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Abstract

We describe a relative-timed semantic model for Business Process
Modelling Notation (BPMN). We define the semantics in the language
of Communicating Sequential Processes (CSP). This model augments our
earlier untimed process semantics by introducing the notion of relative-
time in the form of delays and durations over non-deterministic ranges.
By using CSP as the semantic domain, we show some properties relating
the timed semantics and BPMN’s untimed process semantics based on
existing refinement orderings defined upon CSP.

1 Introduction

Modelling of business processes and workflows is an important area in software
engineering. Business Process Modelling Notation (BPMN) allows developers to
take a process-oriented approach to modelling of systems. There are currently
around forty implementations of the notation, but the notation specification
adopted by the Object Management Group (OMG) [7] does not have a formal
behavioural semantics, which we believe is crucial in behavioural specification
and verification activities. In our previous work [11] we have given an untimed
process semantics to a subset of BPMN in the language of CSP [10]. However
due to the lack of notion of time, it is not able to precisely the order of activities
running concurrently, this is particularly important when specifying business
collaboration where the coordination of one business participant depends on
the execution order of another participant’s activties. Consider, for example,
Figure 1 shows a trivial business collaboration between participants pl and p2.
Clearly we would like to know what temporal properties are required for p1 and
p2 to be compatible in the collaboration.

The main contribution of our work is to provide a formal relative-timed
semantics for a subset of BPMN, in terms of the untimed CSP [10]. Our se-
mantics extends our earlier untimed formalisation by introducing the notion of
time via the variant of two-phase functioning approach employed by coordina-
tion languages such as Linda [6]. We extend the earlier untimed model by the
following:

• Formalising a larger subset of BPMN in which timer events are considered.
These timer events introduce timing information in the form of delays.

• Introducing duration range into atomic tasks where each task can take
choose an interval of time non-deterministically over a bounded range.

By using the language and the behavioural semantics of CSP as the denota-
tional model, we show how the existing refinement orderings defined upon CSP
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Figure 1: A trivial business collaboration

processes can be applied to the refinement of business process diagrams, and
hence demonstrate how to specify both timed and untimed behavourial prop-
erties using BPMN. Moreover, our definition of the semantics allows automatic
verifcation by the use of a model checker such as FDR [3]. Our semantic con-
struction starts from syntax expressed in Z [13], following our previous work on
untimed semantics [11].

This paper begins with an introduction to BPMN and the mathematical
notations, Z [13] and CSP [10], that are used throughout the document. Our
contribution starts in Section 3, with a Z model of BPMN syntax, and continues
in Sections 4 and 5 with a timed behavioural semantics in CSP. In Section 6
we show some initial results relating the timed and untimed model and we then
introduce the notion of timed and untimed compatibility between participants
in a business process collaboration. We conclude this paper with a summary.

2 Notation

2.1 BPMN

States in our subset of BPMN [8] can either be pools, tasks, subprocesses, mul-
tiple instances or control gateways, each linked by a normal sequence, an ex-
ception sequence flow. or a message flow. A normal sequence flow can be either
incoming to or outgoing from a state and have associated guards; an exception
sequence flow, depicted by the state labelled task*, bpmn*, task** and bpmn**,
represents an occurrence of error within the state. A sequence of flows repre-
sents a specific control flow instance of the business process, while message flows
represent directional communication between states between different business
process participants in a collaboration.

In the figure, there are two types of start states start and stime. A start
state models the start of the business process in the current scope by initiating
its outgoing transition. It has no incoming transition and only one outgoing
transition. The stime state is a variant start state and it initiates its outgoing
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Figure 2: States of BPMN diagram

transition when a specified duration has elapsed. There is also two types of
intermediate states itime and imessage. An itime state is a delay event and
after its incoming transition is triggered, the delay event waits for the specified
duration before initiating its outgoing transition. An imessage state is a message
event and after its incoming transition is triggered, the message event waits until
a specified message has arrived before initiating its outgoing transition. Both
types of states have a maximum of one incoming transition and one outgoing
transition

There are two types of end states end and abort. An end state models
the successful termination of an instance of the business process in the current
scope by initialisation of its incoming transition. It has only one incoming
transition with no outgoing transition. The abort state is a variant end state
and its models an unsuccessful termination, usually an error of an instance of
the business process in the current scope.

Our subset of BPMN contains two types of decision state, xgate and agate.
Each of them has one or more incoming sequence flows and one or more outgoing
sequence flows. An xgate state is an exclusive gateway, accepting one of its
incoming flows and taking one of its outgoing flows; the semantics of this gateway
type can be described as an exclusive choice and a simple merge. An agate state
is a parallel gateway, which waits for all of its incoming flows before initialising
all of its outgoing flows.

A task state describes an atomic activity and it has a exactly one incoming
and one outgoing transitions. It takes a unique name for identifying the activity.
In the environment of the timed semantic model, each atomic task must takes a
positive amount of time to complete. A bpmn state describes a subprocess state.
it is a business process by itself and so it models a flow of BPMN states. In this
paper, we assume all our subprocess states are expanded [8]. The state labelled
bpmn in Figure 2 depicts a collapsed subprocess state where all internal details
are hidden. this state has a exactly one incoming and one outgoing transitions.

Also in Figure 2 there are graphical notations labelled task*, bpmn*, task**,
bpmn**, task*** and bpmn***, which depict a task state and a subprocess state
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with an exception sequence flow. There are three types of exception associated
with task and subprocess states in our subset of BPMN states. Both states
task* and bpmn* are examples of states with an ierror exception flow that
models an interruption due to an error within the task or subprocess state; the
states task** and bpmn** are examples of states with a timed exception flow,
and it models an interruption due to an elapse of the specified duration; the
states task*** and bpmn*** are examples of states with a message exception
flow, and it models an interruption upon receiving the specified message. Each
task and subprocess states can have a maximum of one timed exception flow,
although it may have multiples of error and message exception flows.

Each task and subprocess may also be defined as multiple instances. There
are two types of multiple instances in BPMN: The miseq state type represents
serial multiple instances, where the specified task is repeated in sequence; in the
mipar state type the specified task is repeated in parallel. The types miseqs
and mipars are their subprocess counterparts.

The graphical notation pool in Figure 2 forms the outermost container for a
single business processe; only one process instance is allowed at any one time.
each business process contained in a pool is also a participant within a business
collaboration involving multiple business processes. Each pool forms a con-
tainer for some business processes; only one process instance is allowed at any
one time. While sequence flows are restricted to an individual pool, message
flows represent communications between pools. An illustration of message flow
between activities across pools is shown in Figure 3. In the figure, task A sends

Figure 3: Interaction via message flows

a message; this is received by task B , which triggers the start of its activity. As
task B completes the necessary activity for A it replies with a message for A to
accept ; such message might break A’s activity flow. Note that each task in the
figure is contained in a separate pool.

2.2 Z

The Z notation [13] has been widely used for state-based specification. It is
based on typed set theory coupled with a structuring mechanism: the schema.
A schema is essentially a pattern of declaration and constraint. Schemas may
be named using the following syntax:
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Name
declaration

constraint

or equivalently

Name =̂ [declaration | constraint ]

If S is a schema then θS denotes the characteristic binding of S in which
each component is associated with its current value. Schemas can be used as
declarations. For example, the lambda expression λS • t denotes a function
from the schema type underlying S , a set of bindings, to the type of term
expression t .

The mathematical language within Z provides a syntax for set expressions,
predicates and definitions. Types can either be basic types, maximal sets within
the specification, each defined by simply declaring its name, or be free types,
introduced by identifying each of the distinct members, introducing each element
by name. An alternative way to define an object within an specification is by
abbreviation, exhibiting an existing object and stating that the two are the
same.

Type ::= element1 | ... | elementn [Type] symbol == term

By using an axiomatic definition we can introduce a new symbol x , an element
of S , satisfying predicate p.

x : S

p

2.3 CSP

In CSP [10], a process is a pattern of behaviour; a behaviour consists of events,
which are atomic and synchronous between the environment and the process.
The environment in this case can be another process. Events can be compound,
constructed using the dot operator ‘.’; often these compound events behave as
channels communicating data objects synchronously between the process and
the environment. Below is the syntax of the language of CSP.

P ,Q ::= P ||| Q | P |[A ]| Q | P |[A | B ]| Q | P \ A | P 4 Q |
P 2 Q | P u Q | P o

9 Q | e → P | Skip | Stop

e ::= x | x .e

Process P ||| Q denotes the interleaved parallel composition of processes P and
Q . Process P |[ A ]| Q denotes the partial interleaving of processes P and Q
sharing events in set A. Process P |[ A | B ]| Q denotes parallel composition, in
which P and Q can evolve independently but must synchronise on every event
in the set A ∩ B ; the set A is the alphabet of P and the set B is the alphabet
of Q , and no event in A and B can occur without the cooperation of P and Q
respectively. We write ||| i : I • P(i), ‖[A] i : I • P(i) and ‖ i : I • A(i) ◦ P(i)
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to denote an indexed interleaving, partial interleaving and parallel combination
of processes P(i) for i ranging over I .

Process P \ A is obtained by hiding all occurrences of events in set A from
the environment of P . Process P 4 Q denotes a process initially behaving as P ,
but which may be interrupted by Q . Process P 2 Q denotes the external choice
between processes P and Q ; the process is ready to behave as either P or Q . An
external choice over a set of indexed processes is written 2 i : I • P(i). Process
P u Q denotes the internal choice between processes P or Q , ready to behave
as at least one of P and Q but not necessarily offer either of them. Similarly
an internal choice over a set of indexed processes is written u i : I • P(i).

Process P o
9 Q denotes a process ready to behave as P ; after P has success-

fully terminated, the process is ready to behave as Q . Process e → P denotes a
process capable of performing event e, after which it will behave like process P .
The process Stop is a deadlocked process and the process Skip is a successful
termination.

CSP has three denotational semantics: traces (T ), stable failures (F) and
failures-divergences (N ) models, in order of increasing precision. In this paper
our process definitions are divergence-free, so we will concentrate on the stable
failures model. The traces model is insufficient for our purposes, because it
does not record the availability of events and hence only models what a process
can do and not what it must do [10]. Notable is the semantic equivalence of
processes P 2 Q and P u Q under the traces model. In order to distinguish
these processes, it is necessary to record not only what a process can do, but
also what it can refuse to do. This information is preserved in refusal sets, sets
of events from which a process in a stable state can refuse to communicate no
matter how long it is offered. The set refusals(P) is P ’s initial refusals. A failure
therefore is a pair (s ,X ) where s ∈ traces(P) is a trace of P leading to a stable
state and X ∈ refusals(P/s) where P/s represents process P after the trace
s . We write traces(P) and failures(P) as the set of all P ’s traces and failures
respectively.

We write Σ to denote the set of all event names, and CSP to denote the
syntactic domain of process terms. We define the semantic function F to return
the set of all traces and the set of all failures of a given process, whereas the
semantic function T returns solely the set of traces of the given process.

F : CSP → (P seqΣ × P(seq Σ × PΣ))
T : CSP → P seqΣ

These models admit refinement orderings based upon reverse containment; for
example, for the stable failures model we have

vF : CSP ↔ CSP

∀P ,Q : CSP •
P vF Q ⇔ traces(P) ⊇ traces(Q) ∧ failures(P) ⊇ failures(Q)

and CSP processes are stable-failures equivalent if they refine each other.

≡F : (CSP ↔ CSP)

∀P ,Q : CSP •
P ≡F Q ⇔ P vF Q ∧ Q vF P
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While traces only carry information about safety conditions, refinement under
the stable failures model allows one to make assertions about a system’s safety
and availability properties. These assertions can be automatically proved using
a model checker such as FDR [3], exhaustively exploring the state space of
a system, either returning one or more counterexamples to a stated property,
guaranteeing that no counterexample exists, or until running out of resources.

3 Abstract Syntax of BPMN

In this section we describe the abstract syntax of BPMN using Z schemas and
the set theory

We intially define the following basic types:

[CName,PName,Task ,Line,Channel ,Guard ,Message]

We then derive subtypes BName and PLName, InMsg , OutMsg , EndMsg and
LastMsg axiomatically.

InMsg ,OutMsg ,EndMsg ,LastMsg : P Message
BName,PLName : PPName

〈InMsg ,OutMsg ,EndMsg ,LastMsg〉 partition Message
〈BName,PLName〉 partition PName

where BName represents the set of names for identifying each subprocess state;
PLName represents the set of names for identifying each participant pool. The
type InMsg represents a set of incoming messages, for example in Figure 3 task A
receives an incoming message before performing its activities. The type OutMsg
represents a set of outgoing messages, in Figure 3 task A sents an outgoing
message after performing its activities. The types LastMsg and EngMsg are sets
of messages for signalling while a multiple instance state performs its activities,
their semantics will be described in details in Section 4.3.

Each type of state shown in Figure 2 is defined syntactically as follows:

Type ::= agate | xgate | start | end〈〈N〉〉 | abort〈〈N〉〉 | task〈〈Task〉〉 |
stime〈〈Time〉〉 | itime〈〈Time〉〉 | ierror | imessage〈〈Message〉〉 |
bpmn〈〈BName〉〉 | pool〈〈PLName〉〉 | miseq〈〈Task × N〉〉 |
miseqs〈〈BName × N〉〉 | mipar〈〈Task × N〉〉 | mipars〈〈BName × N〉〉

According to the official specification [8], each BPMN state type has associated
attributes describing its properties; our syntactic definition has included some
of these attributes. For example, the number of loops of a sequence multiple
instance state type is recorded by the natural number in the constructor function
miseq . We define abbreviations Inputs , NoEnds , Starts , Tasks , Subs and Mults
as follows to assist our specification.

Inputs == InMsg ∪ EndMsg ∪ LastMsg
NoEnds == InMsg ∪ LastMsg
Starts == { start } ∪ ran stime
Tasks == ran task ∪ ranmiseq ∪ ranmipar
Subs == ran bpmn ∪ ranmiseqs ∪ ranmipars
Mults == ranmiseqs ∪ ranmipars ∪ ranmiseq ∪ ranmipar
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In this paper we call both sequence flows and exception flows ‘transitions’; states
are linked by transition lines representing flows of control, which may have
associated guards. We give the type of a sequence flow or an exception flow by
the following schema definition,

Transition =̂ [guard : Guard ; line : Line]

and we give the type of a message flow by the following schema definition.

Messageflow =̂ [message : Message; channel : Channel ]

If the sequence flow has no guard or the message flow contains an empty message,
then the schemas Transition and Messageflow record the default values tt and
empty for guard and message respectively.

tt : Guard ; empty : Message

In this paper we will only consider the semantics of BPMN timed events de-
scribing time cycles (duration) and not absolute time stamp. We define schema
type Time to record each duration, this schema models a strictly positive subset
of the six-dimensional space of the XML schema data type duration [14]

Time =̂ [year ,month, day , hour ,minute, second : N]

We write zero to denote zero duration. We write a1 . . an ; x inside some
schema binding s to specify the components s .a1 . . s .an , each of same type, to
the value x .

zeroT == 〈| year ,month, day , hour ,minute, second ; 0 |〉

Here we define some preliminary functions over Time. The function sec
returns the duration of a given duration in seconds. Note we assume 1 month
is 30 days and 1 year is 356 days.

sec : Time → N

sec = λ Time •
year ∗ 31556926 + month ∗ 2629744
+day ∗ 86400 + hour ∗ 3600 + minute ∗ 60 + second

We also declare some binary relations over Time. The following axiomatic
definition also includes the definition of the relation =T .

