Formalisations and Applications of Business Process Modelling Notation

Peter Yung Ho Wong
Wolfson College
University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy
Michaelmas 2011
To my parents, Eddie Wong and Emma Wong Chu, for their love and support.
Abstract

Business Process Modelling Notation (BPMN) is a standardised diagram notation for modelling interactive workflow processes graphically at the design stage. The primary objective of this thesis is to provide a framework for precise specifications and formal verifications of workflow processes modelled as BPMN diagrams. We provide two behavioural semantics for BPMN in the process algebra Communicating Sequential Processes (CSP). We apply existing CSP refinement orderings to both the refinement of business process diagrams and the verification of behavioural compatibility of business process collaborations. The first semantic model is an untimed model, focusing on the control flow and communication of business processes. The second semantic model extends the first one to capture the timing aspect of behaviour.

We also consider the applications of the semantic models. The secondary objective of this thesis is to apply BPMN and the semantic models to reason about long running empirical studies (e.g. laboratory experiments, clinical trials). We introduce a declarative workflow model Empiricol for recording trials and experiments precisely, and define bidirectional transformation functions between BPMN and Empiricol. Using the transformation functions, we make graphical specification, simulation, automation and verification of trials and experiments possible. We provide two case studies on the applications of BPMN’s formalisations.
Acknowledgements

I am greatly indebted to my supervisor Jeremy Gibbons for his guidance and encouragement throughout the course of my DPhil. His constant positive attitude towards my research, and his unfailing, tireless and always-timely supports for guiding, reviewing and commenting my work have made this thesis possible. I would like to thank Jim Davies, Andrew Martin and Andrew Simpson for being my transfer and confirmation examiners, and for steering my research towards the right direction. I would also like to extend my gratitude and thanks towards my examiners Michael Butler and Andrew Simpson for their insightful comments and help in making this a better thesis.

I would like to thank my colleagues and friends at Oxford: Radu Calinescu for his helpful discussions on the CancerGrid trial model at the time of working on empirical studies modelling, Bill Roscoe for his useful advice on CSP responsiveness at the time of developing BPMN’s relative timed semantics, Ib Holm Sørensen and Edward Crichton for spending time going through Z and Booster with me, and Philip Armstrong for his help on all sorts of problem to do with CSP. I would like to say thank you to members of the Software Engineering Research Group for always willing to help and making the fourth floor a much enjoyable place to work. I would especially like to thank John and Jun with whom I have tea breaks and lunches. Special thanks go to John Lyle for printing and submitting my thesis while I was away from Oxford!

Next I would like to thank my family, particularly my parents, Eddie and Emma, who have selflessly supported me in every aspect of my life, to my brother William and Lisa for their constant hospitality, to my in-laws, Amy, Danny, Margaret and Nancy, for being understanding during the course of my thesis. I would also like to thank my friends from University of Warwick, especially to Denis and Ant, for being very good friends and constant sources of laughter.

I would like to thank my colleagues at Fredhopper and friends in Amsterdam: Adrien and Noor, Andreas, Daniel, David and Nynke, José, Nikolay, and Stephan for their professional and moral support, for creating an exciting and warm environment to work and to live, and for helping me keep going during the writing up and correction periods of this thesis. Special and huge thank you goes to my wife and best friend Wendy - for your love, continuous round-the-clock support and having undoubted confidence in me.

Finally, I wish to thank Microsoft Research for giving me financial support during the course of my DPhil, and Fredhopper for giving me the time to finish writing this thesis.
Dissemination

We have submitted and presented the following papers addressing the topics on specification of empirical studies, workflow modelling, and on formalising and verifying BPMN.

2. Peter Y.H. Wong and Jeremy Gibbons. **Formalisations and Applications of BPMN**. In Special Issue of 7th International Workshop on the Foundations of Coordination Languages and Software Architectures, Science of Computer Programming, August 2011 [WG11a]

 A preliminary version has been presented at 3rd International Workshop on Methods and Tools for Coordinating Concurrent, Distributed and Mobile Systems, June 2007.
 A shorter version of this paper has been presented at 2nd European Young Researchers Workshop on Service Oriented Computing, June 2007.

 A shorter version of this paper has been presented at 3rd European Young Researchers Workshop on Service Oriented Computing, United Kingdom, June 2008.

4 BPMN Syntax

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Preliminaries</td>
<td>25</td>
</tr>
<tr>
<td>4.1.1 Haskell Syntax</td>
<td>25</td>
</tr>
<tr>
<td>4.1.2 Z Specification</td>
<td>25</td>
</tr>
<tr>
<td>4.2 Events and Gateways</td>
<td>26</td>
</tr>
<tr>
<td>4.2.1 Haskell syntax</td>
<td>26</td>
</tr>
<tr>
<td>4.2.2 Formal Specifications</td>
<td>26</td>
</tr>
<tr>
<td>4.3 Activities</td>
<td>28</td>
</tr>
<tr>
<td>4.3.1 Haskell Syntax</td>
<td>28</td>
</tr>
<tr>
<td>4.3.2 Incoming and Outgoing Flows</td>
<td>28</td>
</tr>
<tr>
<td>4.3.3 Timing Information</td>
<td>28</td>
</tr>
<tr>
<td>4.3.4 Formal Specification of Task</td>
<td>29</td>
</tr>
<tr>
<td>4.3.5 Formal Specification of Subprocesses</td>
<td>29</td>
</tr>
<tr>
<td>4.3.6 Exception</td>
<td>32</td>
</tr>
<tr>
<td>4.4 Pools and Diagrams</td>
<td>34</td>
</tr>
<tr>
<td>4.4.1 Haskell Syntax</td>
<td>34</td>
</tr>
<tr>
<td>4.4.2 Pools</td>
<td>34</td>
</tr>
<tr>
<td>4.4.3 Diagrams</td>
<td>34</td>
</tr>
<tr>
<td>4.5 Initialisation Theorems</td>
<td>35</td>
</tr>
<tr>
<td>4.5.1 BPMN Element</td>
<td>35</td>
</tr>
<tr>
<td>4.5.2 BPMN Process</td>
<td>36</td>
</tr>
<tr>
<td>4.5.3 BPMN Pool</td>
<td>36</td>
</tr>
<tr>
<td>4.5.4 BPMN Diagram</td>
<td>37</td>
</tr>
<tr>
<td>4.6 Diagrams Construction</td>
<td>37</td>
</tr>
<tr>
<td>4.6.1 Preliminaries</td>
<td>38</td>
</tr>
<tr>
<td>4.6.1.1 States and Functions</td>
<td>38</td>
</tr>
<tr>
<td>4.6.1.2 Operation Schemas</td>
<td>39</td>
</tr>
<tr>
<td>4.6.2 Sequential Composition</td>
<td>41</td>
</tr>
<tr>
<td>4.6.3 Splits</td>
<td>42</td>
</tr>
<tr>
<td>4.6.4 Join</td>
<td>44</td>
</tr>
<tr>
<td>4.6.5 Iteration</td>
<td>44</td>
</tr>
<tr>
<td>4.6.6 Interrupt</td>
<td>47</td>
</tr>
<tr>
<td>4.6.7 Collaboration</td>
<td>49</td>
</tr>
<tr>
<td>4.6.7.1 Adding an Outgoing Message Flow</td>
<td>49</td>
</tr>
<tr>
<td>4.6.7.2 Adding an Incoming Message Flow</td>
<td>50</td>
</tr>
<tr>
<td>4.6.7.3 Promoting to Diagram</td>
<td>51</td>
</tr>
<tr>
<td>4.6.8 Example</td>
<td>52</td>
</tr>
<tr>
<td>4.6.9 Preconditions</td>
<td>52</td>
</tr>
<tr>
<td>4.6.9.1 Calculating pre SeqComp</td>
<td>52</td>
</tr>
<tr>
<td>4.6.9.2 Calculating pre AddNoRelatedErrorException</td>
<td>54</td>
</tr>
</tbody>
</table>

5 Process Semantics

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>58</td>
</tr>
<tr>
<td>5.1.1 Approach</td>
<td>58</td>
</tr>
<tr>
<td>5.1.2 Structure</td>
<td>58</td>
</tr>
<tr>
<td>5.2 Alphabet</td>
<td>58</td>
</tr>
<tr>
<td>5.3 Atomic Elements</td>
<td>60</td>
</tr>
<tr>
<td>5.3.1 Sequence Flows</td>
<td>60</td>
</tr>
<tr>
<td>5.3.2 Message Flows</td>
<td>61</td>
</tr>
<tr>
<td>5.3.3 Events</td>
<td>61</td>
</tr>
<tr>
<td>5.3.4 Gateways</td>
<td>62</td>
</tr>
<tr>
<td>5.3.5 Tasks</td>
<td>63</td>
</tr>
<tr>
<td>5.3.5.1 Fixed Number of Sequential Instances</td>
<td>64</td>
</tr>
<tr>
<td>5.3.5.2 Nondeterministic Number of Sequential Instances</td>
<td>64</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.5.3</td>
<td>Fixed Number of Parallel Instances</td>
<td>65</td>
</tr>
<tr>
<td>5.3.5.4</td>
<td>Nondeterministic Number of Parallel Instances</td>
<td>66</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Exception Flows</td>
<td>67</td>
</tr>
<tr>
<td>5.4</td>
<td>Subprocesses</td>
<td>68</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Containment</td>
<td>68</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Event-based Gateways</td>
<td>69</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Looping and Completion</td>
<td>69</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Exception Flows</td>
<td>70</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Implementation</td>
<td>72</td>
</tr>
<tr>
<td>5.5</td>
<td>Pools and Diagrams</td>
<td>72</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Pools</td>
<td>72</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Diagrams</td>
<td>73</td>
</tr>
<tr>
<td>5.6</td>
<td>Safety and Liveness</td>
<td>75</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Safety</td>
<td>75</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Liveness</td>
<td>77</td>
</tr>
<tr>
<td>5.7</td>
<td>Semantics of Composition</td>
<td>77</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Sequential Composition</td>
<td>79</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Splits</td>
<td>80</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Join</td>
<td>82</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Iteration</td>
<td>83</td>
</tr>
<tr>
<td>5.7.5</td>
<td>Exception</td>
<td>85</td>
</tr>
<tr>
<td>5.7.6</td>
<td>Collaboration</td>
<td>88</td>
</tr>
<tr>
<td>5.8</td>
<td>Compositional Development</td>
<td>91</td>
</tr>
<tr>
<td>5.8.1</td>
<td>Running Example</td>
<td>94</td>
</tr>
<tr>
<td>5.9</td>
<td>Behavioural Compatibility</td>
<td>95</td>
</tr>
<tr>
<td>5.9.1</td>
<td>Responsiveness</td>
<td>95</td>
</tr>
<tr>
<td>5.9.2</td>
<td>Compatibility</td>
<td>96</td>
</tr>
<tr>
<td>5.10</td>
<td>Summary</td>
<td>98</td>
</tr>
</tbody>
</table>

6 Modelling Relative Time

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>99</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Running Example</td>
<td>99</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Contribution</td>
<td>101</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Structure</td>
<td>101</td>
</tr>
<tr>
<td>6.2</td>
<td>Preliminaries</td>
<td>101</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Approach</td>
<td>101</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Syntactic Assumptions</td>
<td>103</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Implementation</td>
<td>103</td>
</tr>
<tr>
<td>6.3</td>
<td>Coordinating Untimed States</td>
<td>104</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Introduction</td>
<td>104</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Coordinating Atomic Elements</td>
<td>105</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Coordinating Compound Elements</td>
<td>107</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Example</td>
<td>109</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Implementation</td>
<td>109</td>
</tr>
<tr>
<td>6.4</td>
<td>Calculating Time Progression</td>
<td>110</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Preliminaries</td>
<td>111</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Timed Exception Association</td>
<td>112</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Multiple Instance</td>
<td>112</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Minimal Time Progression</td>
<td>113</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Implementation</td>
<td>115</td>
</tr>
<tr>
<td>6.5</td>
<td>Coordinating Timed States</td>
<td>116</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Introduction</td>
<td>116</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Coordinating Timer Events</td>
<td>116</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Coordinating Task Elements</td>
<td>118</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Coordinating Timed Exception Flows</td>
<td>120</td>
</tr>
</tbody>
</table>
CONTENTS

6.5.5 Example ... 122
6.5.6 Implementation .. 124
6.6 Analysis ... 124
6.7 Summary ... 125

7 Modelling Empirical Studies 128
 7.1 Introduction .. 128
 7.1.1 Motivating Example 128
 7.1.2 Contributions and Structure of Chapter 130
 7.2 Abstract Syntax of Empiricol 130
 7.2.1 Observation Group 131
 7.2.2 Prerequisites and Dependencies 133
 7.2.3 Repetition .. 133
 7.2.4 Work Group .. 134
 7.2.5 Conditions .. 135
 7.3 Transformation .. 136
 7.3.1 Activities .. 136
 7.3.1.1 Observation 136
 7.3.1.2 Procedure 136
 7.3.2 Acyclic Structured Workflows 137
 7.3.3 Repeat Clauses 140
 7.3.4 Empiricol Workflows 141
 7.3.4.1 From Empiricol Workflow to BPMN 141
 7.3.4.2 From BPMN to Empiricol Workflow 143
 7.4 On Simulation and Automation 144
 7.5 Summary ... 145

8 Case Studies .. 147
 8.1 Introduction .. 147
 8.2 Ticket Reservation Process 147
 8.2.1 Traveller .. 147
 8.2.2 Travel Agent .. 148
 8.2.3 Airline Reservation System 150
 8.2.4 Collaboration ... 151
 8.2.5 Requirements ... 152
 8.2.5.1 Requirement G1 152
 8.2.5.2 Requirement G2 153
 8.2.5.3 Requirement S1 155
 8.2.5.4 Requirement S2 155
 8.2.5.5 Requirement S3 156
 8.2.5.6 Requirement S4 156
 8.2.5.7 Requirement S5 156
 8.2.6 Compositional Development 157
 8.2.6.1 Modification 1 157
 8.2.6.2 Modification 2 159
 8.2.6.3 Modification 3 159
 8.2.6.4 Extension 160
 8.3 Clinical Trial Protocol 161
 8.3.1 Specification ... 161
 8.3.2 Modelling ... 162
 8.3.3 Requirements ... 165
 8.3.3.1 Compositional Verification 165
 8.3.3.2 Requirement N1 168
 8.3.3.3 Requirement N2 169
 8.3.3.4 Requirement N3 170
CONTENTS

8.4 Summary ... 170

9 Formalising BPMN .. 174
 9.1 Petri nets ... 174
 9.2 YAWL .. 175
 9.3 Reo ... 177
 9.4 COWS .. 178
 9.5 Summary ... 179

10 Conclusion ... 180
 10.1 Summary of Contributions 180
 10.2 Discussions .. 181
 10.2.1 Process Semantics 181
 10.2.2 Modelling Relative Time 181
 10.2.3 Modelling Empirical Studies 181
 10.3 Limitations and Future Research 182
 10.3.1 Efficiency and Methodology 182
 10.3.2 Executable Semantics 182
 10.3.3 Completeness ... 182
 10.3.4 Runtime Verification 183
 10.3.5 Schedulability 183
 10.4 Summary ... 183

A Z Specification of BPMN Syntax 184
 A.1 Preliminaries ... 184
 A.2 Events ... 184
 A.3 Activities .. 184
 A.4 Pools and Diagrams .. 185
 A.5 Initialisation Theorems 185
 A.5.1 Start and End Elements 185
 A.5.2 Process .. 187
 A.5.3 Pool .. 191
 A.5.4 Diagram .. 192
 A.6 Diagram Construction .. 194
 A.6.1 Preliminaries .. 194
 A.6.1.1 States and Functions 194
 A.6.1.2 Operation Schemas 195
 A.6.2 Collaboration .. 196

B Preconditions ... 197
 B.1 Preliminaries ... 197
 B.2 Precondition of ChangeFlow 202
 B.2.1 Preliminaries ... 202
 B.2.2 Simplification ... 202
 B.3 Precondition of AddNoRelatedErrorExceptionSub 206
 B.4 Precondition of ChangeEndType 208
 B.5 Precondition of AddMgeEvent 209
 B.6 Precondition of AddSendMgeFlowTask 210
 B.7 Precondition of AddReceiveMgeFlowTask 211
 B.8 Precondition of AddExceptionMgeFlow 212
 B.8.1 Preliminaries .. 212
 B.8.2 Simplification ... 212
 B.9 Precondition of SeqComp 214
 B.10 Precondition of Split 217
 B.11 Precondition of EventSplitOp 220
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.12 Precondition of \textit{JoinOp}</td>
<td>223</td>
</tr>
<tr>
<td>B.13 Precondition of \textit{Loop}</td>
<td>226</td>
</tr>
<tr>
<td>B.14 Precondition of \textit{EventLoop}</td>
<td>230</td>
</tr>
<tr>
<td>B.15 Precondition of \textit{AddException}</td>
<td>234</td>
</tr>
<tr>
<td>B.15.1 Precondition of \textit{AddNoRelatedErrorException}</td>
<td>234</td>
</tr>
<tr>
<td>B.15.2 Precondition of \textit{AddRelatedErrorException}</td>
<td>237</td>
</tr>
<tr>
<td>B.16 Precondition of \textit{ConnectMgeFlowDiagram}</td>
<td>243</td>
</tr>
<tr>
<td>C.1 Proofs for Section 5.8</td>
<td>252</td>
</tr>
<tr>
<td>C.2 Proofs for Section 5.9</td>
<td>258</td>
</tr>
<tr>
<td>C.3 Proofs for Section 6.6</td>
<td>258</td>
</tr>
<tr>
<td>D.1 Alphabet</td>
<td>267</td>
</tr>
<tr>
<td>D.2 Atomic Elements</td>
<td>267</td>
</tr>
<tr>
<td>D.3 Subprocesses</td>
<td>269</td>
</tr>
<tr>
<td>D.3.1 Pools and Diagrams</td>
<td>271</td>
</tr>
<tr>
<td>E.1 Preliminaries</td>
<td>272</td>
</tr>
<tr>
<td>E.1.1 Containment</td>
<td>272</td>
</tr>
<tr>
<td>E.2 Coordinating Untimed States</td>
<td>273</td>
</tr>
<tr>
<td>E.2.1 Auxiliary Functions</td>
<td>273</td>
</tr>
<tr>
<td>E.2.2 Main Functions</td>
<td>274</td>
</tr>
<tr>
<td>E.2.3 Coordinating Atomic Elements</td>
<td>274</td>
</tr>
<tr>
<td>E.2.4 Coordinating Compound Elements</td>
<td>274</td>
</tr>
<tr>
<td>E.3 Calculating Time Progression</td>
<td>275</td>
</tr>
<tr>
<td>E.3.1 Timed Exception Association</td>
<td>275</td>
</tr>
<tr>
<td>E.3.2 Multiple Instance</td>
<td>277</td>
</tr>
<tr>
<td>E.3.3 Ordering the Timed Sequence</td>
<td>277</td>
</tr>
<tr>
<td>E.4 Coordinating Timed States</td>
<td>277</td>
</tr>
<tr>
<td>F.1 Prerequisites and Dependences</td>
<td>280</td>
</tr>
<tr>
<td>F.2 Observation and Work Groups</td>
<td>282</td>
</tr>
<tr>
<td>F.3 Repetition</td>
<td>284</td>
</tr>
<tr>
<td>G.1 Acyclic Structure Workflow</td>
<td>285</td>
</tr>
<tr>
<td>G.2 Element and Sequence Flow Construction</td>
<td>287</td>
</tr>
<tr>
<td>G.3 Repeat Clauses</td>
<td>288</td>
</tr>
<tr>
<td>G.4 Connecting Sequence rules</td>
<td>288</td>
</tr>
<tr>
<td>Bibliography</td>
<td>297</td>
</tr>
</tbody>
</table>
List of Figures

1.1 A framework for analysing service centric systems and empirical studies 3
2.1 Our subset of BPMN elements .. 5
2.2 Interactions between two participant in a business process 6
2.3 A running example of a BPMN diagram 10
2.4 Haskell representation of CSP processes, Event sets and sequences 15
2.5 Haskell implementation of a finite subset of CSPm 16
2.6 An example of representing CSP definitions in Haskell 16
2.7 An example of representing CSP definitions (a) in CSPm (b) 17
4.1 Abstract syntax of BPMN subset in Haskell 24
4.2 Two activities connected by (a) two identical sequence flows and (b) a single sequence flow 25
4.3 A subprocess containing an intermediate error event 31
4.4 Representing interrupts by attaching an intermediate event to (a) a task and (b) a subprocess 32
4.5 Before-and-after illustrations of operation schemas 41
4.6 Before-and-after illustrations of operation schemas 56
4.7 Syntactic construction of the customer business process 57
5.1 A simple BPMN subprocess ... 59
5.2 An atomic task element ... 60
5.3 (a) message catch event, (b) error event 62
5.4 (a) XOR gateway and (b) AND gateway 63
5.5 (a) sequential and (b) parallel multiple instance task 65
5.6 A task element with exception flows ... 67
5.7 A subprocess ... 68
5.8 A BPMN subprocess with exception flows 71
5.9 A BPMN pool ... 73
5.10 An online shop business process .. 73
5.11 A BPMN process modelling Equation 5.20 75
5.12 A BPMN process ... 79
5.13 Applying SeqComp .. 80
5.14 Applying Splits ... 82
5.15 Applying JoinOp ... 82
5.16 Applying Loop ... 85
5.17 Applying AddNoRelatedErrorException 86
5.18 Applying AddRelatedErrorException 88
5.19 Applying ConnectMgeFlowDiagram .. 90
5.20 A non-monotonic scenario ... 91
5.21 An illustration of Condition a .. 93
5.22 An optimistic customer ... 94
5.23 Extending the customer business process 95
5.24 Adding the maintenance business process 98
6.1 A production business process .. 99
6.2 An example relative timed execution .. 102
6.3 Transition rules (1) .. 105
6.4 Transition rules (2) .. 106
6.5 Transition rules (3) .. 107
6.6 Illustrations of coordinating atomic elements 107
6.7 Transition rules (4) ... 108
6.8 Transition rules (5) ... 108
6.9 Coordinating untimed states .. 109
6.10 Illustration of postponement and delay 110
6.11 Timed exception associations ... 112
6.12 Specifying a timed exception association 112
6.13 An illustration of splitting a multiple instance task 113
6.14 Transition rule (6) ... 114
6.15 A BPMN subprocess element illustrating time progression 114
6.16 An illustration of timed elements coordination 116
6.17 Transition rules (7) ... 117
6.18 Transition rules (8) ... 118
6.19 Transition rules (9) ... 120
6.20 Transition rules (10) .. 121
6.21 Coordinating BPMN process shown in Figure 6.1 123
7.1 A screenshot of the patient study calendar 128
7.2 An XML-based data entry form .. 129
7.3 A set of clinical interventions .. 130
7.4 Abstract syntax of Empiricol .. 131
7.5 An illustration of prerequisite and dependence 133
7.6 A BPMN subprocess element modelling a RWP 137
7.7 A BPMN subprocess element modelling a procedure workflow 138
7.8 A BPMN model of the Seq construct 138
7.9 A BPMN subprocess modelling an observation workflow 140
7.10 (a) A BPMN subprocess modelling a repeat clause and (b) a BPMN subprocess modelling a list of two repeat clauses 140
7.11 A BPMN subprocess representing a single sequence rule 141
7.12 A BPMN process describing an empirical workflow 142
7.13 A BPMN pool describing the workflow of a clinical trial 144
7.14 A BPMN subprocess of an observation block 145
8.1 Traveller ... 148
8.2 Travel Agent .. 149
8.3 Reservation System .. 150
8.4 Correcting the reservation phase ... 154
8.5 Correcting the booking phase ... 154
8.6 Variations of the Traveller workflow .. 158
8.7 Customer Service .. 160
8.8 Neo-tAnGo trial schema .. 162
8.9 BPMN model of Neo-tAnGo chemotherapy 163
8.10 BPMN model of treatment arm A .. 164
8.11 Abstraction of the BPMN model of treatment arm (a) A and (b) B1 .. 164
8.12 Airline Ticket Reservation .. 171
8.13 Corrected Airline Ticket Reservation .. 172
8.14 Extended Airline Ticket Reservation ... 173
Chapter 1

Introduction

1.1 Workflow Technology

The concept of workflow has existed for a long time. A workflow procedure often began with some objectives to achieve, then someone would establish what needed to be done to achieve these objectives and thereafter assign these tasks to individuals. Usually these tasks are to be carried out in some predefined order.

With the prevalence of information technology, automated tools began to emerge to streamline workflow procedures that focus on paper-based administrative processes. Specifically, the goal of automated tools was to route the electronic version of these documents from one point to another. This was then the beginning of what is now known as workflow management systems.

As automated tools matured, and the need for enterprise application integration arose, in addition to document transfer among human participants, workflow management systems define data transfer among computer participants. They are used to define business logic, in particular to integrate heterogeneous and distributed systems. Workflows which implement business logic are called production workflows [ACKM03].

The emergence of workflow management systems offers support for composing, coordinating and monitoring the execution of manual tasks and automated services. The combination of loosely-coupled services and tasks allows workflows to define long running business processes that often exhibit concurrent behaviours. As a consequence, it is no longer possible to just hard-code this business logic into the execution environment or to implement routing procedures in an ad-hoc fashion, but instead workflow logic and coordination protocols have to be described precisely and declaratively. In order to share these descriptions across distributed environments, standards bodies [OMG, W3C, WFM] have made efforts to define a set of specification, modelling and description languages for designing and executing workflows.

Notable standards are WS-BPEL [BPE03] for services orchestration, and WSCI [W3C02] and its successor WS-CDL [KBR*05] for service choreography. These XML-based languages have well-defined syntax and vendors have subsequent implemented enactment engines. However, despite the emergence of workflow languages, no precise semantics has been provided and much related research has been focusing on formalising workflow languages using formalisms such as process algebras [BK85, Ros98, Mil99] and Petri Nets [Pet62]. Nevertheless these languages are textual and focused on implementation rather than design. A more prominent graphical design language from the standards bodies is the Business Process Modelling Notation (BPMN) [OMG08]. BPMN has been adopted by the Object Management Group [OMG] as a standardised graphical notation for modelling workflow processes. This leads to the first objective of this thesis:

Objective 1. Our first objective is to provide a framework for formal specifications and verifications of workflow processes modelled using BPMN.

Specifically we provide two process semantics for BPMN, both in the language of Communicating Sequential Processes (CSP) [Ros98]. Using CSP we show how the existing refinement orderings defined upon CSP processes can be applied to the refinement of business process diagrams and verification of the compatibility within a business collaboration; we first provide an untimed semantic model, focusing on the behaviour of control flow and concurrent interaction, we then provide a second semantic model that extends the first one with the notion of relative time in which the duration of a workflow activity is chosen nondeterministically from a bounded range.
1.2 Application: Empirical Studies

While BPMN has been employed extensively for modelling workflows of service-centric systems \cite{ZMS07}, which are composed of automated web services, we also consider the application of BPMN to modelling long running empirical studies. Empirical studies are plans describing a series of scientific procedures, which are interleaved with observations of the procedures over a period of time; these observations may be manually performed or automated, and are usually recorded in a calendar schedule. An example of a long-running empirical study is a clinical trial, where observations, specifically case report form submissions, are performed at specific points in the trial. In a clinical trial, observations are interleaved with clinical interventions on patients; precise descriptions of these observations and interventions are then recorded in a patient study calendar. For example, below is a schedule of drug administrations in a chemotherapeutic procedure adapted from the Neo-tAnGo clinical trial \cite{ECH+04}; we have omitted dosage for simplicity.

- Cyclophosphamide, every 14 days to 20 days
- Epirubicin, every 18 days to 21 days
- Paclitaxel, every 5 days to 10 days followed by Gemcitabine, up to 10 days

Currently information about observations and empirical procedures are specified in study planners such as trial designers either textually or via some XML-based data entry forms \cite{CHG+07}. However, the constraints on the order at which observations and scientific procedures are carried out may be complex, and their precise specification can be time consuming and prone to error. Going back to the example above, based on Hammond et al.’s set of safety principles \cite{HSW95}, one can envisage the safety rule: “No more than one dosage of Gemcitabine may be given after the administration of Cyclophosphamide and before Epirubicin.” However current methods of specification do not lend themselves easily to capture such properties or to verify study plans against them. We believe the method of specification may be simplified and improved by allowing specifications to be constructed formally and graphically, and visualised as workflow instances. This leads to the second objective of this thesis:

Objective 2. Our second objective is to introduce Empiricol, a declarative workflow model for recording empirical studies precisely, and to provide bi-directional transformation functions between Empiricol and BPMN, by which graphical specification, simulation, automation and verification of empirical studies are made possible.

1.3 Thesis Contribution and Outline

The contribution of this thesis is to provide a CSP-based framework for declaratively and graphically specifying both service-centric systems and empirical studies described as BPMN diagrams, and verifying these workflow processes against abstract behavioural properties via automatic refinement checking. Figure 1.1 depicts the data flow of our proposed framework. The core framework is composed of nine modules, and is implemented using the Haskell functional programming language \cite{Jon03}. These modules are grouped by a rounded dash line rectangle in the figure. Four of these modules – XML To BPMN, BPMN To XML, XML To Empiricol and Empiricol To XML – implement the XML (de)serialisations for our internal representation of BPMN and the empirical studies model. The module To CSPm, on the other hand, translates our internal representation of CSP definition to machine-readable CSP (CSPm) script, which may then be analysed using software tools such as the CSP model checker FDR \cite{For98}. The rest of this section describes the structure of this thesis and the relationship between the chapters and the framework; a journal version of this thesis has been published in Science of Computer Programming \cite{WG11a}.

In Chapter 2, we give an informal presentation of the subset of BPMN considered in this thesis, and introduce a running example, which we refer to throughout this thesis; we then give a brief introduction to Haskell, which we use to implement our semantic functions; we also present the syntax of CSP along with its traces, stable failures and refusal traces models as well as their associated refinement orderings. In addition, assuming knowledge of set theory and predicate logic, we introduce Z’s mathematical notation and its corresponding schema language; we use Z to formalise the syntax of BPMN.
Chapter 3 presents an overview of related work on formalising workflow descriptions, and specifying and visualising empirical studies.

Our main contribution starts in Chapter 4: in this chapter we provide a detailed study of the subset of BPMN syntax considered in this thesis, and provide it a formal specification in Z notation; we provide the semantic functions on this model. In this chapter we also use Z notation to formally specify a comprehensive set of operations for constructing BPMN diagrams.

In Chapter 5 we present a process semantics for BPMN in CSP. This semantics emphasizes the untimed behaviour associated with BPMN diagrams: we model each BPMN diagram as a parallel composition of CSP processes where each process models the untimed behaviour of a BPMN element contained in the diagram and the flow of control between elements is modelled as the synchronisation of the shared interface of the parallel composition. Our model permits hierarchical composition allowing formal reasoning at various levels of abstractions and semantic comparison of BPMN descriptions via CSP’s traces and failures refinements. We also study the compositionality of the operations defined in Chapter 4 in the context of this semantics, and develop a notion of behavioural compatibility between BPMN processes interacting in a business collaboration. The semantic model described in this chapter corresponds to the module BPMN To CSP (Untimed) in Figure 1.1.

In Chapter 6 we present a relative timed model for BPMN: this model augments its untimed counterpart in Chapter 5 by extending it with the notion of relative time in which the duration of an activity is chosen nondeterministically from a bounded range. The semantic model described in this chapter corresponds to the module BPMN To CSP (Timed) in Figure 1.1.

In Chapter 7 we present a generic observation workflow model, Empiricol, an extended version of the CancerGrid trial workflow model [HC06], for modelling empirical studies declaratively. This model is intended to bridge the gap between BPMN and empirical studies. We also provide bidirectional transformation functions between Empiricol and BPMN. By leveraging BPMN’s behavioural semantics provided in previous chapters, we show how empirical studies such as clinical trials may be specified graphically and verified against (oncological) safety properties. The implementation of Empiricol and its transformation functions correspond to modules BPMN To Empiricol and Empiricol To BPMN in Figure 1.1.

In Chapter 8 we present two case studies. The first case study considers the specification and
verification of an airline reservation systems. This system is adopted from the Web Service Choreography Interface specification document [W3C02]. The second case study considers the formal analysis of the participant workflow of the Neo-tAnGo clinical trial [ECH*04] using the combination of Empiricol, BPMN and its CSP semantics.

In Chapter 9 we consider current approaches to formalising BPMN, and make comparisons between them and our formalisations where possible.

We conclude this thesis in Chapter 10 with a discussion of our contribution and possible future research.
Chapter 2

Preliminaries

In this chapter we give an informal description of BPMN, and introduce a running example; we then give a brief introduction to Haskell [Jon03], which we use to implement our semantic and transformation functions; we also present the syntax and the semantics of CSP [Ros98], which we use to define the semantics of BPMN, and Z [Spi92], which we use to formalise the syntax of BPMN. Specifically, Section 2.1 introduces BPMN; Sections 2.2 and 2.3 give a brief overview of Haskell and Z, and Section 2.4 presents CSP’s syntax and semantics. In this thesis we use the typewriter font when referring to Haskell expressions and the math font when referring to non-Haskell mathematical expressions, such as those defined using Z and CSP.

2.1 Business Process Modelling Notation

![Figure 2.1: Our subset of BPMN elements](image)

Business Process Modelling Notation (BPMN) [OMG08] is a graphical modelling language for business analysts to specify business processes as workflows. It is the language that bridges the gap between visualisation of the business processes and their executable implementation such as those defined in XML-based languages like the Business Process Execution Language [BPEL03] (WS-BPEL) for implementing business processes using Web Services. We review related work on WS-BPEL in Chapter 3.

In this thesis we consider the subset of BPMN shown in Figure 2.1. Some BPMN elements have been omitted from this subset due to one of the following reasons.

1. The element is used specifically to express data flow or transactional behaviour.

2. The element may be semantically expressed using a combination of elements in the subset shown in Figure 2.1.

In this thesis we consider synchronous communications between elements in a BPMN diagram. We do not consider transactional behaviour: we believe that transactional behaviour should be studied with a formal modelling language, such as Compensating CSP [BHF05], that has transaction and compensation built into its syntax and semantics. Similarly, we do not consider data flow behaviour: data flow communications are asynchronous and should be studied with a formal modelling language, such as...
Data-Flow Sequential Processes [Jos05], that has asynchronous interactions as its primitives. In the remaining section we describe the elements in this subset and justify why an element or a particular behaviour of an element is not selected.

A BPMN diagram is made up of a collection of graphical elements. Graphical elements in BPMN are categorised into flow objects, connecting objects, swimlanes and artifacts. A flow object is either an event, an activity or a gateway. We describe connecting objects in Section 2.1.1 flow objects in Sections 2.1.2 and 2.1.4 and swimlanes and artifacts in Section 2.1.5. We introduce a running example to be used throughout this thesis in Section 2.1.6.

2.1.1 Connecting Objects

A connecting object is either a sequence flow, a message flow or an association. Each connecting object has the attributes Name, SourceRef and TargetRef. SourceRef defines a flow object as the source of the flow and TargetRef defines another flow object as the target of the flow [OMG08, Section 10.1.1]. A sequence flow is used to show the order in which activities, contained in a pool, will be performed [OMG08, Section 10.1.2]. A sequence flow is drawn as a solid line with a solid arrowhead and is depicted in Figure 2.1 by the element labelled sequence flow. A message flow is used to show the flow of messages between two participants (each represented by a BPMN pool) in a BPMN diagram. That is, it connects from a flow object of one BPMN pool to a flow object of another BPMN pool [OMG08, Section 10.1.3]. A message flow is drawn as a dashed line with a open arrowhead and is depicted in Figure 2.1 by the element labelled message flow. An association is used to associate information and data with flow objects [OMG08, Section 10.1.4]. We do not consider associations in this thesis as our semantics abstract from the internal flow of data in an individual participant (business process) of a diagram.

The informal semantics in the official specification adopts the concept of “token” [OMG08, page 36] to facilitate the discussion of how sequence flows proceed within a BPMN process. We do not consider this concept to be compatible with the goal of our semantic definitions, as a diagram’s behaviours can no longer be solely determined explicitly by the behaviour of elements it contains. For example, consider the participant Manufacturer in the BPMN diagram shown in Figure 2.2. After receiving authorisation (Authorise Payment), the manufacturer processes the order and ships out goods; this business process completes successfully as long as both of these tasks complete successfully. However this is no longer possible if, for instance, shipping out requested goods requires two tokens as a starting condition and only one token is passed through the sequence flow from processing the order to shipping out goods. While one might argue that two authorisations are required to process the order, we believe this should be represented explicitly, via multiple instance elements, for example. We therefore do not consider tokens.

2.1.2 Events

An event represents a “trigger” during the execution of the business process. Each event has a common attribute EventType, which takes the value Start, Intermediate or End denoting whether the event is at
the start, in the middle, or at the end of a process. Graphically, the types of event are distinguished by different line styles – start events are represented by a simple circle drawn with a thin black line (e.g. elements labelled as start and stime in Figure 2.1); end events are represented by a circle drawn with a single thick black line (e.g. elements labelled as end and emessage in Figure 2.1); and intermediate events are represented by a circle drawn with a double thin black line (e.g. elements labelled as itime and irule in Figure 2.1).

Intermediate events may be attached to the boundary of an activity element to represent exceptions that can interrupt that activity [OMG08, Section 10.2.2]. More than one intermediate event may be attached to a single activity element. The execution of this activity element may then be interrupted when one of these events is triggered, which in turn triggers an exception flow.

Each event is associated with a trigger [OMG08, Tables 9.4, 9.6 and 9.8]. Its value is represented by a corresponding marker. For our subset of BPMN we consider triggers None, Message, Timer, Rule and Error.

2.1.2.1 Message events

A message event either sends or receives a message from another BPMN pool (business process) in the same BPMN diagram. Message events are shown in Figure 2.1 as elements labelled smessage (start), imessage (intermediate) and emessage (end). While there are attributes associated with the content of messages and the messaging implementation, we do not consider them in this thesis. Each start (smessage) and intermediate (imessage) message event may have at most one incoming message flow, and each end (emessage) message event may have at most one outgoing message flow. Message events may also have no associated message flow, in particular when the BPMN diagram has only one BPMN pool.

