result:

Deciding if GHW (H) ≤ 3 is NP complete.

Thus, unless P=NP, even for bounds as low as 3, bounded
GHW is not polynomially recognizable, and bounded GHDs,
if they exist, cannot be computed in polynomial time.
Approximating GHDs. The unfavorable complexity re-
sults related to generalized hypertree decompositions mo-
tivate the search for somewhat weaker hypergraph decom-
position methods that in some sense approximate GHDs,
and that fulfill the criteria of polynomial query evaluation
and polynomial recognizability. In this paper, we concen-
trate on decomposition methods M which associate with
each hypergraph H a set M(H) of generalized hypertree de-
compositions of H and search for a GHD in M(H) of min-
imal width. Intuitively, we thus consider methods which
“approximate GHD from above”. The width MW (H) of a
hypergraph H according to some decomposition method M
is the minimum GHW of a decomposition in M(H). For
two methods M and N we write M ≤ N iff for each hyper-
graph H, MW (H) ≤ NW (H). If M ≤ N and there is some
hypergraph H such that MW (H) < NW (H), then we write
M < N .
The only method we are aware of, that does not fit into

this framework is the fractional hypertree decomposition
method (FHD) [23]. This method is based on principles
different from “near acyclicity”. It was shown in [23] that
FHD < GHD, but the computational properties of FHD
are unexplored (we conjecture FHD is not polynomially rec-
ognizable unless P=NP).

The following well-known approximation methods will be
considered here. Query Decomposition (QD)[8] with the as-
sociated notion of query width (QW), hypertree decompo-
sitions (HD) [19] , with the associated notion of hypertree
width (HW ), and spread cut decomposition (SCD) [9] with
the associated notion of spread cut width (SCW). All these
decomposition methods explicitly restrict the sets χ(p) that
may appear at a decomposition node p. In a QD, each set
χ(p) must coincide with the union of all edges in λ(p). This
is a very strong restriction. The more general HD merely
requires that any element v that appears in some edge of
λ(p) but not in χ(p), does not occur in χ(p′) of any descen-
dent p′ of p in T either. SCDs are defined through a similar
condition (see Section 6). Of the three decompositions only
HDs are polynomially recognizable; QDs and SCWs are not
(unless P=NP)
By results1 of [19, 3, 2, 9], GHD < HD < QD, and

GHD < SCD < QD, while SCD and HD are incompara-
ble. Note also that the term “approximation method” is also
appropriate in the complexity theoretic sense. In fact, in [3]
it was shown that for each hypergraph H,
GHW (H) ≤ HW (H) ≤ 3×GHW (H) + 1, and thus both
query width and hypertree width approximate GHW by a
factor of 3.
Subedge-Based Decomposition Methods. Motivated
by the goal to improve hypertree decompositions, we de-
fine the concept of subedge-based decomposition methods. A
subedge of a hypergraph H is a subset of some edge of H. A
subedge-based decomposition method M relies on a subedge
function. This is a function f which associates to each inte-
ger k > 0 and each hypergraph H a set f(H, k) of subedges
of H. Moreover, the set of k-width M -decompositions can
be obtained as follows: (1) obtain a hypertree decomposi-
tion D of H ′ = (V, E ∪ f(H, k)), and (2) convert D into a
GHD of H by replacing each subedge e ∈ λ(p), for each de-
composition node p, by some edge e′ of H such that e ⊆ e′.
We call such a decomposition method M subedge-based. We
derive the following result:

For each polynomially recognizable decomposi-
tion method M ≤ GHD,there exists a polyno-
mially recognizable subedge-based decomposition
method M ′ such that M ′ ≤ M .

The above result is useful from a methodological point of
view. In fact, it tells us that when searching for some new
decomposition method M such that GHD < M < HD,
then we may concentrate on subedge-based decomposition,
and thus study appropriate subedge functions. This is what
we did.
Component Hypertree decompositions. We found one
particularly interesting subedge function fC , whose defini-
tion is based on structural properties of the input hyper-
graph H. In particular, each subedge in fC(H, k) is ob-
tained from a full edge e and some candidate decomposition
block M of ≤ k edges containing e, by eliminating from e
all vertices that are edge-connected to some induced com-
ponent of V (H) − vertices(M), or all vertices that are not
edge-connected to any component of V (H) \M , or all ver-
tices from e \ ∪(M \ {e}) that are edge-connected to some
component of V (H) \ vertices(M). The new subedge based
decomposition method based on this subedge functionfC is
called component hypertree decomposition (CHD) and its
associated width is referred to as component hypertree width
(CHW ). We show that:
1The relation SC < QW follows from the definitions of [9].



Component hypertree decompositions fulfill both
criteria, polynomial query answering and polyno-
mial recognizability.

We also compared CHD to HD and SCD and found the
following:

CHD<HD and CHD< SCD.

In particular, for the hypergraph H0 of Figure 1, we have
HW (H0) = 3 but CHW (H0) = SCW (H0) = GHW (H0) =
2.
The method of component hypertree decompositions is

thus currently the most general known polynomially recog-
nizable hypergraph decomposition method.
Future ResearchWe think that the following questions are
of particular interest for future research: (i) The best known
approximation factor for GHW is 3. Is it possible to define a
decomposition method with a better approximation factor?
(ii) Are fractional hypertree decompositions [23] polynomi-
ally recognizable? (iii) The best known upper bound for
computing a hypertree decomposition of width k is expo-
nential in 2k. Can we do better?
Structure of the Paper In Section 2 we give some defini-
tions. In Section 3 we show that the hypergraph projection
problem is NP-complete. In Section 4 we show that deter-
mining whether GHW (H) ≤ 3 is NP-complete. In Section 5
we introduce the concept of subedge-based decomposition
and prove our general result about subedge-based decompo-
sitions. In Section 6 we define component hypertree decom-
positions and we compare CHDs to HDs and SCDs and
show that CHDs are strictly more general than the others.