=T , ≥T , >T , <T , ≤T , 6=T : Time ↔ Time

∀ s , t : Time • s =T t ⇔ sec s = sec t

Inequality operators ≥T , >T , <T , ≤T and 6=T over duration may be defined
similarly.

Each state records the type of its content, the sets of incoming, outgoing
and error transitions and in the case of a subprocess state, a set of number-
transition pairs to align the outgoing transitions of the subprocess within the
outgoing transitions within the subprocess. There are also the five sets of mes-
sage flows; their informal meanings are illustrated by the simple BPMN diagram
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in Figure 3. Each state also incorporates the variable loopMax to limit the num-
ber of state instances each process instance can invoke; the schema State records
the default value 0 if there is no limit to the number of state instances. The
schema component link pairs each incoming message flow which initialises or
interrupts the execution of the state with either an incoming transition or an
exception flow; the component depend pairs each incoming message flow which
initialise the state’s execution with its corresponding outgoing message flow.

State =̂ [type : Type; in, out : PTransition; error : P(Type × Transition);
send , receive, reply , accept , break : P Messageflow ;
link : P(Transition × Messageflow);
depend : P(Messageflow × Messageflow);
exit : P(N × Transition); ran : Range; loopMax : N]

The schema component ran is declared with the type Range, which is a schema
recording a range of durations and is defined as follows.

Range =̂ [min,max : Time | min ≤T max ]

Given some value of the schema component ran in some task or multiple in-
stances task states, we say that state takes a non-deterministic duration over
the range ran.min . . ran.max .

The schema WFS describes a subset of well-formed states in BPMN.

WFS
State

(∃m : N • N • m = #(
⋃
{ send , receive, reply , accept , break }) + #link + #depend

∧ type ∈ ran pool ⇔ #(
⋃
{ in, out , error }) = m = 0

∧ type /∈ Tasks ∪ Subs ⇒ (loopMax = m = #error = 0))
type ∈ Tasks ⇔ ran 6= 〈|min,max ; zeroT |〉
type ∈ Starts ⇔ in = ∅ ∧ #out = 1
type ∈ (ran end ∪ ran abort) ⇔ #in = 1 ∧ out = ∅
type /∈ Subs ⇔ exit = ∅
type ∈ Subs ⇔ { e : exit • second e } = out
type ∈ Subs ⇒ send ∪ accept = ∅
(#receive = #reply ∧ #send = #accept)
({ e : link • second(e) } = (receive ∪ break)) ∧ ({ e : link • first(e) } ⊆ (in ∪ error))
({ e : depend • first(e) } = receive) ∧ ({ e : depend • second(e) } = reply)
∀ t1, t2 : out ∪ in • t1.line 6= t2.line
∀ms : send ; ns : reply • (ms .message ∈ InMsg ∧ ns .message ∈ OutMsg)
∀ms : receive ∪ accept ; e : error • (ms .message = empty ∧ e.guard = tt)

We write WCF to denote the set of well-configured sets of well-formed states in
some BPMN diagram. The definition of well-configuration can be found in our
earlier paper [11]. We define well-formedness for BPMN diagrams/processes.

Definition 3.1 Well-formedness A BPMN diagram is well-formed if all its
constituent states forms a well-configured set of well-formed states and that all
the diagram’s subprocess states are also well-formed.

Each BPMN diagram encapsulated by a pool represents an individual partic-
ipant in a collaboration, built up from a well-configured finite set of well-formed
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states. We do not allow local states to have type pool , since this represents a
boundary of a business domain. Local is set of all possible specifcation environ-
ments; an environment maps each name of a BPMN diagram to its associated
diagram, and each diagram is defined by a set of well-configured set of well-
formed state.

BPD ::= states〈〈WCF 〉〉
Local == PName 7→ BPD

A collaboration is then built up from a finite set of names, each of the names
is associated with a BPMN diagram and Global is set of all possible global
specifcation environments and maps each collaboration name to its associated
diagram’s name.

Chor ::= bpmns〈〈F PLName〉〉
Global == CName 7→ Chor

4 A Relative Timed Semantics

To introduce timing information into the semantics of BPMN, we have intro-
duced the following definitions about BPMN states and diagrams:

Definition 4.1 Time Active As well as timed events, stime and itime, all
atomic tasks are also timed, some strictly positive amount of time must elapse
before they terminate. This ensures that each BPMN process that contains tasks
must take a positive amount of time to execute.

We define the schema TimeState as a subtype of State to capture all timed
states.

TimeState =̂ [State | type ∈ Tasks ∪ Subs ∪ ran stime ∪ ran itime]

Time Active also implies all other BPMN states such as untimed event and de-
cision gateway states have zero duration. This is particularly important when
defining the semantics for parallel split and join states, that is parallel gateways
with either multiple outgoing transition or multiple incoming transition respec-
tively. Essentially we would like to ensure a uniform rate of passage of time
across all parallel flows.

Definition 4.2 Instantaneous Choices Each exclusive choice is resolved in-
stananeously and hence has zero duration, this is notion is compatible with the
fact that exclusive gateway states are untimed.

Definition 4.3 Time Stability A BPMN process is time-stable if all its active
states are timed. A BPMN state is active if its incoming transitions have been
triggered and is waiting to engage with the environment.

Definition 4.4 Time Readiness Given a BPMN process is time-stable, there
exists a set of timed states that are active, out of those, there are a subset of
it which have the shortest delay or its delay range has the shortest lower bound
and states from this subset are time-ready.
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Definition 4.5 Finite Speed No BPMN process can execute an infinite se-
quence of untimed states in a finite amount of time. A BPMN process is well-
timed if it satisfies this property.

Finite Speed ensures it is always possible for a well-timed BPMN process to
reach time stability.

Definition 4.6 Properly-Timed A BPMN process is properly-timed iff the
following holds for all its timed states:

• If the timed state is an atomic task state (task) or a parallel multiple
intance state (mipar) then its timed exception flow’s expiration can be no
longer than the maximum delay of the state.

• If the timed state is an atomic sequential multiple intance state (miseq)
then its timed exception flow’s expiration can be no longer than the sum-
mation of maximum delay of its instances.

• If the timed state is a subprocess state (bpmn) or a parallel multiple in-
stance subprocess state (mipars) then its timed exception flow’s expiration
can be no longer than the maximum delay of its longest execution path,
an execution path is a sequence of states that begins with the start state
and ends with an end state, and it represents the order in which the states
contained in a process/subprocess are enacted.

• If the timed state is a sequential multiple instance subprocess state (miseqs)
then its timed exception flow’s expiration can be no longer than the sum-
mation of maximum delay of the longest execution path of all its subprocess
instances.

This definition ensures no timed exception within a BPMN process is redundant.
Similar to our definition of BPMN’s untimed semantics, our timed semantic

function takes a syntactic description of a BPMN diagram and returns a CSP
process that models the timed behaviour of that diagram. For each participant
in a business collaboration, we define its relative-timed semantics to be the par-
tially interleaving of two processes defined by an enactment and a coordination
functions:

• The enactment function returns the parallel composition of processes, each
correspond to the untimed aspect of a state of the BPMN diagram defining
the participant.

• The coordination function returns a single process for coordinating that
diagram’s timed behaviour, it essentially implements the variant of two-
phase functioning approach adopted by timed coordination languages like
Linda [6].

We describe the semantics in two sections, in this section we detail the definition
of the enactment function, and in Section 5 we detail the definition of the
coordination function, and the semantic function for individual participants
and their collaboration.

The rest of this section is as follows: We define functions to associate each
transition, state and diagram with their set of events in Section 4.1, Section 4.2
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presents the enactment functions for mapping each BPMN diagram to its process
describing its behaviour; in Section 4.3 we define the functions for mapping
each type of multiple instance states to its process describing its behaviour; in
Section 4.4 we present the CSP processes corresponding to the behaviour of each
gateways; in Section 4.5 we define processes corresponding to the behaviour of
each state types and transitions, and the general functions for mapping each
BPMN states to its CSP process describing its behaviour.

4.1 Alphabets

First we define the basic types Process and Event which correspond to CSP
processes and events. We define the basic type Data to represent the data
which are communicated along CSP channels. The basic type Channel in this
paper also denotes the set of CSP channels, hence a data object d communicated
along a channel c is denoted by the compound event c.d .

[Process ,Event ,Data]

We define the partial injective function εtrans which maps each transition to a
pair of a CSP event and a guard. We insist that each transition maps to a
unique CSP event. The functions εtask and εpname map each task and process
name to a unique event respectively. The function εmsg maps each message flow
to its set of events. The notation {|c1 . . cn |} forms the appropriate set of events
from channels c1 . . cn , so {|c|} where c communicates data object of type D
forms the set { d : D • c.d }.

εline : Line 7� Event
εtask : Task 7� Event
εpname : PName 7� Event
εmg : Message 7� Data
εtrans : Transition 7� (Event × Guard)
εmsg : Messageflow 7� (Channel × Data)

disjoint 〈ran εpname , ran εtask , ran εline〉
εtrans = λTransition • (εline line, guard)
εmsg = λMessageflow • (channel , εmg message)
∀ t1, t2 : Transition • (εtran t1).1 = (εtran t2).1 ⇔ t1 = t2⋃
{ (m,n) : ran εmsg • {|m|} } ∩ (ran εtask ∪ ran εline) = ∅

In order to define the alphabet for each state, corresponding to the events on
which each state must synchronise, we must consider the events associated with
each transition, type and messageflow. We define the functions αtrans and αmsg

which map each set of transitions and message flows to the set of associated
events respectively. We also define the function αchn which map each set of
message flows to its corresponding channels.

αtrans : P Transition � P Event
αmsg : PMessageflow � P Event
αchn : PMessageflow � P Channel

∀mf : P Messageflow ; ts : PTransition •
αtrans ts = { cp : εtrans(| ts |) • cp.1 }
∧ αmsg mf =

⋃
{ cd : (εmsg(| mf |)) • {|cd .1|} }

∧ αchn mf = { cd : εmsg(| mf |) • cd .1 }
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The alphabet of a given state is the set of events associated with a state
with which it must synchronise. A state’s alphabet is the union of the events
mapped from all the incoming and outgoing transitions, type, exception and
message flows. We define αstate to be a function mapping each state into its
alphabet.

αstate : State 7→ Local 7→ PEvent

αstate = (λ State • (λ l : Local •
if (type ∈ (Tasks ∪ Subs))
then ((if (type ∈ ranmipar ∪ ranmipars) then

⋃
{ (t , u) : mipartst s • αtrans { t , u } }

else (if (type ∈ ranmiseq ∪ ranmiseqs) then αtrans { (miseqtst s).1, (miseqtst s).2 } else ∅))
∪ (if (type ∈ Subs) then

⋃
{ s : State | s ∈ states∼(l(bpmn∼type)) • αstates l}

else (if (type ∈ Tasks) then { εtask(task∼type) } else ∅))
∪ αtrans (out ∪ in ∪ error) ∪ αmsg(send ∪ receive ∪ reply ∪ accept ∪ break))

else (if (type /∈ ran pool) then αtrans(out ∪ in)
else

⋃
{ s : State | s ∈ states∼(l(pool∼type)) • αstate s l })))

We also define the function αprocess to map each diagram to the set of all possible
events performed by the process describing an individual l diagram’s behaviour.

αprocess : PName 7→ Local 7→ PEvent

∀ p : PName; l : Local • αprocess =
⋃
{ s : states∼(l p) • αstate s l }

4.2 Processes corresponding to Enactment

Our semantics abstracts the internal flow of individual task states and only mod-
els the sequence of task initialisations and terminations within a business pro-
cess. Our enactment function bsemT takes a syntactic description of a BPMN
diagram encapsulated by a state of type pool or a BPMN subprocess and returns
a parallel composition of processes, each corresponding to one of the diagram’s
or process’s states. The parallel composition, defined by the function bsm,
is conjoined via partial interleaving with process X to ensure that the business
process either terminates successfully or deadlocks because of an exception flow.
We define compound events fin.i and abt .i where i ranges over N to denote the
successful completion and the abortion of a business process.

bsemT : PName 7→ Local 7→ Process

∀ p : PName; l : Local •
bsemT p l =

let AE = αprocess p l ∪ {a : εabort p l ; e : εend p l • fin.e, abt .a }
X = 2 i : αprocess p l •

(i → X 2 (2 e : εabort p l • abt .e → Stop)
2 (2 e : εend p l • fin.e → Skip))

in (bsm p l |[AE ]| X )
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bsm : PName 7→ Local 7→ Process

∀ p : PName; l : Local •
bsm p l = ( ‖ s : { s : (states∼(l p)) | s .type /∈ Starts } •

(αstate s l ∪ { i : εend p l • fin.i } ∪
(if (s .type ∈ ran abort) then { abt .(abort∼s .type) } else ∅)) ◦
if (s .type ∈ ran end)
then ((ρstate s o

9 fin.(end∼s .type) → Skip)
2 (2 e : εend p l \ { end∼s .type } • fin.e → Skip))

else if (s .type ∈ ran abort)
then ((ρstate s o

9 abt .(abort∼s .type) → Stop) 2 ρend p l)
else let X = ((ρstate s o

9 X ) 2 ρend p l)
in (if (s .loopMax = 0) then X

else (X |[ αmsgtype s .receive NoEnds
∪ αtrans s .in ∪ { i : εend p l • fin.i }]|

ρloop p s l))))
|[ αstart p l ∪ { i : εend p l • fin.i }]|
2 s : { s : states∼(l p) | s .type = start } • (ρstate s o

9 ρend p l))

We observe that the processes corresponding to a start, an end or an abort
state are the only non-recursive processes; a start, an end or an abort activity
can occur only once, while it is possible for all other states to occur many
times within a single process instance. The function εend returns the set of
numbers defined by each of the end states within the diagram’s syntax, while
εabort returns the set of numbers defined by each of the abort states. We apply
external choice over the processes corresponding to states with a terminating
process synchronising on all end states. This ensures that all processes terminate
at the end of the business process execution. The function αstart returns the set
of events corresponding to all outgoing transitions of all start and stime states
within the diagram’s syntax.