2.1.2.2 Timer Events

A timer event denotes a time duration. It is triggered by either a time-stamp (e.g. 16:48, 15th August 2008) or a duration (e.g. 7 days). Timer events are shown in Figure 2.1 as elements labelled stime (start), and itime (intermediate); there is no end timer event in BPMN. A timer event has either a TimeDate attribute, specifying an absolute time stamp as the deadline upon which the event is triggered, or a TimeCycle attribute, specifying a relative period of delay after which the event is triggered. Since our timed model treats time relatively (see Chapter 6 for details of the timed model), we only consider the TimeCycle attribute.

2.1.2.3 Rule Events

A rule event specifies either a rule or a Boolean condition. It is triggered when its rule or condition becomes true. Rule events are shown in Figure 2.1 as elements labelled srule (start) and irule (intermediate). There is no end rule event in BPMN. Each rule event has a RuleName attribute to record its condition. While our semantic definitions abstract away from the evaluation of conditions, for the purpose of recording information about empirical studies, we record rule conditions syntactically. We consider empirical studies in Chapter 7.

2.1.2.4 None Events

A none event is an event without any triggers. These events are depicted in Figure 2.1 by elements labelled start and end respectively. They represent the start and the end of a business process respectively. In this thesis we refer to these events as non-trigger events. While BPMN also has a non-trigger intermediate event, we do not consider it because it does not have an explicit behavioural description.

2.1.2.5 Error Events

An error event represents an error during the business process execution. In BPMN an error event may be triggered at the end of or during a business process execution. In Figure 2.1 error events are depicted by elements labelled error (end) and ierror (intermediate). An error event has an ErrorCode attribute for identifying a particular error of the process containing the event and throws an error defined by that ErrorCode when triggered. An intermediate error event may be attached to the boundary of an activity
element, and in which case it catches a specific error defined by its ErrorCode and is thrown by an error event in that activity; if no ErrorCode is specified, an intermediate error may catch any error thrown from that activity.

2.1.3 Activities

An activity element denotes work in a business process. Each activity is drawn as a rectangle with rounded corners. An activity may be atomic or compound. An atomic activity is a task and is depicted in Figure 2.1 by the element labelled task. A task is drawn as a rectangle with at most one marker inside it to represent its type. A compound activity is a subprocess. A subprocess is itself another business process and is made up of other BPMN elements. A subprocess can be in a collapsed view, hiding its details, or it can be in an expanded view, showing its details.

To record an activity in our abstract syntax, we consider two attributes ActivityType and LoopType [OMG08, page 50]. ActivityType takes one of the values Task (atomic) or SubProcess (compound), and LoopType takes one of the values None and MultiInstance. The value None indicates that the activity is instantiated once every time it is triggered, while the value MultiInstance indicates that the activity is instantiated multiple times every time it is triggered.

An activity element also has attributes for recording its flow of data as well as other internal properties. For example, an activity element may be associated with one or more properties which are “local” to it and are only for use within the processing of the activity. We do not consider these attributes; our semantic definitions aim to model the communication of the activity and treat the execution of each atomic activity (task) as instantaneous.

A multiple instance activity repeats itself for a number of times according to the evaluation of its attributes. Each multiple instance activity has attributes Ml_condition, LoopCounter, Ml_ordering, Ml_flowCondition and ComplexMl_flowCondition. Each multiple instance activity evaluates its loop condition (Ml_condition) once before the activity is performed; this expression returns the number of times that the activity is to be repeated [OMG08 Section 9.4.1.2]. There are two types of multiple instances: instances of the activity may be performed either sequentially or in parallel. This variation is determined by the attribute Ml_ordering.

The element labelled miseq in Figure 2.1 depicts a sequential multiple instance task, and the element labelled miseqs depicts a sequential multiple instance subprocess. Similarly, the element labelled mispar depicts a parallel multiple instance task, and the element labelled mipars depicts a parallel multiple instance subprocess.

The attributes Ml_flowCondition and ComplexMl_flowCondition are used to determine how a multiple instance activity’s outgoing sequence flow is triggered. Ml_flowCondition may be set to the value None, One, All or Complex. If Ml_flowCondition is None then the activity’s outgoing sequence flow is triggered every time after one of the activity instances has completed execution; if the value is One then the activity’s outgoing sequence flow is triggered once after the first activity instance has completed execution; if the value is All then the outgoing sequence flow is triggered once after all activity instances have completed execution, and if the value is Complex then the expression defined by the attribute ComplexMl_flowCondition determines when and how many times the activity’s outgoing sequence flow is triggered. We do not consider the flow conditions None and Complex, since our semantic definitions abstract from process data.

2.1.4 Gateways

Gateway elements are used to control how sequence flows interact as they converge and diverge in a BPMN diagram [OMG08 Section 9.5]. A gateway is drawn as a diamond shape; different internal markers correspond to different types of gateways. Each gateway has a common attribute GateType, which takes the value XOR, OR, Complex or AND, representing exclusive, inclusive, complex or parallel respectively. Furthermore, each exclusive gateway has an attribute XORType, which may be set to Data or Event. All gateways in our subset must have at least one incoming sequence flow and at least one outgoing sequence flow. We now provide an analysis of the types of gateway.
2.1.4.1 Exclusive (XOR) and Parallel (AND) Gateways

A data-based XOR gateway is depicted in Figure 2.1 by the element labelled xgate. This type of gateway triggers one of its outgoing sequence flows depending on the internal evaluation of conditions associated to each outgoing sequence flow [OMG08, Section 9.5.2.3]. Our semantic definitions abstract from these conditions to capture the behaviour of all possible executions of BPMN diagrams.

An event-based XOR gateway is depicted in Figure 2.1 by the element labelled exgate. This type of gateway triggers one of its outgoing sequence flows depending on the events that occur at the target of the gateway’s outgoing sequence flows; these could be receiving a message or an elapsed duration. As a consequence, the targets of its outgoing sequence flows may either be an intermediate event or a task. Both data-based and event-based exclusive gateway trigger their outgoing sequence flow when one of their incoming sequence flows is triggered [OMG08, Section 9.5.2].

An AND gateway triggers all of its outgoing sequence flows when all of its incoming sequence flows are triggered [OMG08, Section 9.5.5]. An AND gateway is depicted as the element labelled agate in Figure 2.1.

2.1.4.2 Inclusive (OR) and Complex gateways

We do not include complex or inclusive gateways. The complex gateway is a syntactic sugaring to combine a set of connected simple gateways [OMG08, page 82]. In an inclusive (OR) gateway, the evaluation of condition expressions of one of its outgoing sequence flows does not exclude the evaluation of condition expressions of its other outgoing sequence flows. This means it is not possible to provide a compositional behavioural model for the merging effect on the gateway’s incoming sequence flows. Even the most efficient method that is currently available depends on a recursive algorithm to investigate the properties of elements that come before the source of the gateway’s incoming sequence flows at runtime [DGHW07].

2.1.5 Swimlanes and Artifacts

A swimlane [OMG08, Section 9.6] is either a pool or a lane. A pool represents a participant in a business process; a participant may be an entity such as a company. A lane is a sub-partition within a pool. We do not consider lanes in this thesis as they neither influence the behaviour of elements in the pool nor its sequence and message flows. A BPMN pool is depicted in Figure 2.1 as the element labelled pool. A BPMN diagram, which represents a complete business process, consists of one or more BPMN pools. Each BPMN pool has the attribute Process that records the business process contained in that pool. While each diagram has other attributes, such as ModificationDate, for the purpose of formalising BPMN’s syntax and semantics, our abstract syntax records only attributes Id, which identifies the BPMN diagram, and Pools, which records the set of pools in the diagram. Similar to lanes, artifacts provide the capabilities of showing additional information about a business process that is not directly related to the sequence or message flows of the business process [OMG08, Section 9.7].

2.1.6 Running Example

In this thesis we consider the BPMN diagram shown in Figure 2.3 as a running example. The diagram describes the business process of an online shop promoting a sale. Specifically, it is a business collaboration between an online shop and a customer.

2.1.6.1 Online Shop

The online shop business process begins by sending a message to the customer about a sale offer (Send Offer). It then waits until it receives either a confirmation (Receive Confirmation) or a decline (Receive Decline) from the customer. If a decline is received, the online shop business process ends. If a confirmation is received, the online shop receives payment from the customer, sends the invoice and dispatches the goods to her.

2.1.6.2 Customer

The customer’s business process begins by receiving a message from the online shop about a certain promotion item. She may either accept (Accept Offer) or decline (Decline Offer) the offer. If she decides
to accept the offer, she sends payment to the shop (Send Payment), then waits for her goods (Receive Goods) and invoice (Receive Invoice) to arrive — in either order. If she declines the offer, the business process ends.

2.2 Haskell and Z

Haskell is a functional programming language [Jon03]. In this section we concentrate on introducing features that are required for defining BPMN’s abstract syntax and semantic functions.

A Haskell program may be thought of as a collection of functions in which each function is given a type and a definition. For example below is the definition of the function `factorial`, which takes some positive integer \(n \) and returns its factorial \(n! \).

\[
\begin{align*}
\text{factorial} & : \text{Integer} \rightarrow \text{Integer} \\
\text{factorial} \ 0 & = 1 \\
\text{factorial} \ n & = n \cdot \text{factorial} \ (n-1)
\end{align*}
\]

Haskell allows functions to be defined recursively: in the case of the function `factorial` for each \(n \neq 0 \), `factorial(n)` is defined in terms of `factorial(n-1)`. It also provides a facility for pattern matching: in the above example, the function `factorial` tries to match each input value \(n \) of type `Integer` against the integer value 0; if that succeeds it returns the value 1; otherwise it matches anything else and returns the value \(n \cdot \text{factorial} \ (n-1) \).

A Haskell program may use any of the predefined data types. For example, the data type `Integer` is a predefined data type. It may also contain user-defined data types, a data type takes the form `data T a b ... = A | B a | C b a ...` where \(T \) is its name, parameterised by a finite (possibly empty) list of unique type parameters. Each data type is defined by a list of distinct constructors, each of which describes a different way of creating values of that type. Each constructor may contain zero or more parameters. For example the predefined data type `Maybe` is defined as `data Maybe a = Nothing | Just a`, where `Nothing` is a nullary constructor and `Just` is a constructor which takes a value of type `a`.

In general to retrieve the value of one of the type parameters of a given data type value, one could use pattern matching. For example, given `data D = D Int`, one may define function \(f :: D \rightarrow \text{Int} \) such that \(f \ (D \ n) = n \). Alternatively one could define the data type as a record type of the following form,

\[
\begin{align*}
\text{data T a b ...} & = A \ | \ B \ (f :: a) \ | \ C \ (g :: b, h :: a) \ ...
\end{align*}
\]

where \(f, g \) and \(h \) are field names. For example \(D \) may be defined as `data D = f :: Int` and \(f :: D \rightarrow \text{Int} \) will be automatically provided as a function on \(D \) to retrieve the integer parameter.
In this thesis we use Haskell data types to implement the abstract syntax of BPMN and CSP. The semantic functions are implemented as transformations from one data type to another.

2.3 Z Notation

The Z notation \cite{Spi92} is a state-based specification language. It is based on typed set theory coupled with a structuring mechanism: the schema. A schema is a pattern of declaration and constraint, and may be defined using the following syntax:

\[
\begin{array}{c}
\text{Name} \\
\text{components} \\
\text{predicate}
\end{array}
\]

or equivalently \(\text{Name} \equiv [\text{components} \mid \text{predicate}] \), where its predicate part may have constraints upon the values of its components. If \(S \) is a schema then \(\theta S \) is the characteristic binding of \(S \) in which each component is associated with its current value. Schemas can be used as declarations, for example, the lambda expression \(\lambda S \bullet t \) is a function from the binding of schema \(S \) to the type of term expression \(t \).

Z also provides a syntax for set expressions, predicates and definitions. A type can be either a basic type or a free type. A basic type is a maximal set within the specification and is defined by declaring its name \[\text{Type} \], and a free type is introduced by identifying each of its distinct constants and constructor functions.

\[
\text{Type} ::= \text{element}_1 \mid \ldots \mid \text{element}_m \mid \text{fun}_1 \langle \text{term}_1 \rangle \mid \ldots \mid \text{fun}_n \langle \text{term}_n \rangle
\]

An alternative way to define an object in a Z specification is by abbreviation of the form \(\text{symbol} ::= \text{term} \). An abbreviation introduces a new global constant. The value of the symbol on the left is given by the term on the right, and its type is the same as the type of the term.

An axiomatic definition introduces new symbols to denote elements of a certain type satisfying certain predicate constraint. For example, the following introduces a new symbol \(x \), an element of \(S \), satisfying predicate \(p \).

\[
\begin{array}{c}
\text{x : S} \\
\text{p}
\end{array}
\]

We could use this feature to define functions, relations and predicates. For example, the function \(\text{double} \) is defined such that for every natural number \(m \) there is a unique number \(n \) which is double the value of \(m \).

\[
\begin{array}{c}
\text{double : N \rightarrow N} \\
\forall m, n : N \bullet m \Rightarrow n \in \text{double} \Leftrightarrow n = m + m
\end{array}
\]

Although we choose Haskell for implementing the abstract syntax of our subset of BPMN elements and its programming language constructs allow us to specify some of the structural constraints about the syntax, the schema calculus in Z allows us to specify constraints of the syntax without providing an implementation. For example, for any function \(f \) we could simply write \(f^{-1} \) for its inverse. The schema calculus also provides a natural way to group constraints about a particular type of element.

2.4 Communicating Sequential Processes

In CSP \cite{Hoa85, Ros98}, a process is defined as a pattern of possible behaviour; a behaviour consists of events which are atomic and synchronous between the environment and the process. The environment in this case can be another process. Events can be compound, constructed using \(\cdot \), the dot operator; compound events may behave as channels communicating data objects synchronously between the process and the environment. For example \(a \cdot b \) is a compound event that communicates value \(b \) through channel
a. The set of events which process P can perform is P’s alphabet, denoted as αP. Below is the syntax of CSP.

\[
P ::= P \parallel P \mid P \parallel A \parallel B \mid P \parallel A \mid P \parallel \Delta P \mid P \parallel P \mid P \parallel P \mid P \parallel P = P \mid e \rightarrow P \mid \text{Skip} \mid \text{Stop}
\]

Process $P \parallel Q$ denotes the interleaving of processes P and Q. Process $P \parallel A \parallel B \parallel Q$ denotes parallel composition, in which P and Q can evolve independently but must synchronize on every event in the set $A \cap B$; the set A is the alphabet of P and the set B is the alphabet of Q, and no event in A and B can occur without the cooperation of P and Q respectively. Process $P \parallel A \parallel Q$ denotes the partial interleaving of processes P and Q, in which P and Q can evolve independently but synchronize on events in set A. We write $\parallel i : I \bullet P(i)$, $\parallel i : I \bullet \alpha P(i) \circ P(i)$ and $\parallel [A] i : I \bullet P(i)$ to denote an indexed interleaving, parallel combination and partial interleaving of processes $P(i)$ for i ranging over I. We provide the following usage example for parallel operators where $I = \{1, 2, 3\}$.

\[
\parallel i : \{1, 2, 3\} \bullet P(i) \equiv P(1) \parallel P(2) \parallel P(3)
\]

\[
\parallel i : \{1, 2, 3\} \bullet \alpha P(i) \circ P(i) \equiv P(1)\parallel \alpha P(1) \mid \alpha P(2) \cup \alpha P(3)\parallel P(2)\parallel \alpha P(2) \mid \alpha P(3)\parallel P(3)
\]

\[
\parallel [A] i : \{1, 2, 3\} \bullet P(i) \equiv P(1)\parallel [A] P(2)\parallel [A] P(3)
\]

Process $P \parallel A$ is obtained by hiding all occurrences of events of P in set A from the environment. Process $P \parallel A \parallel Q$ denotes a process initially behaving as P, but may be interrupted at any time and behave as Q. Process $P \parallel Q$ denotes the external choice between processes P and Q; the process is ready to behave as either P or Q. An external choice over a set of indexed processes is written as $\parallel i : I \bullet P(i)$. Process $P \parallel Q$ denotes the internal choice between processes P or Q, ready to behave as at least one of P and Q, the choice being made without cooperation from the environment. Similarly an internal choice over a set of indexed processes is written as $\parallel i : I \bullet P(i)$.

Process $P \parallel Q$ denotes a process ready to behave as P; after P has successfully terminated, the process is ready to behave as Q. We write $\parallel i : S \bullet P(i)$ to denote an indexed sequential composition of processes $P(i)$ where i ranges over the set S. Process $e \rightarrow P$ denotes a process capable of performing event e, after which it behaves like process P. The process Stop is a deadlocked process and the process Skip is a successful termination.

2.4.1 Traces Model

CSP has three standard behavioural models for its semantics: the traces, stable failures and failures-divergences models; their respective refinement orderings are in order of increasing precision [Ros98]. Below is the trace semantics of individual CSP operators where $\mathcal{T} [\cdot]$ is a semantic function such that $\mathcal{T} [P]$ maps the CSP process P to its set of possible traces of type $P(\text{seq } \Sigma)$, and Σ is the set of all possible events. The special event \triangledown represents a successful termination.

\[
\mathcal{T} [P \parallel Q] = \bigcup\{tr_p, tr_q : \text{seq } \Sigma \mid tr_p \in \mathcal{T} [P] \land tr_q \in \mathcal{T} [Q] \bullet tr_p || tr_q\}
\]

\[
\mathcal{T} [P \parallel A \parallel Q] = \bigcup\{tr_p, tr_q : \text{seq } \Sigma \mid tr_p \in \mathcal{T} [P] \land tr_q \in \mathcal{T} [Q] \bullet tr_p \parallel [A] \parallel tr_q\}
\]

\[
\mathcal{T} [P \parallel A \parallel B \parallel Q] = \{tr : \text{seq } \Sigma \mid \text{ran } tr \subseteq A \cup B \land tr \mid A \in \mathcal{T} [P] \land \text{ran } B \in \mathcal{T} [Q]\}
\]

\[
\mathcal{T} [P \parallel \Delta A] = \{tr : \text{seq } \Sigma \mid tr \in \mathcal{T} [P] \bullet tr \mid (\Sigma \setminus A)\}
\]

\[
\mathcal{T} [P \parallel \Delta Q] = \mathcal{T} [P] \cup \{tr_p : \mathcal{T} [P] ; tr_q : \mathcal{T} [Q] \mid \triangledown \notin \text{ran } tr_p \bullet tr_q \}
\]

\[
\mathcal{T} [P \parallel \Delta] = \mathcal{T} [P] \cup \mathcal{T} [Q]
\]

\[
\mathcal{T} [P \parallel \Delta Q] = \mathcal{T} [P] \bullet \mathcal{T} [Q]
\]

\[
\mathcal{T} [P \parallel \Delta] = \{\triangledown\} \cup \{tr_p : \mathcal{T} [P] \bullet \triangledown \}
\]

\[
\mathcal{T} [\text{Skip}] = \{\triangledown\}
\]

\[
\mathcal{T} [\text{Stop}] = \{\}
\]
The trace $t \upharpoonright R$ denotes t restricted to events in R, and is defined by the following clauses.

\[
\begin{align*}
(\emptyset \upharpoonright R) & = \{\emptyset\} \\
(t \upharpoonright (a) \upharpoonright R) & = (t \upharpoonright R) \upharpoonright (a \in R) \\
(t \upharpoonright (a) \upharpoonright R) & = t \upharpoonright R \ (a \notin R)
\end{align*}
\]

The term $s \parallel t = s \parallel [\emptyset] t$ where $s \parallel [R] t$ the set of interleavings of traces s and t, synchronizing on events in R, and is defined as follows for all $s, t \in \Sigma, x, x' \in R$ and $y, y' \in \Sigma \setminus R$.

\[
\begin{align*}
s \parallel [R] t & = t \parallel [R] s \\
(\emptyset) \parallel [R] (\emptyset) & = \{\emptyset\} \\
(\emptyset) \parallel [R] (x) & = \emptyset \\
(\emptyset) \parallel [R] (y) & = \{(y)\} \\
(x) \upharpoonright s \parallel [R] (y) \upharpoonright t & = \{u : \text{seq } X \mid u \in (x) \upharpoonright s \parallel [R] t \bullet (y) \upharpoonright u\} \\
(x) \upharpoonright s \parallel [R] (x) \upharpoonright t & = \{u : \text{seq } X \mid u \in s \parallel [R] t \bullet (x) \upharpoonright u\} \\
(x) \upharpoonright s \parallel [R] (x') \upharpoonright t & = \emptyset \ (x \neq x') \\
(y) \upharpoonright s \parallel [R] (y') \upharpoonright t & = \{u : \text{seq } X \mid u \in (y) \upharpoonright s \parallel [R] t \bullet (y') \upharpoonright u\} \cup \\
& \{u : \text{seq } X \mid u \in (y) \upharpoonright s \parallel [R] t \bullet (y') \upharpoonright u\} \\
\end{align*}
\]

Using the traces semantics we can reason about safety properties of CSP processes. When considering safety properties, we are interested to know whether CSP processes are able to perform anything unsafe, that is, perform any behaviour that is outside their safety specification. Formally, process Q traces-refines P is expressed as follows:

\[
P \subseteq_T Q \Leftrightarrow T[P] \supseteq T[Q]
\]

For example let $P = a \rightarrow b \rightarrow \text{Stop}$ be our safety requirement, then CSP process $Q = a \rightarrow \text{Stop}$ would satisfy P. More precisely, any CSP processes satisfying this may either perform nothing or only perform a, or a followed by b. Semantically this means the traces of any process satisfying this requirement must be a subset of the traces of P.

Furthermore, two CSP processes are traces equivalent if and only if they traces-refine each other:

\[
P \equiv_T Q \Leftrightarrow P \subseteq_T Q \land Q \subseteq_T P
\]

2.4.2 Stable Failures Model

In this thesis we concentrate on the stable failures model because the traces model does not record the availability of events. Notable is the semantic equivalence of processes $P \square Q$ and $P \sqcap Q$ under the traces model. In order to distinguish these processes, it is necessary to record not only what a process can do, but also what it can refuse to do. This information is preserved in refusal sets, sets of events a process in a stable state can refuse to communicate. A failure of a process is a pair of which the first element is a trace of the process and the second is a refusal set of the process after that trace. The failures semantics of individual CSP operators is defined as follows, where $F[\cdot \parallel \cdot]$ is a semantic function that maps a CSP expression to its set of failures $\mathbb{F}(\text{seq } \Sigma \times \mathbb{P} \Sigma)$.
\[\{ \text{tr}_p, \text{tr}_q, \text{tr} : \text{seq } \Sigma; \ \text{ref}_p, \text{ref}_q, \text{ref} : \Sigma \} \]

\[
\mathcal{F}[P] = \big\{ (\text{tr}_p, \text{tr}_q, \text{tr} : \text{seq } \Sigma; \ \text{ref}_p, \text{ref}_q, \text{ref} : \Sigma) \mid (\text{tr}_p, \text{ref}_p) \in \mathcal{F}[P] \land (\text{tr}_q, \text{ref}_q) \in \mathcal{F}[Q] \land \text{tr} \in \text{tr}_p \parallel \text{tr}_q \land \text{ref}_p \setminus \{ \text{\textit{ref}} \} = \text{ref}_q \setminus \{ \text{\textit{ref}} \} \land \text{ref} = \text{ref}_p \cup \text{ref}_q \cup \{ \text{tr}, \text{ref} \} \big\}
\]

\[
\mathcal{F}[P] = \big\{ (\text{tr}_p, \text{tr}_q, \text{tr} : \text{seq } \Sigma; \ \text{ref}_p, \text{ref}_q, \text{ref} : \Sigma) \mid (\text{tr}_p, \text{ref}_p) \in \mathcal{F}[P] \land (\text{tr}_q, \text{ref}_q) \in \mathcal{F}[Q] \land \text{tr} \in \text{tr}_p \parallel \text{tr}_q \land \text{ref}_p \setminus (\text{\textit{ref}}) = \text{ref}_q \setminus (\text{\textit{ref}}) \land \text{ref} = \text{ref}_p \cup \text{ref}_q \cup \{ \text{tr}, \text{ref} \} \big\}
\]

\[
\mathcal{F}[P] = \big\{ (\text{tr}_p, \text{tr}_q, \text{tr} : \text{seq } \Sigma; \ \text{ref}_p, \text{ref}_q, \text{ref} : \Sigma) \mid \text{ran } \text{tr} \subseteq \text{\textit{ref}} \land \text{ran } \text{tr} \subseteq \text{\textit{ref}} \in \mathcal{F}[P] \land (\text{\textit{ref}} \in \mathcal{F}[Q] \land \text{ref} \cap (\text{\textit{ref}} \cap (A \cup \{ \text{\textit{ref}} \})) = \text{ref}_p \cap (A \cup \{ \text{\textit{ref}} \}) \land \text{ref} = \text{ref}_p \cup \text{ref}_q \cup \{ \text{tr}, \text{ref} \} \big\}
\]

\[
\mathcal{F}[P] = \big\{ (\text{tr}_p, \text{tr}_q, \text{tr} : \text{seq } \Sigma; \ \text{ref}_p, \text{ref}_q, \text{ref} : \Sigma) \mid \text{ran } \text{tr} \subseteq \text{\textit{ref}} \land \text{ran } \text{tr} \subseteq \text{\textit{ref}} \in \mathcal{F}[P] \land (\text{\textit{ref}} \in \mathcal{F}[Q] \land \text{ref} \cap (\text{\textit{ref}} \cap (A \cup \{ \text{\textit{ref}} \})) = \text{ref}_p \cap (A \cup \{ \text{\textit{ref}} \}) \land \text{ref} = \text{ref}_p \cup \text{ref}_q \cup \{ \text{tr}, \text{ref} \} \big\}
\]

\[
\mathcal{F}[P] = \big\{ (\text{tr}_p, \text{tr}_q, \text{tr} : \text{seq } \Sigma; \ \text{ref}_p, \text{ref}_q, \text{ref} : \Sigma) \mid \text{ran } \text{tr} \subseteq \text{\textit{ref}} \land \text{ran } \text{tr} \subseteq \text{\textit{ref}} \in \mathcal{F}[P] \land (\text{\textit{ref}} \in \mathcal{F}[Q] \land \text{ref} \cap (\text{\textit{ref}} \cap (A \cup \{ \text{\textit{ref}} \})) = \text{ref}_p \cap (A \cup \{ \text{\textit{ref}} \}) \land \text{ref} = \text{ref}_p \cup \text{ref}_q \cup \{ \text{tr}, \text{ref} \} \big\}
\]

Using the stable failures semantics, we can reason about liveness properties of CSP processes. When considering liveness properties, we are interested to know whether CSP processes are able to perform some specific useful activity, that is, that they cannot refuse behaviour specified by their liveness specification. Specifically process \(Q \) failures-refines process \(P \) if every failure of \(Q \) is also a failure of \(P \).

\[P \sqsubseteq_F Q \Leftrightarrow T[P] \supseteq T[Q] \land \mathcal{F}[P] \supseteq \mathcal{F}[Q] \]

For example let process \(P = a \rightarrow b \rightarrow \text{Stop} \) be a liveness specification, then process \(Q = a \rightarrow \text{Stop} \) would not satisfy this requirement; that is, \(Q \) does not failures-refine \(P \). This is because while process \(P \) cannot refuse performing task \(a \) after \(a \), \(Q \) terminates after \(a \) and so refuses everything, including \(b \). Conversely, consider the process \(R = a \rightarrow \text{Stop} \parallel b \rightarrow \text{Stop} \) to be a liveness specification; it states that the process must either perform task \(a \) or \(b \), the choice of which is nondeterministic. Therefore any process satisfying this must not be able to refuse the execution of both \(a \) and \(b \). In this case \(Q \) would satisfy it, that is, it failures-refines \(R \).

Similar to traces refinement, two processes are failures equivalent if and only if they failures-refine each other:

\[P \equiv_F Q \Leftrightarrow Q \sqsubseteq_F P \land P \sqsubseteq_F Q \]

Note that we do not use the failures-divergences model in this thesis because we do not consider divergent behaviour in workflow processes.
2.4.3 Step-wise Refinement

Under the failures refinement, we say process \(P \) is deadlock-free if it failures-refines the characteristic process satisfying deadlock freedom. A process \(P \) is deadlock-free if none of its failures has the form \((s, \Sigma \cup \{\top\})\), where \(s \in \text{traces}(P) \) such that \(s \) is not of the form \(t \prec \langle \top \rangle \), that is, after every nonterminating trace, it must not refuse all events. The characteristic deadlock free process, labelled \(DF \), is defined as follows:

\[
DF = (\forall e : \Sigma \bullet e \rightarrow DF) \sqcap \text{Skip}
\]

(2.1)

and the deadlock freedom assertion on process \(P \) may be expressed as the following refinement.

\[
DF \sqsubseteq_F P
\]

In fact, under both traces and failures refinements, the characteristic process of the specification is the most nondeterministic process satisfying the specification. CSP refinements permit a process to be a specification as well as a model of implementation. Another property that comes for free with both refinement orderings is transitivity, which means one could move gradually from specification to an acceptable implementation, a series of processes \(P_1 \ldots P_n \) such that \(P_i \doteq 1 \) is a refinement of \(P_i \) for \(i \in \{1 \ldots n - 1\} \).

\[
P_1 \sqsubseteq \ldots \sqsubseteq P_n
\]

This is known as step-wise refinement [Wir71]. In general refinement assertions made on CSP processes with finite states may be automatically verified via model checking using the FDR tool [For98] for example. FDR is an explicit exhaustive finite-state exploration tools and has been used extensively in industrial applications [Law05, Cre05].

2.4.4 Implementation

As part of the development of our framework, we provide a Haskell implementation of our semantic definition, so that it is amenable to application. In this section we define a Haskell data type for a subset of CSP processes to which we define the semantic functions from the syntactic description of BPMN diagrams. We also present a Haskell function which maps data type to the machine-readable version of CSP (CSPm) [Ros98]. This version allows CSP models to be fed into the FDR tool for refinement checks. This mapping corresponds to the module To CSPm in the framework shown in Figure 1.1. The derivation of the Haskell data type of the abstract syntax for BPMN is presented in Chapter 4.

Figures 2.4 and 2.5 contain the Haskell definition that captures a finite state subset of CSP processes. A finite state subset of CSP is sufficient since we consider business processes to be finite state systems. This is suitable as finite state models are more amenable to automatic refinement checks. Furthermore, we consider types \(\text{Event} \), \(\text{Var} \) and \(\text{SetName} \) to be type synonyms of \(\text{String} \), a predefined Haskell data type for string values. This is appropriate since each CSPm definition is supplied as ASCII text. In this thesis we use CSP and CSPm interchangeably.

```haskell
data EventsType = Set | Seq

data Events = SName SetName | List EventsType [Event]

data Process =
    Stop |
    Skip |
    Prefix Event Process |
    Extern Process Process |
    ProcId ProcVar |
    Intern Process Process |
    Inter Process Process |
    Hide Process Events |
    Interrupt Process Process |
    Parcomp (Events,Process) (Events,Process) |
    Indparcomp (Var,Events) Events Process |
    Indparinter (Var,Events) Events Process |
    Indintern (Var,Events) Process |
    Indinter (Var,Events) Process |
    Indseqcomp (Var,Events) Process |
    Indextern (Var,Events) Process |

data Process =
    Stop |
    Skip |
    Prefix Event Process |
    Extern Process Process |
    ProcId ProcVar |
    Intern Process Process |
    Inter Process Process |
    Hide Process Events |
    Interrupt Process Process |
    Parcomp (Events,Process) (Events,Process) |
    Indparcomp (Var,Events) Process |
    Indextern (Var,Events) Process |
    Indparinter (Var,Events) Events Process |
    Indintern (Var,Events) Process |
    Indinter (Var,Events) Process |
    Indseqcomp (Var,Events) Process |
    Indextern (Var,Events) Process |

figure 2.4: Haskell representation of CSP processes, Event sets and sequences
```

Each value of \(\text{Events} \) captures either a set or a sequence of CSP events. This is achieved either by enumerating its value via the constructor \(\text{List} \) that takes a \(\text{EventType} \) value and a list of \(\text{Event} \), or
by referencing an existing set or sequence via the constructor SName that takes a SetName value as the reference. A value of EventType specifies the enumeration to be either a set (Set) or a sequence (Seq).

The data type Process captures the basic grammar of CSPm, where constants Stop and Skip denote the processes Stop and Skip; the constructor Prefix denotes the prefix operator (→); Extern denotes the external choice operator (◇); Intern denotes the internal choice operator (⊳); Inter denotes the interleaving operator ([X | Y]); Hide denotes the hiding operator (\); Parcomp denotes the parallel composition operator ([X | Y]); SeqComp denotes the sequential composition operator (◦); and ParId denotes a reference to a process denoted by the name of type ProcVar. The constructors Indseqcomp, Indextern, Indintern, Indparcomp, Indinter and Indparinter are indexed versions of the sequential composition, external choice, internal choice, parallel composition, interleaving and partial interleaving operators respectively.

```
data DataType = DList DataName [String] | DSet DataName Events
data Data = DN DataName | DS Events
data Channel = NData [String] | TData [String] [Data]
data Local = LP (ProcVar,[Local],Process) | LS (SetName,Events)
data Model = T | F | FD | R
data Script = Script [DataType] [Channel] [(ProcVar,[Local],Process)] [(SetName,Events)] [Specification]
```

Figure 2.5: Haskell implementation of a finite subset of CSPm

Complete CSPm scripts are captured by the data type Script, shown in Figure 2.5. The constructor Script takes five arguments. The first and second arguments record data type and channel definitions used in CSP models as required by CSPm; they are recorded by the data types DataType and Channel respectively. A value of DataType captures either a named type or a data type in CSPm, while Channel captures channels in CSPm. Note that in CSPm a simple event e is considered a separate channel whereas a compound event e.x is considered as channel e with value x of either a named type or a data type.

At implementation level we consider DataName to be a type synonym to String. The third argument defines a list of CSP processes, each of which is a tuple where the first component of type ProcVar is the process name; the second component records a list of local definitions of type Local; and the third component of type Process defines the process. The definitions recorded by the second component are local to its triple. A value of Local records either a process, a set or a sequence. The fourth component of Script is a list of pairs, each of which records either a set or a sequence that is global to the CSP model. The fifth component of Script is a list of Specification, which records a list of refinement assertions. For example, Figure 2.6 shows the Haskell representation of CSP definitions in Figure 2.7(a) and the corresponding CSPm translation in Figure 2.7(b).

```
Script [] [(NData ["a","b"])]
    [("A",[]),Prefix "a" Stop],("B",[]),Intern (Prefix "a" Stop) (Prefix "b" Stop),
    ("C",[]),Parinter (ProcId "A") (SName "S") (ProcId "B")]
[("S",List Set ["a","b"])] [Refine F (ProcId "B") (ProcId "A")]
```

Figure 2.6: An example of representing CSP definitions in Haskell

2.5 Summary

In this chapter we have provided an informal description of BPMN, and introduced a running example to be used throughout this thesis; we have given a brief introduction to Haskell, which we use to implement our semantic and transformation functions; we have presented the syntax and the semantics of CSP, which we use to define the semantics of BPMN, and Z [Spi92], which we use to formalise the syntax of BPMN.
\[\begin{align*}
S &= \{a, b\} \\
A &= a \rightarrow \text{Stop} \\
B &= a \rightarrow \text{Stop} \land b \rightarrow \text{Stop} \\
C &= A \parallel S \parallel B \\
B &\subseteq X A
\end{align*} \]

\[
\begin{align*}
\text{channel a,b} \\
S &= \{a,b\} \\
A &= a \rightarrow \text{STOP} \\
B &= a \rightarrow \text{STOP} \lor b \rightarrow \text{STOP} \\
C &= A \left[\parallel S \right] B \\
\text{assert B [F= A}
\end{align*}
\]

(a) \hspace{2cm} (b)

Figure 2.7: An example of representing CSP definitions (a) in CSPm (b)
Chapter 3

Related Work

This chapter describes related research on modelling and formalising workflows. We consider those in both business and empirical domains.

In the business domain, with the increase in the complexity of business logic and the need for integrating software components, research effort has been directed to specification and verification of workflows.

The empirical domain may be subdivided into two areas: in silico (scientific) and clinical. In scientific workflow communities, more recent research effort has been focusing on the application of workflow technology to “in silico” scientific experiments. The aim is to provide technologies for precise specification and efficient execution of scientific experiments that require analysis of large volumes of data [LAB+06, DBG+04, OAF+04, CGH+06, BJA+08].

In the clinical domain, related research effort has been directed towards standardising clinical trial protocol structure and data management. It enables data sharing and automatic generation of software systems for data analysis and trial management [BCD+05, Cal06, Kus06]. There is also research work focusing on authoring trial protocols and verifying protocols correctness against safety medical properties [HISW95, HIS96, MH03], and there is research focusing on the modelling, the automation and the correctness of clinical guidelines [PTB+03, PRO].

The rest of this chapter is structured as follows: in Section 3.1 we present related work in the area of specification and verification of business workflows; in Section 3.2 we present related work in the application of workflow systems in the life science community; and in Section 3.3 we describe related work in the modelling and the verification of clinical guidelines as well as the critiquing and standardisation of trial protocols. We give a more detail comparison of related works on formalising BPMN in Chapter 9.

3.1 Business Workflow

In the service-oriented computing paradigm, service components are stateless and loosely coupled which encourages re-usability. Standards bodies have proposed several specification and description languages for services orchestration and choreography.

Orchestration describes local, single participant viewpoint of the workflow model where services and components are composed. Notable is the Business Process Execution Language for Web Services (BPEL) [BPE03], which is an XML-based language designed for describing orchestration of services. Services orchestration described in BPEL may then be executed on a BPEL engine. A related topic to service orchestration is graphical task coordination, where activities in the workflow can be either manual or automated. While graphical task coordinations provide a richer syntax for expressing workflows than text-based orchestration languages like BPEL, they are generally not executable.

Choreography describes the collaboration between multiple workflows and elevates models of workflow behaviour to a global viewpoint such that the first class entity is external, observable behaviour. There exist two complementary approaches to choreography: to specify choreographies using an interaction model or to specify using an interconnection model. An interaction model explicitly describes the order of the interactive behaviour of a workflow collaboration, while an interconnection model specifies only the interaction point between workflows; the order in which these interactions take place is implied by the behaviour of individual workflows. One of the workflow languages that model service-based choreographies using interaction models is the Web Services Choreography Description Language (WS-CDL) [KBR+05], while one of workflow languages that model service-based choreographies using interconnection models is the Web Services Choreography Interface (WSCI) [W3C02]. Note that unlike orchestration, choreography takes a global viewpoint and is not executable.