2. PRELIMINARIES
A hypergraph is a pair H = 〈V, E〉 consisting of a set V of

vertices and a set E of hyperedges. A hyperedge e ∈ E is a
subset of V . We adopt the usual logical representation of a
relational database [1], where data tuples are identified with
logical ground atoms and conjunctive queries are represented
as datalog rules. There is a very natural way to associate a
hypergraph H(Q) = (V, E) to a query Q: the set of vertices
consists of all variables occurring in Q, and the hyperedges
are all sets of variables of A , such that A is an atom in the
body of Q. A query is acyclic if its associated hypergraph
is acyclic. We refer to the standard notion of hypergraph
acyclicity in database theory [1].
A join tree JT (Q) for a conjunctive query Q is a tree

whose vertices are the atoms in the body of Q such that
whenever the same variable X occurs in two atoms A1 and
A2, then A1 and A2 are connected in JT (Q) and X occurs
in each atom in the unique path linking A1 and A2. In other
words, the set of nodes, where X occurs induces a connected
subtree of JT (Q). Acyclic queries can be characterized in
terms of join trees: A query is acyclic iff it has a join tree
(see [6]).
A hypertree for a hypergraph H = (V, E) is a triple

〈T, χ, λ〉, where T = (N, F ) is a (rooted) tree and χ and
λ are labeling functions that associate each node p ∈ N
with two sets: χ(p) ⊆ V and λ(p) ⊆ E. We denote the
subtree rooted at node p ∈ N with Tp and let
χ(Tp) = {v | v ∈ χ(w), w ∈ Tp}.
Definition 2.1. ([19]) A hypertree decomposition of a

hypergraph H = (V, E) is a hypertree HD = 〈T, χ, λ〉, such
that the following conditions hold:

1. for each edge e ∈ E, there is a node p ∈ N , such that
vertices(e) ⊆ χ(p),

2. for each vertex v ∈ V , the set {p ∈ N | v ∈ χ(p)}
induces a connected subtree of T ,

3. for each p ∈ N , χ(p) ⊆ vertices(λ(p)),

4. for each p ∈ N , vertices(λ(p)) ∩ χ(Tp) ⊆ χ(p).

The width of a hypertree decomposition is defined as |HD| =
maxp∈N |λ(p)|. The hypertree width of a hypergraph is the
minimum width over all of its hypertree decompositions. We
call a hypertree decomposition complete, if for all edges e of
the hypergraph H, there is a node p ∈ N such that e ∈ λ(p)
and vertices(e) ⊆ χ(p). We refer to the condition 4 of Def-
inition 2.1 as the “special condition”. A hypertree 〈T, χ, λ〉
is called a generalized hypertree decomposition, if the con-
ditions 1-3 of Definition 2.1 hold.
Let H = (V, E) be a hypergraph and let X, Y ∈ V be

two vertices of H and S ⊆ V a subset of vertices. X and
Y are [S]-adjacent if there is an edge e ⊆ E, such that
{X, Y } ⊆ vertices(e) \S. The maximum [S]-connected sets
are called [S]-components. We use the same short notation
as in [19]: a [p]-component denotes a [χ(p)]-component. In
the case of hypertree decompositions, the [p]-components
and [vertices(λ(p))]-components coincide (see lemma 5.8 in
[19]). This does not hold for generalized hypertree decom-
positions, where a [p]-component may have nonempty inter-
section with several [vertices(λ(p))]-components.
Normal form hypertree decompositions play a crucial role

in the proofs in [19].

Definition 2.2. ([19]) A generalized hypertree decompo-
sition 〈T, χ, λ〉 of a hypergraph H is in normal form, if for
each vertex r of T and for each child s of r, all the following
conditions hold:

1. there is exactly one [r]-component Cr, such that
χ(Ts) = Cr ∪ (χ(r) ∩ χ(s))

2. Cr ∩ χ(s) 6= ∅, where Cr is the [r]-component from
condition 1,

3. vertices(λ(s)) ∩ χ(r) ⊆ χ(s).

Proposition 2.3. (Gottlob et al.[19]) If H has a gener-
alized hypertree decomposition of width k, then H has a gen-
eralized hypertree decomposition of width k in normal form.

3. COMPLEXITY OF THE TREE
PROJECTION PROBLEM

Theorem 3.1. Tree Projection is NP-complete.

Proof. Clearly, Tree Projection is in NP. The proof
of NP-hardness is by a reduction from 3SAT. Let ϕ =
m∧

i=1

(Li1 ∨Li2 ∨Li3) be a 3SAT formula with m clauses and

variables x1, . . . , xn.
We construct hypergraphs H1 = (V, E1) and H2 = (V, E2)

such that H1 has a join tree with respect to H2 if and only
if ϕ is satisfiable.
V has the following elements:

– for each i ≤ n there are yi and y′i,

– for each i ≤ m + 1 and j ≤ 2n + 2 there is aj
i .



In the following, Y denotes {y1, . . . , yn} and Y ′ denotes
{y′1, . . . , y′n}. Further, Y−i is Y −{yi} and Y ′

−i = Y ′ −{y′i}.
We will use the convention that hyperedges of H1 are de-

noted by lower case letters e··· and hyperedges of H2 by
upper case symbols E···.
The hyperedges of H1 are the following.

– for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n + 2, there is a
hyperedge ej

i = {aj
i , a

j
i+1},

– for each j, 1 ≤ j ≤ 2n + 1, there is a hyperedge
ej

m+1 = {aj
m+1, a

j+1
1 },

– for each i, 1 ≤ i ≤ n, there is a hyperedge ei = {yi, y
′
i},

and

– there are hyperedges e = {a1
1} ∪ Y and

e′ = {a2n+2
m+1 } ∪ Y ′.

H2 has the hyperedges E = {a1
1}∪Y ∪Y ′, E′ = {a2n+2

m+1 }∪
Y ∪ Y ′ and, for each i, j, k, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n + 2,
1 ≤ k ≤ 3, a hyperedge Ej

ik depending on Lik as follows:

– if Lik = xp, for some p then Ej
ik = {aj

i , a
j
i+1}∪Y ∪Y ′

−p,

– if Lik = ¬xp, for some p then
Ej

ik = {aj
i , a

j
i+1} ∪ Y−p ∪ Y ′.

Finally, for each j ≤ 2n + 1, there is a hyperedge
Ej

m+1 = {aj
m+1, a

j+1
1 } ∪ Y ∪ Y ′.

We show next that ϕ is satisfiable if and only if H1 has a
join tree with respect to H2.
Let us assume first that ϕ has a satisfying truth assign-

ment ρ. Then T can be chosen as follows (See Figure 3).

– for each i, j, 1 ≤ i ≤ m + 1, 1 ≤ j ≤ 2n + 2, T has a
node vj

i . There are two further nodes, v and v′,

– for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n + 2, there is an
edge {vj

i , v
j
i+1}, and

– for each j, 1 ≤ j ≤ 2n+1, there is an edge {vj
m+1, v

j+1
1 },

– there are two additional edges: between v and v1
1 , and

between v2n+2
m+1 and v′.

Thus, T is a line from v to v′.

v v′

v1
1 vj

i vj
i+1 vj

m+1 vj+1
1 v2n+2

m+1

Figure 3: Join tree

In order to define χ and λ, we fix, for each i, a ki,
1 ≤ ki ≤ 3 such that the i-th clause of ϕ, Li1 ∨ Li2 ∨ Li3, is
satisfied by Liki , i.e. Liki = 1 under ρ. Let us choose pi,
such that Liki = xpi or Liki = ¬xpi .
For each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n + 2, we let

λ(vj
i ) = Ej

iki
and, for each j, 1 ≤ j ≤ 2n + 1, we let

λ(vj
m+1) = Ej

m+1. Finally, λ(v) = E and λ(v′) = E′.
Let Z be the set {yi | ρ(xi) = 1} ∪ {y′i | ρ(xi) = 0}. We

define χ as follows.