αstart : PName 7→ Local 7→ PEvent
εend : PName 7→ Local 7→ P N

ρend : PName 7→ Local 7→ Process
εabort : PName 7→ Local 7→ P N

∀ p : PName; l : Local •
αstart p l =

⋃
{ s : states∼(l p) | s .type ∈ Starts • αtrans(s .out) }

∧ εend p l = { s : states∼(l p) | s .type ∈ ran end • end∼s .type }
∧ ρend p l = (2 e : εend p l • fin.e → Skip))
∧ εabort p l =

{ s : states∼(l p) | s .type ∈ ran abort • abort∼s .type }
∪

⋃
{ s : states∼(l p) | s .type ∈ ran bpmn •

εabort (bpmn∼s .type) l }

The function ρloop maps each state of type task and bpmn to a process which
limits the number of iterations of the state.
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ρloop : PName 7→ State 7→ Local 7→ Process

∀ p : PName; s : State; l : Local •
ρloop p s l =

let Y = 2 i : αtrans s .in • i → Skip
M = ρextmsg s .in NoEnds
X (n) = n > 0 & (Y o

9 X (n − 1) 2 (M o
9 Y o

9 X (n − 1)) 2 ρend p l)
2 n ≤ 0 & ρend p l

in X (loopMax )

4.3 Processes corresponding to Multiple Instances

We define the function ρmipar which return the process corresponding to the
behaviour of the state of type mipar or mipars .

ρmipar : State 7→ Local 7→ Process

∀ s : State; l : Local •
(∃

1
ts : P(Transition × Transition) • ts = mipartst s) ⇒

ρmipar s l =
let

miparSet =
⋃
{ { i : αchn

⋃
{ s .send , s .break , s .receive }; j : NoEnds • i .j },

αtrans (s .out ∪ s .error), { (i , j ) : TP • i , j } }
TP = { (i , j ) : ts • ((εtrans i).1, (εtrans j ).1) }
Con = s .receive = ∅ & (ρintermsg s .send EndMsg o

9 XS (s .out))
2 (Cn(TP , s) 4 (if s .break = ∅ then AJ (s .error) else ρmierror s))

in

XJ (s .in) o
9 (MTask(ts , s , l) |[miparSet ]| Con)

The function ρmipar is constructed by partially interleaving the control pro-
cess Con and the process MTask , where MTask is the partial interleaving of n
copies of processes each corresponding to an instance of a task or a subprocess
specified by the constructor function. Each copy of the processes in MTask is
synchronised on the outgoing transitions of the multiple instance state.

MTask(ts , s , l) =

‖ [αtrans s .out ] (i , j ) : ts •
(ρdepend s |[ αmsg(s .receive ∪ s .reply)]|
(((ρstate 〈|in ; { i }, type ; s .type, out ; { j }, exit ; s .exit , send ; s .send ,

ran ; s .ran, error ; s .error , reply ; s .reply , accept ; s .accept ,
break ; s .break , receive, link , depend ; ∅|〉 l) o

9 XS (s .out)) 2 XS (s .out)))

On receiving a trigger by one of the incoming transitions, the control process
Con either decides not to execute any instance, if there is no message flow
dependency from another state, or behaves like process Cn.

Cn(T , s) =
(s .receive = ∅ & (#T > 1 & IC (T , true, s) 2 #T = 1 & EC (T , s) 2 s .send = ∅ & XS (s .out))
2 (ρextmsg s .receive EngMsg o

9 ρintermsg s .send EndMsg o
9 XS (s .out))

2 ((ρextmsg s .receive LastMsg o
9 EC (T , s)) 2 (ρextmsg s .receive InMsg o

9 IC (T , false, s))))

The process Cn takes the set of event-pairs, each corresponding to the incom-
ing and outgoing transitions of an instance defined in MTask , and returns the
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process that controls the multiple instances in MTask . If the multiple instance
state’s receive component is empty, then it internally controls the number of
instances to trigger, otherwise it controls the number of instances according to
the message received through the set of message flows specified by the compo-
nent receive. The control process keeps a counter of the number of instances
triggered.

The process CL takes a set of transition-pairs and a set of message flows
specified in send and recursively sends messages of type either InMsg or LastMsg
along the channels specified by the component send . If all of the messages are
of type LastMsg , then CL triggers one of the outgoing transitions and the whole
multiple instance state terminates, otherwise it behaves as the process Cn.

CL(T ,D , s) = if D = ∅ then XS (s .out)
else (((2 r : D • r?x : InMsg → Skip) o

9

(||| q : ((αchn D) \ { r }) • q?i : εmg(| NoEnds |) → Skip) o
9 Cn(T , s))

2 (ρextmsg D LastMsg o
9 CL(T , (D \ { r }), s)))

The process EC triggers one instance of a task or subprocess, during which
it sends a message of type LastMsg along each of the message flow channels
specified in send . It then triggers one of the outgoing transitions. The process
IC triggers one instance of a task or subprocess by synchronising on its incoming
and outgoing transitions, during which it behaves as process CL to monitor the
type of messages sent along each of the message flow channels specified in send .

EC (T , s) = 2(i , j ) : T • (i → ρintermsg s .send LastMsg o
9 j → XS (s .out))

IC (T , b, s) = 2(i , j ) : T • i → (j → Skip |||
(if (b ∧ s .send 6= ∅) then CL((T \ { (i , j ) }), s .send , s)
else ρintermsg s .send InMsg o

9 Cn((T \ { (i , j ) }), s)))

The following is a set of rules which governs how the control process triggers
the multiple instances process.

• The control process can trigger up to N processes, where N is a natural
number specified by the constructor function argument.

• If the state schema component receive is empty, then the control process
triggers up to N instances nondeterministically.

• If the state schema component receive is not empty and the message re-
ceived is of type LastMsg , then the control process must only trigger one
more instance.

• If the state schema component send is not empty, then during the execu-
tion of the last instance the control process must send a message of type
LastMsg along each of the message flow channels specified in send .

• If the state schema component receive is not empty and the message re-
ceived is of type EndMsg , then the control process must send a message
of type EndMsg along each of the message flow channels specified in send ,
and terminate.

• After all triggered multiple instances have terminated, the whole multiple
instance state terminates and triggers one of its outgoing transitions.

16



• On receiving an error message flow specified in the component error , the
control process triggers an exception flow and the whole multiple instance
state deadlocks.

• If the state schema component error is not empty, the control process can
trigger an exception flow from the set error at any time, and the whole
multiple instance state deadlocks.

We define the function αmsgtype , which returns the set of events correspond-
ing to the given message flows passing the given messages. The functions
ρintermsg and ρextmsg return the process corresponding to the interleaving and
exclusive choice of the given set of message flows passing the given set of mes-
sages.

ρintermsg , ρextmsg : P Messageflow 7→ P Message 7→ Process
αmsgtype : PMessageflow 7→ P Message 7→ P Event

∀mf : P Messageflow ; ms : P Message •
ρintermsg = ||| r : αchn mf • r?x : ms → Skip
∧ ρextmsg = 2 r : αchn mf • r?x : ms → Skip
∧ αmsgtype = { c : αchnmf ; d : εmg(| ms |) | c.d ∈ {|c|} • c.d }

The function ρmierror returns the process that synchronises with the exception
flows of individual instances of the multiple instances states.

ρmierror : State 7→ Process

ρmierror = (λ State •
(2(i , j ) : { (e, f ) : link | e ∈ error • ((εtrans e).1, (εmsg f ).1) } • j ?x : InMsg → i → Stop)
2 (2 i : { g : error | g /∈ { (e, f ) : link • e } • (εtrans g).1 } • i → Stop))

The function mipartst maps each state of type mipar or mipars to a set of
transition pairs used to connect the state’s parallel instances of task or subpro-
cess state. The function miseqtst maps each state of type miseq or miseqs to a
transition pair used to connect the state’s task or subprocess state.

mipartst : State 7� P(Transition × Transition)
miseqtst : State 7� (Transition × Transition)

∀ s : State •
((s .type ∈ ranmipar ⇒

mipartst s =
(µ ts : P(Transition × Transition) |

disjoint 〈first (| ts |), second (| ts |)〉
∧ #ts = (mipar∼s .type).2 = #first (| ts |) = #second (| ts |))

∧
((s .type ∈ ranmipars ⇒

mipartst s =
(µ ts : P(Transition × Transition) |

disjoint 〈first (| ts |), second (| ts |)〉
∧ #ts = (mipars∼s .type).2 = #first (| ts |) = #second (| ts |))

∧
((s .type ∈ ranmiseq ∪ ranmiseqs ⇒

miseqtst s = (µ(t1, t2) : (Transition × Transition))
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The function ρmiseq returns the process corresponding to the behaviour of
the state of type miseq or miseqs .

ρmiseq : State 7→ Local 7→ Process

∀ s : State; l : Local | (∃ t1, t2 : Transition; e1, e2 : Event ; n : N •
(t1, t2) = miseqtst s ∧ (e1, e2) = ((εtrans t1).1, (εtrans t2).1)
∧ (if s .type ∈ ranmiseq then n = (miseq∼s .type).2 else n = (miseqs∼s .type).2)) •
ρmiseq s l =
let

SY =
⋃
{αtrans(s .out ∪ s .error), { e1, e2 }, { i : αchn s .receive; j : NoEnds • i .j },
{ i : αchn (s .send ∪ s .break); j : InMsg • i .j } }

in

(Cq(n,n, s , e1, e2) 4 (if s .break = ∅ then AJ (s .error) else ρmierror s))
|[SY ]| Seq(n, s , l)

Similar to ρmipar the function ρmiseq is constructed by partially interleaving a
control process Cq with process Seq , which models the multiple instances of
task or subprocess, specified by the contructor function, executing sequentially.

Seq(i , s , l) = i > 0 &
((ρstate 〈|receive ; s .receive, in ; { t1 }, type ; s .type, out ; { t2 }, send ; s .send ,

accept ; s .accept , reply ; s .reply , error ; s .error , break ; s .break ,
ran ; s .ran, link ; s .link , depend ; s .depend |〉 l) o

9 Seq(i − 1, s , l)) 2 XS (s .out)

The process Cq is triggered initially by one of the incoming transitions of the
multiple instance state. Similar to the control process of ρmipar , the interaction
between the control process and the multiple instance process is governed by
the same set of rules. However, whereas the control process for ρmipar triggers
instances in parallel, process Cq triggers instances in sequence.

Cq(n,nm, s , e, f ) =
((XJ (s .in) 2 f → Skip) o

9

((ρextmsg s .receive EndMsg o
9 ρintermsg s .send EndMsg o

9 XS (s .out))
2 (ρextmsg s .receive InMsg o

9 e → ρintermsg s .send InMsg o
9 Cq(n − 1,nm, s , e, f ))

2 (ρextmsg s .receive LastMsg o
9 e → ρintermsg s .send LastMsg o

9 f → XS (s .out))
2 s .receive = ∅ &

((n > 1) & (e → (if s .send = ∅ then Cq(n − 1,nm, s , e, f ) else CLs(s .send ,n,nm, s , e, f )))
2 n = 1 & (e → (if s .send = ∅ then Skip else ρintermsg s .send LastMsg) o

9 f → XS (s .out))
2 s .send = ∅ & XS (s .out)
2 n = nm & (ρintermsg s .send EndMsg o

9 XS (s .out)))))

The process CLs behaves similarly to CL in that it recursively sends messages
of type either InMsg or LastMsg along the channels specified by the component
send . If all of the messages are of type LastMsg then CLs triggers one of the
outgoing transitions and the whole multiple instance state terminate, otherwise
it behaves as the process Cq .

CLs(S ,n,nm, s , e, f ) =
if S = ∅ then f → XS (s .out)
else ρextmsg S InMsg) o

9

(||| q : (S \ { r }) • q?i : εmg(| NoEnds |) → Skip) o
9 Cq(n − 1,nm, s , e, f )))

2 (ρextmsg S LastMsg o
9 CLs(S \ { r },n,nm, s , e, f ))
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4.4 Processes corresponding to Gateways and Message

flows

We now define some CSP processes that correspond to the behaviour of each of
the gateway states and message flows.

Exclusive Choice Gateway Processes XS (tn) and XJ (tn) model the be-
haviour of outgoing and incoming transitions of the state type xgate. Note
although each outgoing transition of the state type xgate is guarded, the choice
of its incoming transitions is determined by the behaviour of the preceding
states.

XS (tn) = 2 e : εtrans(| tn |) • (if e.2 then e.1 → Skip else Skip)

XJ (tn) = 2 e : αtrans tn • e → Skip

We also define the process AJ (tn) to model the behaviour of incoming transi-
tions of the state type abort and exception flow within state of type task and
bpmn.

AJ (tn) = 2 e : αtrans tn • e → Stop

Parallel Gateway Process ASJ (tn) models the behaviour of outgoing and
incoming transitions of the state type agate. Note that all outgoing transitions
are enabled and all incoming transition are required in this state type.

ASJ (tn) = ||| e : αtrans tn • e → Skip

We also define CSP processes that correspond to the behaviour of message
flows.

Message Flow Interaction Processes RC (ms), SD(ms), AC (ms) and RE (ms)
model the behaviour of a task or a subprocess receiving, sending, accepting and
replying a message respectively. While it only takes an activity to receive any
one of the message flows to initiate or to abort its execution and one correspond-
ing message flow to notify about its completion, other message flows within its
execution must all be completed.

RC (ms) = ρextmsg ms NoEnds
SD(ms) = |||(s ,n) : { (p, k) : εmsg(| ms |) | k ∈ εmg(| NoEnds |) } • s !n → Skip
AC (ms) = ρintermsg ms OutMsg
RE (ms) = 2(s ,n) : { (p, k) : εmsg(| ms |) | k ∈ εmg(| OutMsg |) } • s !n → Skip

4.5 Processes corresponding to Transitions, Types and

States

Functions ρout and ρin take a state and return the process describing the be-
haviour of all outgoing and incoming transitions, respectively.
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ρout : State 7→ Process
ρin : State 7→ Process

ρout = (λ State •
if (type = asplit) then ASJ (out) else XS (out))

ρin = (λState •
if (type ∈ ran abort) then AJ (in)
else if (type = ajoin) then ASJ (in) else XJ (in))

The function ρtype maps the type of a given state to its corresponding process.
Since our semantics abstracts internal flow of task states, we only model the
initialisation, the termination, message flows and any exception flow of each
task, note exception flows do to terminate its state.

ρexit : State 7→ Process
ρtype : State 7→ Local 7→ Process

ρexit = (λState •
let X = (if reply = ∅ then Skip else RE (reply))

Y = { (e, f ) : exit • (fin.e, (εtrans f ).1) }
in (2(i , j ) : Y • i → X o

9 j → Skip) 2 XS (error))
ρtype = (λState • (λ l : Local •
if (type ∈ ran task)
then if (error = ∅)

then εtask (task∼type) → (SD(send) o
9 AC (accept) o

9 RE (reply))
else εtask (task∼type) → (((SD(send) o

9 AC (accept))
4 (if break = ∅ then XS (error)

else (ρlink { (e, f ) : link | e ∈ error } error
|[αtrans in ∪ αmsgtype break NoEnds]|
RC (break) o

9 XS (error)))) o
9 RE (reply))

else if (type /∈ ran task ∪ ran bpmn) then Skip
else (if (error = ∅) then εpname(bpmn∼type) → bsem (bpmn∼type) l

else εpname(bpmn∼type) → (bsem (bpmn∼type) l
4 (if break = ∅ then XS (error) else RC (break) o

9 XS (error))))))

The function ρlink returns a process which pairs each incoming message flow
with its corresponding incoming transition or exception flow, according to the
component link of the schema State. The function ρdepend returns a process
which pairs each incoming message flow with its corresponding outgoing message
flow, according to the component depend of the schema State.