Both orchestration and choreography languages focus on a particular viewpoint of workflow definitions and are primarily used for specifying (web) service compositions. They are commonly XML-based and
vendors have introduced customised graphical notations to assist workflow modelling [ORA, BIZ, ACT].
There are also workflow notations that extend graphical task coordination and provide a more holistic
view of orchestration and choreography. BPMN, of which formalisations and applications are the focus
of this thesis, is one such modelling notation. Unlike BPEL, WS-CDL and WSCI, BPMN is graphical
and may be used to describe both orchestrations and choreographies. BPMN specifies choreographies
using an interconnection model and is not designed to be executable. However, the BPMN specification
document [OMG08, Appendix A] suggests how to map BPMN models to BPEL processes for execution,
and recent research work [RM06, OvdADtH06] suggested this translation is partial and provided a formal
account on the syntactic and semantic boundary within which BPMN models may be translated to BPEL
processes.

The rest of this section considers existing workflow languages and their formalisations, and provides
comparison against research contributions described in this thesis. Section 3.1.1 considers workflow
languages for orchestration and related graphical task coordinations, and Section 3.1.2 considers workflow
languages for choreography as well as graphical modelling notations with a holistic view of workflow
definitions. We relegate the presentation of related work on BPMN to Chapter 9 where a more detailed
and focused discussion is given.

3.1.1 Orchestration

The notion of orchestration is relatively recent, in which services are invoked in explicit order. BPEL
is one of the prominent languages for describing orchestrations. BPEL processes can be complex, and
it is necessary to formalise its semantics for reasoning about its behaviour against desired properties.
Formalisations of BPEL are described in Section 3.1.1.1.

BPEL focuses on executable service-based orchestration; it exists primarily in the context of service-
oriented computing. While BPEL is XML-based and does not focus on graphical representation, there
are workflow languages that are not executable but are graphical. These languages focus on expressivity,
and can be used to specify workflows that coordinate a mixture of manual tasks and automated functions.
Formalisations of graphical languages are described in Section 3.1.1.2.

3.1.1.1 BPEL

BPEL has been given several behavioural semantics. One of the earlier models was provided by Koshk-
ina [Kos03], who defined the BPEL-calculus to express Web service orchestration. Model checking and
preorder checking for deadlock freedom can be carried out on BPEL-calculus processes using the verifi-
cation tool CWB [CS96]. Another formalisation is defined by Foster [Fos06], who provided a translation
from BPEL to Finite States Processes (FSP) [MK99]. FSP is a process algebra, whose syntax is closely
related to CSP; it has an operational semantics, using which behavioural equivalences are defined in
terms of bisimulation. Both Foster’s and Koshkina’s approaches focused on tool support for behavioural
analysis, while they did not consider the compositional property of their semantics. While Koshkina did not
consider behavioural compatibility between BPEL processes, Foster provided a definition of behavioural
compatibility in terms of deadlock freedom of interacting BPEL processes but did not consider its com-
positional property. Neither of their formalisations considers timing information.

3.1.1.2 Graphical Task Coordination

While BPEL is block-structured, workflows described using graphical task coordination languages may
have a graph structure. While workflows specified by these languages may not be executable, it is
important that they are not ambiguous. There are mainly two different approaches to address this issue:
either to provide a formal semantics to an existing modelling notation such as BPMN, or to define a new
modelling notation with a formal semantics; we defer the discussion of BPMN to Chapter 9.

One of the earliest formalisations of existing modelling notations has been given by ter Hofstede and
Barros et al. [HN93, BH97, BH99]. They provided a formal semantics to task structure diagrams for
describing workflows that coordinate concurrent tasks. Their formalisation maps task structure diagrams
to the process algebra ACP [BK85] and use ACP to prove behavioural equivalence between diagrams.

Other formalisations of existing modelling notations include formalisations [Esh02, BD00] of different
versions of UML activity diagrams [UML04]. Eshuis [Esh02] provided two timed semantics on the syntax
of UML activity diagrams in Clocked transition systems [MP96]. These semantics are different in that one assumes perfect synchrony hypothesis and the other one does not. The perfect synchrony hypothesis states that a system must react immediately to external events and that the corresponding output must occur at the same time. The former model is more amenable to formal verification by model checking, while the latter model is more realistic.

Bolton and Davies provided a formalisation [BD00] of UML activity diagrams in CSP. The aim of this semantic model was to formally relate each UML activity diagram to its object model using CSP refinement orderings.

3.1.2 Choreography

This section considers related work on formal approaches to choreography. Section 3.1.2.1 presents related work on formalising existing choreography description languages, and Section 3.1.2.2 presents related work on formalising behavioural compatibility.

3.1.2.1 Choreography Description Languages

In this section we consider the formalisations of two choreography description languages – WS-CDL [KBR+05] and WSCI [W3C02]. Both languages are XML-based, based on the web service standards and require a separate language such as BPEL for describing orchestration. WS-CDL models choreography based on the interaction model, and WSCI models choreography based on the interconnection model.

Brogi et al. [BCPV04] provided a mapping from a subset of WSCI to the process algebra CCS, omitting the syntactic constructs in WSCI for defining transactional choreography. They suggested how this mapping may be used to study notions of compatibility for web services choreography by extending their earlier definition of behavioural compatibility for software architectures [CPT01].

WS-CDL is developed by W3C’s WS-CDL Working Group [W3C] and several semantic models have been defined and studied. Notable models include Carbone et al.’s [CHY07] and Yang and Zhao et al.’s [ZYQ06] [YZQ+06]. Carbone et al. studied a global calculus, which has its origin in WS-CDL, for describing global interaction behaviour between participants in a collaboration, and an end-point calculus, which is a typed π-Calculus, for modelling the local behaviour of each participant; the π-Calculus is a process algebra developed by Milner et al. as an advance over CCS [Mil89] to express mobility in concurrent processes [Mil99] and the basic notion of this calculus is channel passing between processes. The main result of Carbone et al.’s work is a theory of end-point projection, using which one could map a global description specified in global calculus to its end-points preserving session types and behaviour. In Yang and Zhao et al.’s formalisation, a single calculus CDL is provided as a semantic domain of WS-CDL. They provided an operational semantics to WS-CDL using this calculus. Using this calculus, WS-CDL descriptions may be translated to Promela, and model checked using the SPIN model checker [Hol03] against behavioural properties specified in Linear Temporal Logic [MP92]. While Yang and Zhao et al. discussed how to develop end-point projections using their calculus, they did not provide a formal account for this in their paper [ZYQ06].

3.1.2.2 Related Formal Approaches to Choreography and Compatibility

Related formal approaches in the context of choreography include the foundational study of compatibility, compliance and realizability.

In this thesis, we formalise behavioural compatibility as a (failures) refinement-closed property in the context of collaborations between BPMN processes. In particular, two processes are compatible if neither one of the processes may cause the other process to deadlock. Related studies of compatibility include Foster et al.’s [FUMK04] [FUMK06] model-based approach, in which they translate both BPEL and WS-CDL into (parallel compositions of) finite states processes (FSP). General liveness behavioral properties such as deadlock freedom may be verified using a model checker. More specific properties such as obligation [FUMK06], which describes what activities a subject must or must not do to a set of target objects, require high-level specification of the corresponding policy using Message Sequence Charts [MSC96] (MSCs). MSCs are translated into FSPs, and verification can be carried out by showing behavioural equivalence between the respective FSP processes via model checking.
A stronger notion of compatibility is known as compliance. Bravetti and Zavattaro [BZ07b, BZ07a] formalised the notion of strong service compliance. A composition of services is strongly compliant if their composition is both deadlock and livelock free, and whenever one service is to initiate an interaction with another service (via messaging), this other service must be prepared to engage. They then further developed this formal notion by considering service refinement, in which they consider a suitable pre-order between services such that substitutions of individual services in a composition by their refinements preserve compliance. Note that in their paper [BZ07a], they use the term strong subcontract pre-order instead of service refinement, as services are modelled as contracts.

A related notion to end-point projection is realisability. Salaün and Bultan [SB09] defined realisability to indicate whether participants can be generated from a choreography such that they will behave exactly as formalized in its specification. If the specification is not realisable, they provide a technique for extending the behaviour of participants to realise the choreography. They use collaboration diagrams (called communication diagrams in UML [UML04]) for the specification of choreography and provide an encoding of the diagram’s abstract syntax into LOTOS process algebra [LOT89]. Realisability of choreography is achieved by first generating participants (peers) in LOTOS via projection and then checking equivalence between the labelled transition system (LTS) of a LOTOS process describing the choreography and the LTS of a parallel composition of LOTOS processes, each modelling a projection in the choreography. If they are not equivalent, that is, the choreography is not realisable, additional interaction behaviours between participants are inserted to realise the choreography. Note that in their formalisation they consider both synchronous and bounded asynchronous interactions.

3.2 Scientific Workflows

Workflows in the scientific community have been used as a scalable mean to streamline the execution of in silico scientific experiments that process massive amount of data. While this type of workflow usage is not the focus of this thesis, we will nonetheless give a brief overview of related work in this area. Recent development of scientific workflow systems include Ludäscher et al.’s Kepler system [LAB+06]; Oinn et al.’s Taverna for building and executing bioinformatics workflows [OAF+06]; Barga et al.’s Trident scientific workflow workbench [BJA+08]; Churches et al.’s Triana architecture [CGH+06], and Deelman et al.’s Pegasus system for implementing scientific workflows in a Grid environment [DBG+06]. These systems aim to ease the process of integrating existing scientific applications through abstraction and encapsulation and to improve the implementation of data flow and the distribution of resources.

Ludäscher et al.’s Kepler system [LAB+06] provides support for execution of scientific experiments in the areas of bioinformatics, ecoinformatics and geoinformatics. The system has been implemented in Java [AGH05] and it comes with a graphical user interface, for constructing workflows and monitoring their executions. In particular Kepler defines two abstraction layers – actor and director. An actor forms an encapsulation layer for a wide variety of activities ranging from the instantiation of a web service operation to the execution of a Globus job [GLO]. A director, on the other hand, provides the semantics of interaction between actors and supplies objects, known as receivers, for implementing the communications. For example, whether the communication between two actors is buffered or synchronous is determined by the workflow’s director, rather than individual actors performing the interaction. This approach provides exogenous coordination, similar to that of Reo [Arb04], which improves the reusability of actors themselves.

Oinn et al.’s Taverna tool [OAF+04] provides the mechanism for the composition and enactment of bioinformatics workflows for the life science community. Taverna contains a workbench which has a graphical user interface for the composition of workflows. A customized XML-based language, SCUFL, is provided as part of the Taverna tool, for specification of workflows. Specifically in a SCUFL workflow, each unit of activity is some form of transformation, known as a processor, which essentially accepts some input and produces a set of outputs. Each Scufl workflow has two types of linking, data and coordination. The former mediates the flow of data between a data source such as a processor’s input, and a data sink such as a processor’s output. The latter links two processors and controls their execution. For example, one processor could go from scheduled to running if another processor has the status ‘complete’. Like many other scientific workflows, Taverna provides bindings of Scufl workflows to a wide range of third party applications that are used by scientists conducting experiments.

Barga et al.’s Trident scientific workflow workbench [BJA+08] is an extension of Microsoft Windows
Workflow [WWF] is implemented as part of Project Neptune [NEP], to provide the facilities for scientists to explore and visualise oceanographic data in real-time and as well as the environment to compose, run and catalogue workflows.

Churches et al.’s Triana [CGH+06] provides an interface for the specification and composition of scientific applications. A component in a Triana workflow is then considered as a unit of execution. In Triana, a customized XML-based workflow language is provided for the specification of workflow. Triana also provides dynamic distribution mechanism for distributing a group of tasks specified in a Triana workflow across multiple machines either in parallel or in a pipeline. Similarly Deelman et al.’s Pegasus [DBG+04] is a framework for the specification of scientific workflows using a customized workflow language and the mapping of workflow specifications onto distributed resources like the Grid. Moreover, it supports various scheduling and replica selection algorithms, as well as partition-level failure recovery.

3.3 Modelling Clinical Trials and Guidelines

In Chapter 7 we consider how BPMN can be used to assist the specification and visualisation of long-running empirical studies. Moreover, our formalisations of BPMN allows models of empirical studies to be verified against behavioural properties to ensure correct execution of studies. In particular, we consider the clinical trial domain as a running example in the chapter. We also use a real clinical trial as the basis for one of our case studies in Chapter 8 to demonstrate the application of BPMN formalisations to empirical studies. In this section we describe some related research to standardise clinical trial protocols as well as to formalise clinical guidelines.

3.3.1 Clinical trial protocols

In oncology, chemotherapeutic treatments are often carried out within protocol-based clinical trials, in which data are collected to monitor the efficacy and the toxicity of treatment. This data is analysed statistically to evaluate the clinical objectives of the trial. For the trial to be scientifically valid, data must be complete and correct. To ensure the correctness of trial data, computer support has been introduced into trial management; in particular, authoring systems have been implemented to assist clinicians to construct trial protocols and to ensure information described in the trial protocols does not violate safety, structural and medical properties. Research work in the area of authoring and critiquing trial protocols includes Modgil and Hammond [MH03]’s Design-a-Trial. This is a decision support tool for critiquing the data supplied for trial specification based on expert knowledge, and subsequently outputting a protocol describing the trial.

More recently, informatics research in oncology has been directed towards standardising cancer clinical trials to ensure trial protocols are CONSORT-compliant [MSA01], and improving data sharing in cancer clinical trials by consistent use of standardised common data elements (CDE) and controlled vocabularies. Notable results include those from the CancerGrid project [CAN], whose aim was to develop open standards based solutions for clinical cancer informatics.

3.3.2 Clinical guidelines

Clinical guidelines are used in clinical care to reduce proneness to errors during the treatment of specific diseases [GTM+04]. However, there are two major issues surrounding the application of clinical guidelines. First, information contained in conventional text-based guidelines are difficult to access, modify and apply to patients during the consultation. Second, text-based guidelines are inherently ambiguous and may be incomplete, which could jeopardise heavily the quality of guidelines. To this end, research efforts have been directed to these two areas. Results in the first area include Bury, Fox, Sutton et al’s PROforma [BFS00, SF03] language for authoring, publishing and executing clinical guidelines and Ciccaresea et al.’s GUIDE project [CCQS05, QSSF97], which provides a modelling language for integrating clinical guidelines with organisational workflows. Research work in the area of formalisation and verification of clinical guidelines includes the Protocure project [PRO]. In this project clinical guidelines are modelled using a time-oriented machine readable language, Asbru [MSJ96], and guideline models can be verified against medical properties via interactive theorem proving using Karlsruhe Interactive Verifier (KIV) [Rei95].
In comparison, this thesis considers a wider class of empirical workflows, but considers a smaller set of requirements, namely untimed temporal properties. While verifying clinical guidelines against general medical properties requires interactive theorem proving, we demonstrate in a case study in Chapter 8 that the verification of clinical workflows against oncological properties can be achieved by a combination of compositional reasoning and model checking.

3.4 Summary

In this chapter we considered the current research in formalising workflow systems. In particular, in Section 3.1 we studied formal approaches for reasoning with service orchestration and choreography. This included a survey of the formalisations of several XML-based workflow specification languages as well as graphical workflow modelling notations. In Sections 3.2 and 3.3 we gave an overview of related research in scientific and clinical workflows.
Chapter 4

BPMN Syntax

In this chapter we provide a formal specification of the abstract syntax of BPMN described in Section 2.1. The specification is provided in the language of Z. Figure 4.1 shows the specification's corresponding implementation in Haskell. We do not show the definition of all data types and type synonyms but only those that help to illuminate the formal specification of BPMN abstract syntax. For example, Seqflow and Mgeflow are type synonyms for the Haskell built-in data type String. The Haskell implementation provides the necessary type definitions for recording BPMN diagrams. We use it as the domain to implement the two semantic functions, which are formally defined in Chapters 5 and 6. Nevertheless, the Haskell implementation does not lend itself to specify constraints on data values, or the state space. For this reason, we turn to the language of Z. For example, the constructor Compound of data type Element is used to record subprocesses. The constructor takes as one of its arguments a list of Element values to record the BPMN elements contained in the subprocess. While the definition of data type Element permits any Element value to be in this list, BPMN official documentation describes some syntactic constraints between these elements, and we would like to formally specify these constraints. Throughout this chapter, we refer to both Haskell and Z definitions; we use the typewriter font when referring to Haskell expressions and the math font when referring Z expressions.

```
data Loops = Fix Int | Ndet Int
data FlowType = One | All
data Exception = Exception ErrorCode | AnyException

data Type = Itime Int | Stime Int | Ierror Exception | Eerror Exception |
            Srule BCondition | Irule BCondition | Start | End |
            Smeshage (Maybe Mgeflow) | Ismessage (Maybe Mgeflow) | Esmessage (Maybe Mgeflow) |
            Agate | Xgate | Exgate |
            Task TaskName | SubProcess BName |
            Miseq TaskName Loops FlowType | Misesqs BName Loops FlowType |
            Mipar TaskName Loops FlowType | Mipars BName Loops FlowType

type Range = (Int,Int)

data Atom = Atom {etype :: Type, ins,outs :: [Seqflow],
                   exit :: [(Seqflow,Type)], range :: Range, receive, send :: [Mgeflow]}

data Element = Atomic Atom | Compound Atom [Element]
type Diagram = [(PoolId,[Element])]
```

Figure 4.1: Abstract syntax of BPMN subset in Haskell

This chapter is structured as follows. In Section 4.1 we provide some preliminary definitions that are common to all BPMN elements. In Sections 4.2, 4.3 and 4.4 we provide a formal specification of this syntax using the schema calculus that precisely describes the constraints on the types of BPMN elements and the relationship between them. In Section 4.5 we investigate the initialisation of BPMN elements, pools and diagrams. In Section 4.6 we present a set of syntactic operations for constructing BPMN processes. These operations are defined using the schema calculus and provides a syntactic vehicle for investigating our semantic models in Chapter 5. Note that some auxiliary definitions for the formalisation are only partially defined in this chapter. Full definition can be found in Appendix A.
4.1 Preliminaries

This section presents a specification of the BPMN syntax that is common to all BPMN elements. We first consider some modelling decisions about connecting objects.

Specifically, we assume no two connecting object may have the same source and target. While this is not made explicit in the official specification, it is consistent with our view. For example, Figure 4.2(a) shows two task elements connected by two sequence flows. Since our semantic model abstracts from conditions and tokens, each connecting object is identified solely by its source and target elements. As a result it is not possible to distinguish between them, therefore one of the flows is redundant and can be removed as shown in Figure 4.2(b). The same applies to message flows since our model abstracts from message content.

While each BPMN element is identified as the source and/or target flow objects of some connecting object, we take an equivalent view of recording each flow object’s incoming and outgoing sequence and message flows.

4.1.1 Haskell Syntax

A BPMN element in a BPMN pool is either atomic or compound. Atomic elements are event, task and gateway elements, while compound elements are subprocess elements that contain a collection of other BPMN elements. We define the data type `Element` to capture BPMN elements. It has two constructors: `Atomic` for recording an atomic element, and `Compound` for recording a compound element. `Atomic` takes an `Atom` value that records the syntax of an atomic element such as the element’s type, its sequence and message flows, and `Compound` takes an `Atom` value as well as a list of `Element` values that records the collection of elements the compound element contains.

4.1.2 Z Specification

Each element of type `Element` takes a value of type `Atom`. `Atom` has a single constructor `Atom` that takes eight parameters, and implements the following schema `Atom`.

```plaintext
Atom
  type : Type
  in, out : $Seqflow$
  exit : Seqflow $\rightarrow$ Type
  range : Range
  send, receive : $Mgeflow$

  disjoint (in, out, dom exit)
  send $\cap$ receive = $\emptyset$
```

Specifically, component `type` has the type `Type`. It records the type of an element and is implemented by the Haskell field `etype`. The type `Type` is defined as a free type of the following form:

```
Type ::= itime($\mathbb{N}$) | ... | imessage($\langle$Message$\rangle$)
```

where each constructor in `Type` is implemented by a constructor in the Haskell data type `Type`. For example, the constructor `imessage` is implemented by the constructor `Imessage` and records the type of
CHAPTER 4. BPMN SYNTAX

an intermediate message event. The free type Message records the option of having a message or not.

\[Message ::= \text{message} \langle M\text{gflow} \rangle | \text{nomessage} \]

Components in and out, which are implemented by Atom’s fields ins and outs, record an element’s incoming and outgoing sequence flows respectively. Similarly, components receive and send are implemented by Atom’s fields receive and send and record an element’s incoming and outgoing message flows. Sequence flow and message flow are defined as basic types Seqflow and M\text{gflow}. Component exit records exception flows of an element and is implemented by Atom’s field exit, while component range records an element’s timing information and is implemented by Atom’s field range.

The constraint part of schema Atom specifies that an element’s incoming sequence flows, outgoing sequence flows and exception flows must be disjoint. This is because our semantic definition treats sequence flows to be internal to each BPMN diagram and cyclic elements would therefore lead to divergent behaviour. The same applies to its incoming and outgoing message flows.

The Haskell data type Element provides an implementation for the following free type Element.

\[Element ::= \text{atomic} \langle \text{Atom} \rangle | \text{compound} \langle \text{Atom} \times F_1 \text{Element} \rangle \]

To assist the specification we define the function atom, which takes a value of type Element and returns the first parameter of its constructor function.

\[\text{atom} : \text{Element} \rightarrow \text{Atom} \]

4.2 Events and Gateways

This section presents a specification of the syntax of BPMN events and gateways.

4.2.1 Haskell syntax

In our Haskell syntax in Figure 4.1 Type provides various constructors to record information about events and gateways. For message events, Type provides constructors S\text{message}, I\text{message} and E\text{message} to record the type of a start, an intermediate and an end message event respectively, each of which takes a value of type Maybe M\text{gflow} to record an optional message flow. For timer events, Type provides constructors S\text{time} and I\text{time} to record the type of a start and an intermediate timer event respectively, each of which takes a parameter of type Int to record a time duration. For rule events, Type provides constructors S\text{rule} and I\text{rule} to record the type of a start and an intermediate rule event respectively, each of which records a rule with a parameter of type B\text{Condition}. For non-trigger events, Type provides constructors Start and End to record the type of a start event and an end event respectively. For error events, Type provides constructors \text{Ierror} and \text{Error} to record the type of an intermediate and an end error event respectively, each of which records an optional error code with a parameter of type Exception. The data type Exception provides two constructors: Exception with a String parameter for recording the error code, and the nullary constructor AnyException representing no specific error code. For gateways, Type provides constructors X\text{gate}, Ex\text{gate} and A\text{gate} to record the type of a database XOR, an event-based XOR and an AND gateway respectively.

4.2.2 Formal Specifications

We define schema Non\text{Activity} to specify the common constraints on the syntax of an event or a gateway. We write \#S to denote the size of set S.

\[\begin{align*}
\text{NonActivity} \\
\text{ele} : \text{Element} \\
\text{ele} \in \text{ran} \text{atomic} \\
\#(\text{atom ele}).\text{exit} + \#(\text{atom ele}).\text{send} + \#(\text{atom ele}).\text{receive} = 0 \\
\text{first}(\text{atom ele}).\text{range} = 0 \\
\text{second}(\text{atom ele}).\text{range} = 0
\end{align*} \]
Specifically, schema \textit{NonActivity} states that all events and gateways are atomic, have no exception and message flow recorded in components \textit{exit}, \textit{send} and \textit{receive}, and have zero duration recorded in component \textit{range}. Each message event records its associated message flows using the parameter of its \textit{type}'s constructor (e.g. \textit{imessage}). Each timer event records its time duration using the parameter of its \textit{type}'s constructor.

A start event has one or more outgoing sequence flows \cite{OMG08}, Section 9.3.2.3, where each flow “generates a separate parallel path”; a start event cannot have any incoming sequence flow. In our subset of BPMN, a non-gateway element with multiple incoming and outgoing sequence flows may be transformed into one with only one incoming and one outgoing sequence flow using appropriate gateways. For this reason, in our subset of BPMN a start event has \textit{exactly one outgoing sequence flow}. We specify these constraints using the schema \textit{Start}.

\[
\text{Start} \\
\text{NonActivity} \\
\text{(atom ele).type } \in \{\text{start}\} \cup \text{ran stime} \cup \text{ran smessage} \cup \text{ran srule} \\
\#(\text{atom ele}).\text{in} = 0 \land \#(\text{atom ele}).\text{out} = 1
\]

The value \textit{start}, of type \textit{Type}, records the type of a non-trigger start event. Function constructors \textit{stime}, \textit{smessage} and \textit{srule}, also of \textit{Type}, record the types of a start timer, a start message and a start rule event respectively.

An end event may have one or more incoming sequence flows, and these flows may form alternate or parallel paths \cite{OMG08}, pages 42 – 43. An end event cannot have any outgoing sequence flow. In our syntax, an end event has one incoming sequence flow; end events with multiple incoming sequence flows may be transformed using appropriate gateways. We specify these constraints using the schema \textit{End}.

\[
\text{End} \\
\text{NonActivity} \\
\text{(atom ele).type } \in \{\text{end}\} \cup \text{ran emessage} \cup \text{ran eerror} \\
\#(\text{atom ele}).\text{in} = 1 \land \#(\text{atom ele}).\text{out} = 0
\]

The value \textit{end}, of type \textit{Type}, records the type of a non-trigger end event. Constructors \textit{emessage} and \textit{eerror}, also of \textit{Type}, record the type of an end message and an end error event respectively.

An intermediate event may be attached to an activity element’s boundary, creating an exception flow \cite{OMG08}, page 44; we postpone the discussion of this functionality to Section 4.3 where the syntax of activity elements is discussed. Otherwise, an intermediate event has one or more incoming and outgoing sequence flows. In our syntax, an intermediate event has \textit{one outgoing sequence flow and one incoming sequence flow}. Similar to start and end events, intermediate events with multiple sequence flows may be transformed using appropriate gateways. We specify these constraints using the schema \textit{Inter},

\[
\text{Inter} \equiv [\text{NonActivity} | (\text{atom ele}).\text{type } \in \text{inters}] \land \text{OneInOutFlow}
\]

where the value \textit{inters} is the abbreviation for the set of all intermediate event types.

\[
\text{inters} \equiv \text{ran itime} \cup \text{ran imessage} \cup \text{ran ierror} \cup \text{ran irule}
\]

Constructors \textit{itime}, \textit{imessage}, \textit{ierror} and \textit{irule}, of \textit{Type}, record the type of an intermediate time, an intermediate message, an intermediate error and an intermediate rule event respectively. The schema \textit{OneInOutFlow} states that the element has one incoming and one outgoing sequence flow.

We define the schema \textit{Event} to capture an event in our BPMN subset.

\[
\text{Event} \equiv \text{Start} \lor \text{End} \lor \text{Inter}
\]

We provide schema \textit{Gate} to specify the constraints that are common to all types of gateways in our subset.
We consider the syntactic constraints between an event-based XOR gateway and the targets of its outgoing sequence flows in Section 4.4.

4.3 Activities

4.3.1 Haskell Syntax

An activity in BPMN is either a task, a subprocess or one of their multiple instance variants. For a task, \(\text{Type} \) provides the constructor \(\text{Task} \) to record its type. The constructor takes a task name of type \(\text{TaskName} \). For a subprocess, \(\text{Type} \) provides the constructor \(\text{SubProcess} \) to record its type. The constructor takes a subprocess name of type \(\text{BName} \); we assume the values of \(\text{TaskName} \) and \(\text{BName} \) are disjoint.

For multiple instance variants, \(\text{Type} \) provides four constructors: \(\text{Miseq} \) records the type of a sequential multiple instance task, and \(\text{Miseqs} \) records the type of a sequential multiple instance subprocess. Similarly, \(\text{Mipar} \) records the type of a parallel multiple instance task, and \(\text{Mipars} \) records the type of a parallel multiple instance subprocess. All four constructors take as parameters the name of the activity, the number of instances and also a flow condition of type \(\text{FlowType} \); the data type \(\text{FlowType} \) takes one of values \(\text{One} \) and \(\text{All} \): \(\text{One} \) specifies that the multiple instance activity element triggers its outgoing sequence flow after one of its instances has completed execution, and value \(\text{All} \) specifies that the element triggers its outgoing sequence flow after all of its instances have completed execution.

4.3.2 Incoming and Outgoing Flows

In the official specification [OMG08, Sections 9.4.3.9 and 9.4.3.10], tasks and subprocesses in a BPMN process may have zero incoming sequence flows if there is no start event in that process, while they may have zero outgoing sequence flows if there is no end event in that process. In our syntax, however, a BPMN process has at least one start event and one end event, therefore each task and subprocess has exactly one incoming and one outgoing sequence flow; tasks and subprocesses with multiple incoming and outgoing sequence flows may be transformed using appropriate gateways. A task may have zero or more incoming message flows and zero or more outgoing message flows. If there is more than one incoming message flow then the task will receive messages from only one of them during its execution. Conversely, if there is more than one outgoing message flow then the task will send messages to all of them before the completing its execution. While the official specification defines a subprocess element to have zero or more incoming and outgoing message flows, it is not clear as to how these message flows affect the behaviour of the subprocess [OMG08, page 62]. We therefore do not consider message flows of subprocesses and instead consider the message flows of elements contained in subprocesses.

4.3.3 Timing Information

BPMN is an extensible notation. We extend the syntax of BPMN tasks to record timing information. This timing information may be ignored when considering only the untimed behaviour. Specifically each task element is associated with a bounded duration range recorded by the constructor \(\text{Atom}'s \text{Range} \) parameter. A duration range is a pair of time values, each of type \(\text{Time} \). The first component records the task’s minimum execution time and the second component records the task’s maximum execution time. In the Z specification of the syntax, the schema \(\text{Atom} \) declares the component \(\text{range} \) to record this duration range.
4.3.4 Formal Specification of Task

In this section we provide a Z specification of tasks. We consider exception flows of tasks in Section 4.3.6.

We define schema \textit{GenTask}, which states that a task is atomic, that is, has the type of either a task (\textit{task}) or one of its multiple instance variants (\textit{miseq}, \textit{mipar}), and that it must not have a negative duration range.

\begin{align*}
\text{GenTask} \equiv \begin{cases} \\
\text{ele} : \text{Element} \\
\text{ele} \in \text{ran atomic} \\
(\text{atom ele}).\text{type} \in \text{ran task} \cup \text{ran miseq} \cup \text{ran mipar} \\
\text{first}(\text{(atom ele)}.\text{range}) \leq \text{second}(\text{(atom ele)}.\text{range})
\end{cases}
\end{align*}

A schema \textit{NormalTask} is the conjunction of \textit{GenTask} and \textit{OneInOutFlow}, thereby also insisting that a task has exactly one incoming and one outgoing sequence flow.

\textit{NormalTask} \equiv \text{GenTask} \land \text{OneInOutFlow}

4.3.5 Formal Specification of Subprocesses

In this section we provide a Z specification of subprocesses. We consider exception flows of subprocesses in Section 4.3.6. Since both subprocesses and pools are BPMN processes, we consider the syntactic constraints on BPMN processes such that we can reuse this specification when considering BPMN pools in Section 4.4.

We first provide some preliminaries to assist the specification of the relationship between a process and the elements it contains. A BPMN process is a nonempty finite set of BPMN elements. This is denoted by the abbreviation \textit{Process} \equiv F_{\text{Element}}. The following function \textit{content} relates a subprocess to the collection of elements it contains.

\begin{align*}
\forall e : \text{Element} \bullet \left(e \in \text{ran compound} \Rightarrow \text{content}(e) = \text{second}(\text{compound}^\sim e) \right) \land \\
\left(e \in \text{ran atomic} \Rightarrow \text{content}(e) = \emptyset \right)
\end{align*}

We introduce the set \textit{contains} such that for any elements \(e\) and \(f\), \((e, f) \in \text{contains}\) holds if and only if \(f\) is a compound element and \(e \in \text{content}(f)\).

\begin{align*}
\forall e, f : \text{Element} \bullet (e, f) \in \text{contains} \iff (f \in \text{ran compound} \land e \in \text{content}(f))
\end{align*}

As BPMN processes are hierarchically structured, it is important to distinguish between the relations \((e, f) \in \text{contains}\) and \((e, f) \in \text{contains}^+\), where \text{contains}^+ is the transitive closure of \text{contains}. We therefore introduce the concept of containment formally.

\textbf{Definition 4.1. Containment.} An element \(e\) is \textbf{contained} in some element \(f\) if \((e, f) \in \text{contains}^+\). An element \(e\) is \textbf{directly contained} in some element \(f\) if \((e, f) \in \text{contains}\).

For example, in our running example in Figure 2.3 on Page 10 task \textit{Receive Invoice} is directly contained in subprocess \textit{Receive Offer}. We write \(e \in_c f\) if and only if \((e, f) \in \text{contains}^+\). In addition for some element \(e\) and a nonempty finite set of elements \(es\) (\textit{Process}), we write \(e \in_p es\) if and only if either \(e \in es\), or \(e \in_c f\) where \(f \in es\).

\begin{align*}
- \in_c : \text{Element} \leftrightarrow \text{Element} \\
- \in_p : \text{Element} \leftrightarrow \text{Process}
\end{align*}

We also introduce the set \textit{edge}(\(p\)) over some process \(p\). Specifically, \textit{edge}(\(p\)) is a set of pairs of elements directly contained in \(p\) such that for each pair, one of the outgoing and exception flows of its
We define the characteristic set for receiving messages. We write \(\text{outs}(e) \) to denote the set of \(e \)'s outgoing and exception flows.

\[
\text{edge} : \text{Process} \rightarrow \mathcal{P}(\text{Element} \times \text{Element})
\]

\[
\forall p : \text{Process} \bullet \text{edge}(p) = \{e, f : p \mid \text{outs}(e) \cap (\text{atom } f) . \text{in} \neq \emptyset\}
\]

Using this definition of \(\text{edge} \), we formally introduce the notion of predecessor and successor, which are used throughout this thesis.

Definition 4.2. Predecessor. A BPMN element \(e \) precedes another BPMN element \(f \) in a process that directly contains a set of elements \(P \) iff \((e, f) \in \text{edge}(P)^+\) holds. The element \(e \) is a direct predecessor of \(f \) with respect to \(p \) iff \((e, f) \in \text{edge}(P)\).

Definition 4.3. Successor. A BPMN element \(e \) succeeds another BPMN element \(f \) in a process that directly contains a set of elements \(P \) iff \((f, e) \in \text{edge}(P)^+\) holds. The element \(e \) is a direct successor of \(f \) with respect to \(p \) iff \((f, e) \in \text{edge}(P)\).

Using the preliminary definitions we provide a Z specification of the relationships between elements contained in a BPMN process. Specifically, we capture the following properties about elements in a BPMN process:

1. Elements must not share sequence or message flows.
2. Every non-start element must be preceded by a start event.
3. Every non-end element must be succeeded by an end event.
4. Every outgoing or exception sequence flow of an element must also be an incoming sequence flow of some other element in the process.
5. Every incoming sequence flow of an element must also be either an outgoing or an exception sequence flows of some other element in the process.

We first consider Property 1. We define function \(\text{getSd} \) to take an Atom part of an element and return its outgoing message flows; outgoing message flows are responsible for sending messages. Similarly we define function \(\text{getRec} \) to return an element's incoming message flows; incoming message flows are responsible for receiving messages. We write \(\text{getMsg} := \text{getSd} \cup \text{getRec} \) to aggregate these two functions.

\[
\text{getSd}, \text{getRec}, \text{getMsg} : \text{Atom} \rightarrow \mathcal{P} \text{MsgFlow}
\]

We define the characteristic set \(\text{noOverLap} \) such that process \(p \) is a member if and only if the following hold:

- Elements directly contained in \(p \) do not share the same sequence or exception flow with elements directly contained in any other processes in \(p \).
- Any two different elements contained in \(p \) do not share an incoming sequence flow, an outgoing sequence flow or an exception flow.
- Elements directly contained in any two different processes in \(p \), do not share the same sequence or exception flow.
- Any two different elements contained in \(p \) do not share the same message flow.

\[
\text{noOverLap} : \mathcal{P} \text{Process}
\]

\[
\forall p : \text{Process} \bullet p \in \text{noOverLap} \Leftrightarrow
\begin{align*}
(\forall e : \text{Element} \mid g \in_p p) \bullet \\
\bigcup\{k : p \bullet (\text{atom } k).\text{in} \cup \text{outs}(k)\} \cap \bigcup\{k : \text{content } e \bullet (\text{atom } k).\text{in} \cup \text{outs}(k)\} = \emptyset \land \\
(\forall f : \text{Element} \mid g \in_p p) \bullet e \neq f \Rightarrow \\
(\text{atom } e).\text{in} \cap (\text{atom } f).\text{in} = \emptyset \land \\
\text{outs}(e) \cap \text{outs}(f) = \emptyset \land \\
\bigcup\{k : \text{content } e \bullet (\text{atom } k).\text{in} \cup \text{outs}(k)\} \cap \\
\bigcup\{k : \text{content } f \bullet (\text{atom } k).\text{in} \cup \text{outs}(k)\} = \emptyset \land \\
\text{getMsg}(\text{atom } e) \cap \text{getMsg}(\text{atom } f) = \emptyset)
\end{align*}
\]
Property 2 states that every element which is not a start event must be preceded by a start event, while Property 3 states that every element which is not an end event must be succeeded by an end event. By taking the transitive closure of \(\text{edge}(p) \) for any process \(p \), we define the characteristic set of processes \(\text{endConnected} \) such that process \(p \) is a member if and only if Properties 2 and 3 hold for every element \(e \in p \).

\[
\text{endsConnected} : \mathbb{P} \text{ Process} \\
\forall p : \text{Process} \bullet \\
P \in \text{endsConnected} \iff \\
(\forall e : p \bullet \\
(\exists f : p \bullet f \in \{ \text{End} \bullet e \} \land (e, f) \in (\text{edge}(p))^+) \land \\
(\exists f : p \bullet f \in \{ \text{Start} \bullet e \} \land (f, e) \in (\text{edge}(p))^+))
\]

We define the characteristic set of processes \(\text{noUnConnected} \) such that process \(p \) is a member if and only if Properties 4 and 5 hold for every element \(e \in p \). Note that Property 1 specified by set \(\text{noOverLap} \) ensures that the existentially quantified variable \(f \) in set \(\text{noUnConnected} \) is unique.

\[
\text{noUnConnected} : \mathbb{P} \text{ Process} \\
\forall p : \text{Process} \bullet \\
P \in \text{noUnConnected} \iff \\
(\forall e : p \bullet \\
(\forall s : \text{outs}(e) \bullet \exists f : p \bullet s \in (\text{atom} f).\text{in}) \land \\
(\forall s : (\text{atom} e).\text{in} \bullet \exists f : p \bullet s \in \text{outs}(f)))
\]

We now define the set \(\text{processSet} \) for capturing Properties 2, 3, 4 and 5.

\[
\text{processSet} : \mathbb{P} \text{ Process} \\
\forall p : \text{Process} \bullet p \in \text{processSet} \iff p \in \text{endsConnected} \cap \text{noUnConnected}
\]

The following schema \(\text{WFProcess} \) specifies the constraints about a BPMN process.

\[
\text{WFProcess} \\
\text{proc} : \text{Process} \\
\text{proc} \in \text{noOverLap} \cap \text{processSet} \\
\exists e, f : \text{proc} \bullet e \in \{ \text{Start} \bullet e \} \land f \in \{ \text{End} \bullet e \} \\
\neg (\exists e : \text{proc} \bullet e \in \{ \text{Inter} \mid (\text{atom} e).\text{type} \in \text{ran _error} \bullet e \})
\]

The schema states that component \(\text{proc} \) must be a member of \(\text{noOverLap} \) and \(\text{processSet} \), at least one start event and one end event are contained in \(\text{proc} \), and there is no intermediate error event contained in \(\text{proc} \). For example, consider Figure 4.3, which shows an intermediate error event directly contained in subprocess \(S \). We observe that task \(B \) would never be performed due to the break in the flow of control by the intermediate error event that precedes it.