– χ(v) = {a1
1} ∪ Y ∪ Z, χ(v′) = {a2n+2

m+1 } ∪ Y ′ ∪ Z,

– for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n + 2, let
χ(vj

i ) = {aj
i , a

j
i+1} ∪ Z, and

– for each j, 1 ≤ j ≤ 2n + 1, let
χ(vj

m+1) = {aj
m+1, a

j+1
1 } ∪ Z.

It is not hard to see that 〈T, χ, λ〉 is indeed a join tree
for H1 with respect to H2. The crucial point is that, for
each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n + 2, χ(vj

i ) ⊆ λ(vj
i ), since

Liki = 1 and Liki = xpi or Liki = ¬xpi , therefore Z con-
tains the “right” element for Ej

iki
.

It remains to show that the existence of a join tree implies
satisfiability of ϕ. To this end, let 〈T, χ, λ〉 be a join tree for
H1 with respect to H2.
Let v, v′ be nodes of T that cover the hyperedges e and

e′, i.e. e ⊆ χ(v) and e′ ⊆ χ(v′). Let P = v1, . . . , vl

(v1 = v, vl = v′) be the path from v to v′ in T . For each
1 ≤ i ≤ m + 1, 1 ≤ j ≤ 2n + 2 let P j

i be the set of nodes
w ∈ P with aj

i ∈ χ(w). Clearly, each P j
i is a subpath of P ,

and for j < j′ and i ≤ m, the subpaths P j
i are disjoint from

the subpaths P j′
i and the former are closer to v than the

latter. We denote, for each j, 1 ≤ j ≤ 2n + 2, the node of
P j

1 which is closest to v by uj . Further, we set u2n+3 = v′.
Clearly, for each j ≤ 2n + 2, the nodes of P covering the
hyperedges of the form ej

i lie between uj and uj+1.
Let, for each j, 1 ≤ j ≤ 2n + 2, Xj be the set

χ(uj)∩ (Y ∪Y ′) and let X2n+3 be χ(v′)∩ (Y ∪Y ′). As Y ⊆
χ(v) and Y ′ ⊆ χ(v′), the sequence X1 ∩ Y, . . . , X2n+3 ∩ Y
is non-increasing and the sequence X1 ∩ Y ′, . . . , X2n+3 ∩
Y ′ is non-decreasing. Furthermore, as the hyperedges ei =
{yi, y

′
i} of H1 must be covered, for each i and j it holds

yi ∈ Xj or y′i ∈ Xj .
Thus, there is a j ≤ 2n + 2 such that Xj = Xj+1. And

for all nodes u between uj and uj+1 it holds Xj ⊆ χ(u).
We derive a truth assignment for x1, . . . , xn from Xj as

follows. For each i ≤ n, we set ρ(xi) = 1 if yi ∈ Xj and
otherwise ρ(xi) = 0. Note that in the latter case y′i ∈ Xj .
We claim that ρ is a satisfying assignment for ϕ. Indeed,

for each i, there must be a node u between uj and uj+1 which
covers the hyperedge ej

i . The only candidates are Ej
i1, Ej

i2

and Ej
i3. Thus, there must be a k such that

Xj ⊆ χ(u) ⊆ Ej
ik. Consequently, if Lik = yp then yp must

be in Xj and if Lik = ¬yp then y′p must be in Xj . In either
case Lik is satisfied by ρ on xp. Therefore, ρ satisfies ϕ.

4. GENERALIZED HYPERTREE
DECOMPOSITION

In this section we show the following result.

Theorem 4.1. Testing whether a hypergraph has gener-
alized hypertree width at most 3 is NP-complete.

The proof uses the same basic idea as the proof of Theo-
rem 3.1. Nevertheless, the construction is considerably more
complicated as, opposed to that proof, we can not choose H2

freely but rather are forced to choose H2 = H3
1 . Here, H3

1

denotes the hypergraph with the same elements as H1 whose
hyperedges are all unions of three hyperedges of H1.
Before we present the complete proof of Theorem 4.1, we

describe the construction of a sub-hypergraph of H1 with a
particular property.
To this end, let V0 = {b1, b2, b3, c1, c2, c3, d}. Let A1, A2, A3

be further sets of elements, pairwise disjoint and disjoint
from V0. We write A for A1∪A2∪A3. Let H1 = (V, E) be a



hypergraph with V0 ∪A1 ∪A2 ∪A3 ∪{a} ⊆ V such that the
only hyperedges containing elements from V0 are as follows.

– {a, b1} ∪A1, {b1, c1} ∪A1, {c1, d} ∪A1,

– {a, b2} ∪A2, {b2, c2} ∪A2, {c2, d} ∪A2,

– {a, b3} ∪A3, {b3, c3} ∪A3, {c3, d} ∪A3,

– {b1, c2}, {b1, c3}, {b2, c1}, {b2, c3}, {b3, c1}, {b3, c2}.
The set containing these hyperedges is denoted by E0.
Claim 1. Every join tree T of H1 with respect to H3

1 has
nodes v1, v2, v3 with the following properties:

– {a, b1, b2, b3} ⊆ χ(v1)

– {b1, b2, b3, c1, c2, c3} ⊆ χ(v2)

– {c1, c2, c3, d} ⊆ χ(v3)

– v2 is on the path from v1 to v3

The proof of the above claim is included in the full version
of this paper [21]. We are now prepared to present the proof
of Theorem 4.1.

Proof of Theorem 4.1. The problem is clearly in NP.
The lower bound is again by a reduction from 3SAT. Let
ϕ be a propositional formula in conjunctive normal form
with m clauses ϕi of the form Li1 ∨ Li2 ∨ Li3 and variables
x1, . . . , xn. For convenience and without loss of generality
we assume that ϕ1 = ¬x1∧¬x2∧¬x3 and ϕm = x4∧x5∧x6.
This can always be accomplished by adding 2 new clauses
and 6 new variables without affecting the satisfiability.
We describe next the construction of a hypergraph

H1 = (V1, E1) that has a join tree with respect to H3
1 if and

only if ϕ is satisfiable.
In a nutshell, H1 consists of two copies C, C′ of the hy-

pergraph of the above claim plus additional hyperedges con-
necting C and C′ in a similar fashion as in the proof of The-
orem 3.1. To this end, we use the same sets Y, Y ′ related
to the variables of ϕ and elements of the form ai

j . In order
to control (and restrict) the ways in which hyperedges are
combined in T we use an additional large set S of further
elements.
We then make sure that C contains S as well as Y and that

C′ contains S and Y ′ and that each pair {yi, y
′
i} occurs in

some node. Thus, all nodes on the path of T which connects
C with C′ must contain S and, just as in Theorem 3.1, for
each i, one of yi and y′i.
We now describe the construction of H1 more formally.