ρlink : P(Transition × Messageflow) 7→ PTransition 7→ Process ,
ρdepend : State 7→ Process

∀(t ,m) : P(Transition × Messageflow); ts : P Transition; s : State •
ρlink (t ,m) ts = ((2(i , j ) : { (e, f ) : t1 • ((εtrans e).1, (εmsg f ).1) } •

j ?x : NoEnds → i → Skip) 2 (2 i : ts • i → Skip)
∧ ρdepend s = (2(i , (j , k)) : { (e, f ) : s .depend • ((εmsg e).1, εmsg f ) } •

i?x : NoEnds → j .k → Skip) 2 s .depend = ∅ & Skip

We define the function ρstate which returns the process corresponding to the
behaviour of a given state; this function essentially maps each state to the
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sequential composition of the processes corresponding to the state’s incoming
transitions, type, message flows and outgoing transitions.

ρstate : State 7→ Local 7→ Process

ρstate = (λ State • (λ l : Local •
if (type ∈ ran task)
then (ρdepend θState |[ αmsgtype receive NoEnds ∪ αmsg reply]|

(ρlink { (e, f ) : link | e ∈ in } in |[ αtrans in ∪ αmsgtype receive NoEnds]|
(ρin θState o

9 ρtype θState l o
9 ρout θState)))

else if (type ∈ ran bpmn)
then (ρdepend θState |[ αmsgtype receive NoEnds ∪ αmsg reply]|

(ρlink θState |[ αtrans (in ∪ error) ∪ αmsgtype receive NoEnds]|
(ρin θState o

9 ((ρtype θState l |[ { e : exit • fin.(e.1) } ∪ αtrans error]|
ρexit θState l) |[ { o : out • (εtrans e).1 } ]| ρout θState))))

else if (type ∈ ranmiseq ∪ ranmiseqs) then ρmiseq θState l
else if (type ∈ ranmipar ∪ ranmipars) then ρmipar θState l

else if (type = start) then ρout θState
else if (type ∈ ran end ∪ ran abort) then ρin θState

else ρin θState o
9 ρout θState))

5 Coordination Function

In this section we define processes corresponding to the coordination of the timed
behaviour of BPMN diagrams. We first define the CSP events for representing
a state “delaying”, “terminating”, “being cancelled” and “being interrupted”.
We write g ◦ f to denote the backward relational composition of f with g .

εwait : State 7� Event
εfin , εcan : State � Event
εint : State 7� P(Transition × Event)

disjoint 〈ran εwait , ran εfin , ran εcan , (second ◦ unzip)
⋃

(ran εint )〉
dom εwait = {State • type ∈ Tasks }
dom εint = {State • type ∈ Tasks ∪ Subs ∧ error 6= ∅ }
∀ s : State • εint s = { (t , e) : (Transition × Event) | ∃

1
e : s .error • second e = t }

The generic function unzip takes some set of pairs { (a, b). .(an , bn ) } and returns
the pair of sets ({ a . . an }, { b . . bn }).

[X ,Y ]
unzip : P(X × Y ) → (P X × PY )

unzip = (λ zp : P(X × Y ) • ({ (x , y) : zp • x }, { (x , y) : zp • y }))

The overall semantic function of each individual business participant tsem
is defined by partially interleaving the enactment process defined by the func-
tion bsem with the coordination process defined by the function clock . The
function hide is defined to conceal the control flow events from the environment
outside the specification of the BPMN diagram ,and the function sync returns
the set of events to be coordinated by clock and the function αclock returns the
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set of events, hidden from the enactment function, performed internally in the
coordination function.

hide, sync : PName 7→ Local 7→ PEvent

∀ p : PName; l : Local •
hide p l =

⋃
{ s : states∼(l p) • αtrans (s .in ∪ s .out ∪ s .error) }

∧ sync p l =
⋃
{ s : states∼(l p) | αstate s \ mfs s }

The function mfs takes a BPMN state and returns a set of CSP events corre-
sponding to the state’s messageflows.

mfs : State 7→ P Event

∀ s : State •
s .type /∈ Subs ∪ Tasks ⇒ mfs s = ∅
∧ s .type ∈ ran task ⇒ mfs s = αtrans(s .receive ∪ s .send ∪ s .reply ∪ s .accept ∪ s .break)
∧ s .type ∈ ran bpmn ⇒

mfs s = αtrans (s .receive ∪ s .send ∪ s .reply ∪ s .accept ∪ s .break)
∪

⋃
mfs (| states∼(l (bpmn∼s .type)) |)

∧ s .type ∈ ranmipar ⇒
mfs s = αtrans (s .receive ∪ s .send ∪ s .reply ∪ s .accept ∪ s .break)

∪
⋃
{ (t , u) : mipartst s • αtrans { t , u } }

∧ s .type ∈ ranmipars ⇒
mfs s = αtrans (s .receive ∪ s .send ∪ s .reply ∪ s .accept ∪ s .break)

∪
⋃
{ (t , u) : mipartst s • αtrans { t , u } }

∪
⋃

mfs (| states∼(l ((first ◦ mipars∼) s .type)) |)
∧ s .type ∈ ranmiseq ⇒

mfs s = αtrans (s .receive ∪ s .send ∪ s .reply ∪ s .accept ∪ s .break)
∪ αtrans { (miseqtst s).1, (miseqtst s).2 }

∧ s .type ∈ ranmiseqs ⇒
mfs s = αtrans (s .receive ∪ s .send ∪ s .reply ∪ s .accept ∪ s .break)

∪ αtrans { (miseqtst s).1, (miseqtst s).2 }
∪

⋃
mfs (| states∼(l ((first ◦ miseqs∼) s .type)) |)

αclock : PName 7→ Local 7→ P Event

αclock = (λ p : PName • (λ l : Local •
internals(| { s : allstates p l | s .type ∈ Tasks ∪ Subs ∪ ran itime ∪ ran stime } |)

The function internals takes a BPMN state and returns a set of its corresponding
events to be used internally in the coordination function.

internals : State 7→ P Event

internals = (λState •
(if type ∈ Tasks then { εwait s } else ∅)
∪ (second ◦ unzip) εint s ∪ { εfin s , εcan s }

tsem : PName 7→ Local 7→ Process

∀ p : PName; l : Local •
let E = 2 i ∈ εend p l • fin.i → Skip

2 2 e ∈ εabort p l • abort .e → Stop
in tsem p l = (bsemT p l |[ sync p l ]| ((clock p l 4 E ) \ αclock p l)) \ (hide p l)
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clock : PName 7→ Local 7→ Process

∀ p : PName; l : Local •
clock p l =

2 i :
⋃
{ s : begin p l • αtrans s .out } •

let os = (µ s : states∼(l p) | i ∈ αtrans s .in) in

if os ∈ {t : TimeState | t ∈ allstates p l } then i → (stable (timer p l) p l ∅ { os })
else i → (stable (timer p l) p l { os } ∅)

The function begin returns a set of starting states of a given BPMN diagram.

begin : PName 7→ Local 7→ P State

begin = (λ p : PName • (λ l : Local • { s : allstates l p | s .type ∈ Starts }))

The coordination function implements a variant of the two-phase functioning
approach. The classical two-phased functioning approach can be described as
follows: In the first phase, all untimed elementary actions are executed, and
in the second phase, when all actions are blocked by an obligation of duration,
time progresses by one unit. Our variation does not model time explicitly but
rather uses timing information to coordinate between each state’s enactment.
Informally the function carries out the following steps:

1. Branch out and enact all untimed events and gateways until the BPMN
process has reached time stablility, this will be described in Section 5.1;

2. Order all immediate active BPMN states, which are also timed by defini-
tion, in some sequence 〈t1 . . tn 〉 according to their shortest delay, this will
be described in Section 5.2;

3. Enact all the time-ready states according to their timing information, after
which remove the enacted states from the sequence. This will be described
in Section 5.3;

4. Repeat Steps 1 to 3 until the BPMN process terminates.

The overall semantic function of a business collaboration is defined by the
function csemT , which takes a syntactic description of one or more states of type
pool , each encapsulating a separate BPMN diagram representing an individual
participant within a business collaboration, and returns a parallel composition
of processes, each corresponding to an individual participant.

csemT : CName 7→ Global 7→ Local 7→ Process
chide : CName 7→ Global 7→ Local 7→ PEvent

∀ l : Local ; c : CName; g : Global •
csem c g l =

( ‖ ps : { b : bpmns∼(g c) } • αprocess ps l ◦ tsem ps l) \ chide c gl l
∧
chide c g l =⋃

{ ps : bpmns∼(g c); s : states∼(l ps) •
αmsg(s .send ∪ s .receive ∪ s .reply ∪ s .accept ∪ s .break) }
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5.1 Reaching Time Stability

The function stable is higher order function; it takes a function f and a set of
active states, and returns a process which recursively enacts all active states
until the BPMN process is time-stable. The function then behaves like the
supplied function f , in the definition of clock , f is the function timer .

stable : (P State 7→ Process) 7→ PName 7→ Local 7→ P State 7→ PState 7→ Process

∀ f : P State 7→ Process ; p : PName; l : Local ; us , st : P State •
stable f p l us st =

let uw = { u : us | u.type = agate ∧ (∃ k : allstates p l • u.in ⊆ k .in ∧ k .out > 1)
∧ st ∩ (prec p l (µ k : allstates p l | u.in ⊆ k .in)) 6= ∅ } in

if us = ∅ ∨ u = uw then f st
else (2 i :

⋃
(((flip(αstate )) l)(| u \ uw |)) •

if i /∈
⋃
{ t : State | t ∈ allstates p l • αtrans (t .in ∪ t .out ∪ second(| t .error |)) }

then i → stable f p l us st
else let b = (µ s : State • s ∈ allstates p l ∧ i ∈ αtrans (s .out ∪ second(| s .error |)))

a = (µ t : State | t ∈ allstates p l ∧ i ∈ αtrans t .in) in

if a ∈ { t : TimeState | t ∈ allstates p l }
then if (b.type = agate ∧ #b.out > 1 ∨ b.type 6= agate)

then let o = (µ t : Transition | t ∈ b.out ∧ i = εline t .line)
in i → (stable f p l ((us \ { b }) ∪ { (rmtrans b o) }) (st ∪ { a })

else i → (stable f p l (us \ { b }) (st ∪ { a })
else if b.type = agate ∧ #b.out > 1

then let o = (µ t : Transition | t ∈ b.out ∧ i = εline t .line)
in (i → stable f p l ((us \ { b }) ∪ { (rmtrans b o), a }) st

else i → stable f p l (us \ { b }) ∪ { a }) st

The function rmtrans removes a transition from a given BPMN state.

rmtrans : State 7→ Transition 7→ State

rmtrans = (λ s : State • (λ t : Transition •
〈| type ; s .type, in ; s .in, exit ; s .exit ,

out ; s .out \ { t }, loopMax ; s .loopMax ,
receive ; s .receive, send ; s .send , reply ; s .reply ,
accept ; s .accept , break ; s .break , dur ; s .dur |〉

The function allstates recursively returns a set of states contained in a BPMN
diagram, including those contained within the diagram’s subprocess states,

allstates : PName 7→ Local 7→ P State

allstates = (λ p : PName • (λ l : Local •⋃
{ s : states∼(l p) | s ∈ Subs • allstates (gn s) l } ∪ states∼(l p)

where the function gn returns the unique name of a given subprocess state.

gn : State 7→ PName

∀ s : State •
s .type ∈ ranmiseqs ⇒ gn l s = first (miseqs∼s .type)
∧ s .type ∈ ranmipars ⇒ gn l s = first (mipars∼s .type)
∧ s .type ∈ ran bpmn ⇒ gn l s = bpmn∼s .type
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The generic function flip applied to the function f takes its first two arguments
in the reverse order of f and is declared as follows:

[X ,Y ,Z ]
flip : (X ↔ Y ↔ Z ) → (Y ↔ X ↔ Z )

The functions succ and prec take a BPMN state and returns a set of BPMN
states, of which control flows succeed and precede the given state respectively.

succ, prec : P State 7→ PState 7→ State 7→ P State

∀ ss , tt : PState; s : State •
succ ss tt s =

let ts = {t : ss | (s .out ∪ second (| s .error |)) ∩ t .in 6= ∅ ∧ t /∈ tt }
in (if ts = ∅ then tt else

⋃
(succI (ss \ ts) (tt ∪ ts)(| ts |)))

∧ prec ss tt s =
let ts = {t : ss | (s .in ∩ (t .out ∪ second (| t .error |))) 6= ∅ ∧ t /∈ tt }
in (if ts = ∅ then tt else

⋃
(precI (ss \ ts) (tt ∪ ts)(| ts |)))

5.2 Ordering Timed Sequence

Initially after branching and enacting all necessary untimed states to reach time
stability, function stable calls the function timer . We define timer to order the
set of currently active timed states (Step 2) according to their delays.

timer : PName 7→ Local 7→ P State 7→ Process

∀ p : PName; l : Local ; ss : PState •
timer p l ss =

let ss ′ = orderT
⋃

(sep (| ss |) ∪ subexc p l (| ss |))
ts = {n 7→ s : ss ′ • n 7→ time s }
num = #{ t : ran ts | t =T head ts }
cur = (take num ss ′)
ss ′′ = { s : ss | s /∈ cur ∧ (s .type ∈ ranmiseq

⇒ ¬∃ c : allstates p l •
c.type ∈ ranmiseq ∧ c ≈S s
∧ (second ◦ miseq∼) s .type <T (second ◦ miseq∼) c.type) }

ns = subt head ts (| ss ′′ |)
in trun p l ns cur

For states that are task states with a timed exception flow, we applied the
function sep, which returns a set containing the task state itself and a timed
event state that contains the syntactic description of the task state’s timed
exception flow. We write 〈|c1 ; v1 . . cn ; vn |〉 to define an object of some
schema type with components c1 . . cn declared.

sep : State → PState

sep = (λ State •
if (type /∈ Tasks ∪ Subs ∨ ∀ t : error • first t /∈ ran itime) then { θState }
else { 〈| type ; (µ t : error | first t ∈ ran itime • first t), in, exit ; ∅,

out ; { (µ t : error | first t ∈ ran itime • second t) }, loopMax ; 0,
receive, send , reply , accept , break ; ∅
dur ; 〈|min,max ; zeroT |〉 |〉, θState })
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We define a binary relation ≈S over State below to associate two states that are
flow-equivalent - that is, having the same incoming and outgoing transitions.
Note two states must be the same if they have the same transitions in the
context of the same specification environment.