![Figure 4.3: A subprocess containing an intermediate error event](image)

Using \(\text{WFProcess} \) we define the schema \(\text{GenSub} \) to specify constraints that are specific to subprocesses.
CHAPTER 4. BPMN SYNTAX

GenSub

\[\text{ele} : \text{Element} \]

\[\text{ele} \in \text{ran compound} \]

\[\#(\text{atom ele}.\text{send}) + \#(\text{atom ele}.\text{receive}) = 0 \]

\[(\text{atom ele}).\text{type} \in \text{ran subprocess} \cup \text{ran mipars} \cup \text{ran miseqs} \]

\[\text{content}(\text{ele}) \in \{ \text{WFProcess} \bullet \text{proc} \} \]

We define schema NormalSubProcess as a conjunction of GenSub and OneInOutFlow, thereby insisting that a subprocess element must have one incoming and one outgoing sequence flows.

\[\text{NormalSubProcess} \equiv \text{GenSub} \land \text{OneInOutFlow} \]

4.3.6 Exception

An activity may have exception flows by attaching one or more BPMN intermediate events. Figure 4.4 shows an example of a task and a subprocess with an exception flow. Each intermediate event attached to an activity has an outgoing sequence flow. These sequence flows are the exception flows of that activity. In

\[\begin{align*}
\text{Exception} &\::= \text{exception} | \text{anyexception} \\
\text{Exception} \text{ defines two constructors } \text{anyexception} \text{ and } \text{exception}: \text{anyexception} \text{ is a null constructor denoting that the error event is not associated to a particular type of error, and } \text{exception} \text{ takes a natural number that identifies the particular type of error this event is associated to.} \\
\text{The schema } \text{FullTask0} \text{ specifies constraints about a task’s exception flows. It states that every intermediate error event attached to a task element must have no associated error.} \\
\text{We define the set } \text{errorCodeTypes} \text{ such that } t \in \text{errorCodeTypes} \text{ if and only if type } t \text{ denotes an error event and records an error code.}
\end{align*} \]

\[\begin{align*}
\text{FullTask0} \\
\text{NormalTask} \\
\forall t : \text{Type} \bullet t \in (\text{ran(atom ele).exit}) \cap \text{ran ierror} \Rightarrow (\text{ierror} \sim t) = \text{anyexception} \\
\forall t : \text{Type} \bullet t \in \text{errorCodeTypes} \iff (t \in \text{ran ierror} \land (\text{ierror} \sim t) \neq \text{anyexception}) \lor (t \in \text{ran eerror} \land (\text{eerror} \sim t) \neq \text{anyexception})
\end{align*} \]
We write $\text{errorCode}(t)$ to denote t’s error code.

$\text{errorCode} : \text{errorCodeTypes} \rightarrow \mathbb{N}$

The schema UniqueEndErrorSub states that each end error event in a subprocess must have a unique error code.

$$\forall e, f : \text{content}(\text{ele}) \bullet \\
\{ e, f \} \subseteq \{ \text{End} \mid (\text{atom ele}).\text{type} \in (\text{ran error} \cap \text{errorCodeTypes}) \bullet \text{ele} \} \land \\
\text{errorCode}((\text{atom e}).\text{type}) = \text{errorCode}((\text{atom f}).\text{type}) \Rightarrow f = e$$

The next two schemas relate end error events directly contained in a subprocess to intermediate error events attached to that subprocess. Schema $\text{RelateEndIntErrorSub}$ states that if an end error event directly contained in a subprocess records an error code, then that code is also recorded by an intermediate error event attached to the subprocess.

$$\forall e : \text{content}(\text{ele}) \bullet \\
(\text{atom e}).\text{type} \in (\text{ran error} \cap \text{errorCodeTypes}) \Rightarrow \\
(\exists t : \text{ran}((\text{atom ele}).\text{exit}) \bullet \\
t \in (\text{ran error} \cap \text{errorCodeTypes}) \land \\
\text{errorCode}((\text{atom e}).\text{type}) = \text{errorCode}(t))$$

Similarly, schema $\text{RelateIntEndErrorSub}$ states that if an intermediate error event attached to a subprocess record an error code then the code is also recorded by an end error event directly contained in that subprocess.

$$\forall t : \text{ran}((\text{atom ele}).\text{exit}) \bullet \\
t \in (\text{ran error} \cap \text{errorCodeTypes}) \Rightarrow \\
(\exists e : \text{content}(\text{ele}) \bullet \\
(\text{atom e}).\text{type} \in (\text{ran error} \cap \text{errorCodeTypes}) \land \\
\text{errorCode}((\text{atom e}).\text{type}) = \text{errorCode}(t))$$

Using the schemas defined above, we construct the schema FullSub0.

$$\text{FullSub0} \equiv \text{UniqueEndErrorSub} \land \text{RelateEndIntErrorSub} \land \text{RelateIntEndErrorSub}$$

We complete the schema definition for tasks and subprocesses by insisting all events attached to their boundary must be intermediate events.

$$\text{Attach} \equiv \text{ele} : \text{Element} \mid (\forall t : \text{Type} \bullet t \in \text{ran}((\text{atom ele}).\text{exit}) \Rightarrow t \in \text{inters})$$

and the full schema definitions are defined as follows.

$$\text{FullTask} \equiv \text{FullTask0} \land \text{Attach}$$

$$\text{FullSub} \equiv \text{FullSub0} \land \text{Attach}$$

Finally schema Activity specifies an activity element.

$$\text{Activity} \equiv \text{FullTask} \lor \text{FullSub}$$
4.4 Pools and Diagrams

4.4.1 Haskell Syntax

In the Haskell implementation, we defined type \texttt{Diagram} to be a list of pairs; each pair has the type \texttt{(PoolId, [Element])} and records a BPMN pool in a BPMN diagram. The first component identifies the BPMN pool, and the second component is a list of \texttt{Element} values that this pool directly contains.

4.4.2 Pools

In previous sections we specified the three categories of flow objects via schemas. We may now specify a flow object using the following schema \texttt{FlowObject}.

\[
\text{FlowObject} \triangleq \text{Event} \lor \text{Activity} \lor \text{Gate}
\]

We provide a specification of BPMN pools. We define \texttt{onlyFlowObject} to be a characteristic set of processes, such that a process is in this set if and only if all elements contained in the process satisfy the constraints specified by the schema \texttt{FlowObject}.

\[
\text{onlyFlowObject} : \mathbb{P} \text{ Process}
\]

\[
\forall ps : \text{Process} \bullet ps \in \text{onlyFlowObject} \iff (\forall e : \{g : \text{Element} \mid g \in_p ps\} \bullet e \in \{\text{FlowObject} \bullet ele\})
\]

The following schema \texttt{GenProc} states that a BPMN process satisfies the schema \texttt{WFProcess}, and that elements contained in the process satisfy schema \texttt{FlowObject}.

\[
\text{GenProc} \triangleq [\text{WFProcess} \mid \text{proc} \in \text{onlyFlowObject}]
\]

We define schema \texttt{hasExgates} to specify the relationship between an event-based XOR gateway and the targets of its outgoing sequence flows in a BPMN process. Specifically, the schema states that each outgoing sequence flow of an event-based gateway contained in a BPMN pool must be an incoming sequence flow of either an intermediate event or a task. The set \texttt{eventgate} abbreviates the set of event-based XOR gateways. The set \texttt{sendelement} abbreviates the set of intermediate events and tasks, that is, all the elements in our BPMN subset that could have incoming message flows. The function \texttt{direct} returns either \texttt{proc} if \(e \in \text{proc}\), or \texttt{content(f)} where \(f\) is a subprocess contained in \text{proc} that directly contains \(e\).

\[
\text{hasExgates}
\]

\[
\text{proc} : \text{Process}
\]

\[
\forall f : \{g : \text{Element} \mid g \in_p \text{proc}\} \bullet f \in \text{eventgate} \Rightarrow
\]

\[
(\forall e : \text{Element} \bullet (f, e) \in \text{edge}(\text{direct}(\text{proc}, e)) \Rightarrow e \in \text{sendelement})
\]

We specify a BPMN pool using schema \texttt{Pool}, and is defined as the following conjunction.

\[
\text{Pool} \equiv \text{GenProc} \land \text{hasExgates}
\]

4.4.3 Diagrams

A BPMN diagram is a collection of BPMN pools interacting via message flow communication.

We specify the structure of a BPMN diagram using the schema \texttt{GenDiagram}. This schema states that a diagram consists of one or more BPMN pools, with each pool being uniquely identified by some \texttt{PoolId} value \(i\) such that \text{pool}(i) gives that diagram (where \texttt{PoolId} is a basic type).

\[
\text{GenDiagram} \equiv [\text{pool} : \text{PoolId} \mapsto \text{Pool} \mid \text{pool} \neq \emptyset]
\]
In a BPMN diagram no two BPMN pools share a sequence flow. This is specified by the schema
\(\text{SequenceFlows} \),
\[
\text{SequenceFlows} \triangleq
[GenDiagram \mid \forall p, q : \text{ran pool} \cdot p \neq q \Rightarrow \text{getSeqflows}(p).\text{proc} \cap \text{getSeqflows}(q).\text{proc} = \emptyset]
\]
where function \(\text{getSeqflows} \) is defined such that \(\text{getSeqflows}(ps) \) returns sequence flows of all elements contained in \(ps \).
\[
\text{getSeqflows} : \mathbb{P} \text{Element} \rightarrow \mathbb{P} \text{Seqflow}
\]
We also specify message flows of elements in a BPMN diagram. Functions \(\text{getSds} \) and \(\text{getRec} \) are defined such that \(\text{getSds}(ps) \) and \(\text{getRec}(ps) \) return outgoing and incoming messages flows of all elements contained in \(ps \) respectively.
\[
\text{getSds, getRecs} : \mathbb{P} \text{Element} \rightarrow \mathbb{P} \text{Mgeflow}
\]
Schema \(\text{MessageFlows} \) states that in a BPMN diagram, elements in two different BPMN pools do not share the same incoming and outgoing message flows. This schema also specifies that in a BPMN diagram a message flow is an outgoing message flow of an element contained in a BPMN pool if and only if it is also an incoming message flow of some element contained in a different BPMN pool of that diagram.
\[
\text{MessageFlows}
\]
\[
\text{GenDiagram}
\]
\[
(\forall p, q : \text{ran pool} \cdot (p \neq q \Rightarrow \text{getSds}(p).\text{proc} \cap \text{getSds}(q).\text{proc} = \emptyset \land \text{getRecs}(p).\text{proc} \cap \text{getRecs}(q).\text{proc} = \emptyset))
\]
\[
(\forall m : \text{getSds}(p).\text{proc} \cdot (\exists q : \text{ran pool} \cdot (p \neq q \land m \in \text{getRecs}(q).\text{proc}))) \land
(\forall m : \text{getRecs}(p).\text{proc} \cdot (\exists q : \text{ran pool} \cdot (p \neq q \land m \in \text{getSds}(q).\text{proc})))
\]
The schema \(\text{Diagram} \) is the conjunction of the above two schemas, and specifies the relationships between elements in a BPMN diagram.
\[
\text{Diagram} \triangleq \text{SequenceFlows} \land \text{MessageFlows}
\]

4.5 Initialisation Theorems

This section defines the initial states for BPMN elements, processes, pools and diagrams, and shows that they are consistent with respect to their Z specification.

4.5.1 BPMN Element

We first define the initial sequence flow, start and end event elements.
\[
\text{seq}1 : \text{Seqflow}
\]
\[
\text{startatom, endatom} : \text{Atom}
\]
\[
\text{startatom} =
\{ \text{type } \sim \text{start}, \text{in } \sim \emptyset, \text{out } \sim \{ \text{seq}1 \}, \text{exit } \sim \emptyset, \text{range } \sim (0, 0), \text{send } \sim \emptyset, \text{receive } \sim \emptyset \}\land
\text{endatom} =
\{ \text{type } \sim \text{end}, \text{in } \sim \{ \text{seq}1 \}, \text{out } \sim \emptyset, \text{exit } \sim \emptyset, \text{range } \sim (0, 0), \text{send } \sim \emptyset, \text{receive } \sim \emptyset \}\land
\text{startele, endele} : \text{Element}
\]
\[
\text{startele} = \text{atomic startatom} \land \text{endele} = \text{atomic endatom}
\]
Schemas \textit{StartAtomInit} and \textit{EndAtomInit} specify \textit{startatom} and \textit{endatom} to be two possible initial states of \textit{Atom}.

\[\textit{StartAtomInit} \overset{\equiv}{=} \{\textit{Atom}' \mid \textit{Atom}' = \textit{startatom}\} \]
\[\textit{EndAtomInit} \overset{\equiv}{=} \{\textit{Atom}' \mid \textit{Atom}' = \textit{endatom}\} \]

We show these states to be consistent with respect to schema \textit{Atom}.

\textbf{Theorem 4.4.} \(\exists \textit{Atom}' \bullet \textit{StartAtomInit}\)
\textit{Proof.} See Page 185 (Section A.5 in Appendix A).

\textbf{Theorem 4.5.} \(\exists \textit{Atom}' \bullet \textit{EndAtomInit}\)
\textit{Proof.} See Page 186 (Section A.5 in Appendix A).

We now define \textit{startele} and \textit{endele} to two possible initial states of \textit{FlowObject}.

\[\textit{StartInit} \overset{\equiv}{=} \{\textit{FlowObject}' \mid \textit{ele}' = \textit{startele}\} \]
\[\textit{EndInit} \overset{\equiv}{=} \{\textit{FlowObject}' \mid \textit{ele}' = \textit{endele}\} \]

We show these states to be consistent with respect to schema \textit{FlowObject}.

\textbf{Theorem 4.6.} \(\exists \textit{FlowObject}' \bullet \textit{StartInit}\)
\textit{Proof.} See Page 186 (Section A.5 in Appendix A).

\textbf{Theorem 4.7.} \(\exists \textit{FlowObject}' \bullet \textit{EndInit}\)
\textit{Proof.} See Page 187 (Section A.5 in Appendix A).

\textbf{4.5.2 BPMN Process}\)

We define an initial state of a BPMN process by considering the constraints about elements contained in it. Using the start and end events \textit{startele} and \textit{endele}, we define the initial state of a process to be one that directly contains these two events. We first define process \textit{initialproc} as follows.

\[\textit{initialproc} : \textit{Process} \]
\[\textit{initialproc} = \{\textit{startele}, \textit{endele}\} \]

The following schema \textit{GenProcInit} characterises the initial state of \textit{GenProc}; \textit{GenProc}, which is defined in Section 4.4.2, specifies properties about elements contained in a BPMN process.

\[\textit{GenProcInit} \overset{\equiv}{=} \{\textit{Proc}' \mid \textit{proc}' = \textit{initialproc}\} \]

We show this state to be consistent with respect to schema \textit{GenProc}.

\textbf{Theorem 4.8.} \(\exists \textit{GenProc}' \bullet \textit{GenProcInit}\)
\textit{Proof.} See Page 188 (Section A.5 in Appendix A).

\textbf{4.5.3 BPMN Pool}\)

We define schema \textit{PoolInit} to specify the initial state of a BPMN pool \textit{Pool}.

\[\textit{PoolInit} \overset{\equiv}{=} \{\textit{Pool}' \mid \textit{proc}' = \textit{initialproc}\} \]

We show this state to be consistent with respect to schema \textit{Pool}.

\textbf{Theorem 4.9.} \(\exists \textit{Pool}' \bullet \textit{PoolInit}\)
\textit{Proof.} See Page 191 (Section A.5 in Appendix A).
4.5.4 BPMN Diagram

We define the initial state of a BPMN diagram to contain only one BPMN pool. This pool is initialised according to schema \(\text{PoolInit} \). The value \(\text{initialpool} \) is a mapping from a pool identifier to a schema binding of \(\text{Pool} \) whose component \(\text{proc} \) has the value \(\text{initialproc} \).

\[
\begin{align*}
\text{pool} & : \text{PoolId} \\
\text{initialpool} & : \text{PoolId} \mapsto \text{Pool} \\
\text{initialpool} & = \{ \text{pool1} \mapsto \{ \text{proc} \mapsto \text{initialproc} \} \}
\end{align*}
\]

We define schema \(\text{DiagramInit} \) to specify the initial state of a BPMN diagram.

\[
\text{DiagramInit} \triangleq [\text{Diagram}'] \mid \text{pool'} = \text{initialpool}
\]

We show this state to be consistent with respect to schema \(\text{Diagram} \).

Theorem 4.10. \(\exists \text{Diagram'} \bullet \text{DiagramInit} \)

Proof. See Page 192 (Section A.5 in Appendix A). \(\square \)

4.6 Diagrams Construction

Using the schema calculus we provide eight syntactic operations for constructing BPMN processes. Specifically these are operation schemas on the state schemas \(\text{Pool} \) and \(\text{Diagram} \). They are partitioned into the six categories: sequential composition, split, join, iteration, interrupt and collaboration. These categories are described from Section 4.6.2 to Section 4.6.7.

While the syntactic operations defined in this section are not part of BPMN, we did not need to extend the existing syntax of BPMN for defining these operations. These operations are designed to provide following benefits:

- To provide the expressiveness and the flexibility to describe business processes. We have chosen a comprehensive set of operations to provide the expressiveness for describing business process similar to those in structured programming [DDH72]. All BPMN processes presented in this thesis can be constructed using operations defined in this section.

- To ensure the syntactic consistency of business processes. Syntactic consistency is ensured by calculating the preconditions of the operations defined in this section. These preconditions show that the application of these operations on a syntactically valid BPMN process guarantees a syntactically valid BPMN process. Precondition calculations are described in Section 4.6.9 while full calculations may be found in Appendix B.

- To assist the development of a compositional approach for describing and reasoning about the behaviour of business processes. Specifically in Chapter 5 we provide a process semantics to these operations using the process algebra CSP [Ros98]. Using this semantics we are able to give a compositional approach to reasoning about the behavioural correctness of complex BPMN business processes; this is achieved by exploiting the transitive and monotonic properties of CSP refinements [Ros98].

The rest of this section is structured as follows: In Section 4.6.1 we provide some preliminary definitions to assist the specification. Note that some auxiliary definitions are only partially defined in this section; full definitions can be found in Appendix A.6. From Section 4.6.2 to Section 4.6.7 we describe the eight syntactic operations using the Z schema calculus; when describing operations in Sections 4.6.2 to 4.6.7 we refer to Figure 4.6 for illustration purposes. Each subfigure in Figure 4.6 illustrates a single operation. The diagram on the left hand side of each subfigure depicts the operation’s before state, and the diagram on the right hand side depicts its after state. In Section 4.6.8 we show an example of how to construct the customer business process of our online shop example in Figure 2.3 and in Section 4.6.9 we present the precondition calculations of the operations.
4.6.1 Preliminaries

4.6.1.1 States and Functions

We first describe informally schema definitions about subsets of BPMN elements. *InitialInter* specifies either an intermediate time event or an intermediate message event with no associated message flow. *InitialEnd* specifies a non-trigger end event. *NonEvSplit* specifies either a data-based XOR or an AND split gateway, *EventSplit* specifies an event-based XOR split gateway and *NonEvJoin* specifies a data-based XOR or an AND join gateway. *OneInOutAtom* specifies either an intermediate time event, an intermediate message event with no associated message flow, or a task with no message and exception flow. *OneInOutObject* specifies either an intermediate time event, an intermediate message event with no associated message flow, or an activity (task or subprocess) with no message and exception flow.

We provide the following auxiliary definitions.

\[\forall es : F_1 \text{Element} \bullet (es \in \text{uniqueIns} \Rightarrow (\forall e, f : es \bullet e \neq f \Rightarrow (\text{atom } e).in \cap (\text{atom } f).in = \emptyset)) \]

We augment this definition to *uniqueEnds* such that a nonempty finite set of elements belongs to the set *uniqueIns* if and only if elements in that set do not share incoming sequence flows.

\[\forall es : F_1 \text{Element} \bullet (es \in \text{uniqueEnds} \Rightarrow (\forall e, f : es \bullet e \neq f \Rightarrow (\text{atom } e).out \cup (\text{atom } f).out = \emptyset)) \]

The function *modify* takes a process *ps* and two finite sets of elements *ns* and *rs*. The function performs the following: if elements in *rs* are directly contained in *ps*, this operation returns the set \((ps \setminus rs) \cup ns\); otherwise it recursively searches for a subprocess element *s* that is directly contained in *ps*, and contains elements in *rs* and returns *ps* with content of *s* modified according to function application \(\text{modify(content(s), ns, rs)}\). This is a partial function as it is only defined for inputs where process *ps* contains elements in *rs*. The expression \(\text{cont(ps, rs)} = \{e : ps \mid rs \subseteq \{f : \text{Element} \mid f \in e\}\}\). That is, it returns a set of subprocesses *qs* directly contained in *ps* such that the subprocesses contain all elements in *rs*. The expression \(\text{rep(s, modify(content(s), ns, rs))}\) evaluates to the element \(\text{compound(atom s, modify(content(s), ns, rs))}\). That is, subprocess *s* with elements it directly contains being replaced by elements in \(\text{modify(content(s), ns, rs)}\).

\[
\text{modify} : (\text{Process} \times F \text{Element} \times F_1 \text{Element}) \rightarrow \text{Process}
\]

\[
\forall ps : \text{Process}; ns : F \text{Element}; rs : F_1 \text{Element} \bullet
\quad (rs \subseteq ps \Rightarrow \text{modify}(ps, ns, rs) = ((ps \setminus rs) \cup ns)) \land
\quad (rs \subseteq \{e : \text{Element} \mid e \in_p ps\} \setminus ps) \Rightarrow
\quad \text{modify}(ps, ns, rs) = \frac{((ps \setminus \text{cont(ps, rs)}) \cup \{s : \text{cont(ps, rs)} \bullet \text{rep(s, modify(content(s), ns, rs))}\}}{}}
\]
4.6.1.2 Operation Schemas

We now consider operation schemas on a BPMN element. These operations help to construct the syntactic operations on Pool and Diagram. We first provide the following definition for introducing a new sequence or a message flow to a process.

Definition 4.11. Fresh flow. A sequence flow s is fresh from an element e if and only if \(s \notin \text{getSeqflows}\{e\}\). Likewise, a message flow m is fresh from an element e if and only if \(m \notin \text{getMsgs}\{e\}\).

We say s (and m) is fresh from a set of elements \(ps\) if and only if s (and m) is fresh from all elements contained in \(ps\).

Operation **ChangeFlow** replaces an incoming sequence flow of a non-start BPMN element; all BPMN elements, except start elements, must have at least one incoming sequence flow. Here to? must be an incoming sequence flow of ele. The expression \(cge(\text{ele}, \text{from}?, \text{to}?)\) is element ele after replacing its incoming sequence flow from? with to?.

An illustration of the operation **ChangeFlow** is shown in Figure 4.5(A).

AddNoRelatedErrorExceptionSub adds an exception flow to an activity element where the type of the exception flow is not associated with a specific error. The expression \(ce(\text{ele}, (\text{eflow}?, \text{etype}?), \emptyset, \emptyset)\) is element ele after an exception flow, specified by the pair (eflow?, etype?), is added. The set \(\text{nomsgserrors}\) is the set of intermediate events with no message and no associated with error codes.

\[
\text{nomsgserrors} == \text{ran itime} \cup \{\text{imessage(nomessage)}\} \cup \text{irule} \cup \{\text{i}: \text{ran ierror} | (\text{ierror} \sim \text{i}) \text{i} \in \text{ran exception}\}
\]

Note that eflow? must be fresh from ele. An illustration of this operation is shown in Figure 4.5(B).

ChangeEndType replaces the type component of an end event with the input end error type etype?. The expression \(ct(\text{ele}, \text{type}?)\) is element ele after replacing its type with the value type?.

An illustration of this operation is shown in Figure 4.5(C).

AddRelatedErrorExceptionSub performs two steps:
1. Adds an exception flow, \((e\text{flow}, e\text{type})\), to a subprocess.

2. Associates the type \(e\text{type}\) of the exception flow to an end error event directly contained in that subprocess.

The second step is achieved by replacing the type of a non-trigger end event with \(e\text{type}\) such that \(e\text{type}\) and \(e\text{type}\) refer to the same specific error. The expression \(ce(\text{ele, } (e\text{flow}, e\text{type}), \{\text{endele}\}, \{\text{endele}'\})\) is element \(\text{ele}\) after the exception flow \((e\text{flow}, e\text{type})\) is added and element \(\text{endele}\) is replaced with \(\text{endele}'\). An illustration of this operation is shown in Figure 4.5(D).

\[
\text{AddRelatedErrorExceptionSub} \\
\begin{array}{l}
\Delta \text{FullSub} \\
\text{ChangeEndType}\{\text{endele/ele, endele'/ele'}\} \\
e\text{type}? : \text{Type} \\
e\text{flow}? : \text{Seqflow} \\
\end{array}
\]

\[
e\text{type}? \in (\text{ran error} \cap \text{errorCodeTypes}) \setminus (\text{ran}(\text{atom ele}.\text{exit})) \\
e\text{flow}? \notin \text{getSeqflows}\{\text{ele}\} \\
\text{endele} \in (\text{content ele}) \\
(\text{ends}(\text{content ele})\text{flow}? = \text{endele} \\
\text{ele}' = ce(\text{ele, (eflow?, etype?), }\{\text{endele}\}, \{\text{endele}'\})
\]

Operations \(\text{AddSendMgeFlowTask}\) and \(\text{AddReceiveMgeFlowTask}\) add an outgoing and an incoming message flow to a task respectively. The expression \(cm(\text{ele, } \{\text{msg}\}, \emptyset, (\text{atom ele}).\text{exit})\) is element \(\text{ele}\) after adding message flow \(\text{msg}\) to \(\text{ele}'\)'s send component. Conversely, the expression \(cm(\text{ele, } \emptyset, \{\text{msg}\}, (\text{atom ele}).\text{exit})\) is \(\text{ele}\) after adding \(\text{msg}\) to the its receive component. An illustration of \(\text{AddSendMgeFlowTask}\) and \(\text{AddReceiveMgeFlowTask}\) is shown in Figures 4.5(E) and (F) respectively.

\[
\text{AddSendMgeFlowTask} \triangleq \\
(\Delta \text{FullTask}; \text{msg}? : \text{Mgeflow} | \\
\text{msg}? \notin \text{getMsg}(\text{atom ele}) \wedge \text{ele}' = cm(\text{ele, } \{\text{msg}\}, \emptyset, (\text{atom ele}).\text{exit}))
\]

\[
\text{AddReceiveMgeFlowTask} \triangleq \\
(\Delta \text{FullTask}; \text{msg}? : \text{Mgeflow} | \\
\text{msg}? \notin \text{getMsg}(\text{atom ele}) \wedge \text{ele}' = cm(\text{ele, } \emptyset, \{\text{msg}\}, (\text{atom ele}).\text{exit}))
\]

Operation \(\text{AddExceptionMgeFlow}\) adds an incoming message flow to an intermediate message event attached to an activity. This operation insists that exactly one intermediate message event, which is not associated to a message flow \(\text{imessage(nomessage)}\), is attached to the activity. The expression \(r\text{range}((\text{atom ele}).\text{exit}, \text{imessage(nomessage)}, \text{imessage(message(msg?)))}\) returns the component \((\text{atom ele}).\text{exit}\) after all pairs \((s, \text{imessage(nomessage)})\) \(\in (\text{atom ele}).\text{exit}\) are replaced with \((s, \text{imessage(message(msg?)))}\). An illustration of \(\text{AddExceptionMgeFlow}\) is shown in Figure 4.5(G).

\[
\text{AddExceptionMgeFlow} \\
\Delta \text{Activity} \\
\text{msg}? : \text{Mgeflow} \\
\text{msg}? \notin \text{getMsg}(\text{atom ele}) \\
\#((\text{atom ele}).\text{exit}) (\{\text{imessage(nomessage)}) = 1 \\
\text{ele}' = cm(\text{ele, } \emptyset, \emptyset, \text{rrange}((\text{atom ele}).\text{exit}, \text{imessage(nomessage)}, \text{imessage(message(msg?))))})
\]

Operation \(\text{AddMgeEvent}\) is the disjunction of schemas \(\text{AddSMgeEvent, AddIMgeEvent and AddEMgeEvent}\).

\[
\text{AddMgeEvent} \triangleq \text{AddSMgeEvent} \lor \text{AddIMgeEvent} \lor \text{AddEMgeEvent}
\]
The operation adds a message flow to a message event. An illustration of these operations is shown in Figures 4.5(H), (I) and (J).

\[
\text{AddSMgeEvent} \equiv \\
[\Delta \text{Start}; \ msg? : \ Mgeflow | \\
(\text{atom ele).type} = \text{smessage} (\text{nomessage}) \land \text{ele'} = \text{ct(ele, smessage(message(msg?)))}]
\]

\[
\text{AddIMgeEvent} \equiv \\
[\Delta \text{Inter}; \ msg? : \ Mgeflow | \\
(\text{atom ele).type} = \text{imessage} (\text{nomessage}) \land \text{ele'} = \text{ct(ele, imessage(message(msg?)))}]
\]

\[
\text{AddEMgeEvent} \equiv \\
[\Delta \text{End}; \ msg? : \ Mgeflow | \\
(\text{atom ele).type} = \text{emessage} (\text{nomessage}) \land \text{ele'} = \text{ct(ele, emessage(message(msg?)))}]
\]

Figure 4.5: Before-and-after illustrations of operation schemas

4.6.2 Sequential Composition

We define the sequential composition by the operation schema \text{SeqComp}.
This operation takes two elements \(new?\) and \(end?\), and a sequence flow \(from?\) as inputs. An illustration of \(SeqComp\) is shown in Figure 4.6(A), where the end event labelled \(E\) is specified by the expression \(((ends proc) from?)\). The illustration shows how this operation replaces element \(E\) with element \(new?\) and \(end?\). We now consider the constraints specified by \(SeqComp\) in detail.

Specifically, \(new?\) is either an intermediate time or message event (with no message flow) or an activity. That is, \(new?\) has exactly one incoming and one outgoing sequence flow, and \(end?\) is a non-trigger end event. Furthermore, \(SeqComp\) includes the following schema \(CommonConstraints\).

\[
\begin{align*}
\text{CommonConstraints} & \quad \text{Pool} \\
\text{end?} : \text{Element} \\
\text{new?} : \{\text{ele} : \text{Element} | \text{OneInOutObject}\} \\
\text{end?} : \{\text{ele} : \text{Element} | \text{InitialEnd}\} \\
(\text{atom end?}).\text{in} = (\text{atom new?}).\text{out} \\
\text{proc'} = \text{modify(proc, } \{\text{new?}, \text{end}\}, \{(\text{ends proc}) \text{from?}\})
\end{align*}
\]

\(CommonConstraints\) states the following constraints:

- All outgoing sequence, exception flows of \(news\) as well as all sequence and exception flows of elements contained in \(new?\) must be fresh from the before state component \(proc\).
- \(from?\) is an incoming sequence flow of \(new?\).
- \(from?\) is also an incoming sequence flow of an end element contained in \(proc\); \((ends proc)f\) returns an end event contained in \(proc\) and that has incoming sequence \(f\).

4.6.3 Splits

There are two splits operations \(Split\) and \(EventSplitOp\). \(Split\) adds either a data-based XOR or an AND split gateway to a BPMN pool, while \(EventSplitOp\) adds an event-based XOR split gateway to a BPMN pool. We first consider operation \(Split\).

\[
\begin{align*}
\text{Split} & \quad \Delta \text{Pool} \\
\text{CommonConstraints} & \quad \text{outs?} : \mathcal{F}_1 \text{Element} \\
\text{new?} \in \{\text{NonEvSplit} \bullet \text{ele}\} \\
\text{outs?} \in \text{uniqueEnds} \\
\text{getIns(outs?)} \cap \text{getSeqflows proc} = \emptyset \\
\text{getIns(outs?)} = (\text{atom new?}).\text{out} \\
\text{proc'} = \text{modify(proc, } \{\text{new?}\} \cup \text{outs?}, \{(\text{ends proc}) \text{from?}\})
\end{align*}
\]

This operation takes input components \(outs?\), \(new?\) and \(from?\). An illustration of \(Split\) is shown in Figure 4.6(B), where the end event labelled \(E\) is specified by the expression \(((ends proc) from?)\). The
CHAPTER 4. BPMN SYNTAX

Illustration shows how the operation replaces \(E \) with element \(\text{new}? \) and the set of elements \(\text{outs}? \), which contains elements labelled \(F \) and \(G \). We now consider the constraints specified by this operation in detail.

Split includes constraints specified by CommonConstraints about \(\text{new}? , \text{from}? \) and the before state Pool. In addition, it specifies the following constraints on all input components:

- \(\text{new}? \) must be either a data-based XOR or an AND split gateway
- \(\text{outs}? \) must be a non-empty set of end events, in which elements do not share incoming sequence flows.
- Incoming sequence flows of elements in \(\text{outs}? \) are fresh from the before state Pool.
- Incoming sequence flows of elements in \(\text{outs}? \) are exactly the outgoing sequence flows of \(\text{new}? \).

We now consider the schema definition EventSplitOp.

\[
\begin{align*}
\text{EventSplitOp} & \Delta \text{Pool} \\
& \text{CommonConstraints} \\
& \text{EventSplitAux} \\
\text{new}? & \in \{ \text{EventSplit} \bullet \text{ele} \} \\
\text{getIns} (\text{events}?) & = (\text{atom} \text{new}?).\text{out} \\
\text{getSegflows} (\text{events}? \cup \text{ends}?) \cap \text{getSegflows proc} & = \emptyset \\
\text{proc}' & = \text{modify} (\text{proc}, \{ \text{new}? \} \cup \text{events}? \cup \text{ends}?, \{ (\text{ends proc from}?) \})
\end{align*}
\]

This operation takes input components \(\text{events}? , \text{ends}? , \text{new}? \) and \(\text{from}? \). An illustration of EventSplitOp is shown in Figure 4.6(C), where the end event labelled \(E \) is specified by the expression \(((\text{ends proc from}?)) \). The illustration shows how the operation replaces \(E \) with element \(\text{new}? \) and two sets of elements \(\text{ends}? \) and \(\text{events}? \). Here \(\text{end}? \) contains elements labelled \(F \) and \(G \) and \(\text{events}? \) contains elements labelled \(\text{eventA} \) and \(\text{eventB} \) respectively. This operation ensures each direct successors of the event-based split gateway is either a task or an intermediate event. We now consider the constraints specified by EventSplitOp in detail.

This operation includes constraints specified by CommonConstraints on \(\text{new}? , \text{from}? \) and the before state Pool. In addition, it includes the schema EventSplitAux.

\[
\begin{align*}
\text{EventSplitAux} & \quad \text{events}? , \text{ends}? : \exists_1 \text{Element} \\
& \quad \text{events}? \subseteq \{ \text{ele} : \text{Element} \mid \text{OneInOutAtom} \} \\
& \quad \text{ends}? \subseteq \{ \text{ele} : \text{Element} \mid \text{InitialEnd} \} \\
& \quad \text{events}? \cup \text{ends}? \in \text{uniqueIns} \\
& \quad \#\text{events}? = \#\text{ends}? \\
& \quad \text{getOuts} (\text{events}?) = \text{getIns} (\text{ends}?)
\end{align*}
\]

Specifically, schema EventSplitOp specifies the following constraints.

- \(\text{new}? \) must be an event-based XOR split gateway.
- Incoming sequence flows of elements in \(\text{events}? \) are exactly the outgoing sequence flows of \(\text{new}? \).
- Sequence flows of elements in \(\text{events}? \) and \(\text{ends}? \) are fresh from the before state Pool.
- Each element in \(\text{events}? \) is either an intermediate time event, a message event or an activity.
- \(\text{ends}? \) is a set of non-trigger end events.
- Elements in \(\text{events}? \) and \(\text{ends}? \) do not share incoming sequence flows.
- \(\text{events}? \) and \(\text{ends}? \) have the same number of elements.
- The outgoing sequence flows of elements in \(\text{events}? \) are exactly the incoming sequence flows of elements in \(\text{ends}? \).
4.6.4 Join

We define the join operation by the operation schema JoinOp. This operation adds either a data-based XOR or an AND join gateway to a BPMN pool.