Let l = (2n + 2)(m + 1). Let S be {1, . . . , l}3×{0, 1}5. The
elements of H1 are

– a, b1, b2, b3, c1, c2, c3, d,

– a′, b′1, b
′
2, b

′
3, c

′
1, c

′
2, c

′
3, d

′,

– y1, . . . , yn,

– y′1, . . . , y
′
n,

– all elements of the form aj
i with 1 ≤ i ≤ m + 1,

1 ≤ j ≤ 2n + 2

– all elements from S.

Let again Y denote {y1, . . . , yn} and Y ′ denote {y′1, . . . , y′n}.
We introduce some notation for subsets of S next. We

write elements of S in the form (i1, i2, i3; j1, j2, j3; k1, k2),

thereby splitting the 8 components into 3 groups. The wild-
card ∗ indicates that the respective component can carry
arbitrary values. E.g., (∗, ∗, ∗; 1, ∗, ∗; ∗, ∗) denotes the set of
tuples with j1 = 1. If the wildcard occurs in all components
of a group we replace by one wildcard *. Thus we can denote
the above set also by (*; 1, ∗, ∗;*).
For i, j, k with k = (j − 1)(m + 1) + i, we write Si,j for

the set (k, ∗, ∗;*;*) ∪ (∗, k, ∗;*;*) ∪ (∗, ∗, k;*;*).
The hyperedges of H1 are as follows:

– all hyperedges as mentioned before Claim 1 in this sec-
tion with A1 = Y , A2 = (*;*; 0, ∗), A3 = (*;*; 1, ∗);

– all hyperedges as mentioned before Claim 1 with
a′, b′1, b′2, b′3, c′1, c′2, c′3, d in place of a, b1, b2, b3, c1,
c2, c3, d and with A1 = Y ′, A2 = (*;*; ∗, 0),
A3 = (*;*; ∗, 1);

– e1
1 = {a, a1

1} ∪ (S − S1,1);

– e2n+2
m+1 = {a′, a2n+2

m+1 } ∪ (S − Sm+1,2n+2);

– for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n+2, the hyperedge
ej

i = {aj
i , a

j
i+1} ∪ (S − Si,j);

– for each j, 1 ≤ j ≤ 2n + 1, the hyperedge
ej+1

m+1 = {aj
m+1, a

j+1
1 } ∪ (S − Sm+1,j);

– for each i, 1 ≤ i ≤ n, there is a hyperedge ei = {yi, y
′
i};

– finally there are, for each i, j, (1 ≤ j ≤ 2n+2, 1 ≤ i ≤
m + 1) six special hyperedges as follows.

- If Li,1 is xp, for some p, then H1 has the hyper-
edges Y ∪ (Si,j ∩ (*; 0, ∗, ∗;*)) and
(Y ′ − {y′p}) ∪ (Si,j ∩ (*; 1, ∗, ∗;*)).

- If Li,1 is ¬xp, for some p, then H1 has the hy-
peredges (Y − {yp}) ∪ (Si,j ∩ (*; 0, ∗, ∗;*)) and
Y ′ ∪ (Si,j ∩ (*; 1, ∗, ∗;*)).

- If Li,2 is xp, for some p, then H1 has the hyper-
edges Y ∪ (Si,j ∩ (*; ∗, 0, ∗;*)) and
(Y ′ − {y′p}) ∪ (Si,j ∩ (*; ∗, 1, ∗;*)).

- If Li,2 is ¬xp, for some p, then H1 has the hy-
peredges (Y − {yp}) ∪ (Si,j ∩ (*; ∗, 0, ∗;*)) and
Y ′ ∪ (Si,j ∩ (*; ∗, 1, ∗;*)).

- If Li,3 is xp, for some p, then H1 has the hyper-
edges Y ∪ (Si,j ∩ (*; ∗, ∗, 0;*)) and
(Y ′ − {y′p}) ∪ (Si,j ∩ (*; ∗, ∗, 1;*)).

- If Li,3 is ¬xp, for some p, then H1 has the hy-
peredges (Y − {yp}) ∪ (Si,j ∩ (*; ∗, ∗, 0;*)) and
Y ′ ∪ (Si,j ∩ (*; ∗, ∗, 1;*)).

Now we show that H1 has a join tree with respect to H3
1

if and only if ϕ is satisfiable.
To this end, let us first assume that ϕ is satisfiable. Let

ρ be a satisfying truth assignment. Let Z be the set
{yi | ρ(xi) = 1} ∪ {y′i | ρ(xi) = 0}.

v v′

v1
1 vj

i vj
i+1 vj

m+1 vj+1
1 v2n+2

m+1

vbva vc v′b v′av′c

Figure 4: Join tree



We construct T as a path vc, vb, va, v, v1
1 , . . ., v1

m+1,
v2
1 , . . ., v2

m+1, . . ., v2n+2
m+1 , v′, v′a, v′b, v′c, see Figure 4. Here

λ(vc) is composed by the hyperedges with {c1, d}, {c2, d}
and {c3, d} and χ(vc) = {d, c1, c2, c3} ∪ S ∪ Y . Analogously,
χ(vb) = {c1, c2, c3, b1, b2, b3} ∪ S ∪ Y and
χ(va) = {b1, b2, b3, a} ∪ S ∪ Y .
The nodes v′c, v

′
b, v

′
a are defined analogously with Y ′ in-

stead of Y .
The remaining nodes are defined such that the following

holds.

– χ(v) = {a, a1
1} ∪ S ∪ Z ∪ Y ,

– χ(v′) = {a′, a2n+2
m+1 } ∪ S ∪ Z ∪ Y ′,

– for each 1 ≤ j ≤ 2n+1, χ(vj
1) = {aj

m+1, a
j+1
1 }∪S∪Z,

and

– for each i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ 2n + 2,
χ(vj

i ) = {aj
i , a

j
i+1} ∪ S ∪ Z.

It is not hard to see, that λ (and χ) can be chosen in this
way and that all hyperedges of H1 are covered by T . It
should be noted here that each special hyperedge is either
covered by vc or v′c.

It remains to show that ϕ is satisfiable if H1 has a join
tree with respect to H3

1 . To this end, let T be such a join
tree. Let C denote the subtree it has because of Claim 1
(with nodes v1, v2, v3) and let C′ denote the corresponding
subtree for the a′, b′i, c

′
i, d elements (with nodes v′1, v

′
2, v

′
3).

It is not hard to show that each node v on the path P of T
from v1 to v′1 has the following properties.

– S ⊆ χ(v)

– a ∈ χ(v) or a′ ∈ χ(v) or some aj
i ∈ χ(v).

– for each i ≤ n, yi ∈ χ(v) or y′i ∈ χ(v).