≈S : (State ↔ State)

∀ s , t : State • s ≈S t ⇔ s .in = t .in ∧ a.out = t .out

For states that are embedded in some (nested) subprocess state that has a
timed exception flow, we applied the function subexc, which returns a set, pos-
sibly empty, of states representing all the timed exception flows attached to
all subprocess states into which the state is embedded. For example, Figure 4
shows a BPMN subprocess state, if function subexc is applied over the state
A, it will return a set of states representing timed exception flows attached to
subprocess states B and C , while the function sep will return state A and a
timed event state representing A’s own the timed exception flow.

Figure 4: A BPMN subprocess state

subexc : PName 7→ Local 7→ State 7→ P State
finexc : Local 7→ State 7→ State 7→ P State
makexc : (Type × Transition) → State

∀ t : Type; ts : Transition; p : PName; l : Local ; s , v : State •
subexc p l s =

let su = (µ u : State | (s , u) ∈ tpsub(p, l))
e = (µ te : su.error | first te ∈ ran itime) in

if ∀ u : State • (s , u) /∈ tpsub(p, l) then ∅
else {makexc(first e, second e) } ∪ finexc l s su

∧
finexc l s v =

(if (s , v) /∈ insubs l v then ∅
else { (µ e : v .error | first e ∈ ran itime • makexc(first e, second e)) })
∪

⋃
(finexc l s (| { x : states∼((l ◦ gn)v) | x .type ∈ Subs } |))

∧
makexc(t , ts) = 〈| type ; t , in, exit ; ∅, out ; { ts }, loopMax ; 0,

dur ; 〈|min,max ; zeroT |〉, receive, send , reply , accept , break ; ∅ |〉

We define the function allsub, which recursively returns the set of states, each
being contained in the given state.
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allsub : Local 7→ State 7→ P State

∀ l : Local ; su : State •
allsub l su =

if su.type /∈ Subs then ∅
else

⋃
(allsub l (| { s : states∼((l ◦ gn)su) | s .type ∈ Subs } |)) ∪ states∼((l ◦ gn)su)

The parameterised relation tpsub maps each state contained in some nested
subprocess state to its topmost subprocess state with a timed exception flow
given a BPMN process via its name and its specification environment. The
function insub takes a subprocess state and returns a binary relation associating
each state contained in some nested subprocess state with a timed exception flow
to that subproces state.

tpsub : (PName × Local) → (State ↔ State)
insubs : Local 7→ State 7→ (State ↔ State)

∀ p : PName; l : Local ; su : State •
tpsub(p, l) =

⋃
{ s : states∼(l p) | s .type ∈ Subs ∧ (∃ e : s .error • first e ∈ ran itime)

• { t : allsub l s • t 7→ s } }
∪

⋃
{ s : states∼(l p) | s .type ∈ Subs

∧ (∀ e : s .error • first e /∈ ran itime) • insub l s }
∧
insubs l su =

if ∃ e : su.error • first e ∈ ran itime then { t : allsub l su • t 7→ su }
else

⋃
(insubs l (| { s : states∼((l ◦ gn)su) | s .type ∈ Subs } |))))

The function timer also employs the function orderT to order a set of timed
states into a timed sequence. For task states which have delays over a specfied
range, we assume their lower bounds as their delay initially. The function timer
then calls the function trun, which is defined in Section 5.3, with a set of time-
ready states cu, which is the range of the initial segment of the timed sequence
and a set of states that belongs the range of the remaining seqment of the timed
sequence, with which the states’ delays are subtracted by the currently shortest
delay. We write s a t to denote concatenation of sequences s and t .

orderT : P TimeState 7→ seqTimeState

∀ ss : PTimeState •
ss = ∅ ⇒ orderT ss = 〈〉
∧ ss 6= ∅ ⇒ orderT ss = let s = (µ s : ss | ∀ t : ss • time s ≤T time t)

in 〈s〉 a orderT (ss \ { s })

time : TimeState → Time

∀ t : TimeState •
t .type ∈ ran stime ⇒ time t = stime∼t .type
∧ t .type ∈ ran itime ⇒ time t = itime∼t .type
∧ t .type ∈ Tasks ∪ Subs ⇒ time t = t .ran.min

The function take takes the a natural number n and a sequence of states ss and
returns a set of states containinig the first n elements of ss .
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take : N → seqState → P State

∀n : N; ss : seqState •
n 6= 0 ∧ ss 6= 〈〉 ⇒ take n ss = { head ss } ∪ take (n − 1) (tail ss)
∧ n = 0 ∨ ss = 〈〉 ⇒ take n ss = ∅

The function subt subtracts the duration of a timed state with a specified du-
ration.

subt : Time 7→ TimeState 7→ TimeState

∀ t : Time; s : TimeState •
type ∈ ran task ⇒

subt t s =
〈| type ; s .type, in ; s .in, exit ; s .exit , out ; s .out , loopMax ; s .loopMax ,

dur ; 〈|min ; (if s .ran.min ≤T t then zeroT else s .ran.min −T t),
max ; (if s .ran.max ≤T t then zeroT else s .ran.max −T t)|〉

receive ; s .receive, send ; s .send , reply ; s .reply , accept ; s .accept ,
break ; s .break , |〉

∧
type ∈ ran itime ⇒

subt t s =
〈| type ; itime(if (itime∼s .type) ≤T t then zeroT else (itime∼s .type) −T t),

in ; s .in, exit ; s .exit , out ; s .out , loopMax ; s .loopMax , dur ; s .dur
receive ; s .receive, send ; s .send , reply ; s .reply , accept ; s .accept ,
break ; s .break , |〉

∧
type ∈ ran stime ⇒

subt t s =
〈| type ; stime(if (stime∼s .type) ≤T t then zeroT else (stime∼s .type) −T t),

in ; s .in, exit ; s .exit , out ; s .out , loopMax ; s .loopMax , dur ; s .dur
receive ; s .receive, send ; s .send , reply ; s .reply , accept ; s .accept ,
break ; s .break , |〉

We define the subtraction operator −T over durations Similar operator +T for
addition may also be defined.

−T : (Time × Time) → Time

∀ s , t : Time •
s −T t = 〈|year ; s .year − t .year ,month ; s .month − t .month,

day ; s .day − t .day , hour ; s .hour − t .hour ,
minute ; s .minute − t .minute, second ; s .second − t .second |〉

5.3 Coordinating Timed States

We now define the function trun, which returns a process that recursively en-
acts a subset of the currently active timed states within a given BPMN process
that are time-ready. Coordinating time-ready states is achieved by partial inter-
leaving the execution process returned by the function trun ′ with the recording
process returned by the recording function record , where the function trun ′

enacts all the time-ready states and at the end of each state enactment, the
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execution process communiates coordination events to the recording process de-
pending on whether the state has terminated, been cancelled, been interrupted
or been delayed, while the function record receives these coordination events
and recalculates the current state of the BPMN process. Before enacting the
time-ready states, the following rules are applied.

• For all time-ready states that are sequential multiple instance task states,
we instantiate one instance of the task modelled by each of the multiple
instance states via the function splitsep and reduce the number of multiple
instance recorded by one. The instantiated task states are time-ready and
each multiple instance states will becoming time-ready upon the termina-
tion of their respective instantiated state;

• For all time-ready states that are parallel multiple instance task states,
we instantiate all instances of the task modelled by each of the multiple
instance states via the function splitpar . Each instantiated task states is
time-ready.

trun : PName 7→ Local 7→ PState 7→ P State 7→ Process

∀ p : PName; l : Local ; ss , cu : PState •
trun p l ss cu =

let (ms , is) = unzip (splitseq(| { c : cu | c.type ∈ ranmiseq } |))
ps = splitpar(| { c : cu | c.type ∈ ranmipar } |)
cu ′ = { c : cu | c.type /∈ Mults } ∪ ps ∪ is
sy =

⋃
(internal (| (εcan { c : cu | c.type ∈ Mults }) ∪ cu ′ |)) in

((trun ′ p l cu ′ o
9 run(sy)) |[ sy ]| record p l (ss ∪ ms) cu ′ ∅) \ sy

The execution process is described in Section 5.3.1 and the recording process is
described in Section 5.3.2. We define the function splitseq for Step 5.3 above
and this function is defined to take a sequential multiple instance state and
returns a pair where the first element is a task state representing one instance
of the multiple instance state and the second element is the multiple instance
state with number of instance reduced by one.

splitseq : State 7→ (State × State)

splitseq =
(λ s : State | type ∈ ranmiseq •

{ 〈|type ; (task (first ◦ miseq∼) s .type), loopMax ; (second ◦ miseq∼) s .type, dur ; s .dur ,
in, out , error , exit ; ∅, receive, send , reply , accept , break ; ∅|〉, reduce s })

We define the function splitpar for Step 5.3 above and this function is defined
to take a parallel multiple instance state with n multiple instances and returns
n task states containing no incoming and outgoing transitions, each represent-
ing one instance of the multiple instance state, we use the schema component
loopMax to differentiate each state.
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splitpar : State 7→ P State

splitpar =
(λ s : State | type ∈ ranmipar •

if (second ◦ mipar∼) type = 0 then ∅
else { 〈|type ; (task (first ◦ mipar∼) s .type), in, out , error , exit ; ∅, dur ; s .dur ,

loopMax ; (second ◦ mipar∼) s .type, receive, send , reply , accept , break ; ∅|〉 }
∪ (splitpar ◦ reduce) s)

The function reduce reduces the number of instance specfied in the supplied
multiple instance task state by one.

reduce : State 7→ State

∀ s : State •
type ∈ ranmiseq ∧ (second ◦ miseq∼)s .type > 0 ⇒

reduce s = 〈|type ; miseq((first ◦ miseq∼) s .type, (second ◦ miseq∼) s .type − 1),
in ; s .in, out ; s .out , error ; s .error ,
receive ; s .receive, send ; s .send , reply ; s .reply , accept ; s .accept ,
break ; s .break , loopMax ; s .loopMax , dur ; s .dur |〉

∧
type ∈ ranmipar ∧ (second ◦ mipar∼)s .type > 0 ⇒

reduce s = 〈|type ; mipar((first ◦ mipar∼) s .type, (second ◦ mipar∼) s .type − 1),
in ; s .in, out ; s .out , error ; s .error ,
receive ; s .receive, send ; s .send , reply ; s .reply , accept ; s .accept ,
break ; s .break , loopMax ; s .loopMax , dur ; s .dur |〉

5.3.1 Execution Process

The function trun ′ returns a process that interleaves the enactment of the pro-
cesses corresponding to the subset of the currently active timed states described
above. Informally each process corresponding to each states behaves according
to the following rules:

• if some state s is a timed event of type itime and stime and it is not
a representation of a timed exception flow then s will be enacted, after
which the process notifies the the recording process via the event εfin s ,
then the process terminates. State s may be interrupted at any time by
an exception flow of a subprocess state that contains s ;

• If the corresponding state is a task state then the function ttrn is applied
to it. Similarly this state may be interrupted at any time by an exception
flow of a subprocess state that contains it;

• If the corresponding state is an instantiated task state then the function
tmrn is applied to it. Similarly this state may be interrupted at any
time by an exception flow of a subprocess state that contains the multiple
instance state which it instantiates.

After the interleaving of the processes corresponding to all time-ready states
terminate, the function trun ′ terminates and behaves like the process run which
is defined here.

run(A) = 2 a : A • a → run(A)
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trun ′ : PName 7→ Local 7→ PState 7→ Process

∀ p : PName; l : Local ; cu : PState •
trun ′ p l cu =

let par = { c : cu | c.type ∈ ran task
∧ (∃ t : allstates p l • t .type ∈ ranmipar

∧ (task∼c.type) = (first ◦ mipar∼) t .type) } in

(|||(p, ps) : (pars p l par (getmult p l mipar (| par |))) •
‖ [{ εfin p, εint p }] s : ps •

((tmrn mipar p l (cu \ { s }) s)
4 (εint p → Skip 2 εfin p → Skip 2 εcan p → Skip)))

||| (||| s : { c : (cu \ par) | c.type ∈ ran itime ⇒ c.in 6= ∅ } •
let it == ∃ t : allstates p l • t .type ∈ ranmiseq

∧ (task∼s .type) = (first ◦ miseq∼) t .type in

(if s .type ∈ ran task ∧ it
then let q = getmult p l miseq s in

tmrn miseq p l (cu \ { s }) s
4 (εint q → Skip 2 εfin q → Skip 2 εcan q → Skip)

else (if s .type ∈ stime ∨ (s .type ∈ itime ∧ s .in 6= ∅)
then (XS (s .out) o

9 εend s → Skip) else ttrn p l (cu \ { s }) s)
4 εcan s → Skip))

pars : PName 7→ Local 7→ PState 7→ P State 7→ P(State × P State)

∀ p : PName; l : Local ; ss , ps : PState •
pars p l ss ps = { p : ps • (p, { s : ss • getmult p l mipar s = p }) }

We define the function getmult to take a state representing a task instance of a
multiple instance state and returns that multiple instance state.

getmult : PName 7→ Local 7→ ((Task × N) � Type) 7→ State 7→ State

∀ p : PName; l : Local ; tc : ((Task × N) � Type); s : State •
s .type ∈ ran task ⇒

getmult p l tc s = (µ t : allstates p l | t .type ∈ ran tc ∧ (first ◦ tc∼) t .type = task∼s .type)

We define the function ttrn the coordination of a time-ready task state. Here
we describe the coordination informally.

1. If the task state s is embedded in some subprocess state k , which has a
timed exception flow that expires in the current time passage, the timed
exception flow interrupts the task state, and all other active states em-
bedded in this subprocess state, the function then triggers the outgoing
transition of the timed exception, and notifies the recording process via
the event εint k and terminates;

2. If the task state s is not embedded and has been attached with a timed
exception flow that expires in the current time passage, the timed excep-
tion flow interrupts the task state, the function then triggers the outgoing
transition of the timed exception, and notifies the recording process via
the event εint s and terminates;
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3. If the task state s is not embedded and does not contain a timed exception
flow, the function chooses either to enact the state, triggers s ’s outgoing
transition and notifies the recording process via the event εfin s and ter-
minates, or to delay up to the end of the current time passage, notifies
the recording process via the event εwait s and terminates,

ttrn : PName 7→ Local 7→ PState 7→ State 7→ Process

∀ p : PName; l : Local ; cu : PState; s : State •
ttrn p l cu s =

if { c : cu | ∃ k : subexc p l s • c ≈S k } 6= ∅
then (2 se : { c : cu | ∃ k : subexc p l s • c ≈S k } •

let et = (µ v : Event | ∃ u : allstates p l •
∃ e : u.error • second e = strans se
∧ ∃ i : εint u • first i = second e • second i)

in XS (se.out) o
9 et → Skip

else (if ∃ k : cu; t : Type • (t , strans k) ∈ s .error
then (let tx = (µ k : cu | ∃ t : Type • (t , strans k) ∈ s .error)

et = (µ v : Event | ∃ i : εint s • first i = strans tx • second i)
in XS (tx .out) o

9 et → Skip)
else (let es = { e : s .error | first e /∈ ran itime • second e }

Tk = (if es = ∅ then εtask (task∼s .type) → XJ (s .out) o
9 εfin s → Skip

else ((εtask (task∼s .type) → Skip 4 XJ (es))
|[ αtrans es ]| (except s 2 (XJ (s .out) o

9 εfin s → Skip))))
in if s .ran.min =T s .ran.max then Tk else (TK u εwait s → Skip))))

We define the function strans to return the outgoing transition of the given
state, which has exactly one outgoing transition. This function is called in the
function ttrn.

strans : State 7→ Transition

strans = (λState | #out = 1 • (µ t : Transition | t ∈ out))

except : State 7→ Process

except = (λ s : State •
(2 i : {e : s .error | first e /∈ ran itime • second e } •

let et = (µ k : εint s | i = first k • second k)
in εline i .line → et → Skip))

We define the function tmrn for the coordination of a time-ready task state
that instantiates an instance of a multiple instances task state. Here we describe
the coordination informally.