JoinOp takes input components gate? and end?. An illustration of JoinOp is shown in Figure 4.6(D), where the end events labelled E and F are specified by the expression \((\text{ends proc})\{ (\text{atom gate?}).in \}\). The illustration shows how the operation replaces elements E and F with elements gate? and end?. Here end? is labelled G in the illustration. Specifically, JoinOp defines the following constraints:

- gate? is either a data-based XOR or an AND join gateway.
- end? is a non-trigger end event.
- gate?’s incoming sequence flows are incoming sequence flows of some end events contained in the before state Pool, this constraint is specified by the membership \((\text{proc}, (\text{ends proc})\{ (\text{atom gate?}).in \}\) \(\in\) together, where together is a binary relation defined as follows.

\[
\text{together} : (\text{Process} \leftrightarrow \mathbb{F}_1 \text{Element})
\]

\[
\forall p : \text{Process}; \ es : \mathbb{F}_1 \text{Element} \bullet
(p, es) \in \text{together} \Leftrightarrow es \subseteq p \lor \#\{ e : \text{Element} \mid e \in p \land es \subseteq \text{content}(e)\} = 1
\]

- Outgoing sequence flows of gate? are exactly the incoming sequence flows of end?
- Incoming sequence flows of end? are fresh from the before state Pool.

4.6.5 Iteration

There are two iteration operations Loop and EventLoop. We first consider Loop. An illustration of Loop is shown in Figure 4.6(E). The illustration shows how iteration is constructed using a (non event-based) split and a join gateway. We first consider the constraints on the split gateway. These are provided by the following schema ConnectSplit.

ConnectSplit

| CommonConstraints[split?\!\!new?] connect? : Seqflow end? : Element
| split? \in \{\text{NonEvSplit} \bullet \text{ele}\}
| end? \in \{\text{ele} : \text{Element} \mid \text{InitialEnd}\}
| connect? \notin (\text{atom end?}).in
| (\text{atom split?}).out = \{\text{connect?}\} \cup (\text{atom end?}).in

This schema specifies the following constraints between the input components split?, end?, connect? and from?.
• \textit{split?} is either a data-based XOR or an AND split gateway.

• \textit{end?} is a non-trigger end event.

• Sequence flow \textit{connect?} is fresh from \textit{end?}.

• Sequence flows of set \{\textit{connect?}\} \cup (\textit{atom end?}).\texttt{in} are the outgoing sequence flows of \textit{split}.

The constraints specified in \textit{CommonConstraint} ensure the outgoing sequence flows of \textit{split?} are fresh from the before state \textit{Pool}.

The following schema \textit{ConnectJoin} specifies the constraints on the non event-based join gateway:

\[
\text{ConnectJoin}
\]
\[
\text{Pool}
\]
\[
\text{ChangeFlow}[\text{change}/\texttt{ele}, \text{change'}/\texttt{ele'}, f2?/\texttt{from}?, t2?/\texttt{to}?]
\]
\[
\text{ConnectJoin0}
\]
\[
t2? \notin \text{getSeqflows proc}
\]
\[
(\text{nonsends proc}) f2? = \text{change}
\]

This schema takes input element \textit{join?}, and sequence flows \textit{connect?}, \textit{f2?} and \textit{t2?}. This includes the operation schema \textit{ChangeFlow}, which replaces the incoming sequence flow \textit{f2?} of the element \{\text{nonsends proc}\} \textit{f2?} with \textit{t2?}. The expression \{\text{nonsends proc}\} \textit{f2?} ensures this element is not a direct successor of an event-based XOR gateway. A detail description of \textit{ChangeFlow} is provided on Page 39 in Section 4.6.1.2. \textit{ConnectJoin} also insists that \textit{t2?} is fresh from the before state \textit{Pool}. In addition, this schema includes the schema \textit{ConnectJoin0}.

\[
\text{ConnectJoin0}
\]
\[
\text{join?} : \text{Element}
\]
\[
\text{connect?}, f2?, t2? : \text{Seqflow}
\]
\[
\text{join?} \in \{\text{NonEvJoin} \bullet \text{ele}\}
\]
\[
\text{connect?} \neq t2?
\]
\[
(\text{atom join?}).\texttt{in} = \{f2?, \text{connect?}\}
\]
\[
\text{outs join?} = \{t2?\}
\]

\textit{ConnectJoin0} specifies the following constraints on the input components independently from the before state.

• \textit{join?} is either a join gateway.

• Sequence flows \textit{connect?} and \textit{t2?} are not the same.

• \textit{f2?} and \textit{connect?} are the only incoming sequence flows of \textit{join?}; since \textit{f2?} is not fresh from the before state and \textit{connect?} is, this ensures that \textit{f2?} and \textit{connect?} are not the same flow.

• \textit{t2?} is the only outgoing sequence flow of \textit{join?}.

Having specified independent constraints on the split and join gateways for constructing the iteration, the following schema \textit{Connect} specifies the interdependent constraints on the gateways.

\[
\text{Connect} \equiv
\]
\[
[\Delta \text{Pool} ; \text{from}?, f2?, t2? : \text{Seqflow} ; \text{change}, \text{change'}, \text{split?}, \text{join?}, \text{end?} : \text{Element} | \text{from}? \neq f2? \wedge \text{t2?} \notin (\text{atom end?}).\texttt{in} \wedge (\text{proc}, \{(\text{ends proc})\text{from}?\}, \text{change}) \in \text{together} \wedge (\text{change}, (\text{ends proc})\text{from}?\}) \in (\text{edge}(\text{direct}(\text{proc}, \text{change}))^+ \wedge \text{proc'} = \text{modify}(\text{proc}, \{(\text{split?}, \text{join?}, \text{end?}, \text{change'}), \{(\text{ends proc})\text{from}?\}, \text{change}))]
\]

Specifically, it insists on the following constraints.
• Sequence flow from? is not the same as sequence flow f2?; this ensures the sequence flows of the split and join gateways do not intersect.

• Sequence flow t2? is fresh from the end event end?.

• Both end event ((ends proc from?) and element change are directly contained in the same subprocess of the before state; this ensures the iteration is constructed within a single process.

• End event ((ends proc from?) is a successor of element change; this ensures that the iteration is constructed along a continuous sequence of sequence flows within the process.

The last line defines the after state by replacing elements ((ends proc from?) and change with elements split?, join?, end? and change'. Figure 4.6(E) shows how the end event ((ends proc from?), labelled E in the figure, is replaced by elements split?, end? and join?, where end? is labelled F in the figure. The figure also shows how element change is replaced by its after state change' and join?, and how split? and join? are connected by connect?.

The iteration operation Loop is defined as a conjunction of ConnectSplit, ConnectJoin and Connect.

\[
\text{Loop} \equiv (\text{ConnectSplit} \land \text{ConnectJoin} \land \text{Connect}) \setminus (\text{change}, \text{change}')
\]

We now consider the iteration operation EventLoop. This operation constructs an iteration on a BPMN pool using an event-based XOR split gateway and a (non event-based) join gateway. An illustration of EventLoop is shown in Figure 4.6(F). Note that by using an event-based split gateway, this operation also needs to ensure that each direct successor of the split gateway is either a task or an intermediate event. Similar to operation Loop, EventLoop is defined as a conjunction of ConnectEventSplit, ConnectJoin and EventConnect.

\[
\text{EventLoop} \equiv (\text{ConnectEventSplit} \land \text{ConnectJoin} \land \text{EventConnect}) \setminus (\text{change}, \text{change}')
\]

ConnectEventSplit specifies the constraints on the event-based split gateway. ConnectJoin, which has already been defined, specifies the constraints on the join gateway. EventConnect specifies the interdependent constraints on the gateways and the operation on the state Pool. We first consider the constraints on the event-based split gateway. These are provided by the following schema ConnectEventSplit.

\[
\text{ConnectEventSplit}
\]

| \Delta Pool
| CommonConstraints[split?/new?]
| EventLoopEvents
| end? : Element
| connect? : Seqflow
| split? \in \{EventSplit \bullet ele\}
| end? \in \{ele : Element \mid \text{InitialEnd}\}
| getIns events? = (atom split?).out
| getOuts events? = \{connect?\} \cup (atom end?).in
| getSeqflows events? \cap getSeqflows proc = \emptyset
| \{(connect?) \cup (atom end?.in) \cap getIns events? = \emptyset
| connect? \notin (atom end?.in)

As well as including schema CommonConstraints, which specifies the constraints on split? and from? with respect to the before state Pool, ConnectEventSplit also includes the following schema EventLoopEvents.

\[
\text{EventLoopEvents}
\]

| events? : F_1 Element
| events? \subseteq \{ele : Element \mid \text{OneInOutAtom}\}
| events? \in \text{uniqueIns}
| \#events? = 2
Specifically, ConnectEventSplit describes the following constraints on the input components split?, end?, connect?, events? and from?:

- **split** is an event-based XOR split gateway.
- **end?** is a non-trigger end event.
- Incoming sequence flows of elements in events? are split?’s outgoing sequence flows.
- Outgoing sequence flows of elements in events? are the flow connect? and the incoming sequence flows of end?.
- Sequence flows of elements in events? are fresh from the before state.
- The set of incoming sequence flows of elements in events? is disjoint from {connect?}∪(atom end?).in.
- connect? is not an incoming sequence flow of end?.
- Elements in events? do not share incoming sequence flows.
- Set events? has two elements, each of which is either a task or an intermediate event.

We now consider EventConnect, which is defined as follows.

\[
\text{EventConnect} \equiv (\Delta \text{Pool}; f2?, t2?, \text{from}? : \text{Seqflow}; \text{events}? : \exists_i \text{Element}; \text{change}, \text{change}', \text{end}? , \text{split}? , \text{join}? : \text{Element} \mid \text{from}? \neq f2? \land t2? \notin \text{getSeqflows}(\text{events}?) \land (\text{proc}, \{(\text{ends proc} \text{from}?), \text{change}\}) \in \text{together} \land (\text{change}, ((\text{ends proc} \text{from}?)) \in \text{(edge}(\text{direct}(\text{proc}, \text{change})))^+ \land \text{proc}' = \text{modify}(\text{proc}, \{(\text{split}? , \text{join}? , \text{change}', \text{end}?\} \cup \text{events}? , \{(\text{ends proc} \text{from}?), \text{change}\}))
\]

This schema specifies the following constraints between the gateways and the operation on the state Pool.

- Sequence flow from? is not the same as sequence flow f2?; this ensures the sequence flows of the split and join gateways do not intersect.
- Sequence flow t2? is fresh from elements in events?; this implies that t2? is also fresh from end? and split?.
- Both end event ((ends proc) from?) and element change are directly contained in the same subprocess of the before state; this ensures that the iteration is constructed within a single process.
- End event ((ends proc) from?) is a successor of element change; this ensures that the iteration is constructed along a continuous sequence of sequence flows within the process.

The last line defines the after state by replacing elements ((ends proc) from?) and change with elements split?, join?, end?, change' and the set of elements events?. Figure 4.6(F) shows exactly this, where events? consists of the event elements eventA and eventB, and end? is labelled F in the figure.

4.6.6 Interrupt

The interrupt operation attaches an intermediate event to an activity, thereby creating an exception flow for that activity. The interrupt operation is specified by the schema AddException and is defined as a disjunction of two operation schemas AddNoRelatedErrorException and AddRelatedErrorException.

\[
\text{AddException} \equiv (\text{AddNoRelatedErrorException} \lor \text{AddRelatedErrorException}) \setminus (\text{change}, \text{change}')
\]
Schema *AddNoRelatedErrorException* adds an exception flow to any activity element such that the exception is either a time lapse (*itime*), the arrival of a message (*imessage*) or an unspecified error in the activity (*ierror(anyexception*)). An illustration of *AddNoRelatedErrorException* is shown in Figure 4.6(G).

Conversely, schema *AddRelatedErrorException* creates an exception flow to a subprocess such that the exception can only be triggered by an error thrown by an end error event element directly contained in that subprocess. An illustration of *AddRelatedErrorException* is shown in Figure 4.6(H).

We now consider schema *AddNoRelatedErrorException* in detail.

\[\text{AddNoRelatedErrorException} \triangleq \text{GeneralException} \land (\text{AddNoRelatedErrorExceptionSub}[\text{change}/\text{ele}, \text{change}'/\text{ele}']) \]

This operation is defined as a conjunction of schemas *GeneralException* and *AddNoRelatedErrorExceptionSub*. Schema *AddNoRelatedErrorExceptionSub* defines the after state of the activity element *change* by adding the exception flow, that is the pair (*eflow?*, *etype*?), to component *exit* of before state *change*. Details of this operation have already been described on Page 39 in Section 4.6.1.2. We now consider the schema *GeneralException*.

<table>
<thead>
<tr>
<th>GeneralException</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ Pool</td>
</tr>
<tr>
<td>change, change' : Element</td>
</tr>
<tr>
<td>eflow?, loc? : Seqflow</td>
</tr>
<tr>
<td>end? : Element</td>
</tr>
</tbody>
</table>

- Sequence flow *eflows?* is fresh from the before state *Pool*.
- Element *end?* is a non-trigger end event element
- Sequence flow *eflow?* is the only incoming sequence flow of *end*?
- Element *change* is an activity contained in the before state and has an incoming sequence flow *loc?*.

The after state component *proc'* is then defined by replacing *change* with *end?* and *change'*.* Figure 4.6(G) shows that *change'* is defined by adding an exception flow to *change* and both *change'* and *end?* are added to the after state *Pool'*.

We now consider schema *AddRelatedErrorException*. This operation creates an exception flow to a subprocess element such that the exception is an error thrown by an end error event element directly contained in that subprocess. This is defined as a conjunction of three schemas *GeneralException*, *CanAddExit* and *AddRelatedErrorExceptionSub*.

\[\text{AddRelatedErrorException} \triangleq (\text{GeneralException} \land \text{CanAddExit} \land (\text{AddRelatedErrorExceptionSub}[\text{change}/\text{ele}, \text{change}'/\text{ele}']) \cup (\text{endele}, \text{endele}') \]

We have already described *GeneralException* and a description of *AddRelatedErrorExceptionSub* can be found on Page 40 in Section 4.6.1.2. Schema *CanAddExit* ensures that *change* is a subprocess contained in the before state *Pool* and has an incoming sequence flow *loc?*.

\[\text{CanAddExit} \triangleq [\text{proc} : \text{Process}; \text{change} : \text{Element}; \text{loc?} : \text{Seqflow} | (\text{subs proc}) \text{loc?} = \text{change}] \]
Figure 4.6(H) shows that subprocess change' is defined by adding an exception flow to change and updating the non-trigger end event labelled ende directly contained in change to the corresponding end error event. We hide components ende and ende' as they are defined in terms of the other input components and the before state.

4.6.7 Collaboration

Operations described so far are defined on state schema Pool (BPMN pool). The collaboration operation, on the other hand, is defined on the state schema Diagram (BPMN diagrams), which contains one or more BPMN pools. Specifically, this operation is defined by the following schema ConnectMgeFlowDiagram.

\[
\text{ConnectMgeFlowDiagram} \equiv \\
\exists \Delta \text{Pool}[\text{proc1}/\text{proc}, \text{proc1}'/\text{proc}'] \bullet (\exists \Delta \text{Pool}[\text{proc2}/\text{proc}, \text{proc2}'/\text{proc}'] \bullet \\
\text{AddSendMgeFlow}[\text{proc1}/\text{proc}, \text{proc1}'/\text{proc'}, \text{tos}?/\text{to}?] \land \\
\text{AddReceiveMgeFlow}[\text{proc2}/\text{proc}, \text{proc2}'/\text{proc'}, \text{tor}?/\text{to}?] \land \text{DiagramPromote})
\]

This operation is defined by promoting local operations on two separate BPMN pools in the before state Diagram. These local operations are AddSendMgeFlow and AddReceiveMgeFlow, and the promotion schema is DiagramPromote. The operation AddSendMgeFlow updates a BPMN pool by adding an outgoing message flow to an element contained in that pool. We describe this in Section 4.6.7.1. Conversely, the operation AddReceiveMgeFlow updates a BPMN pool by adding an incoming message flow to an element contained in that pool. This operation is described in Section 4.6.7.2. The schema DiagramPromote defines the promotion of these two operations to a BPMN diagram. The promotion schema is described in Section 4.6.7.3.

We now provide some preliminary definitions to assist the construction of the collaboration operation. The schemas SMgeEvent, IMgeEvent and EMgeEvent define a start, an intermediate and an end message event that has no associated message flow respectively.

\[
\text{SMgeEvent} \equiv [\text{Start} \mid (\text{atom ele}).\text{type} = \text{smessage(nomessage)}] \\
\text{IMgeEvent} \equiv [\text{Inter} \mid (\text{atom ele}).\text{type} = \text{imessage(nomessage)}] \\
\text{EMgeEvent} \equiv [\text{End} \mid (\text{atom ele}).\text{type} = \text{emessage(nomessage)}]
\]

We also provide two functions msgrecs and msgsends.

\[
\text{msgrecs, msgsends : Process } \rightarrow (\text{Seqflow } \Rightarrow \text{Element})
\]

Function msgrecs is defined such that msgrecs(p) returns a function that associates end message events contained in process p with their incoming sequence flows. Conversely, function msgsends is defined such that msgsends(p) returns a function that associates start and intermediate message events contained in process p with their outgoing sequence flows.

4.6.7.1 Adding an Outgoing Message Flow

The operation AddSendMgeFlow is defined as follows.

\[
\text{AddSendMgeFlow} \equiv \\
((\text{AddSendEventMgeFlow} \lor \text{AddSendTaskMgeFlow}) \land \text{MgeFlowConstraints}) \setminus (\text{change}, \text{change}')
\]

This operation adds an outgoing message flow to either an end message event, which is defined by AddSendEventMgeFlow, or a task, which is defined by AddSendTaskMgeFlow.

\[
\text{AddSendEventMgeFlow} \\
\text{AddMgeEvent}[\text{change}/\text{ele}, \text{change'}/\text{ele'}] \\
\text{proc} : \text{Process} \\
\text{to}? : \text{Seqflow}
\]

\[
(\text{msgsends proc}) \to? = \text{change}
\]
Operation `AddSendEventMgeFlow` includes operation schema `AddMgeEvent` that adds a message flow to message event `change`. `AddSendEventMgeFlow` ensures that `change` is an end message event contained in `proc` and has an incoming sequence flow to `?`. `AddMgeEvent` is described in Section 4.6.1.

\[
\text{AddSendTaskMgeFlow} \equiv \\
\text{AddSendMgeFlowTask} \left[\text{change} / \text{ele}, \text{change}' / \text{ele}' \right] \\
\text{proc} : \text{Process} \\
\text{to} : \text{Seqflow} \\
(\text{tasks proc}) \text{to} ? = \text{change}
\]

Similarly, operation `AddSendTaskMgeFlow` includes operation schema `AddSendMgeFlowTask` that adds an outgoing message flow to task `change`. `AddSendTaskMgeFlow` ensures that `change` is a task contained in `proc` and has an incoming sequence flow to `?`. `AddSendMgeFlowTask` is described in Section 4.6.1.

The operation `AddSendMgeFlow` also includes the following schema `MgeFlowConstraints`.

\[
\text{MgeFlowConstraints} \\
\Delta \text{Pool} \\
\text{change}, \text{change}' : \text{Element} \\
\text{msg} : \text{Mgeflow} \\
\text{msg} ? \notin \text{getMsgs} (\text{proc}) \\
\text{proc}' = \text{modify} (\text{proc}, \{ \text{change}' \}, \{ \text{change} \})
\]

This schema ensures that the new message flow is fresh from the before state and that the after state is defined by replacing `change` with its after state `change'`.

4.6.7.2 Adding an Incoming Message Flow

The operation `AddReceiveMgeFlow` is defined as follows.

\[
\text{AddReceiveMgeFlow} \triangleq \\
((\text{AddRecEventMgeFlow} \lor \text{AddRecTasktMgeFlow} \lor \text{AddRecExpMgeFlow}) \land \\
\text{MgeFlowConstraints}) \setminus (\text{change}, \text{change}')
\]

This operation adds an incoming message flow to either a start or an intermediate message event, which is defined by `AddRecEventMgeFlow`, or a task, which is defined by `AddSendTaskMgeFlow`, or an intermediate message event attached to an activity, which is defined by `AddRecExpMgeFlow`.

\[
\text{AddRecEventMgeFlow} \\
\text{AddMgeEvent} \left[\text{change} / \text{ele}, \text{change}' / \text{ele}' \right] \\
\text{proc} : \text{Process} \\
\text{to} : \text{Seqflow} \\
(\text{msgrecs proc}) \text{to} ? = \text{change}
\]

Operation `AddRecEventMgeFlow` includes operation schema `AddMgeEvent` that adds a message flow to message event `change`. The constraint part of `AddRecEventMgeFlow` ensures `change` is either a start or an intermediate message event contained in `proc` and has an outgoing sequence flow to `?`. `AddMgeEvent` is described in Section 4.6.1.

\[
\text{AddRecTasktMgeFlow} \\
\text{AddReceiveMgeFlowTask} \left[\text{change} / \text{ele}, \text{change}' / \text{ele}' \right] \\
\text{proc} : \text{Process} \\
\text{to} : \text{Seqflow} \\
(\text{tasks proc}) \text{to} ? = \text{change}
\]

Addition & Operation...
Operation $AddRecTaskMgeFlow$ includes operation schema $AddReceiveMgeFlowTask$ that adds an incoming message flow to a task $change$. The constraint part of $AddRecTaskMgeFlow$ ensures $change$ is a task contained in $proc$ and has an incoming sequence flow $to\,?$. $AddReceiveMgeFlowTask$ is described in Section 4.6.1.

$AddRecExpMgeFlow$ includes operation schema $AddExceptionMgeFlow$ that adds an incoming message flow to an intermediate message event attached to element $change$. The constraint part of $AddRecExpMgeFlow$ ensures $change$ is an activity contained in $proc$ and has an incoming sequence flow $to\,?$. $AddExceptionMgeFlow$ has been described on Page 40 in Section 4.6.1.

4.6.7.3 Promoting to Diagram

Message flows form interactions between BPMN pools in a BPMN diagram. Having defined the operations that add message flows to Pool, we promote them for Diagram. This is provided by the following schema $DiagramPromote$.

This schema specifies the following global constraints:

- $id1\,?$ identifies a BPMN pool in the before state Diagram, to which $msg\,?$ is added as an outgoing message flow; this is specified by the binding the after state $\langle proc \sim proc'1 \rangle$.

- $id2\,?$ identifies a BPMN pool in the before state, to which $msg\,?$ is added as an incoming message flow; this is specified by the binding the after state $\langle proc \sim proc'2 \rangle$.

- Identifiers $id1\,?$ and $id2\,?$ are different, thereby ensuring this operation uses $msg\,?$ to connect two different pools in the before state Diagram.

- $msg\,?$ must be fresh from the before state Diagram.

Figure 4.6(I) shows how BPMN pools labelled $id1\,?$ and $id2\,?$ are connected. It shows that $msg\,?$ is added as an outgoing message flow to a task contained in pool $id1\,?$, while it is also added as an outgoing message flow to a task contained in pool $id2\,?$.
4.6.8 Example

We now demonstrate how to construct the customer business process of our online shop example in Figure 2.3. A step-by-step illustration of the business process construction is shown in Figure 4.7. The following describes the steps shown in the figure.

- Starts with a subprocess’ initial state, as defined by the schema GenProcInit on Page 35 (Step 1).
- Adds a data-based XOR split gateway using Split (Step 2).
- Applies SeqComp four times to add three task elements and one subprocess element. The subprocess element is in an initial state, as defined by the schema GenProcInit (Steps 3, 4, 5, 6).
- Applies Split to add a data-based XOR split gateway inside the subprocess element that was added in Step 6 (Step 7).
- Adds two task elements inside the subprocess element using SeqComp two times (Steps 8, 9).
- Joins two end elements inside the subprocess element using JoinOp (Step 10).

4.6.9 Preconditions

In Sections 4.6.2 – 4.6.7 we defined eight operations on BPMN pool (Pool) and diagram (Diagram). In this section we investigate their consistency with respect to state schema Pool and Diagram. Specifically, for operation schemas SeqComp, Split, EventSplitOp, JoinOp, Loop, EventLoop, AddException and ConnectMgeFlowDiagram, we show that given a before state Pool and constraints on the input components specified by the operation schemas, the after state would satisfy Pool. For operation schema ConnectMgeFlowDiagram, we show that, given before state Diagram and constraints on the input components specified by the operation, the after state would satisfy Diagram. We therefore calculate the preconditions of the operation schemas.

For operations SeqComp, Split, EventSplitOp and JoinOp, the strategy for precondition calculation is as follows: We first expand the precondition expression pre

\[\text{modify}(\text{proc}, \{\text{new}?, \text{end}?\}, \{((\text{ends proc}) \text{ from}?)\}) \in \{\text{proc} : \text{Process} | \text{Pool}\} \]

We then show the constraint

\[\text{modify}(\text{proc}, \{\text{new}?, \text{end}?\}, \{((\text{ends proc}) \text{ from}?)\}) \in \{\text{proc} : \text{Process} | \text{Pool}\} \]

follows from the before state Pool and the constraints on input components from?, new? and end?. Since modify is defined recursively, we apply induction on the depth of the following expression.

\[\text{modify}(\text{proc}, \{\text{new}?, \text{end}?\}, \{((\text{ends proc}) \text{ from}?)\}) \]
For the base case, where \(((\text{ends proc})\text{ from}?)\) $\in ps$, the function \textit{modify} returns the set of elements \((ps \cup \{(\text{new}?, \text{end}?)\}) \setminus \{(\text{ends proc})\text{ from}?)\). From the before state we know that $ps \in \{\text{proc} : \text{Process} | \text{Pool}\}$, we therefore expand the constraints specified by schema \textit{Pool} and show that the expression satisfies the proc component of \textit{Pool}.

For the inductive step where \(((\text{ends proc})\text{ from}?)\) $\in \{(e : \text{Element} | e \in_p ps) \setminus ps\}$ we show the following implication holds.

\[(\forall s : cs \bullet mf(s) \in \{\text{proc} : \text{Process} | \text{Pool}\}) \Rightarrow ((ps \setminus cs) \cup \{s : cs \bullet \text{rep}(s, mf(s))\}) \in \{\text{proc} : \text{Process} | \text{Pool}\}\]

where \(cs\) and \(mf(s)\) are defined as follows.

\[
\begin{align*}
\text{cs} &= \text{cont}(ps, \{(\text{ends proc})\text{ from}?)\}) \\
\text{mf}(s) &= \text{modify}((\text{content}(s), \{\text{new}, \text{end}\}, \{(\text{ends proc})\text{ from}?)\})
\end{align*}
\]

Specifically, given \(ps\) is a process satisfying \textit{proc} component of \textit{Pool} and that for all subprocess elements \(s \in ps\), expressions \(mf(s)\) are processes satisfying the \textit{proc} component of \textit{Pool}, we show that the substituting them into the content of \(s (\text{content}(s))\), that is the consequent, would also be a process satisfying the \textit{proc} component of \textit{Pool}. Here we refer to \(mf(s)\) as the \textit{substitution process} for subprocess \(s\). For example, we consider Step 10 of our step-by-step example in Figure 4.7. In this step, the process \(\textit{JoinOp}\) in the subprocess element is substituted with another process by applying operation \textit{JoinOp}. Assuming the customer business process after Step 9 as well as the substitution process for the subprocess satisfy \textit{Pool}, we show the business process after Step 10 also satisfies \textit{Pool}.

We observe in general for any given process \(ps\), and element \(s\) contained in \(ps\), the implication holds if the substitution process \(qs\) for \(s\) satisfies the following four constraints.

- Processes \(ps\) and \(qs\) satisfy the \textit{proc} component of \textit{Pool}.
- Element \(s\) is a compound element.
- Both sequence and message flows of elements contained in \(qs\) are fresh from elements that are contained in \(ps\) but are not contained in subprocess \(s\).
- The substitution process \(qs\) and the original process \(\text{content}(s)\) directly contain the same end error events.

We formulate these constraints into the following lemma.

\textbf{Lemma 4.12.}

\[
(\forall ps, qs : \text{Process} \bullet (\forall s : ps \bullet (s \in \text{ran \ compound} \land (\text{getSeqflows}(qs) \cap (\text{getSeqflows}(ps \setminus \{s\}) \cup (\text{atom s}.\text{in} \cup \text{outs}(s)) = \emptyset \land (\text{getMsgs}(qs) \cap (\text{getMsgs}(ps \setminus \{s\}) \cup \text{getMsg}(\text{atom s}) = \emptyset \land (e : qs \mid (\text{atom e}).\text{type} \in \text{ran \ error}) = (e : \text{content}(s) \mid (\text{atom e}).\text{type} \in \text{ran \ error}) \Rightarrow ((ps \setminus \{s\}) \cup \{\text{rep}(s, qs)\}) \in \{\text{proc} : \text{Process} | \text{Pool}\})))
\]

\textit{Proof.} See Page 197 (Section B.1 in Appendix B). \(\square\)

Using this result we simplify the precondition of \textit{SeqComp} into the following schema, labelled \textit{PreSeqComp}, where \textit{CommonConstraint} has already been described in Section 4.6.2. Full derivation of \textit{PreSeqComp} can be found in Section B.9.
CHAPTER 4. BPMN SYNTAX

The preconditions of \textit{Split}, \textit{EventSplitOp} and \textit{JoinOp} are calculated using the same strategy. Their precondition calculations are documented in Sections [B.10] [B.11] and [B.12] respectively.

4.6.9.2 Calculating \textit{pre AddNoRelatedErrorException}

In this section we consider one of the interrupt operations \textit{AddNoRelatedErrorException}, which was defined in Section [4.6.6]. We first expand \textit{pre AddNoRelatedErrorException} and apply the one-point rule to arrive at the following schema.

\[
\text{Pool; etype? : Type; eflow?, loc? : Seqflow; end? : Element} \\
\text{let ed == (activities proc) loc? •} \\
\text{let ch == ce(ed, (eflow?, etype?), \emptyset, \emptyset) •} \\
\text{let md == modify(proc, \{end?, ch\}, \{ed\}) •} \\
\{ed, ch\} \subseteq \{\text{ele : Element | Activity}\} \land \\
\text{etype? \in ran itime \cup \{imessage(nomessage)\} \cup \{i : ran ierror | (ierror^\sim) i \notin ran exception\} \land} \\
\text{eflow? \notin getSeqflows proc \land} \\
\text{end? \in \{InitialEnd • ele\} \land} \\
\text{(atom end?).in = \{eflow?\} \land} \\
\text{ed \in Element \land} \\
\text{md \in \{proc : Process | Pool\}}
\]

Unlike \textit{SeqComp}, this operation updates the activity \textit{ed} == (activities proc) \textit{loc}? contained in the before state \textit{Pool} by adding to it a new exception flow. The after state of \textit{ed} is defined by the abbreviation \textit{ch} == \textit{ce}(\textit{ed}, (\textit{eflow?}, \textit{etype}?), \emptyset, \emptyset). This update is specified by operation schema \textit{AddNoRelatedErrorExceptionSub}. We first show the constraint

\[
\{ed, ch\} \subseteq \{\text{ele : Element | Activity}\}
\] (4.1)

follows from the before state \textit{Pool} and the constraints on input components \textit{loc?}, \textit{etype?}, \textit{eflow}? and \textit{end}?. By definition of \textit{Pool} and function \textit{activities}, we know \textit{ed} satisfies the constraints on the \textit{ele} component of schema \textit{Activity}. We also need to show that \textit{ch} satisfies the constraints on the \textit{ele} component of \textit{Activity}. To do this we first obtain the following schema as the precondition of \textit{AddNoRelatedErrorExceptionSub}, labelled as \textit{PreAddNoRelatedErrorExceptionSub}. The full derivation of \textit{PreAddNoRelatedErrorExceptionSub} can be found in Section [B.3]

\[
\text{PreAddNoRelatedErrorExceptionSub} \\
\text{Activity} \\
\text{etype? : Type} \\
\text{eflow? : SeqRow} \\
\text{etype? \in nomsgserrors} \\
\text{eflow? \notin getSeqflows\{ele\}}
\]

Here we can see constraints on component \textit{etype}? and \textit{eflow}? specified by the expanded schema of \textit{pre AddNoRelatedErrorException} satisfy those specified by \textit{pre AddNoRelatedErrorExceptionSub}. We therefore conclude that the constraint defined in Equation [4.1] follows from the before state \textit{Pool} and the constraints on input components.
We then show the constraint \(md \in \{ \text{proc} : \text{Process} \mid \text{Pool} \} \) follows from the before state Pool and the constraints on input components, where \(md == \text{modify} (\text{proc}, \{ \text{end?}, \text{ch} \}, \{ \text{ed} \}) \). Similar to the previous example, we apply induction on \(md \). We obtain the following precondition of AddNoRelatedErrorException, labelled \(\text{PreAddNoRelatedErrorException} \). The full derivation of \(\text{PreAddNoRelatedErrorException} \) can be found in Section B.15.1.

\[
\begin{align*}
\text{PreAddNoRelatedErrorException} \\
\text{Pool} \\
\text{etype?} : \text{Type} \\
\text{eflow?}, \text{loc?} : \text{Segflow} \\
\text{end?} : \text{Element} \\
\text{loc?} \in \text{dom} (\text{activities proc}) \\
\text{etype?} \in \text{nomsgserrors} \\
\text{eflow?} \notin \text{getSeqflows} \text{ proc} \\
\text{end?} \in \{ \text{InitialEnd} \bullet \text{ele} \} \\
(\text{atom end?}).\text{in} = \{ \text{eflow?} \}
\end{align*}
\]

The preconditions of Loop, EventLoop, AddRelatedErrorException and ConnectMgeFlowDiagram are calculated using this strategy. Their precondition calculations are documented in Sections B.13, B.14, B.15.2 and B.16 respectively.

4.7 Summary

This chapter provided a detailed analysis of BPMN syntax and presented a corresponding implementation in Haskell. We specified initial states of BPMN pools and diagrams, and defined a set of schema operations for constructing BPMN diagrams. Our aim is to provide semantics on this syntax to formalise the behaviour of communications between elements in a BPMN diagram. This leads naturally to our semantic constructions, which are presented in Chapters 5 and 6.
Figure 4.6: Before-and-after illustrations of operation schemas
Figure 4.7: Syntactic construction of the customer business process
Chapter 5

Process Semantics

5.1 Introduction

In this chapter we define a process semantics for our subset of BPMN using the process algebra CSP [Ros98]. We show how CSP refinement orderings can be applied to the specification and the verification of business process behaviour. Our semantic definition can be readily analysed using the FDR tool [For98].

5.1.1 Approach

For each type of BPMN element, we provide an informal description of its behaviour and then present its semantic definition. We implement the semantic function in Haskell; for presentation purposes, some functions are partially presented in this chapter — their full definitions may be found in Appendix D. More specifically, we define the function $b\text{Toc}$ in this chapter.

$b\text{Toc} :: \text{Diagram} \to \text{Script}$

This function takes a BPMN diagram and returns a CSPm definition that models communications between elements in that diagram. We model each BPMN diagram as a parallel composition of processes, each corresponding to a BPMN pool in that diagram. Similarly, we model each BPMN pool as a parallel composition of processes, each corresponding to an element the pool directly contains. The output value of $b\text{Toc}$ has the type Script and it records the resulting CSPm definition; the definition of Script may be found in Section 2.4.4.

5.1.2 Structure

The rest of this chapter is structured as follows. In Section 5.2 we define functions to associate each sequence flow, message flow, element and diagram to its possible behaviours. Section 5.3 presents the semantics of atomic elements. Sections 5.4 and 5.5 present the semantics of compound elements. In Section 5.6 we show how to specify safety and liveness properties of BPMN processes and to verify BPMN processes against these properties. In Section 5.7 we provide a CSP semantics to the syntactic operations defined in Section 4.6. In Section 5.9 we study the notion of compatibility between business processes. We summarise the contribution of this chapter in Section 5.10.

5.2 Alphabet

In CSP the alphabet of a process is the set of events that process can perform. We therefore associate each object in BPMN to a set of CSP events to denote its possible behaviours.