Furthermore, for each i ≤ n, there is a node v in P with
{yi, y

′
i} ⊆ χ(v).

It is easy to see that there can be no node in P which is
composed by two or more hyperedges of the form ej

i : indeed
there is no way to cover all of S by only one additional
hyperedge.
Thus, P consists of disjoint subpaths P0, P

1
1 , . . . , P 2n+2

m+1 , P ′0
such that each node v in P j

i fulfills ej
i ⊆ λ(v), for some i, j.

To cover all of S, λ(v) must also contain two corresponding
special hyperedges.
We fix a node v1 with {a, a1

1} ⊆ χ(v1) and, for each j,
2 ≤ j ≤ 2n + 2, we fix a node vj with {aj−1

m+1, a
j
1} ⊆ χ(vi).

Similar to the proof of Theorem 3.1 we define, for each j,
Xj = χ(vj) ∩ (Y ∪ Y ′). Again, there must be a j such
that Xj = Xj+1. Just as in that proof, we obtain a truth
assignment ρ by taking, for each i ≤ n, ρ(xi) = 1 if yi ∈ Xj

and otherwise ρ(xi) = 0. And again it is easy to show that
ρ is actually a satisfying assignment for ϕ.
This completes the proof of the theorem.

5. SUBEDGE-BASED GHDS
Our intractability results on generalized hypertree width

motivate further research on tractable decomposition meth-
ods that approximate generalized hypertree decompositions.
In this section we show that each such method is basically
a combination of a method to add (sub-hyper-) edges to the
hypergraph with hypertree decomposition.

The following proposition, which is merely a simple ob-
servation, sets up the stage for the considerations in this
section.

Proposition 5.1. Let H be a hypergraph and let D =
〈T, χ, λ〉 be a GHD for H. Then D′ = 〈T, χ, λ′〉, where
λ′(p) = {e∩χ(p) | e ∈ λ(p)}, for each node p of T is a HD
of H ∪ {e ∩ χ(p) | p ∈ T, e ∈ λ(p)}. Furthermore, the width
of D′ is at most the width of D.

The proposition follows basically from the definitions of GHD
and HD. Nevertheless, it explains, at least to some extent,
the relationship between HD and GHD. More importantly,
it opens a systematic way to find tractable decomposition
methods as will be detailed below.
Before we dive into that, let us have a closer look at de-

composition methods. Recall that, in this paper, a decom-
position method M associates with each hypergraph H a
set M(H) of allowed GHDs. In principle, we would be in-
terested in methods that can be implemented by tractable
algorithms. But as the experience from HD (and from tree
decompositions in the case of graphs) shows, we cannot ex-
pect algorithms whose running time is polynomial, indepen-
dent of the parameter k. Thus, we say an algorithm A im-
plements a decomposition method M if A on input (H, k)
outputs a GHD from M(H) of width ≤ k, if it exists, oth-
erwise “fail”.
Now we turn to the particular decomposition methods we

are interested in. We call a subset of a hyperedge e of a
hypergraph H a subedge of H. Informally, each function f
mapping a hypergraph H to a set of subedges of H induces
a decomposition method: (1) Compute f(H), (2) compute a
minimal HD D of H∪f(H). As (2) is only feasible, for each
fixed k, it makes sense, to allow f to depend on the given k
as well. Thus, a subedge function is a function f , mapping
each pair (H, k) to a set of subedges of H. To avoid technical
complications, we further require that subedge functions be
monotone in the following sense: for each i < j,
f(H, i) ⊆ f(H, j).
If D = 〈T, χ, λ〉 is a HD of a hypergraph H ∪ f(H, k) and

D′ = 〈T, χ, λ′〉 is a GHD of H, we say that D′ covers D if,
for each p, each e ∈ λ(p) is a subedge of some e′ ∈ λ′(p).
With each subedge function f we associate the decompo-

sition method Mf as follows: Mf (H) is the set of all GHDs
D′ of H for which there exists a k such that k ≤ |D′| and
there exists a HD D of the hypergraph H ∪ f(H, k), such
that D′ covers D. We call a decomposition method of the
form Mf subedge-based.
The hypertree decomposition method is subedge-based,

as it is defined by the function f(H, k) = ∅. On the other
extreme, GHD is a subedge-based decomposition, too. In
particular, GHD is equal to Mf+ , where for each H and k,
f+(H, k) = subedges(H). A related remark was made by
Adler [2].
The latter example shows that, in general, f(H, k) does

not need to be of polynomial size. Nevertheless, as we are
interested in tractable methods, we call a subedge function
f polynomially computable (logspace computable) if for each
fixed k, f(H, k) can be computed in polynomial time (loga-
rithmic space).
Lemma 5.2. (a) If f is polynomially computable, then,

for each fixed constant k, whether MfW (H) ≤ k can
be decided in polynomial time, and there is a tractable
algorithm Af that implements Mf .

(b) If f is logspace computable, then deciding whether
MfW (H) ≤ k is in the parallel complexity class
LogCFL.



Proof. For (a), given H and k, Af first computes f(H, k)
and then uses the algorithm of [19] to compute a HD D of
width i ≤ k for H∪f(H, k), if one exists. Note that for each
subedge e used in D, there is an edge e′ of H with e ⊆ e′.
Thus, by replacing each such e by the respective e′ yields a
GHD D′ of width i for H.
Note that D′ might not be in Mf (H) as |D′| ≥ k does

not hold. Thus, let p be a node of the underlying tree T
of D′ with |λ(p)| = i and let e1, . . . , ek−i be hyperedges2
of H which are not yet in |λ(p)|. By adding these edges
to λ(q) for each node q of T we get a GHD of width k,
which is the output of Af . As Af works in polynomial time,
the decision problem can be answered in polynomial time as
well. The case of (b) is similar: one only has to carefully
compose the logspace computation to compute f(H, k) with
the LogCFL check [19, 18] whether the hypertree width
of H ∪ f(H, k) is ≤ k (in the standard way known from
complexity theory).

From the proof of Lemma 5.2 we can conclude:

Corollary 5.3. For a hypergraph H, MfW (H) is the
smallest k for which HW (H ∪ f(H, k)) ≤ k.

For reference in the next section we state the following,
which can be shown by a similar argument.

Theorem 5.4. Let A and B be two subedge defined de-
composition methods, defined by the functions fA and fB, re-
spectively. If for all positive integers i, fA(i, H) ⊆ fB(i, H),
then BW (H) ≤ AW (H).

We have seen that decomposition methods Mf with tractable
f lead to tractable GHD-computations. We next show that,
on the other hand, each tractable decomposition method is
basically of the form Mf .

Theorem 5.5. For each decomposition method M which
can be implemented by a polynomial algorithm A there is a
polynomial subedge function f such that Mf ≤ M .