1. If the task state instantiates a multiple instance state m, which is con-
tained in some subprocess state q that has an expiring timed exception
flow, the timed exception flow interrupts the instantiated task state, the
function then triggers the outgoing transition of the timed exception, and
notifies the recording process via the event εint q and terminates;
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2. If the task state instantiates a multiple instance state m, which is not em-
bedded but has an expiring timed exception flow, the timed exception flow
interrupts the instantiated task state, the function then triggers the out-
going transition of the timed exception, and notifies the recording process
via the event εint m and terminates;

3. If some task state s instantiates a multiple instance state m, which is
not embedded and does not have an expiring timed exception flow, the
function may perform one of the following by calling the function tsrn and
tprn for sequential and parallel multiple instance states respectively:

• The function may enact s , notify the recording process via the event
εfin s and terminate;

• The function may delay s up to the end of the current time passage
and notify the recording process via the event εwait s and terminate;

• The function may enact s and decide to terminates m, it will then
notify the recording process via the event εfin m and terminate the
whole multiple instance state m;

• If s is the nth instantiation of m where n is the maximum number of
multiple instances, then the function will enact s , trigger the outgoing
transition of m and notify recording process via the event εfin m and
terminate the whole multiple instance state m.

tmrn : ((Task × N) � Type) 7→ PName 7→ Local 7→ PState 7→ P State
7→ State 7→ Process

∀ tc : ((Task × N) � Type); p : PName; l : Local ; ss , cu : PState; s : State •
tmrn tc p l ss cu s =

let ms = getmult p l tc s in

if { c : cu | ∃ k : subexc p l ms • c ≈S k } 6= ∅
then (2 se : { c : cu | ∃ k : subexc p l ms • c ≈S k } •

let et = (µ s : allstates p l | ∃ e : s .error ; i : εint s •
second e = strans se ∧ first i = second e • second i)

in (XS (se.out) o
9 et → εwait s → Skip))

else if (∃ k : cu; t : Type • (t , strans k) ∈ ms .error)
then (let tx = (µ k : cu | ∃ t : Type • (t , strans k) ∈ ms .error)

et = (µ e : Event | ∃ i : εint ms • first i = strans .tx • second i)
in XS (tx .out) o

9 et → Skip)
else (tc = miseq & tsrn p l ss cu s 2 tc = mipar & tprn p l ss cu s)

The function tsrn defines the part of the coordination described in Step 3
for sequential multiple instance states.
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tsrn : PName 7→ Local 7→ P State 7→ P State 7→ State 7→ Process

∀ p : PName; l : Local ; ss , cu : PState; s : State •
tsrn p l ss cu s =

(let mq = (µ x : ss | x ∈ ran tc ∧ (first ◦ tc∼) x .type = task∼s .type)
es = { e : mq .error | first e /∈ ran itime • second e }
Sk = if es 6= ∅

then ((εtask (task∼s .type) → Skip 4 XJ (es)) |[ αtrans es ]|
((second ◦ miseq∼)mq .type > 0 & εfin s → Skip
2 XJ (mq .out) o

9 εfin mq ′ → Skip 2 except mq))
else (εtask (task∼s .type) →

(second ◦ miseq∼)mq .type > 0 & εfin s → Skip
2 XJ (mq .out) o

9 εfin mq → Skip in

if s .ran.min =T s .ran.max then Sk else (Sk u εwait s → Skip)))

The function tprn defines the part of the coordination described in Step 3
for parallel multiple instance states

tprn : PName 7→ Local 7→ P State 7→ PState 7→ P State 7→ State 7→ Process

∀ p : PName; l : Local ; ss , cu,wt : P State; s : State •
tprn p l ss cu wt s =

let mc = { x : cu | getmult p l mipar x = getmult p l mipar s }
mw = { x : wt | getmult p l mipar x = getmult p l mipar s }
mt = getmult p l mipar s
es = { e : mt .error | first e /∈ ran itime • second e }
Pk = if es 6= ∅

then ((εtask (task∼s .type) → Skip 4 XJ (es)) |[ αtrans es ]|
(mc ∪ mw 6= ∅) & εfin s → Skip)
2 XJ (mt .out) o

9 εfin mt → Skip 2 except mt))
else ((εtask (task∼s .type) →

(mc ∪ mw 6= ∅) & εfin s → Skip)
2 XJ (mt .out) o

9 εfin mt → Skip in

if s .ran.min =T s .ran.max then Pk else (Pk u εwait s → Skip)))

5.3.2 Recording Process

The function record defines the recording process. It receives coordination events
from the execution process and recalculates the set of timed-active states. The
following describes the function informally:

• At each recursive call to record , it is applied with the following three sets
of BPMN states

– The set of states that are currently active, and they can either be
timed or untimed (ss);

– The set of timed states that are currently active and time-ready (cu);

– The set of states that are currently active and time-ready but have
descided to delay their enactment (wt).

The values of these sets represent the state of the BPMN process during
timed coordination.
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• If both cu and ss are empty, all time-ready task and multiple instance
states have delayed their enactments. The function then re-calculates
these states so that the states, of which the delay range has the shortest
upper bound, are to be enacted.

• If cu is empty and ss is not empty, all time-ready states have either been
enacted or delayed. The function then branches out and enacts subse-
quent active untimed states via the functions mstable and stable defined
in Section 5.1, and the function timer ′ defined below;

• If cu is not empty, then wait for the following types of coordination events:

1. On receiving a terminating event e ∈ ran εfin , it applies the function
finish to the state ε∼fine;

2. On receiving a delay event e ∈ ran εwait , it applies the function wait
to the state ε∼waite;

3. On receiving an interrupting event e ∈ (second ◦ unzip)
⋃

(ran εint ),
it applies the function interrupt to the state representing that excep-
tion.

record : PName 7→ Local 7→ P State 7→ PState 7→ P State 7→ Process

∀ p : PName; l : Local ; ss , cu,wt : P State •
record p l ss cu wt =

if cu = ∅
then if ss = ∅

then let m = (µw : wt | ∀ x : ws • w .ran.max ≤T x .ran.max • w .ran.max )
in trun p l ∅ (subt m(| wt |))

else let pos = ({ s : ss | (s .type ∈ ran itime ∧ s .in = ∅) } ∪ { s : TimeState | s ∈ ss })
in stable (timer ′ p l ss wt) p l (ss \ pos) (pos ∪ wt)

else (2 i : αclock p l •
(if i ∈ ran εfin then finish p l ss cu wt (ε∼fin i)

else (if i ∈ ran εwait then wait p l ss cu wt (ε∼wait i)
else (if i /∈ (second ◦ unzip)

⋃
(ran εint ) then Stop

else (if ∃ s : allstates p l • (∃ e : εint s • second e = i ∧ first e ∈ ran itime)
then let k = (µ s : cu | ∃ t : allstates p l •

∃ e : εint t • second e = i ∧ s .type = first e)
in interrupt p l ss cu wt k

else let k = (µ a : allstates p l | ∃ e : a.error ; f : εint a •
second f = i ∧ second e = first f • makexc e)

in interrupt p l ss cu wt k))))))

Function finish defines part of the re-calculation on receiving a terminating
event (Rule 1 above). The following describes the function informally:

• If the terminating state is a task state, then the function removes the state
from the set of time-ready states cu, the function also removes all states
representing timed exception flows of this state from the set of active states
ss and appends all states, which immediately succede this state to ss ;
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• If the terminating state is a sequential multiple instance state, then the
function removes the instantiated task state from the set of time-ready
states cu, the function also removes all states representing timed exception
flows of the multiple instance state and the multiple instance state itself
from the set of active states ss , and appends all states, which immediately
succede this state to ss ;

• If the terminating state is a parallel multiple instance state, then the
function removes all its instantiated task states from the set of time-ready
states cu, the function also removes all states representing timed exception
flows of the multiple instance state and the multiple instance state itself
from the set of active states ss , and appends all states, which immediately
succede this state to ss .

finish : PName 7→ Local 7→ PState 7→ P State 7→ PState 7→ State 7→ Process

∀ p : PName; l : Local ; ss , cu,wt : P State; s : State •
finish p l ss cu wt s =

let es = { k : ss | ∃ t : Type • (t , strans k) ∈ s .error } in

if s .type ∈ ran task
then record p l ((ss \ es) ∪ next p l (| s .out |)) (cu \ { s })wt
else if s .type ∈ ranmiseq

then let ms = (µ t : ss | t ≈S getmult p l miseq s)
it = (µ t : cu | s .type = ((first ◦ splitseq) s).type) in

record p l ((ss \ ({ms } ∪ es)) ∪ next p l (| s .out |)) (cu \ { it })wt
else if s .type ∈ ranmipar

then let ip = { i : ss ∪ cu | i .type ∈ ran task ∧ s = getmult p l mipar i } in

record p l ((ss \ ({ms } ∪ es)) ∪ next p l (| s .out |)) (cu \ { it })wt
else record p l (ss ∪ next p l (| s .out |)) (cu \ { s })wt

The function wait defines part of the re-calculation on receiving a delay event
(Rule 2 above). It removes the delaying state from ss and appends it to the
set of delayed states wt , subtracting the amount of delay from the state’s delay
range.

wait : PName 7→ Local 7→ PState 7→ P State 7→ PState 7→ State 7→ Process

∀ p : PName; l : Local ; ss , cu,wt : P State; s : State; •
wait p l ss cu wt s = record p l ss (cu \ { s }) (wt ∪ { subt s .ran.min s })

The function interrupt defines part of the re-calculation on receiving an interrupt
event (Rule 3 above). The following describes the function informally:

• If the state s is a representation of an exception of a time-ready task state,
the function applies inttask to s .

• If the state s is a representation of an exception of a time-ready sequential
multiple instance state, the function applies intmiseq to s .

• If the state s is a representation of an exception of a time-ready sequential
multiple instance state, the function applies intmipar to s .
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• If the state s is a representation of an exception of a subprocess state,
the function removes states, contained in the subprocess state, and their
timed exception representations from the set of active states ss , the set of
time-ready state cu and the set of delayed states wt .

interrupt : PName 7→ Local 7→ PState 7→ P State 7→ PState 7→ State 7→ Process

∀ p : PName; l : Local ; ss , cu,wt : P State; s : State •
interrupt p l ss cu wt s =

if ∃ c : cu; a : allstates p l • (s .type, strans s) ∈ a.error ∧ c ≈S a
then let k = (µ a : allstates p l • (s .type, strans s) ∈ a.error)

in (if ∃ c : cu • k ≈S c then inttask p l ss cu wt s
else if ∃ c : cu • k = getmult p l miseq c then intmiseq p l ss cu wt s

else intmipar p l ss cu wt s)
else let all = allexc p l (ss ∪ cu) s

all ′ = {w : all | (∃ c : cu • c ≈S w ∨ w = getmult p l c)
∧ ¬(w .type ∈ ran itime ∧ w .in = ∅) }

in (||| a : all ′ • εcan a → Skip) o
9

(record p l (rmsub ss all ∪ next p l (| s .out |)) (rmsub cu all) (rmsub wt all))

The function inttask is called when interrupt receives an exception of a time-
ready task state. It removes the state representing timed exception of the task
state from the set of active states ss and the set of time-ready states cu. It then
“activates” the states that are triggered by the exception flow by appending
them to ss , after which the function behaves as record .

inttask : PName 7→ Local 7→ P State 7→ PState 7→ P State 7→ State 7→ Process

∀ p : PName; l : Local ; ss , cu,wt : P State; s : State •
inttask p l ss cu wt s =

let k = (µ c : cu | ∃ a : allstates p l • (s .type, strans s) ∈ a.error ∧ c ≈S a)
in record p l ({ s : ss | ¬ ∃ e : k .error • strans s = second e } ∪ next p l (| s .out |))

({ c : cu | ¬ ∃ e : k .error • strans c = second e } \ { k })wt

The function intmiseq is called when interrupt receives an exception of a time-
ready sequential multiple instance state. It removes its flow-equivalent multiple
instance state from the set of active states ss , its instantiated task state from
the set of time-ready states cu, and the states representing the multiple instance
state’s timed exception flows from both ss and cu. It then “activates” the states
that are triggered by the exception flow by appending them to ss , after which
the function behaves as record .

intmiseq : PName 7→ Local 7→ PState 7→ P State 7→ PState 7→ State 7→ Process

∀ p : PName; l : Local ; ss , cu,wt : P State; s : State •
intmiseq p l ss cu wt s =

let k = (µ c : cu | ∃ a : allstates p l • (s .type, strans s) ∈ a.error ∧ a = getmult p l miseq c)
l = (µ s : ss | ∃ a : allstates p l • a = getmult p l miseq k ∧ s ≈S a)

in record p l (({ s : ss | ¬ ∃ e : l .error • strans s = second e } \ { l }) ∪ next p l (| s .out |))
({ c : cu | ¬ ∃ e : l .error • strans c = second e } \ { k })wt

The function intmipar is called when interrupt receives an exception of a time-
ready parallel multiple instance state. It removes its instantiated task states
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from the set of active states ss , the set of time-ready states cu and the set
of delayed states wt . It also removes states representing the multiple instance
state’s timed exception flows from both ss and cu. It then “activates” the states
that are triggered by the exception flow by appending them to ss , after which
the function behaves as record .

intmipar : PName 7→ Local 7→ P State 7→ P State 7→ PState 7→ State 7→ Process

∀ p : PName; l : Local ; ss , cu,wt : P State; s : State •
intmipar p l ss cu wt s =

let ks = { c : cu | ∃ a : allstates p l • (s .type, strans s) ∈ a.error ∧ a = getmult p l mipar c }
l = (µ a : allastates p l | (s .type, strans s) ∈ a.error)

in record p l ({ s : ss | ¬ ∃ e : l .error • strans s = second e } ∪ next p l (| s .out |))
({ c : cu | ¬ ∃ e : l .error • strans c = second e } \ ks) (wt \ ks)

The function allexc takes a set of states and a state representing an exception
flow and returns all the states that are contained in the subprocess state that
has the given exception flow, and the states that represent all timed exceptions
flows embedded in that subprocess state.

allexc : PName 7→ Local 7→ P State 7→ State 7→ P State

∀ p : PName; l : Local ; ss : PState; s : State •
allexc p l ss s =

(µ u : allstates p l | u.type ∈ Subs ∧ ∃ e : u.error • second e = strans s
• {w : ss | ∃ x : allsub l u • ∃ y : x .error • strans w = second y } ∪ allsub l u)

The function rmsub performs a variant set difference operation over two sets
of states such that it removes some state s of the first set based on the following
rules:

• if s is an instantiated task state of some multiple instance state in the
second set;

• if s is not an instantiated task state and there exists a flow-equivalent
state in the second set.

rmsub : P State 7→ P State 7→ PState

rmsub =
(λ ss : P State • λ tt : PState •

ss \ { s : ss | ∃ t : tt •
(t .type ∈ ranmipar ∧ s .type ∈ ran task

⇒ task∼s .type = (first ◦ mipar∼) t .type
∧ (t .type ∈ ranmiseq ∧ s .type ∈ ran task

⇒ s .type = ((first ◦ splitseq) t).type)
∧ (t .type ∈ ranmiseq ∧ s .type ∈ ranmiseq) ∨ t .type /∈ Mults

⇒ s ≈S t }

The function next is defined to return the State of which the set of incoming
transitions contains the given transition.

next : PName 7→ Local 7→ Transition 7→ State

∀ p : PName; l : Local ; t : Transition • next p l t = (µ s : allstates p l | t ∈ s .in)
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After all active states in the current time interval have either been enacted
or decided to delay its enactment, the function trun, defined at the beginning of
this section, branches and enacts all active untimed states until reaching time
stability. We define the function timer ′ to re-calculate the timing information
defined in each active timed states. The function takes the following sets of
states as arguments.