We first consider sequence, message and exception flows. We associate each sequence flow and message flow to a CSP event. This is defined by the following functions seqflow and mgeflow,

\[
\begin{align*}
\text{seqflow} &:: \text{Seqflow} \to \text{Event} \\
\text{seqflow} s & = "s."++s \\
\text{mgeflow} &:: \text{Mgeflow} \to \text{Event} \\
\text{mgeflow} m & = "m."++m
\end{align*}
\]

where the operator ++ concatenates two strings together. At the implementation level, each sequence and message flow is uniquely identified by a Haskell String value. Similarly, each CSP event in CSPm is also a String value. As a result we map each sequence flow to a CSP event by prefixing it with “s.” and each message flow to a CSP event by prefixing it with “m.”. For example the set $\{s\}$ (or $\{s\}$) in CSPm) refers to all events associated with sequence flows.
Semantically an exception flow can be modelled in the same way as a sequence flow, that is as a CSP event with “s.” as its prefix. The difference lies in how an exception flow is triggered. Specifically, an activity triggers an exception flow if an error occurs during its execution. In particular, an end error event contained in a subprocess throws a specific error of type \texttt{ErrorCode} when triggered. We denote errors using the function \texttt{except}, which maps an \texttt{ErrorCode} value to a CSP event.

\[
\text{except} :: \text{ErrorCode} \rightarrow \text{Event} \\
\text{except} \ e = "e.++e"
\]

We now consider elements in BPMN. We are interested in modelling communications between elements in a BPMN diagram. As a result gateways, message, none, rule and timer events may be characterised by their sequence and message flows. This is because their interactions with their environment are only those associated with their incoming and outgoing flows. We also model work done in task elements. This is because we consider activities in tasks to be visible, so that we can analyse the effects on them caused by the communication between elements in a diagram; we define function \texttt{task} to map each task name of type \texttt{TaskName} to a CSP event. Here the prefix “w.” groups all events associated with work done.

\[
\text{task} :: \text{TaskName} \rightarrow \text{Event} \\
\text{task} \ t = "w."++t
\]

Note that we do not explicitly associate CSP events to activities in subprocesses and pools; their behaviours are characterised by the behaviours of the elements they contain. We define function \texttt{alpha} to map each element to its alphabet.

\[
\text{alpha} :: \text{Element} \rightarrow [\text{Event}] \\
\text{alpha} \ (\text{Atomic} \ (\text{Atom} \ d \ t \ i \ o \ e \ t \ r \ s)) = \\
\quad \text{let} \\
\quad \quad \text{te} = \text{if} \ (\text{istask} \ t) \ \text{then} \ [(\text{task} \ . \ \text{taskname}) \ t] \ \text{else} \ [] \\
\quad \quad \text{ec} = \text{if} \ (\text{iserror} \ t) \ \&\& \ (\text{hasexcept} \ t) \ \text{then} \ [(\text{except} \ . \ \text{errorcode}) \ t] \ \text{else} \ [] \\
\quad \quad \text{ms} = \text{if} \ (\text{ismessage} \ t) \ \&\& \ (\text{hasmessage} \ t) \ \text{then} \ [(\text{mgeflow} \ . \ \text{eventmge}) \ t] \ \text{else} \ [] \\
\quad \quad \text{in} \ \text{map} \ \text{mgeflow} \ ((r++s)) ++ \ (\text{map} \ \text{seqflow} \ (i++o)) ++ \ \text{te} ++ \ \text{ec} ++ \ \text{ms} \\
\quad \text{alpha} \ (\text{Compound} \ \ a \ es) = \ (\text{alpha} \ (\text{Atomic} \ a)) ++ \ (\text{concatMap} \ \text{alpha} \ es)
\]

Functions \texttt{istask}, \texttt{iserror} and \texttt{ismessage} take a \texttt{Type} value and check if it is associated with a task element, an error event or a message event respectively; the function \texttt{hasexcept} checks if a \texttt{Type} value records an error code, and functions \texttt{taskname} and \texttt{errorcode} map a \texttt{Type} value to a taskname of type \texttt{TaskName} and an error code of type \texttt{ErrorCode} respectively.

\[
\text{istask}, \text{iserror}, \text{ismessage}, \text{hasexcept} :: \text{Type} \rightarrow \text{Bool} \\
\text{taskname} :: \text{Type} \rightarrow \text{TaskName} \\
\text{errorcode} :: \text{Type} \rightarrow \text{ErrorCode}
\]

Function \texttt{alpha} is defined using predefined Haskell functions \texttt{map} and \texttt{concatMap}: \texttt{map} \texttt{f} \texttt{xs} is the list obtained by applying \texttt{f} to each value in \texttt{xs}, while \texttt{concatMap} \texttt{f} \texttt{xs} is the list obtained by applying \texttt{f} over each value in list \texttt{xs} and concatenating the results.

Figure 5.1: A simple BPMN subprocess

Figure 5.1 shows a simple BPMN subprocess; each element, and indeed the whole diagram, is associated with an alphabet. For example, the alphabet of task element \texttt{A} is \{"w.A","s.s1","s.s2"\}; that for task \texttt{B} is \{"w.B","s.s4","s.s5"\}; and for the data-based XOR gateway is \{"s.s2","s.s3","s.s4"\}.

5.3 Atomic Elements

Atomic elements are events, gateway, and task elements. We model an atomic element as a sequential composition of its incoming flows behaviour, its work done and its outgoing flows behaviour. For example, Figure 5.2: An atomic task element

\[
A = (m.m1 \rightarrow \text{Skip} || s.s1 \rightarrow \text{Skip}) \parallel w.A \rightarrow \text{Skip} || m.m2 \rightarrow \text{Skip} || s.s2 \rightarrow \text{Skip}
\]

(5.1)

This process is defined by sequentially composing processes describing the behaviour of its incoming message and sequence flows, work done and outgoing message and sequence flows. This process does not insist on the order of incoming sequence flows and message flows, as it is not specified in the official document [OMG08].

We define mappings from each part of an element to a process that corresponds to its behaviour. We consider sequence flows in Section 5.3.1, and message flows in Section 5.3.2. We present the semantics of events, gateways and tasks in Sections 5.3.3, 5.3.4 and 5.3.5 respectively, and the semantics of task’s exception flows in Section 5.3.6.

5.3.1 Sequence Flows

Based on the Z specification of the BPMN syntax, events, activities and split gateways have one incoming sequence flow, while join gateways have multiple incoming sequence flows. A XOR join gateway is triggered when one of its incoming sequence flows is triggered, and an AND join gateway, on the other hand, is triggered when all of its incoming sequence flows are triggered.

In CSP, we model the incoming sequence flows of a XOR gateway as a process that externally chooses one of the events associated with the flows, and the incoming sequence flows of an AND gateway as a process that interleaves the events associated with the flows.

We define two functions \texttt{seqext} and \texttt{seqpar} to model the behaviour of incoming sequence flows. They take a list of sequence flows (\texttt{[Seqflow]}) and return a CSP process of type \texttt{Process}. The constructors \texttt{Indexextern} and \texttt{Indinterl} represent the indexed external choice and interleaving operators in CSP respectively.

\[
\text{seqext,seqpar :: [Seqflow] \rightarrow Process}
\]

\[
\text{seqext [] = Skip}
\]

\[
\text{seqext ss = Indexextern ("s",(List Set (map seqflow ss))) (Prefix "s" Skip)}
\]

\[
\text{seqpar ss = Indinterl ("s",(List Set (map seqflow ss))) (Prefix "s" Skip)}
\]

The function \texttt{seqext} returns a process that externally chooses one of the flows and performs the event that is associated with that flow. For example, given a list of sequence flows (\texttt{["s1","s2"]}), \texttt{seqext} returns the process \(\square s : \{ s.s1, s.s2 \} \bullet s \rightarrow \text{Skip} \). In fact \texttt{seqext} defines the incoming sequence flow semantics for all BPMN elements except the AND gateway, which synchronises its incoming sequence flows. Start event elements have no incoming sequence flow, and this is modelled using the process \texttt{Skip}.

The function \texttt{seqpar} returns a process that interleaves the performance of the events associated with the flows. For example given the list \texttt{["s1","s2"]}, \texttt{seqpar} returns the process \(\parallel s : \{ s.s1, s.s2 \} \bullet s \rightarrow \text{Skip} \).

Events, activities and join gateways have one outgoing sequence flow, while split gateways have multiple outgoing sequence flows. A data-based XOR split gateway chooses one of its outgoing flows to trigger internally, while an event-based XOR split gateway chooses one of its outgoing flows to trigger
based on the behaviour of the gateway’s succeeding elements. An AND split gateway triggers all of its
outgoing sequence flows; at this level of abstraction, we do not restrict the order in which an AND split
gateway triggers its outgoing sequence flows.

In CSP, we reuse function seqpar to model the behaviour of an AND split gateway’s outgoing
sequence flows and seqext to model that of an event-based XOR split gateway’s outgoing sequence
flows. Conversely, we define the function seqint, which takes a list of sequence flows ([Seqflow]) and
returns a CSP process of type Process, to model the behaviour of a data-based XOR outgoing sequence
flows; the constructor Indintern represents CSP’s indexed internal choice operator.

\[
\text{seqint} :: \text{[Seqflow]} \rightarrow \text{Process} \\
\text{seqint \text{ss} = Indintern ("s",(List Set (map seqflow ss))) (Prefix "s" Skip)}
\]

The function seqint returns a process that internally chooses one of the flows and performs that flow’s
associated event. For example given the list ["s1","s2"], it returns the process \(\sqcap s : \{ s.s1,s.s2 \} \bullet s \rightarrow \text{Skip}. \)

5.3.2 Message Flows

Message flows represent the communications between different BPMN pools of the same diagram. Based
on the Z specification of the BPMN syntax, message events and tasks have zero or more incoming and
outgoing message flows. A start message event has at most one incoming message flow; an intermediate
message event has at most one message flow, either incoming or outgoing, and an end message event has
at most one outgoing message flow. Task elements, on the other hand, may have zero or more incoming
and outgoing message flows. Specifically, a task element receives a message from one of its incoming
message flows and sends a message to all of its outgoing message flows.

We define the function mgeext to model the behaviour of an element’s incoming message flows and
the function mgepar to model that of an element’s outgoing message flows. Similar to seqext, mgeext
returns the process Skip to model zero message flows.

\[
\text{mgeext, mgepar :: [Mgeflow]} \rightarrow \text{Process} \\
\text{mgeext \text{[]} = Skip} \\
\text{mgeext \text{mm} = Indextern ("m",(List Set (map mgeflow mm))) (Prefix "m" Skip)} \\
\text{mgepar \text{mm} = Indinterl ("m",(List Set (map mgeflow mm))) (Prefix "m" Skip)}
\]

5.3.3 Events

In this section we consider the behaviour of events. We define function event to take a value of type
Atom, recording the syntactic information of an event and return a CSP process of type Process that
models the event’s behaviour.

\[
\text{event :: Atom} \rightarrow \text{Process} \\
\text{event (Atom n \text{ t i o e r l m o m})} \\
| \text{ismessage \text{t} = mgesem \text{t i o o}} \\
| \text{iserror \text{t} = errsem \text{t i o}} \\
| \text{otherwise = othersem \text{t i o}}
\]

The guards ismessage \text{t} and iserror \text{t} check whether or not the input atomic element is a message
event or an error event respectively.

\[
\text{ismessage, iserror :: Type} \rightarrow \text{Bool}
\]

For a message event, event applies function mgesem to its type, incoming and outgoing sequence flows,
and for an error event, the function errsem is applied similarly. If the event is neither a message nor an
error event, the function othersem is applied. We now consider function mgesem.

\[
\text{mgesem :: Type} \rightarrow \text{[Seqflow]} \rightarrow \text{[Seqflow]} \rightarrow \text{Process} \\
\text{mgesem (Smessag e \text{m}) is os = SeqComp (\text{mgeext . getvalue} \text{m}) (seqext \text{os})} \\
\text{mgesem (Imessag e \text{m}) is os = SeqComp (Inter ((\text{mgeext . getvalue} \text{m}) (seqext \text{is})) (seqext \text{os})} \\
\text{mgesem (Emessag e \text{m}) is os = SeqComp (seqext \text{is}) ((\text{mgepar . getvalue} \text{m})}
\]

where getvalue is a generic function that takes a Maybe value and returns either a singleton list or the
empty list.

\[
\text{getvalue :: Maybe a} \rightarrow \text{[a]}
\]
The function mgesem defines the semantics of a message event as the sequential composition of its incoming message/sequence flows and outgoing message/sequence flows. We do not insist on the triggering order between incoming sequence and message flows in an intermediate message event because while the official documentation [OMG08] does not specify an explicit order, it does include these flows as the necessary conditions to trigger the event.

![Figure 5.3: (a) message catch event, (b) error event](image)

For example the semantics of the message event in Figure 5.3(a) is given by the following CSP process.

$$(m.m1 \rightarrow \text{Skip} \ || \ s.s1 \rightarrow \text{Skip}) \triangleleft s.s2 \rightarrow \text{Skip}$$

We now consider the function errsem.

$$\text{errsem} :: \text{Type} \rightarrow \text{[Seqflow]} \rightarrow \text{[Seqflow]} \rightarrow \text{Process}$$

$$\text{errsem} (\text{Ierror AnyException}) \ is \ os = \text{seqext os}$$

$$\text{errsem} (\text{Ierror (Exception e)}) \ is \ os = \text{Prefix (error e)} \ (\text{seqext os})$$

$$\text{errsem} (\text{Eerror (Exception e)}) \ is \ os = \text{SeqComp (seqext is)} \ (\text{Prefix (error e)} \ \text{Skip})$$

This function defines the semantics of an error event. For an intermediate error event, it prefixes the event’s outgoing sequence flow with a CSP event to denote an exception occurrence, thereby modelling the behaviour of catching an exception. We do not consider intermediate error events with incoming sequence flows; this is because intermediate error event may only be attached to an activity’s boundary.

For an end error event, the function prefixes the event’s exception behaviour with its incoming sequence flow, thereby modelling the behaviour of throwing an exception. If an intermediate error event is attached to an activity and is not associated with a specific error, its behaviour is then simply that of its outgoing sequence flows. For example the semantics of the end error event in Figure 5.3(b) is captured by the following CSP process, assuming the error code is e_1.

$$s.s1 \rightarrow \text{Skip} \ 	riangleright \ e.e_1 \rightarrow \text{Skip}$$

We now consider the function othersem, which defines the semantics of either a timer or a rule event.

$$\text{othersem} t \ is \ os = \text{SeqComp (seqext is)} \ (\text{seqext os})$$

Our model abstracts from the timing information of a timer event and the rule condition of a rule event. Timing information is considered in Chapter 6, while rule conditions are used to record syntactic information when modelling empirical studies in Chapter 7. As a result, othersem models the semantics of one of these events as simply the sequential composition of the behaviour of events’ incoming and outgoing sequence flows.

5.3.4 Gateways

In this section we consider gateways. We define function gateway to take an Atom value that describes a gateway, and return a Process value that records the CSP process modelling the gateway’s behaviour.

$$\text{gateway} :: \text{Atom} \rightarrow \text{Process}$$

$$\text{gateway} a =$$

```haskell
case etype a of
  Xgate -> SeqComp ((seqext . ins) a) ((seqint . outs) a)
  Exgate -> SeqComp ((seqext . ins) a) ((seqint . outs) a)
  Agate -> SeqComp ((seqpar . ins) a) ((seqpar . outs) a)
```

gateway abstracts from the timing information of a timer event and the rule condition of a rule event. Timing information is considered in Chapter 6, while rule conditions are used to record syntactic information when modelling empirical studies in Chapter 7. As a result, othersem models the semantics of one of these events as simply the sequential composition of the behaviour of events’ incoming and outgoing sequence flows.
For a data-based XOR gateway, \textit{gateway} returns a process that first offers one of the gateway’s incoming sequence flows and then internally chooses one of its outgoing sequence flows. For example the semantics of the data based XOR gateway shown in Figure 5.4(a) is defined by the following CSP process.

\[s.s1 \rightarrow \text{Skip} \uplus (s.s2 \rightarrow \text{Skip} \land s.s3 \rightarrow \text{Skip}) \]

We use the CSP internal choice operator to model the data based XOR gateway because our semantic model abstracts from process data, as a result the resolution of the exclusive choice condition is internal from the environment. Conversely, for an event-based XOR gateway, \textit{gateway} returns a process that offers one of the gateway’s incoming sequence flows and then offers one of its outgoing sequence flows. We use the CSP external choice operator to model this behaviour and this allows the environment to choose which of its outgoing flows to trigger. For an AND gateway, \textit{gateway} returns a process that interleaves the gateway’s incoming sequence flows, and then interleaves the gateway’s outgoing sequence flows. For example the semantics of the AND gateway shown in Figure 5.4(b) is defined by the following CSP process.

\[(s.s2 \rightarrow \text{Skip} \parallel s.s3 \rightarrow \text{Skip}) \uplus s.s1 \rightarrow \text{Skip}]\]

5.3.5 Tasks

A task represents an atomic piece of work done in a business process; its type is defined by the constructor \texttt{Task}. We model an atomic piece of work as a single CSP event. According to the official specification \cite{OMG08}, a task with outgoing message flows completes execution after all outgoing message flows are triggered. For example, consider again the task shown in Figure 5.2. It performs work \(A\) and sends a message along message flow \(m2\). We model this as the process \(w.A \rightarrow \text{Skip} \uplus m.m2 \rightarrow \text{Skip}\).

As a result, we define the function \texttt{stask} that takes an \texttt{Atom} value describing a task, and returns a CSP process that models the behaviour of the task’s work.

\begin{verbatim}
stask :: Atom -> Process
stask (Atom n t i o e r im om l) = SeqComp (Prefix (taskname t) Skip) (mgepar om)
\end{verbatim}

There are also multiple instance tasks. A sequential multiple instance task, whose type is defined by the constructor \texttt{Miseq}, repeats its work sequentially, while a parallel multiple instance task, whose type is defined by the constructor \texttt{Mipar}, repeats its work concurrently and independently.

According to the BPMN’s official documentation \cite{OMG08}, when a multiple instance task is triggered, it evaluates an expression that returns an integer value, and repeats its work for that number of times. Since our model abstracts from process data, we model a multiple instance task to choose this value nondeterministically ranging from one to some number recorded in the element’s type constructor.

In addition, a multiple instance task records a \texttt{FlowType} value. It takes one of values \texttt{One} and \texttt{All}. If the value is \texttt{One}, the element triggers its outgoing sequence flow after one of its work instances has been executed; if the value is \texttt{All}, the element triggers its outgoing sequence flow after all of its work instances have been executed.

In the remaining part of this section, we consider the behaviour of multiple instance tasks. Note that there are also multiple instance subprocesses. While a subprocess’s work is defined in terms of
the elements it directly contains, similar to a multiple instance task, each work instance in a multiple instance subprocess is independently executed. As a result, our semantic definition of multiple instance applies to both task and subprocess.

We present the behaviour of multiple instance in the following categories: fixed number of sequential instances is described in Section 5.3.5.1; nondeterministic number of sequential instances is described in Section 5.3.5.2; fixed number of parallel instances is described in Section 5.3.5.3; and nondeterministic number of parallel instances is described in Section 5.3.5.4.

5.3.5.1 Fixed Number of Sequential Instances

A multiple instance element in this category executes its work instances \(i \) times sequentially, where \(i \) is a finite non-zero positive number specified by the value \(\text{Fix } i \) recorded in the element’s type. We define the function \(\text{fixseq} \), which takes the number of iterations, the element’s flow type, the element’s outgoing sequence flows and the process that models the behaviour of its work, and returns a process that sequentially iterates the element’s work and then triggers the element’s outgoing sequence flows. Here \(\text{replicate } n \ p \) returns a list of \(n \) copies of \(p \).

\[
\begin{align*}
\text{fixseq} & : \text{Int} \to \text{FlowType} \to \text{[Seqflow]} \to \text{Process} \to ([\text{Local}], \text{Process}) \\
\text{fixseq} 1 \ f \ os \ p & = \text{sact } os \ p \\
\text{fixseq } n \ \text{One } es \ os \ p & = ([], \text{SeqComp } (\text{SeqComp } p \ (\text{seqext } os)) \ (\text{seqcomps } (\text{replicate } (n-1) \ p))) \\
\text{fixseq } n \ \text{All } es \ os \ p & = ([], \text{SeqComp } (\text{seqcomps } (\text{replicate } n \ p)) \ (\text{seqext } os))
\end{align*}
\]

Specifically, this function is defined for three different combinations of iteration number and flow type: one iteration, multiple iterations with flow type value \(\text{One} \) and multiple iterations with flow type value \(\text{All} \).

- For one iteration, the activity’s flow type is irrelevant. We provide function \(\text{sact} \) to model the behaviour of one work iteration. For example Figure 5.5(a) shows a sequential multiple instance task. If it defines one iteration, the behaviour after triggering its incoming sequence flow is modelled by the CSP process \(w.A \to \text{Skip } \eta s.s_2 \to \text{Skip} \). Note that for one iteration, parallel multiple instance elements are modelled in the same way.

\[
\begin{align*}
\text{sact} & : \text{[Seqflow]} \to \text{Process} \to ([\text{Local}], \text{Process}) \\
\text{sact } o \ p & = ([], \text{SeqComp } p \ (\text{seqext } o))
\end{align*}
\]

- Given the multiple instance specifies \(n \) iterations where \(n > 1 \) and the flow type \(\text{One} \), \(\text{fixseq} \) returns a sequential composition of processes, such that it first performs one instance of the activity’s work, then triggers its outgoing sequence flow, and then performs its remaining \(n-1 \) work instances. For example, we consider the sequential multiple instance task shown in Figure 5.5(a). If it specifies three iterations and flow type \(\text{One} \), \(\text{fixseq} \) returns the following CSP process.

\[
w.A \to \text{Skip } \eta s.s_2 \to \text{Skip } \eta w.A \to \text{Skip } \eta w.A \to \text{Skip}
\]

- Given the multiple instance specifies \(n \) iterations where \(n > 1 \) and the flow type \(\text{All} \), \(\text{fixseq} \) returns a sequential composition of processes, such that it first performs \(n \) instances of the activity’s work, and then triggers its outgoing sequence flow. For example, if the sequential multiple instance task shown in Figure 5.5(a) specifies three iterations and flow type \(\text{All} \), \(\text{fixseq} \) returns the following CSP process.

\[
w.A \to \text{Skip } \eta w.A \to \text{Skip } \eta w.A \to \text{Skip } \eta s.s_2 \to \text{Skip}
\]

5.3.5.2 Nondeterministic Number of Sequential Instances

A multiple instance element in this category executes its work instance \(n \) times sequentially, where \(n \) is nondeterministically chosen from the range \(\{1 \ldots i\} \) for some non-zero finite positive number \(i \) specified by the value \(\text{Ndet } i \) recorded in the element’s type. We define function \(\text{ndetseq} \) to model the semantics of activities in this category. This function has the same function type as \(\text{fixseq} \), and is defined for the same three combinations.
For one iteration, \texttt{ndetseq} returns the same process as that of \texttt{fixseq}.

- Given the multiple instance element specifies at most \(i\) iterations where \(i > 1\) and flow type \texttt{One}, \texttt{ndetseq} returns a process that has the following form,

\[
(P \sqsupseteq Q \quad (((\exists \ n : (1 \ldots i - 1)) \bullet P \sqcap a \rightarrow \text{Skip})) \sqcup a \rightarrow \text{Skip}) \sqcup b \rightarrow \text{Skip}) \setminus \{a, b\}
\]

where: \(P\) performs an instance of the activity’s work; \(Q\) performs the activity’s outgoing sequence flow; and events \(a\) and \(b\) are hidden from the environment. Specifically, this process first performs one instance of the activity’s work, then triggers its outgoing sequence flows, and then performs \(n\) iterations of the activity’s work, where \(0 \leq n < i\). For example, if the sequential multiple instance task in Figure 5.5(a) specifies at most three iterations of work instances and flow type \texttt{One}, function \texttt{ndetseq} returns the following CSP process,

\[
((w.A \rightarrow \text{Skip} \sqcup s.s2 \rightarrow \text{Skip}) \sqcup ((N \triangle b \rightarrow \text{Skip}) \setminus \{a, b\} \setminus \{a, b\})
\]

where \(N = (w.A \rightarrow \text{Skip} \sqcap a \rightarrow \text{Skip}) \setminus (w.A \rightarrow \text{Skip} \sqcap a \rightarrow \text{Skip}) \setminus a \rightarrow \text{Skip}\).

- Given the multiple instance element specifies at most \(i\) iterations where \(i > 1\) and flow type \texttt{All}, \texttt{ndetseq} returns a process that has the following form,

\[
(((\exists \ n : (1 \ldots i - 1)) \bullet P \sqcap a \rightarrow \text{Skip})) \sqcup b \rightarrow \text{Skip}) \setminus \{a, b\}
\]

where: \(P\) performs an instance of the activity’s work; \(Q\) performs the activity’s outgoing sequence flow; and events \(a\) and \(b\) are hidden from the environment. Specifically, the process first performs \(n\) instances of the activity’s work, where \(1 \leq n \leq i\), and then triggers its outgoing sequence flow. For example, if the sequential multiple instance task in Figure 5.5(a) specifies at most three iterations of work instances and flow type \texttt{All}, function \texttt{ndetseq} returns the following CSP process,

\[
(((w.A \rightarrow \text{Skip} \sqcup N) \triangle b \rightarrow \text{Skip}) \setminus \{a, b\} \setminus a \rightarrow \text{Skip}) \setminus \{a, b\}
\]

where \(N = (w.A \rightarrow \text{Skip} \sqcap a \rightarrow \text{Skip}) \setminus (w.A \rightarrow \text{Skip} \sqcap a \rightarrow \text{Skip}) \setminus a \rightarrow \text{Skip}\).

5.3.5.3 Fixed Number of Parallel Instances

A multiple instance element in this category interleaves \(i\) copies of its work instance, where \(i\) is a finite non-zero positive number specified by \texttt{Fix i} recorded in the element’s type. We define the function \texttt{fixpar} to model the semantics of activities in this category. This function has to the same function type as \texttt{fixseq}, and is defined for the same three combinations.

- For one iteration, \texttt{fixpar} returns the same process as that of \texttt{fixseq}.

- Given the multiple instance specifies \(i\) iterations where \(i > 1\) and flow type \texttt{One}, \texttt{fixpar} returns a process of the following form,

\[
((P \sqsupseteq ((Q \sqcup a \rightarrow \text{Skip}) \sqcup a \rightarrow \text{Skip})) \setminus \{a\})
\]

where: \(P\) performs an instance of the activity’s work; \(Q\) performs the activity’s outgoing sequence flows; and event \(a\) is hidden from the environment. Specifically, this process interleaves \(i\) instances of the activity’s work, and after one instance is performed, the process may trigger the activity’s outgoing sequence flow. Note that after the completion of one instance, the performance of outgoing
sequence flows cannot be refused while other instances may continue to progress. For example, we consider the parallel multiple instance task shown in Figure 5.5(b). Suppose its fixed number of iterations is three and its flow type is $\textcolor{red}{\texttt{one}}$; its behaviour is modelled by the following CSP process,

\[
((N \parallel \{ a \} \parallel N \parallel \{ a \} \parallel N) \parallel \{ s.s2, a \} \parallel (s.s2 \rightarrow \text{Skip} \uparrow a \rightarrow \text{Skip})) \setminus \{ a \}
\]

where $N = w.A \rightarrow \text{Skip} \uparrow (s.s2 \rightarrow \text{Skip} \uparrow a \rightarrow \text{Skip})$.

- Given the multiple instance specifies i iterations where $i > 1$ and flow type $\textcolor{red}{\texttt{All}}$, \texttt{fixpar} returns a process of the form $\parallel n : \{ 1 \ldots i \} P \uparrow Q$, where P performs an instances of the activity’s work and Q triggers the activity’s outgoing sequence flow. Specifically, this process first interleaves i instances of the activity’s work and then performs the activity’s outgoing sequence flow. For example, the parallel multiple instance element in Figure 5.5(b) specifies three iterations and the flow type $\textcolor{red}{\texttt{All}}$, its behaviour is modelled by the following CSP process.

\[
(w.A \rightarrow \text{Skip} \parallel w.A \rightarrow \text{Skip} \parallel w.A \rightarrow \text{Skip}) \uparrow s.s2 \rightarrow \text{Skip}
\]

5.3.5.4 Nondeterministic Number of Parallel Instances

A multiple instance element in this category interleaves n copies of its work instance, where n is nondeterministically chosen from the range $\{1 \ldots i\}$ from some finite non-zero positive number i specified by the value $\textcolor{red}{\texttt{ndet}}$, i recorded in the element’s type. We define function $\texttt{ndetpar}$ to model the semantics of activities in this category. This function has the same function type as \texttt{fixseq}, and is defined for the same three combinations.

- For one iteration, $\texttt{ndetpar}$ returns the same process as that of \texttt{fixpar}.

- Given the multiple instance specifies i iterations, where $i > 1$, and flow type $\textcolor{red}{\texttt{one}}$, $\texttt{ndetpar}$ returns a process of the form $(M \parallel \{ a, b \} \parallel N) \setminus \{ a, b \}$, where M and N are defined as follows.

\[
M = \parallel n : \{ 1 \ldots i \} \bullet ((P \uparrow ((Q \uparrow (a \rightarrow \text{Skip}) \sqcap a \rightarrow \text{Skip})) \sqcap b \rightarrow \text{Skip})
\]

\[
N = Q \uparrow (\parallel n : \{ 1 \ldots i \} \bullet (a \rightarrow \text{Skip} \sqcap b \rightarrow \text{Skip}))
\]

Here: P performs an instances of the activity’s work; Q performs the activity’s outgoing sequence flow; and events a and b are hidden from the environment. Specifically, this process first interleaves n work instances, where $1 \leq n \leq i$, and after one instance is performed, the performance of outgoing sequence flows cannot be refused, while the remaining $n - 1$ instances may progress independently. For example, we consider the parallel multiple instance task shown in Figure 5.5(b). If it specifies a maximum of three iterations and flow type $\textcolor{red}{\texttt{one}}$, its behaviour is modelled by the following CSP process,

\[
((G \parallel G \parallel G) \parallel \{ s.s2, a, b \} \parallel (s.s2 \rightarrow (\parallel n : \{ 1 \ldots 3 \} \bullet (b \rightarrow \text{Skip} \sqcap a \rightarrow \text{Skip})))) \setminus \{ a, b \}
\]

where $G = (w.A \rightarrow \text{Skip} \uparrow (s.s2 \rightarrow \text{Skip} \uparrow a \rightarrow \text{Skip}) \sqcap a \rightarrow \text{Skip}) \sqcap b \rightarrow \text{Skip}$.

- Given the multiple instance specifies i iterations, where $i > 1$, and flow type $\textcolor{red}{\texttt{All}}$, $\texttt{ndetpar}$ returns a process of the form $(\parallel n : \{ a, b \} \parallel N) \setminus \{ a, b \}$, where M and N are defined as follows.

\[
M = \parallel n : \{ 1 \ldots i \} \bullet ((P \uparrow (Q \uparrow (a \rightarrow \text{Skip}) \sqcap a \rightarrow \text{Skip})) \sqcap b \rightarrow \text{Skip})
\]

\[
N = a \rightarrow (\parallel n : \{ 1 \ldots i - 1 \} \bullet (a \rightarrow \text{Skip} \sqcap b \rightarrow \text{Skip}))
\]

Here: P performs an instances of the activity’s work; Q performs the activity’s outgoing sequence flow; and events a and b are hidden from the environment. Specifically, this process first interleaves n work instances, where $1 \leq n \leq i$, and then performs the activity’s outgoing sequence flow. For example, we consider the parallel multiple instance task element shown in Figure 5.5(b). Suppose it specifies a maximum of three iterations and flow type $\textcolor{red}{\texttt{All}}$, its behaviour is modelled by the following CSP process,

\[
(((G \parallel G \parallel G) \parallel \{ a, b \} \parallel (a \rightarrow (\parallel i : \{ 1, 2 \} \bullet (b \rightarrow \text{Skip} \sqcap a \rightarrow \text{Skip})))) \uparrow s.s2 \rightarrow \text{Skip}) \setminus \{ a, b \}
\]

where $G = (w.A \rightarrow \text{Skip} \uparrow a \rightarrow \text{Skip}) \sqcap b \rightarrow \text{Skip}$.
5.3.6 Exception Flows

Attaching an intermediate event to an activity adds an exception flow to that element. We define the function `encap` to model the behaviour of exception flows. This function takes the following three arguments:

1. An `Atom` value recording the activity’s type, sequence, exception and message flows.
2. A list of `Event` values, recording the activity’s alphabet.
3. The process definition modelling the behaviour the activity’s work and outgoing sequence flows.

The function then returns a process definition that models the activity work, outgoing sequence flows and exception flows.

\[
\text{encap} :: \text{Atom} \rightarrow \{\text{Event}\} \rightarrow (\{\text{Local}\},\text{Process}) \rightarrow (\{\text{Local}\},\text{Process})
\]

Specifically, this function is defined for the following categories of activity elements:

1. An activity with no exception flow.
2. A task with exception flows.
3. A subprocess with exception flows.

For an activity with no exception flow, the function simply returns the third input argument. We relegate the consideration of subprocesses with exception flows to Section 5.4.4 after we have considered the semantics of subprocesses.

For a task with exception flows, the function `encap` returns the process of the form \((W \triangle C) \parallel [\alpha M] M\), where \(W\) is the CSP process defined in the second component of the third argument; this process models the behaviour of the task’s work and outgoing sequence flows. This is a task’s normal flow [OMG08, Section 10.2.1]. For example consider the task in Figure 5.6; process \(W\) for this task, which is shown below, is the sequential composition of the task’s work, outgoing message flow and outgoing sequence flow.

\[
W = w.A \rightarrow \text{Skip} \parallel m.m2 \rightarrow \text{Skip} \parallel s.s2 \rightarrow \text{Skip}
\]
(5.2)

At any time during the normal flow, an interrupt might occur, which halts the normal flow and triggers one of the task’s exception flows. This is modelled by the process \(W \triangle C\), where process \(C\) models the task’s possible exception flows, that is, an external choice of processes, each modelling an intermediate event attached to the task. For example consider the task in Figure 5.6; process \(C\) for this task, which is shown below, is the external choice of processes modelling the message and error events attached to the task.

\[
C = m.m3 \rightarrow s.s3 \rightarrow \text{Skip} \parallel s.s4 \rightarrow \text{Skip}
\]
(5.3)

The process \(W \triangle C\) is partially interleaved with process \(M\) synchronising on \(\alpha M\). \(M\) initially offers either the event that models the task’s work or one of the task’s outgoing sequence flow and exception flows. After performing the work done event, the process behaves as \(M\) again, while after performing one
of task’s outgoing sequence flow and exception flows the process terminates. This composition ensures that the task cannot trigger both its outgoing sequence flows and exception flows. For example consider the task in Figure 5.6 process M for this task, which is shown below, is the external choice of the task’s outgoing sequence flow and exception flows.

$$M = w.A \rightarrow M \square m.m3 \rightarrow s.s3 \rightarrow \text{Skip} \square s.s4 \rightarrow \text{Skip} \square s.s2 \rightarrow \text{Skip}$$ (5.4)

5.4 Subprocesses

A subprocess is a compound activity [OMG08, Section 9.4.2]. The work of a subprocess is defined in terms of BPMN elements it directly contains. An example of a subprocess is shown in Figure 5.7. We use this subprocess as a running example throughout this section. This section is structured as follows. In Section 5.4.1 we describe and motivate our approach to modelling interaction between elements contained in a subprocess; in Sections 5.4.2 and 5.4.3 we describe extensions to our existing semantics for precisely capturing the event-based gateway’s behaviour, looping and completion; in Section 5.4.4 we consider the subprocess’s exception flows behaviour; and in Section 5.4.5 we give an overview of the Haskell implementation of the subprocess’ semantics.

![Figure 5.7: A subprocess](image)

5.4.1 Containment

A BPMN process is defined in terms of the behaviour of elements it directly contains and their control flows. Two elements contained in a BPMN process establish a flow of control by sharing a sequence flow. That is to say one element’s outgoing sequence flow or exception flow is the other element’s incoming sequence flow. Semantically this is represented by the parallel composition of the two processes that model the elements’ behaviour, each synchronising on its own alphabet. This method of constructing the semantics via parallel operators is a natural representation in process algebras [CPT01]. For example the semantics of the subprocess shown in Figure 5.7 can be described by the following CSP process, $s.s1 \rightarrow \text{Skip} \parallel T \parallel s.s16 \rightarrow \text{Skip}$, where process T is defined by Equation 5.5. Here we identify each end event by its incoming sequence flow. The full definition of CSP process $P(B)$ is given by Equation 5.14. Note that the process definitions provided in Equation 5.5 apply the extension considered in Sections 5.4.2, 5.4.3 and 5.4.4.
CHAPTER 5. PROCESS SEMANTICS

69

\[
P(s_1) = s.s2 \rightarrow Skip ∩ E
\]

\[
P(g_1) = (s.s2 \rightarrow Skip ∩ (s.s3 \rightarrow Skip) \cap s.s3 \rightarrow Skip) \cap (P(g_1)) \cap E
\]

\[
P(g_2) = (s.s3 \rightarrow Skip ∩ (m.m1 \rightarrow s.s6 \rightarrow Skip) \cap s.s11 \rightarrow s.s6 \rightarrow Skip) \cap s.s11 \rightarrow (P(g_2)) \cap E
\]

\[
P(s_3) = (((s.s4 \rightarrow Skip) \cap s.s9 \rightarrow Skip) \cap s.s9 \rightarrow Skip) \cap (P(s_3)) \cap E
\]

\[
P(g_4) = (s.s11 \rightarrow (s.s14 \rightarrow Skip) \cap s.s9 \rightarrow Skip) \cap (P(g_4)) \cap E
\]

\[
P(A) = ((s.s5 \rightarrow Skip) \cap m.m2 \rightarrow Skip) \cap w.A \rightarrow Skip \cap s.s12 \rightarrow Skip ∩ P(A)) \cap E
\]

\[
P(B) = \text{let } BC = (\{x : (\alpha BP \setminus \{s.s13, s.s19, s.s8\}) \cap x \rightarrow BC\}) \cap
\]

\[s.s13 \rightarrow Skip \cap e.s19 \rightarrow s.s8 \rightarrow Skip \cap BP = (\{i : \{\text{start, S, gate, s19, s20}\} \cap \alpha P(i) \cap P(i) \cap s.s13 \rightarrow Skip \cap \alpha BP \cap \alpha BP \cap BC) \cap P(B) \cap E
\]

\[
P(C) = (s.s7 \rightarrow Skip \cap w.C \rightarrow Skip \cap s.s11 \rightarrow Skip \cap P(C)) \cap E
\]

\[
P(D) = (s.s8 \rightarrow Skip \cap w.D \rightarrow Skip \cap s.s15 \rightarrow Skip \cap P(D)) \cap E
\]

\[
P(i_1) = ((s.s6 \rightarrow Skip) \cap m.m1 \rightarrow Skip) \cap s.s10 \rightarrow Skip \cap (P(i_1)) \cap E
\]

\[
P(s_{12}) = (s.s12 \rightarrow Skip \cap c.s12 \rightarrow Skip) \cap (\{i : \{c.s13, c.s14, c.s15\} \cap \alpha i \rightarrow Skip\}
\]

\[
P(s_{13}) = (s.s13 \rightarrow Skip \cap c.s13 \rightarrow Skip) \cap (\{i : \{c.s12, c.s14, c.s15\} \cap \alpha i \rightarrow Skip\}
\]

\[
P(s_{14}) = (s.s14 \rightarrow Skip \cap c.s14 \rightarrow Skip) \cap (\{i : \{c.s12, c.s13, c.s14, c.s15\} \cap \alpha i \rightarrow Skip\}
\]

\[
P(s_{15}) = (s.s15 \rightarrow Skip \cap m.m3 \rightarrow Skip \cap c.s15 \rightarrow Skip) \cap (\{i : \{c.s12, c.s13, c.s14\} \cap \alpha i \rightarrow Skip\}
\]

\[
E = (\{i : \{c.s12, c.s13, c.s14, c.s15\} \cap \alpha i \rightarrow Skip\}
\]

\[
T = (\{i : \{A, B, C, D, g_1, g_2, g_3, g_4, s_1, s_2, s_3, s_4, s_5, s_6, s_7, s_8, s_9\} \cap \alpha P(i) \cap P(i)
\]

5.4.2 Event-based Gateways

In Section 5.3.3 message events are modelled with interleaving incoming sequence and message flows. However, this has an effect when considering the control flows between elements in a BPMN process. For example, the subprocess in Figure 5.7 contains an event-based exclusive gateway with incoming sequence flow s3 and outgoing sequence flows s5 and s6. Upon triggering s3, the gateway triggers s5 if task A receives a message first, and s6 if the intermediate message event receives a message first.