Proof. Let M and A as stated. Given a hypergraph H
and a number k, let D = 〈T, χ, λ〉 be the GHD of width k
for H computed by A. Let D′ = 〈T, χ, λ′〉 be defined as in
Proposition 5.1. Then we define f(H, k) =

⋃
p

λ′(p), where

p ranges over all nodes of T . As A(H, k) can be computed
in polynomial time, f(H, k) is polynomial.
Furthermore, D′ has width ≤ k and is in Mf (H). As this

holds, for every MW (H) ≤ k we can conclude MfW (H) ≤
MW (H).

Of course, the function f in the proof of Theorem 5.5
depends on the ability of already computing a GHD. Thus,
the reader might get the impression that the detour through
f is not very useful. Nevertheless, in the next section we
exhibit a polynomial subedge function f which is defined
entirely in terms of H and does not involve the construction
of a decomposition.

6. COMPONENT HYPERTREE
DECOMPOSITION

In this section we give an example of a subedge defined de-
composition, called “component hypertree decomposition”,
that strictly generalizes both hypertree decomposition [19]
and spread cut decomposition [9] and it is also tractable.
2If no such edges exist, then H has less than k hyperedges
and MfW (H) ≤ k holds trivially by definition of Mf .

6.1 Definitions

Definition 6.1. Let M be a set of edges of the hyper-
graph H. We define prop(e, M), the proper part of an edge
related to M as prop(e, M) = e \⋃

e′∈M,e 6=e′ e
′.

Definition 6.2. Let M be a set of edges of the hyper-
graph H and let e be an edge in M . We define the set
internal(e, M) = {v | v ∈ vertices(e), e ∈ M and there
exists no [vertices(M)]-component C, such that
v ∈ vertices(edges(C))}.

Definition 6.3. Let H be a hypergraph, let M be a set
of edges of H and let C be a [vertices(M)]-component. The
function elim(M, C, e) associates a set containing the fol-
lowing three subedges to a triple (M, C, e)

1. e ∩ vertices(edges(C)),

2. prop(e, M) ∩ vertices(edges(C)),

3. internal(e, M).

Definition 6.4. Let H be a hypergraph, let M be a set
of edges of H and let C be a [vertices(M)]-component and
e ∈ M . We define the subedge function fC as:

fC(H, k) = {e \ e′ | M is a set of ≤ k hyperedges of H,
e ∈ M ,
C is a [vertices(M)]-component,
and e′ ∈ elim(M, C, e)}.

The decomposition method MfC referred as component hy-
pertree decomposition (CHD).

According to our definition, the generalized hypertree de-
composition of figure 2 a) is a component hypertree de-
composition. A hypertree decomposition of the hypergraph
H ∪ f(H, 2) is depicted on figure 5.

{e2, e8}{v1, v2, v3, v8, v9, v10}

{e3, e5}{v3, v4, v5, v6, v9, v10}

{e′2, e6}{v3, v6, v7, v9, v10}

{e′3, e7}{v3, v7, v8, v9, v10}

Figure 5: Hypertree decomposition of width 2 of the
hypergraph H∪fC(H, 2), e′2(v3, v9) ⊆ e2, e′3(v3, v10) ⊆ e3.
Note that {e′2, e′3} ⊆ fC(H, 2).

Let us note that for fixed k, the set fC(H, k) is computable
using only logarithmic space. In this case, the sets M and
N are of constant size k, the [vertices(λ(p))]-components
can be represented also in logarithmic space, and all of the
required computations (computing connected components,
intersections and difference of sets) is feasible in logspace,
see e.g. [18]. Therefore, by Lemma 5.2, deciding whether
for a fixed constant k, a given hypergraph H has component
hypertree width at most k, is feasible in LogCFL.



6.2 Comparison with other tractable decom-
positions

Definition 6.5. ([9]) A normal form 3 generalized hy-
pertree decomposition 〈T, χ, λ〉 of a hypergraph H is called
spread cut decomposition (SCD) if additionally the follow-
ing conditions hold:4

1. for each node p of T , each [p]-component meets at
most one [vertices(λ(p))]-component,

2. for each node p of T , for all pairs of edges e1, e2 ∈ λ(p),
(e1 6= e2), e1 ∩ e2 ⊆ χ(p).

3. for each node p of T , for each edge e ∈ λ(p),

(a) either ∀v ∈ internal(e, λ(p)), v ∈ χ(p),
(b) or ∀v ∈ internal(e, λ(p)), v 6∈ χ(p) and for all

[vertices(λ(p))]-components C,
vertices(edges(C) ∩ e) ⊆ χ(p).

Lemma 6.6. Let 〈T, χ, λ〉 be a spread cut decomposition
of a hypergraph H. Let p be a node of T . For each e ∈ λ(p),
exactly one of the following conditions is true:

1. e \ χ(p) = internal(e, λ(p)),

2. there exists a unique [vertices(λ(p))]-component Ce,
such that e \ χ(p) = prop(e, M) ∩ vertices(edges(Ce)).

Proof. (sketch) Assume that e \ χ(p) contains a vertex
from internal(e, λ(p)). Then, by condition 3 of definition
6.5, e \χ(p) = internal(e, λ(p)). Now, assume, e \χ(p) does
not contain any internal vertex, then let us assume indirectly
that v, w ∈ vertices(e) \ χ(p), (v 6= w) and there are two
different [vertices(λ(p))]-components C and D, such that
v ∈ vertices(edges(C)) and w ∈ vertices(edges(D)). Then
v and w are [p]-connected, since {v, w} ⊆ vertices(e) \χ(p).
So, there exist two different vertices vC ∈ C and vD ∈ D,
such that vC and vD are [p]-connected to v and w, re-
spectively, therefore also vC and vD are also [p]-connected.
From this follows that the [p]-component containing v and
w meets more than one [vertices(λ(p))]-components. Con-
tradiction.

Definition 6.7. For M , H C and e as in definition 6.3
let elim∗(M, C, e) be defined as in definition 6.3 except that
we only associate two subedges to a triple (M, C, e), namely
those mentioned in points 2 and 3 in Def. 6.3.

Definition 6.8. We define the subedge function f∗ as
f∗(H, k) = {e \ e′ | M is a set of at most k hyperedges of H,
e ∈ M , C is a [vertices(M)]-component, e′ ∈ elim∗(M, C, e)}.

Note that for each hypergraph H and for each positive k,
f∗(H, k) ⊆ fC(H, k).

3Personal communication from the authors of [9]: the orig-
inal definition in [9] does not ensure the existence of a
tractable recognition algorithm. While finishing the present
paper, we learnt that the authors of [9] have recently defined
a new tractable variant of spread cut decomposition. We
plan to compare this new decomposition method to subedge
defined decompositions in the full version of this paper.
4Condition 3 follows from the “canonical form” theorem,
proven in [9] (Theorem 7.6). We find it convenient to in-
clude this condition in the definition.