• The set of timed states that are active before time stability has been
reached (as).

• The set of timed states that are active before time stability has been
reached and have non-deterministically delayed its enactment (ws).

• The set of all timed states that are active after time stability has been
reached (ss).

timer ′ : PName 7→ Local 7→ PState 7→ P State 7→ PState 7→ Process

∀ p : PName; l : Local ; ss , as ,ws : P State •
timer ′ p l as ws ss =

let ns = { s : ss | ¬ ∃ a : as ∪ ws • s ≈S a } ∪ as
fs = (time ◦ head) (orderT

⋃
(sep (| (ns ∪

⋃
(subexc p l (| ss |))) |)))

nws = subt fs (| ns |) ∪ { s : ws | s .ran.max ≤T fs • update zeroT zeroT s }
∪ { s : ws | s .ran.max >T fs • update zeroT (s .ran.max −T fs) s }

in timer p l nws

The function creates a set of timed states nws using the three sets described
above. This set represents the set of currently active timed states. The set
contains states in as and states in a subset of ss that are not already defined in
as and ws as their duration either have changed or would have changed from
the original syntactic description. This set also contains all the states from ws
according the following rules:

• If a state in ws , of which the maximum delay (schema component ran.max )
is less than or equal to the shortest duration of states that are currently
active, the state’s duration range will be changed into instantaneous en-
actment (ran.min =T ran.max =T zeroT ) ;

• If a state in ws , of which the maximum delay (schema component ran.max )
is larger than the shortest duration of states that are currently active, the
state’s duration range’s upper bound will be subtracted from that shortest
duration.

The function then calls timer defined in Section 5.2 to order nws according to
Step 2 defined on Page 23. We define the function update to update the duration
of a timed task state with specified lower bound and upper bound.

update : Time 7→ Time 7→ TimeState 7→ TimeState

∀ t , u : Time; s : TimeState •
type ∈ ran task ⇒

update t u s =
〈| type ; s .type, in ; s .in, exit ; s .exit , out ; s .out , loopMax ; s .loopMax ,

receive ; s .receive, send ; s .send , reply ; s .reply , accept ; s .accept ,
break ; s .break , dur ; 〈|min ; t ,max ; u|〉 |〉
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6 Analysis

We recall from our earlier work [11] the untimed process semantics for a lo-
cal BPMN diagram (single participant with no message flow) is given by the
bsem p l where p and l are the diagram’s name and local specificaion envi-
ronments respectively. As a result of using the untimed CSP as the semantic
domain for both BPMN’s relative-timed and untimed semantics, we are able to
show several properties relating the untimed semantics with the relative-timed
semantics over the syntax of BPMN with timing information.

First to differentiate between BPMN diagrams with and without timing
information, we say a BPMN diagram is timed if it contains timing information
and untimed otherwise. We then define an abstraction function abstract on the
syntax of BPMN with timing information so that we may apply the untimed
semantic function to it. The abstraction may be defined as follows:

• If the BPMN state is a timed task or subprocess state (of type task , bpmn,
miseq , mipar , miseqs , mipars), then untimed semantic function will simply
ignore the timing information given by the state’s schema component dur ,
and any timed exception flow defined upon the state will be abstracted
into an untimed internal exception flow of type ierror .

• If the BPMN state is a timed start state (of type stime) then it is ab-
stracted into an untimed start state of type start .

• If the BPMN state is an intermediate delay state (of type itime), we
remove it from the BPMN diagram and join the state directly precedes
the delay state to the state directly succedes it.

abstract : PName 7→ Local 7→ PName

∀ p : PName; l : Local •
abstract p l = (µ r : PName | allstate r l = abs ((head ◦ seq)(chg(| allstate p l |))) ∅

The function abs takes a set of BPMN states representing a local diagram
with timing information and returns a set of BPMN states with that timing
information abstracted.

abs : P State 7→ PState 7→ P State

∀ ss , tt : PState •
abs ss tt =

if ss = ∅ then tt
else if head(ss).type ∈ ran itime

then let p = (µ s : State | s ∈ ss ∪ tt ∧ s .out ∩ head(ss).in 6= ∅)
s = (µ s : State | s ∈ ss ∪ tt ∧ s .in ∩ head(ss).out 6= ∅)
pt = (µ t : Transition | t ∈ (p.out ∩ head(ss).in))
s ′ = cht s ((strans ◦ head) ss) pt

in abs (squash(ss −B { p, s , head(ss) })) ((tt \ { s }) ∪ { p, s ′ })
else abs tail(ss) (tt ∪ head(ss))

The function chg essentially maps each timed variant start, task, multiple in-
stance and subprocess state to its untimed variant.
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chg : State 7→ State

chg = (λState •
let tp = if type ∈ ran stime then start else type

er = { e : error | first e ∈ ran itime • (ierror , second e) }
∪ { e : error | first e /∈ ran itime } in

〈| type ; tp, in ; in, exit ; exit , out ; out , loopMax ; loopMax ,
receive ; receive, send ; send , reply ; reply ,
accept ; accept , break ; break , dur ; dur |〉

The function cht replaces either an incoming or an outgoing/error transition
with the transition specified by the argument.

cht : State 7→ Transition 7→ Transition 7→ State

chi = (λ State • (λ s : Transition • (λ t : Transition •
let in ′ = if s ∈ in then (in \ { s }) ∪ { t } else in

out ′ = if s ∈ out then (out \ { s }) ∪ { t } else out
err ′ = if ∀ t : Type • (t , s) /∈ error then error

else let e ′ = (µ e : error | second e = s)
in (error \ { e }) ∪ { (first e, t) } in

〈| type ; tp, in ; in ′, exit ; exit , out ; out ′, loopMax ; loopMax ,
receive ; receive, send ; send , reply ; reply ,
accept ; accept , break ; break , dur ; dur |〉

We also define the function refine as the “inverse” of abstract

refine : PName 7→ Local 7→ P PName

refine = (λ p : PName; l : Local • { q : PName | p = abstract q l })

The following defines timed and untimed process instances.

Definition 6.1 Process Instance A process instance of a BPMN diagram
represents one possible execution and it is a sequence of BPMN states being
triggered, starting from a start state.

We say a process instance is complete if the sequence begins from a start state
and ends in either an end state or an abort state. We may augment this defini-
tion with the relative-timed semantics.

Definition 6.2 Timed Process Instance A process instance of a BPMN di-
agram is timed if it represents one possible execution of the diagram under the
relative-timed semantics and it is a sequence of BPMN states being triggered,
starting from a start state.

We say a process instance is timed-complete if it is timed and the sequence
begins from a start state and ends in either an end state or an abort state.

Proposition 6.3 Untimed Invariance For all BPMN diagram where the
only differences are their timing information, their untimed semantics are failures-
equivalent.
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One common behavioural specification any process would like to satisfy is
deadlock freedom. A local diagram is deadlock free when all its process instances
are complete. We define the process DF to specify a deadlock freedom spec-
ification for local diagrams where events fin.n and aborts .n denote successful
execution and interruption respectively.

DF = (u i : Σ \ {|fin, aborts |} • i → DF )

u (u n : N • fin.n → Skip) u (u n : N • aborts .n → Stop)

Definition 6.4 A local diagram is deadlock free iff the process, corresponding
to the diagram’s behaviour, failures-refines DF.

One of the results of using a common semantic domain for both timed and
untimed models is that we can preserve certain behavioural properties from
the untimed to the timed world. We achieve this by showing for any local
diagram, such that for all its timed variation, the timed coordination process is
a responsivness plug-in [9] to the enactment process. We first formally present
Reed et al.’s definition of the binary relation RespondsTo over CSP using the
stable failures model.

Definition 6.5 For any process P and Q where there exists a set of shared
events J , Q RespondsTo P iff for all trace s ∈ seq(αP ∪ αQ) and event set X

(s � αP ,X ) ∈ failures(P) ∧ (initials(P/s) ∩ J X) \ X 6= ∅
⇒ (s � αQ , (initials(P/s) ∩ J X) \ X ) /∈ failures(Q)

where initials(P/s) is the set of possible events for P after trace s and AX is a
set of events A ∪ {X }; X denotes successful termination in CSP.

Proposition 6.6 Responsiveness For any local diagram p under the relative
timed model where its enactment and coordination are modelled by processes E
and T respectively, T RespondsTo E.

Proof: (Sketch.) We proceed by considering each of the functions which define
the coordination process and show that for any local diagram p if there is a set
of states which may be performed by p’s enactment after some process instance,
then the coordination of p must cooperate in at least one of those states. We
do this by showing that if the process defined by each function cooperates with
p’s enactment, the sequential composition of them also cooperates with p’s
enactment.

A direct consequence of Proposition 6.6 is that deadlock freedom is preserved
from the untimed to the timed setting.

Proposition 6.7 Deadlock Freedom Preservation For any local diagram p
and environment l such that for all diagrams q where p = abstract q l

(DF vF bsem p l ⇒ DF vF tsem q l)

We say a behavioural property is time-independent if the following holds

Definition 6.8 Time Independence A behavioural specification Spec is time-
independent with respect to some local diagram p and environment l iff for all
diagram q such that p = abstract q l

Spec vF bsem p l ⇒ ∀ q • Spec vF tsem q l
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As a consequence of Propositions 6.6 and 6.7, and refinements over T and we
can generalise timed-independent specifications by the following result.

Proposition 6.9 A specification process Spec is time-independent with respect
to some untimed local diagram p and environment l iff

Spec vF bsem p l \ S ⇔
traces(Spec) ⊇ traces(bsem p l \ S )
∧ deadlocks(Spec) ⊇ traces(bsem p l \ S )

where traces(P) is the set of possible traces of process P and deadlocks(P) is
the set of is the set of traces on which P can deadlock.

The notion of time independence may be augmented to the behavioural
semantics itself.

Definition 6.10 A BPMN diagram, specified by the name p and environment
l , is time-independent iff for all diagrams q where p = abstract q l

bsem p l ≡F tsem q l

As intuitively expected, all sequential untimed BPMN diagrams (without par-
allel gateway states of type agate) with no timed exception flows are failures-
equivalent to their untimed counterparts.

We can now turn to the relationship of compatibility of participants in a
business collaboration between their untimed and timed semantics, note we use
the term global diagram to represent the syntactic description of a collabo-
ration and local diagram to represent the syntactic description of individual
participants. First we revisit the example given in Figure 1, which shows a
trivial BPMN diagram describing a collaboration between participant p1 and
p2. While p1 performs task A then task B , p2 performs tasks C and D in a
interleaving manner.

We define I 1 to index the processes corresponding to the states in the par-
ticipant p1.

I 1 = { start , a, b, end }

By applying the untimed semantic function upon the syntactic description of
p1, we obtain the process corresponding to it.

M 1 = M 1′ \ {|init |}
M 1′ = let C = 2 x : (αM 1′ \ {fin.1 }) • (x → C 2 fin.1 → Skip)

in ( ‖ i : I 1 • αP1(i) ◦ P1(i) |[ αM 1′ ]| C )

where for each i in I 1, the process P1(i) is as defined below and αP1(i) is the
set of possible events performed by P1(i).

P1(start) = init .a → fin.1 → Skip
P1(a) = (init .a → starts .a → msg .a.c.mi → msg .c.a.md → init .b → P1(a))

2 fin.1 → Skip
P1(b) = (init .b → starts .b → msg .d .b.mi → msg .b.d .md → init .end → P1(b))

2 fin.1 → Skip
P1(end) = init .end → fin.1 → Skip
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Similarly we define I 2 to index the processes corresponding to the states in
the participant p2.

I 2 = { start , as , c, d , aj , end }

By applying the untimed semantic function upon the syntactic description of
p2, we obtain the process corresponding to it.

M 2 = M 2′ \ {|init |}
M 2′ = let C = 2 x : (αM 2′ \ {fin.2 }) • (x → C 2 fin.2 → Skip)

in ( ‖ i : I 2 • αP2(i) ◦ P2(i)) |[αM 2′ ]| C

where for each i in I 2, the process P2(i) is as defined below and αP2(i) is the
set of possible events performed by P2(i).

P2(start) = init .as → fin.2 → Skip
P2(as) = (init .as → (init .c → Skip ||| init .d → Skip) o

9 P2(as)) 2 fin.2 → Skip
P2(c) = (init .c → msg .a.c.mi → starts .c → msg .c.a.md → init .aj1 → P2(c))

2 fin.2 → Skip
P2(d) = (init .d → msg .d .b.mi → starts .d → msg .b.d .md → init .aj2 → P2(d))

2 fin.2 → Skip
P2(aj ) = ((init .aj1 → Skip ||| init .aj2 → Skip) o

9 init .end → P2(aj )) 2 fin.2 → Skip
P2(end) = init .end → fin.2 → Skip

Their collaboration hence is the parallel composition of processes M 1 and M 2.

UC = (M 1[αM 1 || αM 2]M 2) \ {|msg |}

As described in our earlier on BPMN’s untimed semantics [11], CSP’s stable-
failures refinement ordering allows us to verifying the behaviour modelled by
a BPMN diagram against another BPMN diagram, specifying the intended
behaviour. We can describe such intended behaviour of the collaboration by
defining a behavioural specification as the BPMN diagram s1 in Figure 5. If

Figure 5: A specification of the intended behaviour of collaboration between p1
and p2

the CSP process Spec models the untimed semantics of s1, we run FDR to check
the following refinement assertion.