However, this behaviour cannot be captured by the current semantics of message events. Consider the following processes \(P(exgate)\) and \(P(msg)\) that model the behaviour of the gateway and the message event.

\[
P(exgate) = s.s3 \rightarrow Skip \cap (s.s5 \rightarrow Skip \cap s.s6 \rightarrow Skip)
\]

\[
P(msg) = (m.m1 \rightarrow Skip) \cap (s.s6 \rightarrow Skip) \cap s.s10 \rightarrow Skip
\]

Specifically, the message event \(msg\) does not insist on the order of incoming sequence and message flows, and the gateway \(exgate\) does not insist that the message flow m1 must be triggered before sequence flow s6. As a result we cannot ensure s6 gets triggered after m1 is triggered. We therefore extend the semantics of event-based XOR gateways by prefixing each of its outgoing sequence flows with the corresponding incoming message flows of the gateway’s direct succeeding elements. The following process illustrates this proposed revision to the process semantics in Definition 5.6.

\[
P(exgate) = s.s3 \rightarrow Skip \cap (m.m2 \rightarrow s.s5 \rightarrow Skip \cap m.m1 \rightarrow s.s6 \rightarrow Skip)
\]

5.4.3 Looping and Completion

BPMN allows sequence flow looping [OMG08 Section 10.2.1.7]. For example in Figure 5.7 task C may be repeatedly performed by sequence flow looping. However, we have so far modelled a BPMN element’s behaviour as a terminating process. To capture sequence flow looping, we introduce recursion into our model. For example, task C in Figure 5.7 is modelled by the following process.

\[
P(c) = s.s7 \rightarrow Skip \cap w.C \rightarrow Skip \cap s.s11 \rightarrow Skip \cap P(c)
\]
Note that this extension is not applied to start and end events, this is because sequence flow looping can only be defined on elements that have both incoming and outgoing sequence flows.

While the recursive process models sequence flow looping, a BPMN process terminates upon a successful completion. Specifically, a BPMN process signifies its completion when one of the end events it directly contains is triggered [OMG08, Table 9.6]. For example, we consider the following normal flow of the subprocess shown in Figure 5.7: upon triggering the start event in the subprocess shown in Figure 5.7, the subprocess internally chooses to trigger flow $s4$, and performs task C. Afterwards, the subprocess triggers the task’s succeeding gateway, then chooses to trigger flow $s14$, and arrives at the non-trigger end event. At this point the subprocess completes its normal flow, hence it reaches a completion and terminates.

Naturally we model a BPMN process’s termination as the CSP process Skip, and a parallel process may behave as Skip if and only if each of its composed processes can also behave as Skip. As a result we provide some extensions to our model. In the following definitions, set E indexes all end events directly contained that BPMN process and for all $e \in E$, we let CSP event $e.e$ to denote the completion of the end event e.

- Given a recursive CSP process of the form $P = T \circ P$ that models an activity or a gateway in a BPMN process, we extend P as follows.

$$P = (T \circ P) \sqcap (\square e : E \bullet e.e \rightarrow \text{Skip}) \quad (5.9)$$

With this extension, the process initially offers the choice to either behave as the intended BPMN element or cooperate with an end event to terminate, and repeats the same choice after each time behaving as that element.

For example, the following process $P(C)$ extends the process in Equation 5.8 and shows how we model the completion of task C in Figure 5.7.

$$P(C) = ((s.s7 \rightarrow \text{Skip} \circ (w.C \rightarrow \text{Skip} \circ (s.s11 \rightarrow \text{Skip})))) \circ P(c)) \sqcap (\square e : E \bullet e.e \rightarrow \text{Skip}) \quad (5.10)$$

- Given a non-recursive CSP process of the form $P = S$ that models a start event in a BPMN process, we extend P as follows.

$$P = (S \circ (\square e : E \bullet e.e \rightarrow \text{Skip})) \sqcap (\square e : E \bullet e.e \rightarrow \text{Skip}) \quad (5.11)$$

With this extension, the process initially offers the choice to either behave as the start event or cooperate with an end event to terminate. After behaving as the start event, it waits until an end event is triggered and cooperates with it to terminate.

- Given a non-recursive CSP process of the form $P = S$ that models some end event f in a BPMN process, we extend P as follows.

$$P = (S \circ f \rightarrow \text{Skip}) \sqcap (\square e : E \setminus \{f\} \bullet e.e \rightarrow \text{Skip}) \quad (5.12)$$

With this extension, the process initially offers the choice to either behave as the end event or cooperate with one of the other end events contained in the same BPMN process to terminate. After behaving as the end event, it may signal completion.

For example, the following process $P(e1)$ defines the behaviour of the non-trigger end event in Figure 5.7 that has incoming sequence flow $s14$. Here $e1$ identifies the end event.

$$P(e1) = (s.s14 \rightarrow \text{Skip} \circ e1 \rightarrow \text{Skip}) \sqcap (\square e : E \setminus \{e1\} \bullet e.e \rightarrow \text{Skip}) \quad (5.13)$$

5.4.4 Exception Flows

In this section we consider the behaviour of a subprocess’s exception flows. For example, Figure 5.8 expands the collapsed subprocess B from Figure 5.7. Upon triggering flow $s10$, subprocess B triggers the start event it contains. The flow leads to task S. After performing S, the subprocess either completes
CHAPTER 5. PROCESS SEMANTICS

Figure 5.8: A BPMN subprocess with exception flows

...
modelled by process F'. The process $P \triangle (E \sqcup F')$ is partially interleaved with C, synchronising on the alphabet of $P \triangle (E \sqcup F')$. The composed process ensures that if an outgoing sequence flow is triggered then no exception flows may be triggered, and vice versa.

For example, consider subprocess B in Figure 5.8; consider also the following CSP processes model B and the elements it contains. Here we identify each end event by its incoming sequence flow.

$$
P(start) = s.s17 \to Skip \triangle (c.s19 \to Skip \sqcup c.s20 \to Skip)
$$

$$
P(S) = (s.s17 \to Skip \sqcup w.S \to Skip \sqcup s.s18 \to Skip \sqcup P(S)) \sqcup (c.s19 \to Skip \sqcup c.s20 \to Skip)
$$

$$
P(gate) = (s.s18 \to Skip \sqcup (s.s19 \to Skip \sqcup s.s20 \to Skip) \sqcup P(gate)) \sqcup (c.s19 \to Skip \sqcup c.s20 \to Skip)
$$

$$
P(s19) = (s.s19 \to Skip \sqcup c.s19 \to Skip \sqcup c.s19 \to Skip) \sqcup c.s20 \to Skip
$$

$$
P(s20) = (s.s20 \to Skip \sqcup c.s20 \to Skip) \sqcup c.s19 \to Skip
$$

$$
P(B) = \text{let } BC = (\square x : (\alpha BP \setminus \{s.s13, c.s19, s.s8\}) \bullet x \rightarrow BC) \sqcup s.s13 \rightarrow Skip \sqcup c.s19 \rightarrow s.s8 \rightarrow Skip
BP = [\parallel i : \{\text{start, S, gate, s19, s20}\} \bullet \alpha P(i) \sqcup P(i)] \sqcup s.s13 \rightarrow Skip
\in (s.s10 \rightarrow Skip \sqcup ((BP \triangle s.s8 \rightarrow Skip) \parallel \alpha BP) \parallel BC) \sqcup P(B) \sqcup
$$

$$
(\square i : \{s12, s13, s14, s15\} \bullet c.i \rightarrow Skip)
$$

(5.14)

5.4.5 Implementation

We provide function `embed` for modelling the work behaviour of a subprocess.

```
embed :: String -> [Element] -> [ProcessDef]
embed nm es = comps1 ++ [(aptem pm, [LS (*T*,index) "proc")
  where index = List Set (map name es)
  proc = Indparcomp ("I", bName "I") (bName aterm "i") (ProcId (pterem "i"))
  comps = mmp ((par id element) . split) es
  comps1 = concat [[complete es (atom e) p]++ps | (e,(e,ps)) <- comps ]
```

This function takes the subprocess's identifier of type `String` and a list of elements, of type `[Element]`, directly contained in that subprocess, and returns a list of process definitions, of type `[ProcessDef]`, that models the subprocess's behaviour. This list of process definitions consists of processes that model individual elements contained in the subprocess as well as a process that defines their parallel combination. Specifically, `embed` takes each BPMN element directly contained in the subprocess and first applies the function `embed`, which returns a CSP process that models a single instance of element's behaviour. `embed` then applies the function `complete` to extend this process for sequence flow looping and process completion as defined in Section 5.4.3.

5.5 Pools and Diagrams

In this section we consider the behaviour of BPMN pools and diagrams. We consider the semantics of BPMN pools in Section 5.5.1 and the semantics of BPMN diagrams in Section 5.5.2.

5.5.1 Pools

Similar to a subprocess, the semantics of a BPMN pool is defined in terms of the behaviour of the elements.

For example, Figure 5.9 shows BPMN pool P. P initially triggers subprocess M and task N. P completes execution when N completes successfully and that M either completes successfully or throws an error. The following CSP process $PL(P)$ models this behaviour,

$$
PL(P) = [\parallel i : \{sP, s1, s2, s3, s4, s6, s8\} \bullet \alpha P(i) \circ P(i)
$$

(5.15)

where sP identifies the start event directly contained in P, and all other elements directly contained in P are identified by their incoming sequence flows.

We provide function `pool` for modelling BPMN pool's behaviour.

```
pool :: (PoolId,[Element]) -> Script
```
This function takes the pool’s name and the list of elements the pool contains, and returns a Script value, recording the datatype, process and set definitions in CSPm, which together define the process semantics of the BPMN pool.

5.5.2 Diagrams

A BPMN diagram describes the interactions between business processes, each represented by a BPMN pool.

For example, we consider our online shop running example of Figure 2.3. Figure 5.10 replicates the same BPMN diagram and labels its sequence and message flows. In this example, the customer and online shop BPMN pools communicate to each other via message flows m_1, m_2, m_3, m_4, m_5 and m_6. We define CSP process CP in Equation 5.16 to model the behaviour of the Customer BPMN pool. The start element is identified by sCP while all other BPMN elements in the pool are identified by their
CHAPTER 5. PROCESS SEMANTICS

incoming sequence flows.

\[
\begin{align*}
EP &= c.s13 \rightarrow \text{Skip} \sqcap c.s4 \rightarrow \text{Skip} \\
P(sCP) &= (m.m1 \rightarrow \text{Skip} \sqcap s.s1 \rightarrow \text{Skip} \sqcap EP) \sqcap EP \\
P(s1) &= (s.s1 \rightarrow \text{Skip} \sqcap (s.s2 \rightarrow \text{Skip} \sqcap s.s3 \rightarrow \text{Skip}) \sqcap P(s1)) \sqcap EP \\
P(s2) &= (s.s2 \rightarrow \text{Skip} \sqcap w.DO \rightarrow \text{Skip} \sqcap m.m3 \rightarrow \text{Skip} \sqcap s.s4 \rightarrow \text{Skip} \sqcap P(s2)) \sqcap EP \\
P(s3) &= (s.s3 \rightarrow \text{Skip} \sqcap w.AO \rightarrow \text{Skip} \sqcap m.m2 \rightarrow \text{Skip} \sqcap s.s5 \rightarrow \text{Skip} \sqcap P(s3)) \sqcap EP \\
P(s4) &= (s.s4 \rightarrow \text{Skip} \sqcap c.s4 \rightarrow \text{Skip}) \sqcap c.s13 \rightarrow \text{Skip} \\
P(s5) &= (s.s5 \rightarrow \text{Skip} \sqcap w.SP \rightarrow \text{Skip} \sqcap m.m4 \rightarrow \text{Skip} \sqcap s.s6 \rightarrow \text{Skip} \sqcap P(s4)) \sqcap EP \\
P(s6) &= (s.s6 \rightarrow \text{Skip} \sqcap RO \sqcap s.s13 \rightarrow \text{Skip} \sqcap P(s6)) \sqcap EP \\
P(s13) &= (s.s13 \rightarrow \text{Skip} \sqcap c.s13 \rightarrow \text{Skip}) \sqcap c.s4 \rightarrow \text{Skip} \\
CP &= \parallel i : \{sCP, s1, s2, s3, s4, s5, s6, s13\} \bullet \alpha P(i) \circ P(i)
\end{align*}
\]

We abbreviate each task name using the first letter of each word in its name. For example, the CSP event \(w.DO\) represents the work done of task \(\text{Decline Offer}\). The process \(P(s6)\) models the behaviour of the Receive Offer subprocess; the definition of \(RO\) is defined in Equation (5.17).

\[
P(sRO) = (s.s7 \rightarrow \text{Skip} \sqcap c.s12 \rightarrow \text{Skip}) \sqcap c.s12 \rightarrow \text{Skip} \\
P(s7) = (s.s7 \rightarrow \text{Skip} \sqcap (s.s8 \rightarrow \text{Skip} \parallel s.s9 \rightarrow \text{Skip}) \sqcap P(s7)) \sqcap c.s12 \rightarrow \text{Skip} \\
P(s8) = ((s.s8 \rightarrow \text{Skip} \parallel m.m5 \rightarrow \text{Skip}) \sqcap w.RI \rightarrow \text{Skip} \sqcap s.s4 \rightarrow \text{Skip} \sqcap P(s8)) \sqcap c.s12 \rightarrow \text{Skip} \\
P(s9) = ((s.s9 \rightarrow \text{Skip} \parallel m.m6 \rightarrow \text{Skip}) \sqcap w.RG \rightarrow \text{Skip} \sqcap s.s11 \rightarrow \text{Skip} \sqcap P(s9)) \sqcap c.s12 \rightarrow \text{Skip} \\
P(s10) = ((s.s10 \rightarrow \text{Skip} \parallel s.s11 \rightarrow \text{Skip}) \sqcap s.s12 \rightarrow \text{Skip} \sqcap P(s10)) \sqcap c.s12 \rightarrow \text{Skip} \\
P(s12) = s.s12 \rightarrow \text{Skip} \sqcap c.s12 \rightarrow \text{Skip} \\
RO = \parallel i : \{sRO, s7, s8, s9, s10, s12\} \bullet \alpha P(i) \circ P(i)
\]

Similarly we define CSP process \(OS\) in Equation (5.18) that models the behaviour of the \(\text{OnlineShop}\) BPMN pool. Its start element is identified by \(sOS\) while all other BPMN elements in the pool are identified by their incoming sequence flows.

\[
P(sOS) = (s.s15 \rightarrow \text{Skip} \sqcap c.s24 \rightarrow \text{Skip}) \sqcap c.s24 \rightarrow \text{Skip} \\
P(s15) = (s.s15 \rightarrow \text{Skip} \sqcap w.SO \rightarrow \text{Skip} \sqcap m.m1 \rightarrow \text{Skip} \sqcap s.s16 \rightarrow \text{Skip} \sqcap P(s15)) \sqcap c.s24 \rightarrow \text{Skip} \\
P(s16) = (s.s16 \rightarrow \text{Skip} \sqcap (m.m2 \rightarrow \text{Skip} \sqcap s.s17 \rightarrow \text{Skip} \sqcap m.m3 \rightarrow \text{Skip} \sqcap s.s18 \rightarrow \text{Skip} \sqcap P(s16)) \sqcap c.s24 \rightarrow \text{Skip} \\
P(s17) = ((s.s17 \rightarrow \text{Skip} \parallel m.m2 \rightarrow \text{Skip}) \sqcap w.RC \rightarrow \text{Skip} \sqcap s.s19 \rightarrow \text{Skip} \sqcap P(s17)) \sqcap c.s24 \rightarrow \text{Skip} \\
P(s18) = ((s.s18 \rightarrow \text{Skip} \parallel m.m3 \rightarrow \text{Skip}) \sqcap w.RD \rightarrow \text{Skip} \sqcap s.s23 \rightarrow \text{Skip} \sqcap P(s18)) \sqcap c.s24 \rightarrow \text{Skip} \\
P(s19) = ((s.s19 \rightarrow \text{Skip} \parallel m.m4 \rightarrow \text{Skip}) \sqcap w.RP \rightarrow \text{Skip} \sqcap s.s20 \rightarrow \text{Skip} \sqcap P(s19)) \sqcap c.s24 \rightarrow \text{Skip} \\
P(s20) = (s.s20 \rightarrow \text{Skip} \sqcap w.SI \rightarrow \text{Skip} \sqcap m.m5 \rightarrow \text{Skip} \sqcap s.s21 \rightarrow \text{Skip} \sqcap P(s20)) \sqcap c.s24 \rightarrow \text{Skip} \\
P(s21) = (s.s21 \rightarrow \text{Skip} \sqcap w.DG \rightarrow \text{Skip} \sqcap m.m6 \rightarrow \text{Skip} \sqcap s.s22 \rightarrow \text{Skip} \sqcap P(s21)) \sqcap c.s24 \rightarrow \text{Skip} \\
P(s22) = ((s.s22 \rightarrow \text{Skip} \square s.s23 \rightarrow \text{Skip}) \sqcap s.s24 \rightarrow \text{Skip} \sqcap P(s13)) \sqcap c.s24 \rightarrow \text{Skip} \\
P(s24) = s.s24 \rightarrow \text{Skip} \sqcap c.s24 \rightarrow \text{Skip} \\
OS = \parallel i : \{sOS, s15, s16, s17, s18, s19, s20, s21, s22, s24\} \bullet \alpha P(i) \circ P(i)
\]

Equation (5.19) defines CSP process \(Example\) that models the interaction between the customer and the online shop business processes. Specifically, we model a BPMN diagram as a parallel composition of processes, each corresponds to a BPMN pool’s behaviour and synchronizes on its own alphabet.

\[
Example = CP \parallel aCP \parallel aOS \parallel OS
\]

We hence devise the semantic function \(b\text{ToC}\) that was introduced at the beginning of this chapter. This function takes the syntax of the BPMN diagram, of type \(\text{Diagram}\), and returns a \(\text{Script}\) value,
recording the datatype, process and set definitions in CSPm, that defines the process semantics of the BPMN diagram. In our abstract syntax each BPMN diagram is recorded using the type synonym \texttt{Diagram}, which is a list of pairs, where each pair records the name and the syntax of a BPMN pool in the diagram.

5.6 Safety and Liveness

Using CSP’s refinement orderings, we formally compare behaviours between BPMN diagrams and are able to verify behavioural properties of BPMN diagrams. In particular behavioural properties may be specified either as CSP processes or as BPMN diagrams. To simplify our notation in this section we write $D_{\mathbb{P}}[P]$ to denote the semantics of BPMN process P and $D_{\mathbb{X}}[X]$ to denote the semantics of BPMN diagram X.

5.6.1 Safety

In general a BPMN diagram is a traces refinement of another BPMN diagram precisely when the traces of the former is a subset of the traces of the latter:

Definition 5.1. Traces Refinement. BPMN diagram P is a traces refinement of BPMN diagram Q if and only if $D_{\mathbb{Q}}[Q] \subseteq_{\mathcal{T}} D_{\mathbb{P}}[P]$.

Using the traces refinement, we can also assert that a BPMN diagram meets a particular safety property expressed as a CSP process or as another BPMN diagram. We consider the online shop business process running example, whose behaviour is modelled by process \texttt{Example} defined in Equation 5.19. One of the business process’s behavioural requirements is as follows:

Goods must not be dispatched after the shop has sent a sale offer until the customer has accepted the offer and then made the required payment.

We model this requirement as the CSP process DP defined in the following Equation 5.20.

$$DP = \text{w}.SO \rightarrow \text{w}.AO \rightarrow \text{w}.SP \rightarrow \text{w}.DG \rightarrow \text{Stop} \quad (5.20)$$

Here we are interested in this requirement as a safety property, we therefore check the refinement assertion expressed in the following Equation 5.21.

$$DP \subseteq_{\mathcal{T}} \text{Example} \parallel \text{Stop} \setminus (\Sigma \setminus \alpha DP) \quad (5.21)$$

Note that we hide event \checkmark by sequentially composing the process modelling the BPMN diagram with the process \texttt{Stop}. This refinement states that the behaviour of $\text{Example} \parallel \text{Stop} \setminus (\Sigma \setminus \alpha DP)$ is a subset of the following set of traces.

$$\{(), \langle \text{w}.SO \rangle, \langle \text{w}.SO, \text{w}.AO \rangle, \langle \text{w}.SO, \text{w}.AO, \text{w}.SP \rangle, \langle \text{w}.SO, \text{w}.AO, \text{w}.SP, \text{w}.DG \rangle\}$$

The refinement ensures that bad behaviours such as the online shop dispatching goods before the customer has sent the payment are not possible.

By giving a semantics to BPMN in CSP, we can also express the above safety property using the BPMN diagram \texttt{Dispatch} shown in Figure 5.11. As a safety property, we check the refinement assertion

![Figure 5.11: A BPMN process modelling Equation 5.20](image)
expressed in Equation 5.22

\[
D[Dispatch] \supset Stop \setminus (\Sigma \setminus \{w\}) \subseteq_T Example \supset Stop \setminus (\Sigma \setminus (\alpha D[D] \cap \{w\})) \tag{5.22}
\]

Again, we hide event \(\checkmark\) by sequentially composing the process modelling the BPMN diagram with process \(Stop\). Moreover, this safety property concerns only tasks in the diagram and we therefore use the CSP hiding operator to conceal events associated with completion, sequence and message flows. Both traces refinement assertions hold.

Using the traces refinement, we can also express more general properties about BPMN diagrams such as the absence of un-triggered elements property [DDO08], that is, given a BPMN diagram we specify that there are no element of the diagram can never be triggered. Specifically, an AND join gateway is triggered if all of its incoming sequence flows are performed, while other element is triggered is one of its incoming sequence flows is performed.

We first define the characteristic set \(trg\) such that for element \(e\) contained in some BPMN diagrams \(d\), \((e, d) \in trg\) if \(e\) can be triggered in \(d\). Specifically, if \(e\) is an AND join gateway, \((e, d) \in trg\) if and only if all incoming sequence flows of \(e\) appear in one of \(D[d]\)’s traces regardless of the order in which they appear, and if \(e\) is a XOR join gateway, \((e, d) \in trg\) if and only if one of incoming sequence flows of \(e\) appears in one of \(D[d]\)’s traces, otherwise \((e, d) \in trg\) if and only if each incoming sequence flow of \(e\) appears in one of \(D[d]\)’s traces. Here \(iseq\) \(s\) is a set of injective finite sequences over set \(s\).

\[
\begin{align*}
trg : \mathcal{P}(&Element \times Diagram) \\
\forall e : ∈ \ d : Diagram \bullet \\
&\quad \ (atom e).type = agate \land \#(atom e).in > 1 \Rightarrow \\
&\quad \ (e, d) \in trg \iff (\exists ms : \{ts : isoq((atom e).in) \mid \#ts = \#(atom e).in\} \bullet \\
&\quad \ D[d] \setminus (\Sigma \setminus \{s.i\}) \subseteq_T (\exists m : ms \bullet s.m \rightarrow Skip \supset Stop) \land \\
&\quad \ (atom e).type \neq agate \land \#(atom e).in > 1 \Rightarrow \\
&\quad \ (e, d) \in trg \iff (\exists i : (atom e).in \bullet D[d] \setminus (\Sigma \setminus \{s.i\}) \subseteq_T s.i \rightarrow Stop) \\
&\quad \ (atom e).type \neq agate \land \#(atom e).in \leq 1 \Rightarrow \\
&\quad \ (e, d) \in trg \iff (\forall i : (atom e).in \bullet D[d] \setminus (\Sigma \setminus \{s.i\}) \subseteq_T s.i \rightarrow Stop)
\end{align*}
\]

Since each BPMN diagram contains a finite number of BPMN elements, the characteristic set \(trg\) casts the absence of un-triggered elements properties into a finite number of traces refinement checks. For example, given a diagram \(d\) containing an AND join gateway \(e\) with the set of incoming sequence flows \(\{s1, s2\}\), then \((e, d) \in trg\) if and only if one of following two traces refinements hold, that is, all of \(e\)’s incoming sequence flows are performed in one of \(D[d]\)’s traces.

\[
\begin{align*}
D[d] \setminus (\Sigma \setminus \{s.s1, s.s2\}) \subseteq_T s.s2 \rightarrow s.s1 \rightarrow Stop \\
D[d] \setminus (\Sigma \setminus \{s.s1, s.s2\}) \subseteq_T s.s1 \rightarrow s.s2 \rightarrow Stop
\end{align*}
\]

Conversely, if \(e\) is a XOR join gateway then \((e, d) \in trg\) if and only if one of following two traces refinements holds, that is, one of \(e\)’s incoming sequence flows is performed in one of \(D[d]\)’s traces.

\[
\begin{align*}
D[d] \setminus (\Sigma \setminus \{s.s1\}) \subseteq_T s.s1 \rightarrow Stop \\
D[d] \setminus (\Sigma \setminus \{s.s2\}) \subseteq_T s.s2 \rightarrow Stop
\end{align*}
\]

Finally, if \(e\) is a task element with incoming sequence flow \(s1\) then \((e, d) \in trg\) if and only if the following traces refinement holds, that is, \(e\)’s incoming sequence flow is performed in one of \(D[d]\)’s traces.

\[
\begin{align*}
D[d] \setminus (\Sigma \setminus \{s.s1\}) \subseteq_T s.s1 \rightarrow Stop
\end{align*}
\]

We now define the characteristic set \(trgs\) such that \(d \in trgs\) asserts the absence of un-triggered elements in a BPMN diagram \(d\).

\[
\begin{align*}
trgs : \mathcal{P} &Diagram \\
\forall d : &Diagram \bullet d \in trgs \iff (\forall e : Element \bullet e \in_p \{p : ran.d.pool \bullet p.proc\} \Rightarrow (e, d) \in trg)
\end{align*}
\]

Going back to our running example, we mechanically verify that the online shop business process is indeed a member of the set \(trgs\) using the FDR tool.
5.6.2 Liveness

In general a BPMN diagram is a failures refinement of another BPMN diagram precisely when the failures of former is a subset of the failures of latter:

Definition 5.2. Failures Refinement. BPMN diagram P is a failures refinement of BPMN diagram Q if and only if $D[Q] \subseteq_F D[P]$.

Using the failures refinement, we can also assert that a BPMN diagram meets a particular liveness property expressed as a CSP process or another BPMN diagram. Going back to our running example, we now consider the requirement expressed as the CSP process DP defined in Equation 5.21 as a liveness property, and in this case we check the following failures refinement assertion:

$$DP \subseteq_F \text{Example} \uparrow \text{Stop} \setminus (\Sigma \setminus \alpha DP)$$

We observe this assertion does not hold and this is because the customer business process may decline the online shop’s sale offer, that is, after event $w.SO$, process Example may perform events $w.DO$ and $w.RD$ and terminate. As a result the process $\text{Example} \uparrow \text{Stop} \setminus (\Sigma \setminus \alpha DP)$ has the failure $(\langle w.SO \rangle, \{w.AO\})$, that is, it refuses $w.AO$ after performing $w.SO$. However any process that failures-refines DP must not refuse to perform $w.AO$ after the trace $\langle w.SO \rangle$.

Using the failures refinement, we can also express more general properties about BPMN diagrams such as deadlock freedom. The characteristic deadlock free process is defined by the CSP process DP defined in Equation 2.1. Here we reproduce the process definition.

$$DF = (\cap e : \Sigma \bullet e \rightarrow DF) \cap \text{Skip}$$

Process DF either offers at least one event recursively or terminates. The deadlock freedom assertion on BPMN diagram P is then expressed as the following refinement.

$$DF \subseteq_F D[P]$$

Going back to our running example, we verify that the business process is deadlock free, that is, Example failures-refines DF.

We have shown how the refinement orderings defined over traces and failures semantics of CSP enable BPMN to be a specification language as well as a modelling language for implementation. Our process semantics also induces an equivalence relationship in which two BPMN processes are equivalent when each failures-refines the other. The notion of equivalence is formally defined as follows:

Definition 5.3. Equivalence. Two BPMN processes P and Q are equivalent, denoted as $P \equiv_{BPMN} Q$ if and only if $D[Q] \subseteq_F D[P] \land D[P] \subseteq_F D[Q]$.

5.7 Semantics of Composition

In this section we provide a CSP semantics for the syntactic operations defined in Section 4.6. For presentation purposes we use the following notational convention: For each syntactic operation Op that takes some component s of the before state and a list of input components ss, we write $Op(s, ss)$ to denote the component s' of the corresponding after state. For example, $\text{SeqComp}(proc, new?, \text{from}?, \text{end}?)$ denotes the BPMN pool constructed by applying the sequential composition operation SeqComp over the BPMN pool $proc$ with input components $new?$, $\text{from}?$ and $\text{end}?$.

We assume that all input components satisfy the operation’s precondition. Given some BPMN element ele, we write $P(ele)$ to refer to the CSP process that models the behaviour of ele. We write CSP event $s.f$ for sequence flow f, $m.g$ for message flow g, and $c.e$ for the completion of end event e.

CHAPTER 5. PROCESS SEMANTICS

77
We provide the following definitions on BPMN elements to assist semantic constructions.

\[
\begin{align*}
\text{extin}(\text{ele}) & = \square i : (\text{atom ele}.\text{in} \bullet s.i \to \text{Skip}) \\
\text{parin}(\text{ele}) & = || i : (\text{atom ele}.\text{in} \bullet s.i \to \text{Skip}) \\
\text{intot}(\text{ele}) & = \square i : (\text{atom ele}.\text{out} \bullet s.i \to \text{Skip}) \\
\text{extot}(\text{ele}) & = \square i : (\text{atom ele}.\text{out} \bullet s.i \to \text{Skip}) \\
\text{parot}(\text{ele}) & = || i : (\text{atom ele}.\text{out} \bullet s.i \to \text{Skip}) \\
\text{extrc}(\text{ele}) & = \square i : (\text{atom ele}.\text{receive} \bullet m.i \to \text{Skip}) \\
\text{parsn}(\text{ele}) & = || i : (\text{atom ele}.\text{send} \bullet m.i \to \text{Skip})
\end{align*}
\]

For some set of BPMN elements \(es \), we define \(\text{alphas}(es) \) to return the alphabet of the process semantics of elements in \(es \), and \(\text{procs}(es) \) to return the parallel composition of processes, each modelling the behaviour of an element in \(es \).

\[
\begin{align*}
\text{alphas}(es) & = \bigcup \{ i : \text{es} \bullet \alpha P(i) \} \\
\text{procs}(es) & = || i : \text{es} \bullet \alpha P(i) \circ P(i)
\end{align*}
\]

All operations described in this section add one or more end events to the BPMN process. Semantically, each BPMN element in the process must cooperate with those end events’ completion. Specifically, let process \(P(i) \) model the behaviour of BPMN element \(i \) directly contained in BPMN process \(B \); \(P(i) \) has the following form,

\[
P(i) = \begin{cases}
(C(i) \upharpoonright (\square j : E \bullet c.j \to \text{Skip})) \square (\square j : E \bullet c.j \to \text{Skip}) & \text{if } i \text{ is a start event} \\
(C(i) \upharpoonright c.i \to \text{Skip}) \square (\square j : (E \setminus \{i\}) \bullet c.j \to \text{Skip}) & \text{if } i \text{ is an end event} \\
(C(i) \upharpoonright P(i)) \square (\square j : E \bullet c.j \to \text{Skip}) & \text{otherwise}
\end{cases}
\]

where \(C(i) \) models \(i \)'s sequence, message and exception flows. If \(i \) is an activity element, \(C(i) \) also models its activity. Here set \(E \) is the set of end events directly contained in \(B \). Let \(F \) be the set of new end events that is to be added to \(B \), the following defines \(\text{addend}(P(i), F) \) to model the composition of the completion event of end events in \(F \) with \(P(i) \).

\[
\text{addend}(P(i), F) = \begin{cases}
(C(i) \upharpoonright (\square j : E \cup F \bullet c.j \to \text{Skip})) \square & \text{if } i \text{ is a start event} \\
(\square j : E \cup F \bullet c.j \to \text{Skip}) & \text{if } i \text{ is an end event} \\
(C(i) \upharpoonright c.i \to \text{Skip}) \square \\
(\square j : (E \cup F) \setminus \{i\} \bullet c.j \to \text{Skip}) \\
(C(i) \upharpoonright W) \square & \text{otherwise}
\end{cases}
\]

From Sections 5.7.1 to 5.7.5 we assume the before state component proc to be some BPMN process directly containing elements \(i \in I \), and set \(E \subset I \) to identify the set of end events contained in proc. We also use the BPMN process shown in Figure 5.12 as a running example to illustrate the semantics of operations. We label this process proc. Equation 5.24 defines CSP process \(P(\text{proc}) \) that models the behaviour of the BPMN process in the figure, where Equation 5.24 defines the behaviour of elements directly contained in subprocess \(B \).
where we let new? and end? are provided by the following processes,

\[
P(\text{new}?) = (\text{extin(\text{new}?) ~ N ~ extot(\text{new}?) ~ P(\text{new}?)}) \Box (\Box i : (E \cup \{\text{end}\}) \bullet c.i \rightarrow \text{Skip})
\]

\[
P(\text{end}?) = (\text{extin(\text{end}?) ~ c.end? \rightarrow \text{Skip}) \Box (\Box i : (E \setminus \{e\}) \bullet c.i \rightarrow \text{Skip})
\]

where we let e to abbreviate (ends proc) from?, and process N models new?'s activity and is defined as follows.

\[
N = \begin{cases}
w.\text{new}? \rightarrow \text{Skip} & \text{if new? is a task} \\
\text{procs}(J) & \text{if new? is a subprocess, directly containing set of elements J}
\end{cases}
\]

Assuming that P(e) models the behaviour of e, the semantics of SeqComp(proc, new?, from?, end?) is given by the following process,

\[
OB \parallel AB \parallel \text{alphas}(\{\text{new}?, \text{end}\}) \parallel P(\text{new}?) \parallel \alpha P(\text{new}?) \parallel \alpha P(\text{end}?) \parallel P(\text{end}?)
\]

where OB and AB are defined as follows.

\[
OB = \| i : \{i\} \bullet \left(\alpha P(i) \setminus \{c.e\}\right) \circ \text{addend}(P(i), \{\text{end}\})
\]

\[
AB = (\text{alphas}(I \setminus \{e\}) \setminus \{c.e\}) \cup \{c.end?\}
\]

For example, we consider the BPMN process shown in Figure 5.13. It is the after state component proc' of operation SeqComp(proc, D, s4, e), where proc is the BPMN process shown in Figure 5.12.
and is modelled by CSP process \(P(\text{proc}) \) defined in Equation 5.24. \(D \) identifies input task \(\text{new}? \) and \(e \) identifies the input end event \(\text{end}?. \) Equation 5.25 defines the process that models \(\text{proc}' \) of \(\text{SeqComp}(\text{proc}, D, s4, s8) \), where \(B \) has already been defined in Equation 5.24.

\[
P'(\text{start}) = (s.s1 \rightarrow \text{Skip} \circ (c.e \rightarrow \text{Skip} \circ c.s5 \rightarrow \text{Skip}) \square c.e \rightarrow \text{Skip} \circ c.s5 \rightarrow \text{Skip}
\]

\[
P'(s1) = (s.s1 \rightarrow \text{Skip} \circ (s.s2 \rightarrow \text{Skip} \square s.s3 \rightarrow \text{Skip}) \circ P'(s1) \square c.e \rightarrow \text{Skip} \circ c.s5 \rightarrow \text{Skip}
\]

\[
P'(s2) = (s.s2 \rightarrow \text{Skip} \circ A \rightarrow \text{Skip} \circ s.s4 \rightarrow \text{Skip} \circ P'(s2) \square c.e \rightarrow \text{Skip} \circ c.s5 \rightarrow \text{Skip}
\]

\[
P'(s3) = (s.s3 \rightarrow \text{Skip} \circ B \circ s.s5 \rightarrow \text{Skip} \circ P'(s3) \square c.e \rightarrow \text{Skip} \circ c.s5 \rightarrow \text{Skip}
\]

\[
P'(D) = (s.s4 \rightarrow \text{Skip} \circ D \rightarrow \text{Skip} \circ s.e \rightarrow \text{Skip} \circ P'(D) \square c.e \rightarrow \text{Skip} \circ c.s5 \rightarrow \text{Skip}
\]

\[
P'(e) = (s.e \rightarrow \text{Skip} \circ c.e \rightarrow \text{Skip} \square c.s5 \rightarrow \text{Skip}
\]

\[
P'(s5) = (s.s5 \rightarrow \text{Skip} \circ c.s5 \rightarrow \text{Skip} \square c.e \rightarrow \text{Skip}
\]

\[
P(\text{proc}') = \{i: \{\text{start}, s1, s2, s3, s5, e, D\} \bullet \alpha P'(i) \circ P'(i)\}
\]

5.7.2 Splits

There are two splits operations: \(\text{Split} \) and \(\text{EventSplitOp} \). Both operations are defined in Section 4.6.3. We first consider operation \(\text{Split} \). \(\text{Splits}(\text{proc}, \text{new}?, \text{from}?, \text{outs}?) \) replaces the end event identified by \(\text{(ends proc)} \text{from}? \) and contained in the before state component \(\text{proc} \) with element \(\text{new}? \), which is either a data-based XOR or an AND split gateway, and the set of end events \(\text{outs}?. \) The semantics of \(\text{new}? \) are provided by the following process,

\[
P(\text{new}?) = \text{let } W = (\text{extn}((\text{new}?) \circ S \circ W) \square (\square i : ((E \setminus \{e\}) \cup \text{outs}?)) \bullet c.i \rightarrow \text{Skip}) \text{ in } W
\]

where \(e \) abbreviates \(\text{(ends proc)} \text{from}? \) and \(S \) is defined as follows.

\[
S = \begin{cases}
\text{intot}((\text{new}?) & \text{if } \text{new}? \text{ is a data-based XOR split gateway} \\
\text{parol}((\text{new}?) & \text{if } \text{new}? \text{ is an AND split gateway}
\end{cases}
\]