Lemma 6.9. Mf∗ ≤ SC

Proof. (sketch) Let D = 〈T, χ, λ〉 be a spread cut de-
composition of H of width k. It is sufficient to show that
for each node p of T and for each edge e in λ(p), e ∩ χ(p) ∈
subedges(H∪f∗(H, k)). But this follows from the definition
of f∗ (Definition 6.8) and Corollary 5.3.

Theorem 6.10. CHD < HD and CHD < SCD.

Proof. (sketch) Clearly, by Corollary 5.3, CHD ≤ HD.
For hypergraph H0 in the introduction, see Figure 1,
HW (H) = 3, CHW (H) = 2, therefore CHD < HD.
Let us first prove first that CHD ≤ SCD. Given that for

each hypergraph H and for each positive k,
f∗(H, k) ⊆ fC(H, k), by Corollary 5.3 and Lemma 6.9,
CHD = MfC ≤ Mf∗ ≤ SCD.
For the hypergraph H on Figure 6, which is an adaptation

of an example from Adler [2] for our purposes, CHW (H) =
5, SCW (H) = 6, therefore CHD < SCD. The hypergraph
is defined as follows. The vertices of H are the “ground”
vertices {A, B, C, D, E, F, A1, B1, C1, D1, E1, F1} and the 32
“balloon” vertices, represented as stars on the figure. Each
balloon vertex is connected by an edge to each ground ver-
tex. All other edges are depicted in the figure.

A

B

C

D

E

F

A1B1C1D1

E1

F1

Figure 6: HW (H) = 6, SCW (H) = 6, GHW (H) = 5,
CHW (H) = 5

It is easy to see that CHW (H) = 5. (A CHD of H of
width 5 is included in the full version of this paper [21].)
Similarly, an SCD of width 6 can be found therefore
SCW (H) ≤ 6. Assume that SCW (H) = 5. By using the
Robber and Marshals game described in [20], it can be shown
that for every CHD D of width 5, there must exists at least
one decomposition node p, such that one of the vertices E,
F , E1 or F1 is in (vertices(λ(p)) \ χ(p)). However, this is
forbidden by condition 2 in the definition of SCD (Def. 6.5).
Contradiction.
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Appendix
The appendix contains proofs and examples, which have
been excluded from the paper because of space limitations.

Section 4
For a tree T and subtrees s, t of T we write s ∩ t for the set
of nodes that s and t have in common.
We will need two results about subtrees of trees from [12]

which are summarized in the following proposition.

Proposition 7.1. Let T be a tree.
(a) If t1, . . . , tk are subtrees of T , k ≥ 4, such that, for each

i < k, ti ∩ ti+1 6= ∅ and tk ∩ t1 6= ∅, then there are i
and j, i 6= j ± 1 (modulo k) with ti ∩ tj 6= ∅.

(b) If t1, . . . , tk are subtrees of T such that ti ∩ tj 6= ∅, for
each i, j ∈ {1, . . . , k}, then T contains a node v which
is in every ti.

Property (a) can be stated in more general terms. A tree
T and subtrees t1, . . . , tn induce a graph G in the following
way: the vertices of G are t1, . . . , tn, (ti, tj) is an edge if
ti ∩ tj 6= ∅. It is shown in [12] that a graph is chordal if and
only if it can be obtained in such a way.

Claim 1. Every join tree T of H1 with respect to H3
1 has

nodes v1, v2, v3 with the following properties:
– {a, b1, b2, b3} ⊆ χ(v1)

– {b1, b2, b3, c1, c2, c3} ⊆ χ(v2)

– {c1, c2, c3, d} ⊆ χ(v3)

– v2 is on the path from v1 to v3

db2a

b1

b3

c1

c2

c3

Figure 7: Hypergraph

Proof. For an element z of V0, we denote by tz the sub-
tree of T induced by the nodes of T containing z.
We show first, that there is a j such that ta and tcj are

disjoint. Towards a contradiction assume that, for each j,
ta ∩ tcj 6= ∅. As all hyperedges of E0 have to be covered by
T , for each i, j, k it holds that td ∩ tci 6= ∅, tci ∩ tbj 6= ∅,
tbj ∩ tck 6= ∅ and tck ∩ ta 6= ∅. Because of Proposition 7.1
(a), we can conclude that, for each i, j, k, td ∩ tbj 6= ∅ or
tci ∩ tck 6= ∅. It follows that, for every j, td ∩ tbj 6= ∅, or, for
every i, k, tci ∩ tck 6= ∅. In the latter case, because of our
assumption, we can conclude that none of ta, tb1 , tc1 , tc2 , tc3 ,
are pairwise disjoint. Thus, by Proposition 7.1 (b), they all
have one node in common. This leads to a contradiction, as
3 hyperedges can not cover a, c1, c2, c3. Thus, we conclude
that, for every j, td ∩ tbj 6= ∅.
We now consider cycles of the form tbi , tcj , tbk , tcp . Be-

cause of Proposition 7.1 (a), tbi ∩ tbk 6= ∅, for every i, k or
tcj ∩ tcp 6= ∅, for every j, p. By symmetry we assume the
former. But then ta, tb1 , tb2 , tb3 , tc1 , td induce a clique and
thus have a common node, again a contradiction.
We therefore have shown that there is a j such that ta and

tcj are disjoint. In an analogous fashion it can be shown that
there is an i such that td ∩ tbi 6= ∅.

We can conclude that ta ∩ td 6= ∅ does not hold, as fol-
lows. Assume otherwise and let us consider ta, tbi , tcj , td.
By applying Proposition 7.1 (a) again, we get ta ∩ tcj 6= ∅
or tbi ∩ td 6= ∅, contradicting our above conclusions.
By considering ta, tbi , tcj , tbk , we similarly obtain that tbi∩

tbk 6= ∅, for each i, k and analogously, tci ∩ tck 6= ∅, for each
i, k. Hence, the tbi and tcj are pairwise connected and there-
fore by Proposition 7.1 they have a node in common. Let
v0 be such a node, i.e., {b1, b2, b3, c1, c2, c3} ⊆ χ(v0). Corre-
spondingly, a, b1, b2, b3 and d, c1, c2, c3 induce cliques there-
fore there must be v1 and v3 with {a.b1, b2, b3} ⊆ χ(v1) and
{d, c1, c2, c3} ⊆ χ(v3). By the connectivity property of T ,
all nodes between v0 and v1 contain b1, b2, b3 and all nodes
between v0 and v3 contain c1, c2, c3. Thus, all nodes that
are on both these paths contain {b1, b2, b3, c1, c2, c3}. We
can thus choose such a node v2 which is on the path from
v1 to v3 .
From the claim it follows that λ(v1), λ(v2), λ(v3) only use

hyperedges from E0 and a, d 6∈ χ(v2). In particular, in T ,
there can be no node v with a, d ∈ χ(v) and thus ta and
td are disjoint and connected by a path containing v2. As
A must be covered in both ta and td we can conclude that
A ⊆ χ(v2).
This completes the proof of Claim 1.