Spec vF UC

This assertion tells us that the behaviour of the collaboration the specification
described by Spec. According to our earlier work on compatibility [11] we can
say participants p1 and p2 are compatible with respect to the collaboration.
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Now let’s suppose all the task states (A, B , C and D) have the following
delay range (i.e. a duration between 30 minutes to 1 hour),

〈|min ; 〈| year ,month, day , hour , second ; 0,minute ; 30 |〉,
max ; 〈| year ,month, day ,minute, second ; 0, hour ; 1 |〉 |〉

we may define the timed semantics of the collaboration by defining the process
corresponding to individual participant’s coordination using the coordination
function clock defined in Section 5. Process C1 defines the coordination of
participant pool1.

C1 = init .a → C11

C11 = starts .a → init .b → C12

C12 = starts .b → init .end → C13

C13 = fin.1 → Skip

The process corresponding to the timed semantics of participant pool1 therefore
is the partial interleaving of the enactment process M 1′ (i.e. process corre-
sponding to its the untimed behaviour without hiding events corresponding to
the diagram’s control flows) and the coordination process C1.

T1 = (M 1′ |[ αM 1 ∩ αC1 ]| C1) \ {|init |}

Similarly, process C2 defines the coordination of participant pool2,

C2 = init .as → C21

C21 = (init .c → Skip ||| init .d → Skip) o
9 C22

C22 = (starts .c → init .aj1 → Skip ||| starts .d → init .aj2 → Skip) o
9 C23

C23 = init .end → fin.2 → Skip

and process T2 defines the timed semantics of participant poo2.

T2 = (M 2′ |[ αM 2 ∩ αC2 ]| C2) \ {|init |}

Hence the timed semantics of their collaboration is the parallel composition of
processes T1 and T2.

TC = (T1[αM 1 || αM 2]T2) \ {|msg |}

Since all timed states within the collaboration have uniform delay range, pro-
cess TC (the timed model), should be semantically equivalent to process UC
(the untimed model) under the stable-failures refinement ordering. This can be
proved if we run FDR to check the following assertion.

UC ≡F TC

Now let’s suppose the delay range is not uniform across the collaboration
and that task C has the following delay ranges,

〈|min ; 〈| year ,month, day , hour , second ; 0,minute ; 45 |〉,
max ; 〈| year ,month, day , second ; 0, hour ; 1,minute ; 15 |〉 |〉
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and the following process C3 describes the coordination of participant pool2.

C3 = init .as → C31

C31 = (init .c → Skip ||| init .d → Skip) o
9 C32

C32 = ((starts .d → init .aj2 → C33) u C34)
C33 = starts .c → init .aj1 → C35

C34 = (starts .c → init .aj1 → Skip ||| starts .d → init .aj2 → Skip) o
9 C35

C35 = init .end → fin.2 → Skip

and so we have process T3 defining the relative-timed semantics of participant
poo2, and process TC ′ describing the timed semantics of their collaboration.

T3 = (M 2′ |[ αM 2 ∩ αC3 ]| C3) \ {|init |}
TC ′ = (T1[αM 1 || αM 2]T3) \ {|msg |}

The following refinement assertion checks whether the collaboration behaves as
specified by the diagram s1.

Spec vF TC ′

When we ask FDR to check this assertion the following counterexample in the
form of a failure is given

(〈starts .a〉, Σ)

This tells us that after the collaboration deadlocks after participant p1 per-
formed task A. A more detailed analysis reveals that after starting task A,
participant p1 sent a message to p2’s task C . However, while task C ’s maxi-
mum delay is one minute and fifteen seconds, task D ’s maximum delay is only
one minute. Since delay are chosen internally over a range without the coorper-
ation of the environment, participant p2 can choose to perform task D before
task C without any agreement with p1.

We can now generalise the notion timed-compatibility using CSP’s respon-
siveness.

Definition 6.11 Timed-Compatibility. Given some collaboration described
by the CSP process,

C = ( ‖ i : { 1 . . n } • αTi ◦ Ti ) \ M

where n ranges over N and M is the set of events corresponding to the message
flows between its participants, whose timed behaviour are modelled by the pro-
cesses Ti . Participant Ti is timed-incompatible with respect to the collaboration
C iff for any process Ti

∀ j : { 1 . . n } \ { i } • Ti RespondsTo Tj

As for the example in above, to confirm p1 and p2 are timed-incompatible
with respect to the collaboration in Figure 1, we need also to show their cor-
responding processes T1 and T3 are deadlock-free. This can be achieved by
running the following refinement checks on the FDR tool.

DF vF T1 ∧ DF vF T3

One result of the generalisation of compatibility under a relative-timed se-
mantics is that, since responsiveness is refinement-closed under F [9], timed-
compatibility is also refinement-closed.
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Proposition 6.12 Given the participants Pi , where i ranges over some index
set, are timed-compatible in some collaboration C , their refinements under F
are also timed-compatible in C .

However refinement closure does not capture all possible compatible partici-
pants within a collaboration. Specifically, for each participant in a collaboration
there exists a timed-compatible class of participants of which any member may
replace it and preserves timed-compatibility. This class may be formalised via
the stable failures equivalence. This notion augments our earlier definitions in
the untimed setting [11].

Definition 6.13 Timed-Compatible Class Given a collaboration participant
named p, specified in some environment l , we define its timed-compatible class
of participants cfT (p, l) axiomatically as a set of pairs where each pair specifies
a BPMN diagram by its environment and the name which identifies it.

cfT : (PName × Local) 7→ P(PName × Local)

∀ p : PName; l : Local •
cfT (p, l) =

{ p′ : PName; l ′ : Local |
(((tsem p l) \ (αprocess p l \ mg p l))

vF ((tsem p′ l ′) \ (αprocess p′ l ′ \ mg p′ l ′)))
∨ (tsem p′ l ′ \ (αprocess p′ l ′ \ mg p′ l ′))

vF (tsem p l \ (αprocess p l \ mg p l)) • (p ′, l ′) }

where the function mg returns a set of CSP events describing the alphabet of
the states of a given BPMN diagram, which defines message flows.

mg : PName 7→ Local 7→ PEvent

mg = (λ p : PName • (λ l : Local •⋃
{ s : State | s ∈ (states∼(l p))
∧

⋃
(αmsg(| s .send ∪ s .receive ∪ s .reply ∪ s .accept ∪ s .break |)) 6= ∅ • αstate s l}))

This natually leads to the definition of the characteristic or the most abstract
timed-compatible participant with respect to a collaboration.

Definition 6.14 Characteristic Participant. Given the timed-compatible
class cp of some participant p, specified in some environment l , for some col-
laboration c, the characteristic participant of cp, specified by a pair of name and
the environment, is given by the function charT applied to cp.

charT : P(PName × Local) 7→ (PName × Local)

charT = (λ ps : P(PName × Local) •
(µ(p′, l ′) : (PName × Local) |

mg p′ l ′ = αprocess p′ l ′ ∧ (∀(p, l) : ps •
(tsem p′ l ′ vF (tsem p l(αprocess p′ l ′ \ mg p′ l ′))))))

The following result is a direct consequence of Proposition 6.12, and Defini-
tions 6.13 and 6.14.

Proposition 6.15 If a characteristic participant p of a timed-compatible class
cp, specified in some environment l , is timed-compatible with respect to some
collaboration c, then all participants in cp are also timed-compatible with respect
to c.
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7 Related Work

To the best of our knowledge, this paper describes the first relative-timed model
for a collaborative graphical notation like BPMN. Some attempts have been
made to provide timed model for similar notation such as UML activity dia-
grams [4, 5]. However, neither do their semantics provide the level of abstrac-
tion required to model the six-dimensional space defined by W3C standards [14]
nor do their timed model allow analyses of collaborations where more than one
diagram is under consideration.

As in the untimed setting there exists many approaches in which new process
calculi have been introduced to capture the notion of compatibility in collabo-
rations and choreographies. Notable works include Carbone et al.’s End-Point
and Glocal Calculi for formalising WS-CDL [2] and Bravetti et al.’s choreogra-
phy calculus capturing the notion of choreography conformance [1]. Both these
works tackled the problem of ill-formed choreographies, a class of choreogra-
phies of which correct projection is impossible. While the notion of ill-formed
choreographies is similar to our definition of compatibility and the notion of
contract refinement defined by Bravetti et al. [1] bears similarity to our defini-
tion of compatible class, they have defined their choreographies solely in terms
of process calculi with no obvious graphical specification notation that could be
more accessible to domain specialists.

8 Conclusion

In this paper we introduced a relative-timed semantics for BPMN in CSP to
model and reason about collaborations described in BPMN. We have adopted
a variant of two-phase functioning approach widely used in real-time systems
and timed coordination langauges like Linda [6]. We shown properties relating
the untimed and timed models of BPMN for both local and global diagrams by
using CSP’s notion of responsiveness. We have also illustrated by an example
how to use the timed model to verify compatibility between participants within
a business collaboration.

Future work will include the following:

• characterising the class of timed-independent behavioural properties suit-
able for BPMN;

• automating the semantic function, possibly in Haskell as we already have
a representation for BPMN [12];

• applying the timed model to reason about empirical studies against safety
properties [12].
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A Proofs

Proposition A.1 (Responsiveness 6.6) For any local diagram p under the
relative timed model where its enactment and coordination are modelled by pro-
cesses E and T respectively, T RespondsTo E

Proof: (Sketch.) We proceed by considering each of the functions which de-
fine the coordination clock and show that for any local diagram, its coordination
process is a responsive plug-in to its enactment process, i.e. if there is a set of
states which may be performed by p’s enactment after some process instance,
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then the coordination of p must cooperate in at least one of those states. We do
this by showing that if the process defined by each function cooperates with p’s
enactment, the sequential composition of them also cooperates with p’s enact-
ment. Note at any point if the enactment of p terminates or aborts by behaving
like fin?n → Skip and aborts?n → Stop, by definition of the coordination pro-
cess, it can also behave like those processes.

case clock : By definition every local diagram must start by triggering one of
its start or stime states outgoing transitions, and the definition of clock
begins by doing exactly that - performing external choice over all start
and stime states, after which it behaves as the process defined by stable
over the singleton set containing the state triggered after executing one
of the start states.

case stable: If p’s enactment can trigger an untimed state then stable can by
definition also trigger an untimed state, If p’s enactment can only trigger
timed states and nothing else then p is time stable and by definition the
set us is either empty or only contains states of type agate which are
preceded by timed states that have not yet been triggered. In both case
the stable will then behave as f st where f is either the function timer
or timer ′.

On the other hand if p’s enactment can trigger both timed and untimed
states then all timed states should be blocked until p is timed stable.
By definition all timed states will be in the set st and untimed states in
set us , this means stable will be able to trigger those untimed states by
performing external choice over them recursively.

Consequently stable will always be able to perform at least a subset of
states that can be performed by p until p is time stable or terminates.

case timer : When diagram p is time stable, by defintion there exists a set of
active timed state which p’s enactment is able to execute in a interleaving
manner. During time stability, timer returns a process that orders the
set of active timed states and then behaves like trun, which coordinate
the current time ready states, which is by definition a non-empty subset
of the active timed states. Since ordering states does not engage in any
CSP events at the semantic level, and timer will always behave as trun
after ordering, the function does not cause deadlock at the semantic level
if and only if trun does not cause deadlock at the semantic level.
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case trun: When all timed states are ordered, this function coordinates a set
of time ready states, this being a non-empty subset of active timed states
which p can still trigger in a interleaving manner at time stability. The
function trun returns a process which takes the shape

((P o
9 run(X )) |[X ]| Q) \ X

where process P (the execution process) is defined by the function trun ′

over the set of timed ready states, and the process Q (the recording
process) is defined by the function record over the set of timed states.
The set X is the set of coordination events, which are only communicated
between P and Q , and not to the enactment. Similar to timer , since trun
is defined in terms of trun ′ and record , it will only cause the enactment
to deadlock at the semantic level if and only if either trun ′ or record
deadlocks or they each have a set of refusals that are disjoint from each
other after they cooperate on some trace.

case trun ′: While by definition, p’s enactment may either execute and ter-
minate or interrupt and cancel timed states according to their syntactic
descriptions in an interleaving manner when time stable, trun ′ defines
the process which takes the shape

||| i : I • Pi

where I is the set of time-ready states (a non-empty subset of the active
timed states), and for any i ∈ I , Pi is a process that will either execute
or interrupt or may non-deterministically delayed state i according to
i ’s timing information. After which Pi terminates. When all Pi of I
terminate, trun ′ terminates and by definition of trun, it will then behave
as run(X ) where X is the set of internal coordination events for this set
of timed-ready states.

By definition trun ′ must delay execution of state i if i ’s minimum delay
is >T zeroT ; it may delay i ’s execution if i ’s minimum delay is =T zeroT

and maximum delay is not, and it must execute i if i ’s maximum delay
is =T zeroT . At any time it must cooperate with enactment on any
interrupt of type ierror and imessage upon i , and it must interrupt i if
it has a timed exception that expires at current duration.

Therefore trun ′ will cooperate on at non-empty set of time ready states
and will not cause deadlock to p’s enactment. By definition of record
and timer ′, States which have been delayed will be guaranteed to be
executed and terminated or interrupt and cancelled before p terminates.
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case record : While trun ′ cooperating with p’s enactment, It synchronises with
record over a set of coordination events, and engaging them recursively
until the set of time-ready states is empty where each state is either
terminated, cancelled or delayed. On engaging in these events, record
can either insert a set of new active states into the set of currently active
states if a time-ready state terminates successfully or is interrupted, or
insert a time-ready state into the set of delayed states if that state has
delayed its execution.

When each time-ready state has either terminated, cancelled or delayed,
if the set of active states are empty, this means all time ready states have
been delayed, the function then assumes the maximum of the shortest
delay over the set of delayed states ss i.e.

(µ s : ss | ∀ t : ss • s .ran.max ≤T t .ran.max • s .ran.max )

has passed and coordinates the set of delayed states by returning a pro-
cess defined by trun over the set of delayed states. This ensures that any
least one time-ready state is either executed and terminated or interrupt
and cancelled, and consequently ensures record does not cause deadlock.

On the other hand if the set of active states is not empty, then record
returns a process defined by stable over the the function timer ′, a variant
of the function timer and the set of active untimed states. By definition
an iteration of the two phase functioning approach has completed and
record will only cause deadlock if stable causes deadlock (already shown
not the case) or the function timer ′ causes deadlock.

case timer ′: This is a variant of timer and returned a process when p has
reached time stability more than once. By definition this function en-
sures a set of active timed states is coordinated along with the set of
delayed state from the previous iteration. This function does not engage
in any CSP events at the semantic level, and will always behave as trun
after ordering, the function does not cause deadlock at the semantic level
if and only if trun does not cause deadlock at the semantic level.
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