Section 6
We define the following hypergraph H = (V, E), which is an
adaptation of an example from Adler [2], for our purposes.
B = {Gij |i, j ∈ {1, 2, 3, 4}} ∪ {Fij |i, j ∈ {1, 2, 3, 4}}
V = B ∪ {A, B, C, D, E, F, A1, B1, C1, D1, E1, F1}
E = {(g, p)|g ∈ B, p ∈ V \B} ∪ {a1, a2, a3, a4, b1, b2, b3, b4}∪

(A, A1), (A, B), (B, C), (A, D), (C, D), (D, E), (D, F ) (A1, B1),
(B1, C1), (A1, D1), (C1, D1), (D1, E1), (E1, F1) where
a1 = (G11, G12, G13, G14, F11, F12, F13, F14, E1)
a2 = (G21, G22, G23, G24, F21, F22, F23, F24, E1),
a3 = (G31, G32, G33, G34, F31, F32, F33, F34, D),
a4 = (G41, G42, G43, G44, F41, F42, F43, F44, D),
b1 = (G11, G21, G31, G41, F11, F21, F31, F41, E),
b2 = (G12, G22, G32, G42, F12, F22, F32, F42, E),
b3 = (G13, G23, G33, G43, F13, F23, F33, F43, D1),
b3 = (G14, G24, G34, G44, F13, F23, F33, F44, D1).
The vertices in B are called balloon vertices, the other

vertices are called ground vertices. For simplicity, we use
the following notation gij = {Fij , Gij}. The hypergraph is
depicted on Figure 8.

Lemma 7.2. GHW (H) = 5, CHW (H) = 5, HW (H) =
6, SCW (H) = 6.

Proof. (sketch) The proof is essentially the same as in
Adler [2]. We changed her example only to construct a hy-
pergraph whose component hypertreewidth is strictly smaller
than its spread cut width. We show that in our example,
none of the generalized hypertree decompositions of H of
width 5 is a spread cut decomposition, therefore its spread
cut width is at most 6.
Gottlob et al. [20] gave a characterization of k-hypertreewidth

hypergraphs in terms of a “Robber and Marshal” games
played on hypergraphs. They show that k monotone mar-
shals have a winning strategy on H iff the hypertreewidth
of H is at most k. They relate the game trees of the mono-
tonic robber and marshals games to hypertree decomposi-
tions. The systematic construction of hypergraph examples
in [2] made it possible to identify, exactly at which vertices
a non-monotonic step can occur. No decomposition corre-
sponding to a non-monotonic game tree with 5 marshals is
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Figure 8: HW (H) = 6, SCW (H) = 6, GHW (H) = 5,
CHW (H) = 5

a spread cut decompositions, because it violates condition 2
of definition 6.5.
We use the notation (M, Comp) for a R&M game posi-

tion, where M denotes the set of hyperedges occupied by
the marshals, and C is the escape space for the robber.

Claim 7.3. Let (M, Comp) be a game position such that
|M | ≤ 5. Then, a) there exists a ground vertex in V \
vertices(M) and b) if B 6⊆ vertices(M), where B is the
set of balloon vertices, then V \ vertices(M) is connected.

Proof. a) There are 12 ground vertices and 5 marshals
can occupy only at most 10 at the same time. b) Analogous
to Claim 3.1, b) in [2].

Claim 7.4. Let (M, Comp) be a game position, such that
|M | ≤ 5. If B ⊆ vertices(M), then {a1, a2, a3, a4} ⊆ M or
{b1, b2, b3, b4} ⊆ M .

Proof. Suppose that {a1, a2, a3, a4} 6⊆ M or
{b1, b2, b3, b4} 6⊆ M . Then M contains at most 4 edges from
{a1, a2, a3, a4, b1, b2, b3, b4}. They cover at most 3× 8 + 2 =
26 vertices from B. Each of the remaining edges covers at
most one vertex from B. Contradiction.

Claim 7.5. There is no winning strategy for < 5 mar-
shals on H.

Proof. Analogous to Claim 3.4 in [2].

Claim 7.6. There is no monotone winning strategy for
≤ 6 marshals on H. There exists a non-monotonic winning
strategy for 5 marshals. Furthermore, for all winning strate-
gies with 5 marshals on H, the escape space of the robber is
extended by one of the vertices {E, F, E1, F1}.

Proof. Let us argue indirectly. Because of Claim 6.14
, in a game position (M, Comp), {a1, a2, a3, a4} ⊆ M or
{b1, b2, b3, b4} ⊆ M . The balloon vertices must be covered

in each step of the game, see Claim 3.2 in [2]. Let us assume
without loss of generality, that {a1, a2, a3, a4} ⊆ M holds.
Then, the robber may move into the circle
(A1, B1, C1, D1, E1). This is possible, because at least one
vertex of the circle is not occupied by the marshals, but
then the 5th marshal alone cannot capture the robber in
the circle. Now, the only possible choice for the marshals if
they want to capture the robber, to move to {b1, b2, b3, b4},
but in this case the escape space of the robber is extended
either by E or by F1. Contradiction.

The λ sets of a generalized hypertree decomposition of H
of width 5 are:
{a1, a2, a3, a4, (A, A1)},
{a1, a2, a3, a4, (A, B)},
{a1, a2, a3, a4, (B, C)},
{a1, a2, a3, a4, (C, D)},
{a1, a2, a3, a4, (D, F )},
{b1, b2, b3, b4, (A1, B1)},
{b1, b2, b3, b4, (B1, C1)},
{b1, b2, b3, b4, (C1, D1)},
{b1, b2, b3, b4, (D1, F1)}.
This decomposition of H of width 5 is at the same time

also a component hypertree decomposition, as one can con-
struct a hypertree decomposition of H∪ fC(H, 5) using the
following subedges: (g11, g12, g13, g14),
(g21, g22, g23, g24),
(g31, g32, g33, g34),
(g41, g42, g43, g44),
(g11, g21, g31, g41),
(g12, g22, g32, g42),
(g13, g23, g33, g43),
(g14, g24, g34, g44).
The λ sets of a generalized hypertree decomposition of H

of width 6 are:
{a1, a2, a3, a4, (A, A1)},
{a1, a2, a3, a4, (A, B)},
{a1, a2, a3, a4, (B, C)},
{a1, a2, a3, a4, (C, D)},
{a1, a2, a3, a4, (D, F )},
{a1, a2, a3, a4, (A1, E1), (C1, D1)},
{a1, a2, a3, a4, (A1, B1), (B1, C1)}.
This decomposition is at the same time also a spread cut

decomposition. This completes the proof of lemma 7.2.