From the definition of \(\text{Split} \) in Section 4.6.3, elements in \(\text{outs}? \) have disjoint sets of incoming sequence flows. Moreover, the union of of these sets is the outgoing sequence flows of \(\text{new}? \). As a result the semantics of elements in \(\text{outs}? \) is modelled by the following parallel combination of processes \(QS \),

\[
QS = \| o : \text{outs}? \bullet \alpha Q(o) \circ Q(o)
\]

where each process \(Q(o) \) is defined as follows.

\[
Q(o) = (\text{extn}(o) \circ c.o \rightarrow \text{Skip}) \square (\square n : ((\text{outs}? \cup E) \setminus \{o, e\}) \bullet c.n \rightarrow \text{Skip}
\]

The semantics of \(\text{Splits}(\text{proc}, \text{new}?, \text{from}?, \text{outs}?) \) is then given by the following process,

\[
OB \parallel AB \mid \text{alphas}(\text{outs}? \cup \{\text{new}?\}) \parallel (P(\text{new}?) \parallel \alpha P(\text{new}?) \mid \text{alphas}(\text{outs}?)) \parallel QS
\]

where \(OB \) and \(AB \) are defined as follows.

\[
OB = \| i : I \setminus \{e\} \bullet ((\alpha P(i) \setminus \{c.e\}) \cup \{o : \text{outs}? \bullet c.o\}) \circ \text{addend}(P(i), \text{outs}?)
\]

\[
AB = (\text{alphas}(I \setminus \{e\}) \setminus \{c.e\}) \cup \{o : \text{outs}? \bullet c.o\}
\]
CHAPTER 5. PROCESS SEMANTICS

We now consider operation EventSplitOp. EventSplitOp(proc, new?, from?, events?, ends?) replaces the end event identified by (ends proc) from? and contained in the before state component proc with the event-based XOR split gateway new?, the set events? containing tasks and intermediate events and the set of end? events. The semantics of new? is provided by the following process.

\[P(\text{new?}) = \text{let } W = (\text{exit}(\text{new?}) \triangleright \text{exit}(\text{new?}) \triangleright W) \sqcap (\square i : ((E \setminus \{e\}) \cup \text{ends?}) \cdot c.i \rightarrow \text{Skip}) \text{ in } W \]

According to the definition of EventSplitOp in Section 4.6.3, the incoming sequence flows of elements in events? are the outgoing sequence flows of new?. Both events? and ends? have the same number of elements, and the outgoing sequence flows of elements in events? are the incoming sequence flows of elements in ends?. As a result the behaviour of elements in events? is modelled by the following parallel composition of processes QS.

\[QS = \| v : \text{events}? \cdot \alpha Q(v) \circ Q(v) \]

Here each process Q(v) is defined as follows,

\[Q(v) = \text{let } W = (\text{exit}(v) \triangleright S \triangleright \text{exit}(v) \triangleright W) \sqcap (\square n : ((\text{ends?} \cup E) \setminus \{e, c\}) \cdot c.n \rightarrow \text{Skip}) \text{ in } W \]

where S is defined as follows.

\[S = \{ w.v \rightarrow \text{Skip} \text{ if } v \text{ is a task element} \}
\]

The semantics of the set of end event ends is defined by the following parallel composition of processes RS,

\[RS = \| o : \text{ends}? \cdot \alpha R(o) \circ R(o) \]

where each process R(o) is defined as follows.

\[R(o) = (\text{exit}(o) \cdot c.o \rightarrow \text{Skip}) \sqcap (\square n : ((\text{ends?} \cup E) \setminus \{o, e\}) \cdot c.n \rightarrow \text{Skip}) \]

Hence the semantics of EventSplitOp(proc, new?, from?, events?, ends?) is given by the following process,

\[OB \| AB \| \text{alphas(ends?} \cup \text{events?} \cup \{\text{new?}\}) \]

\((P(\text{new?}) \| \alpha P(\text{new?}) \| \text{alphas(ends?} \cup \text{events?})) \| (QS[\text{alphas(events?})][\text{alphas(ends?)})RS) \]

where OB and AB are defined as follows.

\[OB = \| i : I \setminus \{e\} \cdot (\alpha P(i) \setminus \{c.e\}) \cup \{o : \text{ends}? \cdot c.o\}) \circ \text{addend}(P(i), \text{ends}) \]

\[AB = (\text{alphas}(I \setminus \{e\}) \setminus \{c.e\}) \cup \{o : \text{ends}? \cdot c.o\} \]

For example, we consider the BPMN process shown in Figure 5.14. This process is the after state component proc′ of operation Splits(proc, gate, s4, \{e, f\}), where proc is the BPMN process shown in Figure 5.12 and is modelled by the CSP process P(proc) defined in Equation 5.24. Here gate identifies input gateway new?; e identifies the end event in the figure with incoming sequence flow s9, while f identifies the end event with incoming sequence flow s8. The set \{e, f\} therefore identifies the set outs?. Equation 5.26 defines P(proc′) that models proc′, where B has been defined in Equation 5.24.

\[P'(\text{start}) = (s.s1 \rightarrow \text{Skip} \triangleright \square e : \{s8, s5, s9\} \cdot c.e \rightarrow \text{Skip}) \sqcap (\square e : \{s8, s5, s9\} \cdot c.e \rightarrow \text{Skip}) \]

\[P'(s1) = (s.s1 \rightarrow \text{Skip} \triangleright (s.s2 \rightarrow \text{Skip} \cup s.s3 \rightarrow \text{Skip}) \triangleright P'(s1)) \sqcap (\square e : \{s8, s5, s9\} \cdot c.e \rightarrow \text{Skip}) \]

\[P'(s2) = (s.s2 \rightarrow \text{Skip} \triangleright w.A \rightarrow \text{Skip} \cup s.s4 \rightarrow \text{Skip} \triangleright P'(s2)) \sqcap (\square e : \{s8, s5, s9\} \cdot c.e \rightarrow \text{Skip}) \]

\[P'(s3) = (s.s3 \rightarrow \text{Skip} \triangleright B \triangleright s.s5 \rightarrow \text{Skip} \triangleright P'(s3)) \sqcap (\square e : \{s8, s5, s9\} \cdot c.e \rightarrow \text{Skip}) \]

\[P'(\text{gate}) = (s.s4 \rightarrow \text{Skip} \triangleright (s.s8 \rightarrow \text{Skip} \cup s.s9 \rightarrow \text{Skip}) \triangleright P'(\text{gate})) \sqcap (\square e : \{s8, s5, s9\} \cdot (c.e \rightarrow \text{Skip}) \]

\[P'(s5) = (s.s5 \rightarrow \text{Skip} \triangleright c.s5 \rightarrow \text{Skip}) \sqcap c.s8 \rightarrow \text{Skip} \cup c.s9 \rightarrow \text{Skip} \]

\[P'(e) = (s.s8 \rightarrow \text{Skip} \triangleright c.s8 \rightarrow \text{Skip} \sqcap c.s5 \rightarrow \text{Skip} \sqcap c.s9 \rightarrow \text{Skip} \]

\[P'(f) = (s.s9 \rightarrow \text{Skip} \triangleright c.s9 \rightarrow \text{Skip} \sqcup c.s5 \rightarrow \text{Skip} \sqcup c.s8 \rightarrow \text{Skip} \]

\[P(\text{proc'}) = \| i : \{\text{start}, s1, s2, s3, s5, e, f, gate\} \cdot \alpha P'(i) \circ P'(i) \] (5.26)
5.7.3 Join

The join operation \(\text{JoinOp} \) is defined such that \(\text{JoinOp}(\text{proc, gate?}, \text{end}?) \) replaces a set of end events identified by the expression \((\text{ends proc})\{ (\text{atom gate}?).\text{in} \} \) and contained in the before state component \(\text{proc} \) with the end event \(\text{end}? \) and either a data-based XOR or an AND join gateway \(\text{gate}? \). This operation was defined in Section 4.6.4 on Page 44. We let \(R \) abbreviate the set of end events \((\text{ends proc})\{ (\text{atom gate}?).\text{in} \} \) and provide the semantics of \(R \) by the following parallel composition of processes \(RP \),

\[
RP = \| r : R \bullet \alpha P(r) \circ P(r)
\]

where each process \(P(r) \) models element \(r \in R \) and has the following form.

\[
P(r) = (\text{extin}(r) \Downarrow c.r \to \text{Skip}) \parallel (\Box i : E \setminus \{r\} \bullet c.i \to \text{Skip})
\]

We provide the semantics of \(\text{gate}? \) and \(\text{end}? \) by the following processes,

\[
P(\text{gate}?) = \text{let } W = (S \Downarrow \text{extot}(\text{gate}?) \Downarrow W) \parallel (\Box i : ((E \setminus R) \cup \{\text{end}?\}) \bullet c.i \to \text{Skip}) \text{ in } W
\]

\[
P(\text{end}?) = (\text{extin}(\text{end}?) \Downarrow c.\text{end}? \to \text{Skip}) \parallel (\Box i : (E \setminus R) \bullet c.i \to \text{Skip})
\]

where process \(S \) is defined as follows.

\[
S = \begin{cases}
\text{extin}(\text{gate}?) & \text{if new? is a XOR join gateway element} \\
\text{parin}(\text{gate}?) & \text{if new? is an AND join gateway element}
\end{cases}
\]

Hence, the semantics of \(\text{JoinOp}(\text{proc, gate}?, \text{end}?) \) is given by the following process,

\[
OB \| AB \| \text{alphas}([\{\text{gate}?, \text{end}??\}]) \parallel (P(\text{gate}?) \parallel \alpha P(\text{gate}?) \parallel \alpha P(\text{end}?) \parallel P(\text{end}?)
\]

where \(OB \) and \(AB \) are defined as follow.

\[
OB = \| i : I \setminus R \bullet ((\alpha P(i) \setminus \{r : R \bullet c.r\}) \cup \{c.\text{end}??\}) \circ \text{addend}(P(i), \{\text{end}??\})
\]

\[
AB = (\text{alphas}(I \setminus R) \setminus \{r : R \bullet c.r\} \cup \{c.\text{end}??\})
\]

Figure 5.15: Applying \(\text{JoinOp} \)
For example, we consider the BPMN process shown in Figure 5.10. This process models the after state component proc’ of operation JoinOp(proc, gate, s8), where proc is the BPMN process shown in Figure 5.12 and is modelled by the process P(proc) defined in Equation 5.24. Here gate identifies the gateway gate?, and s8 identifies the end event end?. Equation 5.27 defines process P(proc’) that models proc’, where B is defined in Equation 5.24.

\[
P'(\text{start}) = (s.s1 \rightarrow \text{Skip} \triangledown c.s8 \rightarrow \text{Skip}) \sqcap c.s8 \rightarrow \text{Skip}
\]

\[
P'(s1) = (s.s1 \rightarrow \text{Skip} \triangledown (s.s2 \rightarrow \text{Skip} \sqcap s.s3 \rightarrow \text{Skip}) \triangledown P'(s1)) \sqcap c.s8 \rightarrow \text{Skip}
\]

\[
P'(s2) = (s.s2 \rightarrow \text{Skip} \triangledown w.A \rightarrow \text{Skip} \triangledown s.s4 \rightarrow \text{Skip} \triangledown P'(s2)) \sqcap c.s8 \rightarrow \text{Skip}
\]

\[
P'(s3) = (s.s3 \rightarrow \text{Skip} \triangledown B \triangledown s.s5 \rightarrow \text{Skip} \triangledown P'(s3)) \sqcap c.s8 \rightarrow \text{Skip}
\]

\[
P'(gate) = ((s.s4 \rightarrow \text{Skip} \sqcap s.s5 \rightarrow \text{Skip}) \triangledown s.s8 \rightarrow \text{Skip} \triangledown P'(gate)) \sqcap c.s8 \rightarrow \text{Skip}
\]

\[
P'(s8) = (s.s8 \rightarrow \text{Skip} \triangledown c.s8 \rightarrow \text{Skip})
\]

\[
P'(proc') = \bigcup i : \{\text{start, s1, s2, s3, s8, gate}\} \cdot \alpha P'(i) \circ P'(i)
\]

(5.27)

5.7.4 Iteration

There are two iteration operations: Loop and EventLoop. We first consider Loop.

The operation Loop takes sequence flows connect?, f2?, t2? and from?, and elements split?, join? and end? and applies the following three steps to the before state component proc:

1. Replace the end event, identified by (ends proc) from?, contained in proc with either an AND or a data-based XOR split gateway split? and the end event end?.
2. Add either an AND or a data-based XOR join gateway join? to proc.
3. Replace the incoming sequence flow f2? from the element, identified by the expression \((\text{nonsends proc}) f2?\), contained in proc with t2?.

A syntactic definition of Loop is provided in Section 4.6.5. The semantics of proc, split?, join? and end? are provided by the following processes,

\[
D[\text{proc}] = (\parallel : i : J \setminus \{\bullet \alpha P(i) \circ P(i)\} \parallel \text{alphas}(I \setminus J) \parallel \text{alphas}(J)) (\parallel : i : J \setminus \{\bullet \alpha P(i) \circ P(i)\})
\]

\[
P(\text{split?}) = \text{let } W = (s.\text{from}? \rightarrow S \triangledown W) \sqcap (\square i : ((E \setminus \{e\}) \cup \{\text{end}?\}) \cdot c.i \rightarrow \text{Skip}) \text{ in } W
\]

\[
P(\text{join?}) = \text{let } W = (T \triangledown s.\text{to}? \rightarrow W) \sqcap (\square i : ((E \setminus \{t\}) \cup \{\text{end}?\}) \cdot c.i \rightarrow \text{Skip}) \text{ in } W
\]

\[
P(\text{end}) = (\text{extin}(\text{end}) \triangledown c.\text{end} \rightarrow \text{Skip}) \sqcap (\square i : (E \setminus \{e\}) \cdot c.i \rightarrow \text{Skip})
\]

where \(J = \{e, m\}\), and processes \(S\) and \(T\) are defined as follows.

\[
S = \left\{ \begin{array}{ll}\text{intot(split?)} & \text{if split? is a data-based XOR split gateway} \\
\text{parot(split?)} & \text{if split? is an AND split gateway} \end{array} \right.
\]

\[
T = \left\{ \begin{array}{ll}s.f2? \rightarrow \text{Skip} \sqcap s.\text{connect?} \rightarrow \text{Skip} & \text{if join? is a data-based XOR join gateway} \\
s.f2? \rightarrow \text{Skip} \sqcap s.\text{connect?} \rightarrow \text{Skip} & \text{if join? is an AND join gateway} \end{array} \right.
\]

Here \(e\) abbreviates (ends proc) from? and process \(P(e)\) models the behaviour of \(e\). Similarly, we use \(m\) to abbreviate the expression \((\text{nonsends proc}) f2?\) and process \(P(m)\) models the behaviour of \(m\). Hence, the semantics of Loop(proc, split?, join?, end?, connect?, from?, f2?, t2?) is defined by the following process,

\[
OB \parallel \text{alphas}(I \setminus \{e, m\}) \cup \{c.\text{end}\} \parallel \text{alphas} \{\text{split?, join?, end?, m'}\}\parallel (P(\text{m'}) \parallel \alpha P(\text{m'}) \parallel \text{alphas} \{\text{split?, join?, end?}\})\parallel (P(\text{split?}) \parallel \alpha P(\text{split?}) \parallel \text{alphas} \{\text{join?, end?}\})\parallel (P(\text{join?}) \parallel \alpha P(\text{join?}) \parallel \alpha P(\text{end?}) \parallel P(\text{end?}))
\]
where \(OB \) and \(P(m') \) are defined as follows; \(P(m)[s.f2? \leftarrow s.t2?] \) renames all occurrences of \(s.f2? \) to \(s.t2? \) in \(P(m) \).

\[
OB = \| i : I \setminus \{ e, m \} \bullet ((\alpha P(i) \setminus \{ e \}) \cup \{ c.end? \}) \circ addend(P(i), \{ end? \})
\]

\[
P(m') = P(m)[s.f2? \leftarrow s.t2?]
\]

We now consider the operation \(\text{EventLoop} \). \(\text{EventLoop} \) takes sequence flows \(\text{connect}?, f2?, t2? \) and \(\text{from}?, \text{elements} \ split?, \text{join}?, \text{and} \ end?; \) and \(\text{the set events}? \), which consists of two elements, and applies the following three steps to the before state component \(\text{proc} \):

1. Replace the end event, identified by \((\text{ends proc} from?) \), in \(\text{proc} \) with the event-based XOR split gateway \(\text{split}? \), the set of elements \(\text{events}? \) and the end event \(\text{end}?; \) each element in the set \(\text{events}? \) is either a task or an intermediate event.

2. Add either a join gateway \(\text{join}? \) to \(\text{proc} \).

3. Replace the incoming sequence flow \(f2? \) of the element, identified by expression \((\text{nonsends proc} f2?) \), contained in \(\text{proc} \) with \(t2? \).

A syntactic definition of \(\text{EventLoop} \) is provided in Section 4.6.5. We let \(e \) abbreviate \((\text{ends proc} from?) \) and \(m \) to abbreviate \((\text{nonsends proc} f2?) \), and first model the semantics of the set of elements \(\text{events}? \) using the following parallel composition of processes \(EP \).

\[
EP = \| v : \text{events}? \circ \alpha P(v) \circ P(v)
\]

where each process \(P(v) \) is defined as follows,

\[
P(v) = \text{let } W = (\text{extin}(v) \subseteq S \subseteq \text{extot}(v) \subseteq W) \Box (\square n : ((\text{ends}?' \cup E) \setminus \{ e \}) \bullet c.n \rightarrow \text{Skip}) \in W
\]

and \(S \) is defined as follows.

\[
S = \begin{cases}
\text{w.v} \rightarrow \text{Skip} & \text{if } v \text{ is a task} \\
\text{Skip} & \text{otherwise}
\end{cases}
\]

We provide the semantics of \(\text{proc} \), \(\text{split}? \), \(\text{join}? \) and \(\text{end}? \) using the following processes,

\[
D[\text{proc}] = (\| i : I \setminus \{ e, m \} \bullet \alpha P(i) \circ P(i))
\]

\[
\| \alpha P(e) \circ P(m) \| P(m)
\]

\[
P(\text{split}?) = \text{let } W = (s.\text{from}? \rightarrow \text{extot}(\text{split}?) \subseteq W) \Box (\square i : ((E \setminus \{ e \}) \cup \{ \text{end}? \}) \bullet c.i \rightarrow \text{Skip}) \in W
\]

\[
P(\text{join}?) = \text{let } W = (T \subseteq s.t2? \rightarrow W) \Box (\square i : ((E \setminus \{ e \}) \cup \{ \text{end}? \}) \bullet c.i \rightarrow \text{Skip}) \in W
\]

\[
P(\text{end}?) = (\text{extin}(\text{end}?) \subseteq c.\text{end}? \rightarrow \text{Skip}) \Box (\square i : (E \setminus \{ e \}) \bullet c.i \rightarrow \text{Skip})
\]

where process \(T \) is defined as follows.

\[
T = \begin{cases}
\text{s.f2?} \rightarrow \text{Skip} \circ \text{s.connect}? \rightarrow \text{Skip} & \text{if join}? \text{ is a data-based XOR join gateway} \\
\text{s.f2?} \rightarrow \text{Skip} \circ \text{s.connect}? \rightarrow \text{Skip} & \text{if join}? \text{ is an AND join gateway}
\end{cases}
\]

We let process \(P(e) \) model the behaviour of \(e \) and \(P(m) \) model that of \(m \), the semantics of \(\text{EventLoop}(\text{proc}, \text{split}? , \text{join}? , \text{end}? , \text{events}? , \text{connect}? , \text{from}? , f2? , t2?) \) is hence defined by the following process,

\[
OB \| \alpha P(e) \circ P(m) \| \text{events}? \subseteq \alpha P(e) \circ \alpha P(m) \subseteq \text{events}?
\]

\[
(EP \| \alpha P(\text{split}?) \circ \text{split}?) \| \alpha P(\text{join}?) \circ \text{join}?
\]

\[
\| P(\text{end}?) \circ \alpha P(\text{end}?) \| P(\text{end}?)
\]
where OB and $P(m')$ are defined as follows.

$$OB = \| i : I \setminus \{e, m\} \bullet (\alpha P(i) \setminus \{e\}) \cup \{c.end?\}) \circ addend(P(i), \{end\})$$

$$P(m') = P(m)[s.f2? \leftarrow s.t2?]$$

For example, consider the BPMN process shown in Figure 5.16. This process is the after state component $proc'$ of operation $\text{Loop}(proc, g1, g2, s10, s8, s4, s2, s9)$, where $proc$ is the BPMN process shown in Figure 5.12 and is modelled by the process $P(proc)$ defined in Equation 5.24. Here $g1$ identifies the input gateway split, while $g2$ identifies join, $s10$ identifies the input end event end, and $s8$, $s4$, $s2$, $s9$ identify sequence flows connect, from, f2 and t2 respectively. Equation 5.28 defines process $P(proc')$ that models $proc'$, where B is defined in Equation 5.24.

$$P'(\text{start}) = (s.s1 \rightarrow \text{Skip} \uplus (c.s10 \rightarrow \text{Skip} \square c.s5 \rightarrow \text{Skip}) \square c.s10 \rightarrow \text{Skip} \square c.s5 \rightarrow \text{Skip}$$

$$P'(s1) = (s.s1 \rightarrow \text{Skip} \uplus (s.s2 \rightarrow \text{Skip} \sqcap s.s3 \rightarrow \text{Skip}) \uplus P'(s1)) \square c.s3 \rightarrow \text{Skip} \sqcap c.s5 \rightarrow \text{Skip}$$

$$P'(s3) = (s.s3 \rightarrow \text{Skip} \uplus B \uplus s.s5 \rightarrow \text{Skip} \uplus P'(s3)) \sqcap c.s3 \rightarrow \text{Skip} \sqcap c.s5 \rightarrow \text{Skip}$$

$$P'(g2) = ((s.s2 \rightarrow \text{Skip} \sqcap s.s8 \rightarrow \text{Skip}) \sqcap s.s9 \rightarrow \text{Skip} \uplus P'(g2)) \sqcap c.s10 \rightarrow \text{Skip} \sqcap c.s5 \rightarrow \text{Skip}$$

$$P'(s2) = (s.s9 \rightarrow \text{Skip} \uplus w.A \rightarrow \text{Skip} \sqcap s.s4 \rightarrow \text{Skip} \uplus P'(s2)) \sqcap c.s10 \rightarrow \text{Skip} \sqcap c.s5 \rightarrow \text{Skip}$$

$$P'(g1) = (s.s4 \rightarrow \text{Skip} \uplus (s.s8 \rightarrow \text{Skip} \sqcap s.s10 \rightarrow \text{Skip}) \uplus P'(g1)) \sqcap c.s10 \rightarrow \text{Skip} \sqcap c.s5 \rightarrow \text{Skip}$$

$$P'(s10) = (s.s10 \rightarrow \text{Skip} \uplus c.s10 \rightarrow \text{Skip}) \sqcap c.s5 \rightarrow \text{Skip}$$

$$P'(s5) = (s.s5 \rightarrow \text{Skip} \uplus c.s5 \rightarrow \text{Skip}) \sqcap c.s10 \rightarrow \text{Skip}$$

$$P(proc') = \| i : \{\text{start}, s1, s2, s3, s5, g1, g2, s10\} \bullet \alpha P'(i) \circ P'(i)$$

5.7.5 Exception

The interrupt operation specifies how to attach an intermediate event to an activity element to create an exception flow. The interrupt operation is specified by the schema AddException, which is defined as a disjunction of two operations: $\text{AddNoRelatedErrorException}$ and $\text{AddRelatedErrorException}$. The schemas are defined in Section 4.6.6.

The operation $\text{AddNoRelatedErrorException}$ takes sequence flows eflow and loc, the end event end and the element type etype, and adds an exception flow to the activity element identified by $(\text{activities} \ proc) \ \text{loc}$ and contained in $proc$. This exception flow is triggered by either a time lapse (itime), the arrival of a message (imessage) or an unspecified error during the activity’s execution ($\text{error(anyexception)}$). The expression $(\text{activities} \ proc) \ \text{loc}$ ensures that the activity element, to which the exception flow is added, has an incoming sequence flow loc.

We provide the semantics of proc and end with the following processes,

$$D[\text{proc}] = (\| i : I \setminus \{m\} \bullet \alpha P(i) \circ P(i)) \parallel \alpha P(I \setminus \{m\}) \| \alpha P(m) \| P(m)$$

$$P(\text{end}) = (\text{extin(\text{end})} \uplus c.\text{end?} \rightarrow \text{Skip}) \sqcap \square i : (E \setminus \{c\}) \bullet c.i \rightarrow \text{Skip}$$

where m abbreviates $(\text{activities} \ proc) \ \text{loc}$. Process $P(m)$ models the behaviour of m and has the following
form,

\[P(m) = \text{let } X = ((N \triangleright extot(m)) \bigtriangleup C) \parallel \alpha M \parallel M \]
\[W = (s.loc? \to X \triangleright W) \Box (\Box i : E \cdot c.i \to Skip) \text{ in } W \]

where process \(N \) denotes the activity of \(m \) and is defined as follows:

\[N = \begin{cases} w.m \to \text{Skip} & \text{if } m \text{ is a task} \\ \text{proc}(J) & \text{if } m \text{ is a subprocess, directly containing set of elements } J \end{cases} \]

Process \(C \) describes the exception flows of \(m \) and \(M \) coordinates the outgoing sequence flows and exception flows of \(m \) as possible “outcomes” of \(m \). The semantics of \(\text{AddNoRelatedErrorException(proc, end?, etype?, eflow?, loc?)} \) is hence defined by the following process,

\[OB \parallel \alpha \text{phas}(I \setminus \{m\}) \cup \{c.end?\} \parallel \alpha \text{phas}(\{end?, m'\}) \parallel (P(m') \parallel \alpha P(m') \parallel \alpha P(end?) \parallel P(end?)) \]

where processes \(OB \) and \(P(m') \) are defined as follow,

\[OB = \| i : I \setminus \{m\} \bullet (\alpha P(i) \cup \{c.end?\}) \circ \text{addend}(P(i), \{end?\}) \]
\[P(m') = \text{let } X = ((N \triangleright extot(m)) \bigtriangleup C') \parallel \alpha M \cup \{s.eflow\} \parallel M' \]
\[C' = C \bigtriangleup s.eflow? \to \text{Skip} \]
\[M' = M \bigtriangleup s.eflow? \to \text{Skip} \]
\[W = (s.loc? \to X \triangleright W) \Box (\Box i : (E \cup \{end?\}) \bullet c.i \to \text{Skip}) \text{ in } W \]

Figure 5.17: Applying \(\text{AddNoRelatedErrorException} \)

For example, we consider the BPMN process shown in Figure 5.17. This process is the after state component \(proc' \) of operation \(\text{AddNoRelatedErrorException(proc, e, ierror(anyexception), s8, s2)} \), where \(proc \) is the BPMN process shown in Figure 5.12 and is modelled by the process \(P(proc) \) defined in Equation 5.24. Here \(e \) identifies end event \(\text{end?} \), \(etype? \) is the value \(\text{error(anyexception)} \), and \(s8 \) and \(s2 \) identify sequence flows \(eflow? \) and \(loc? \) respectively. Equation 5.29 defines \(P(proc') \) that models the behaviour of \(proc' \), where \(B \) is defined in Equation 5.24.

\[
P'(\text{start}) = (s.s1 \to \text{Skip} \triangleright \Box i : \{s4, s5, e\} \bullet c.i \to \text{Skip}) \Box (\Box i : \{s4, s5, e\} \bullet c.i \to \text{Skip})
\]
\[
P'(s1) = (s.s1 \to \text{Skip} \triangleright (s.s2 \to \text{Skip} \Box s.s3 \to \text{Skip}) \triangleright P'(s1)) \Box (\Box i : \{s4, s5, e\} \bullet c.i \to \text{Skip})
\]
\[
P'(s2) = (s.s2 \to \text{Skip} \triangleright w.A \to \text{Skip} \triangleright s.s4 \to \text{Skip} \triangleright P'(s2)) \Box (\Box i : \{s4, s5, e\} \bullet c.i \to \text{Skip})
\]
\[
P'(s3) = \text{let } C = (\Box i : \alpha B \setminus \{s.s5, s.s8\} \bullet i \to C) \Box s.s8 \to \text{Skip} \Box s.s5 \to \text{Skip}
\]
\[
K = (B \triangleright s.s5 \to \text{Skip}) \bigtriangleup s.s8 \to \text{Skip}
\]
\[
in (s.s3 \to \text{Skip} \triangleright (K \parallel \alpha C \parallel C) \triangleright P'(s3)) \Box (\Box i : \{s4, s5, e\} \bullet c.i \to \text{Skip})
\]
\[
P'(s4) = (s.s4 \to \text{Skip} \triangleright c.s4 \to \text{Skip}) \Box c.s5 \to \text{Skip} \Box c.e \to \text{Skip}
\]
\[
P'(s5) = (s.s5 \to \text{Skip} \triangleright c.s5 \to \text{Skip}) \Box c.s4 \to \text{Skip} \Box c.e \to \text{Skip}
\]
\[
P'(e) = (s.s8 \to \text{Skip} \triangleright c.e \to \text{Skip}) \Box c.s4 \to \text{Skip} \Box c.s5 \to \text{Skip}
\]
\[
P(proc') = \| i : \{\text{start}, s1, s2, s3, s4, s5, e\} \bullet \alpha P'(i) \circ P'(i)
\]

(5.29)
The operation \textit{AddRelatedErrorException} takes as input components sequence flows \textit{eflow}?, \textit{sflow}? and \textit{loc}? , end event \textit{end}? , and element types \textit{etype}? and \textit{type}?. The operation identifies some sub-process element \(m \) in \textit{proc} by the expression (\textit{activities proc}\ \textit{loc}?); the expression (\textit{activities proc}\ \textit{loc}? ensures that \(m \) is an activity and has an incoming sequence flow \textit{loc}? . Moreover, the precondition of \textit{AddRelatedErrorException} ensures \(m \) is a sub-process. Specifically, the operation performs the following two steps:

1. Add an exception flow, that is a pair \((\textit{eflow}? , \textit{etype}?)\), to \(m \), where \textit{etype}? is a type of an intermediate error event.

2. Replace the type of an non-trigger end event directly contained in \(m \) with an end error event type such that it has the same error code as \textit{etype}?.

We provide the semantics of \textit{proc} and \textit{end}? with the following processes,

\[
D[\text{proc}] = (\| i : I \setminus \{m\} \bullet \alpha P(i) \circ P(i)) [\{\text{alphas}(I \setminus \{m\})\}] \alpha P(m) \| P(m)
\]

\[
P(\text{end}?) = (\text{extin}(\text{end}?) \circ \text{c.end}? \rightarrow \text{Skip}) \sqcap (\square i : (E \setminus \{e\}) \bullet c.i \rightarrow \text{Skip})
\]

where \(P(m) \) is the process semantics of \(m \) and has the following form:

\[
P(m) = \text{let } X = ((N [\text{alphas}(J \setminus \{k\}) \circ \alpha P(k)] \| P(k)) \circ \text{extot}(m) \triangle C) \| \alpha M \| M
\]

\[
N = \| j : (J \setminus \{k\}) \bullet \alpha P(j) \circ P(j)
\]

\[
W = (s.loc? \rightarrow X \circ W) \sqcap (\square i : E \bullet c.i \rightarrow \text{Skip}) \text{ in } W
\]

Here element \(k \in J \) is an end event identified by the expression \((\text{ends (content ele) sflow}? \) where \textit{ele} = \textit{(activities proc}\ \textit{loc}? is the subprocess \(m \). Specifically, \(k \) is an end event whose type is replaced with an end error event type as described in Step \(\text{ii} \) of the operation.

Similar to the definition of the semantics of \textit{AddNoRelatedErrorException}, process \(C \) describes the exception flows of \(m \) and \(M \) coordinates the outgoing sequence flows and exception flows of \(m \) as possible “outcomes” of \(m \). The semantics of \textit{AddRelatedErrorException}(\textit{proc}, \textit{end}? , \textit{etype}? , \textit{eflow}? , \textit{sflow}? , \textit{loc}?) is hence defined by the following process,

\[
\text{OB} [\text{alphas}(I \setminus \{m\}) \cup \{c.end}?] \circ \{\text{end}? , m\} \} \| (P(m') \| \alpha P(m') \| \alpha P(\text{end}) \| P(\text{end}?)
\]

where processes \textit{OB} and \textit{P(m')} are defined as follows,

\[
\text{OB} = \| i : I \setminus \{m\} \circ \alpha P(i) \cup \{c.end}? \} \circ \text{addend}(P(i), \{\text{end}?)
\]

\[
P(m') = \text{let } X = ((N [\text{alphas}(J \setminus \{k\}) \circ \alpha K] \| K \circ \text{extot}(m) \triangle C') \| \alpha M \cup \{s.eflow}? \} \| M'
\]

\[
C' = C \sqcup s.eflow'? \rightarrow \text{Skip}
\]

\[
M' = M \sqcup c.(\text{errorCode etype}?) \rightarrow s.eflow'? \rightarrow \text{Skip}
\]

\[
K = (\text{extin}(k) \circ c.(\text{errorCode etype}?) \rightarrow c.k \rightarrow \text{Skip}) \sqcap (\square i : F \setminus \{k\} \bullet c.i \rightarrow \text{Skip})
\]

\[
W = (s.loc? \rightarrow X \circ W) \sqcap (\square i : (E \cup \{\text{end}?) \bullet c.i \rightarrow \text{Skip}) \text{ in } W
\]

and \(F \subseteq J \) is the set of end events directly contained in subprocess \(m \).

For example, we consider the BPMN process shown in Figure 5.18. This process is the after state component \textit{proc}' of operation \textit{AddRelatedErrorException}(\textit{proc}, \textit{e}, \text{error(exception(e1))}, \textit{s}, \textit{s2}), where \textit{proc} is the BPMN process shown in Figure 5.12 and is modelled by the process \(P(\text{proc}) \) defined in Equation 5.24. Here \(e \) identifies end event \textit{end}?, \textit{etype}? is the value \textit{error(exception(e1))}, for error code \textit{e1}, and \(s \) and \(s2 \) identify sequence flows \textit{eflow}? and \textit{loc}? respectively. Equation 5.30 defines process \(P(\text{proc}') \) that models \textit{proc}', where \(B' \) is defined in Equation 5.31.
We first consider the operation \(\text{AddSendMgeFlow} \). Let \(I \) be the set of elements contained in the before state component \(\text{proc} \), \(m \in I \) be the element with incoming sequence flow \(\text{tos} \), and \(E \subset I \) be the

Figure 5.18: Applying \(\text{AddRelatedErrorException} \)

\[
\begin{align*}
P'(\text{start}) & = (s.s1 \rightarrow \text{Skip} \quad \square i : \{s4, s5, e\} \cdot c.i \rightarrow \text{Skip}) \quad \square (\square i : \{s4, s5, e\} \cdot c.i \rightarrow \text{Skip}) \\
P'(s1) & = (s.s1 \rightarrow \text{Skip} \quad (s.s2 \rightarrow \text{Skip} \quad \square s.s3 \rightarrow \text{Skip}) \quad \gamma P'(s1)) \quad \square (\square i : \{s4, s5, e\} \cdot c.i \rightarrow \text{Skip}) \\
P'(s2) & = (s.s2 \rightarrow \text{Skip} \quad w.A \rightarrow \text{Skip} \quad s.s4 \rightarrow \text{Skip} \quad \gamma P'(s2)) \quad \square (\square i : \{s4, s5, e\} \cdot c.i \rightarrow \text{Skip}) \\
P'(s3) & = \text{let } C = (\square i : \alpha B' \setminus \{s.s5, e.s8\} \cdot i \rightarrow C) \quad \square e.c1 \rightarrow s.s8 \rightarrow \text{Skip} \quad \square s.s5 \rightarrow \text{Skip} \\
K & = (B' \triangle s.s5 \rightarrow \text{Skip}) \quad \triangle s.s8 \rightarrow \text{Skip} \\
P'(s4) & = (s.s4 \rightarrow \text{Skip} \quad c.s4 \rightarrow \text{Skip}) \quad \square c.s5 \rightarrow \text{Skip} \quad \square c.c \rightarrow \text{Skip} \\
P'(s5) & = (s.s5 \rightarrow \text{Skip} \quad c.s5 \rightarrow \text{Skip}) \quad \square c.s4 \rightarrow \text{Skip} \quad \square c.c \rightarrow \text{Skip} \\
P'(e) & = (s.s8 \rightarrow \text{Skip} \quad c.c \rightarrow \text{Skip}) \quad \square c.s4 \rightarrow \text{Skip} \quad \square c.s5 \rightarrow \text{Skip} \\
P'(\text{proc}) & = \| i : \{\text{start}, s1, s2, s3, s4, s5, e\} \cdot \alpha P'(i) \circ P'(i) \\
P'(\text{startB}) & = (s.s6 \rightarrow \text{Skip} \quad \gamma c.s7 \rightarrow \text{Skip}) \quad \square c.s7 \rightarrow \text{Skip} \\
P'(s6) & = (s.s6 \rightarrow \text{Skip} \quad w.C \rightarrow \text{Skip} \quad \square s.s7 \rightarrow \text{Skip} \quad \gamma P'(s6)) \quad \square c.s7 \rightarrow \text{Skip} \\
P'(s7) & = s.s7 \rightarrow \text{Skip} \quad e.c1 \rightarrow \text{Skip} \quad \gamma c.s7 \rightarrow \text{Skip} \\
B' & = \| i : \{\text{startB}, s6, s7\} \cdot \alpha P'(i) \circ P'(i)
\end{align*}
\]
set of end events in \(I \). The semantics of \(\text{AddSendMgeFlow}(\text{proc}, \text{tos}?, \text{msg}?) \) is defined by the following process \(AS(\text{proc}, \text{tos}?, \text{msg}?) \),

\[
AS(\text{proc}, \text{tos}?, \text{msg}?) = \text{procs}(I \setminus \{ m \}) \parallel \text{alphas}(I \setminus \{ m \}) \parallel \alpha P(m'))\parallel P(m')
\]

where process \(P(m') \) is defined as follows:

\[
P(m') = \begin{cases}
T(m') & \text{if } m \text{ a task} \\
V(m') & \text{if } m \text{ an end message event}
\end{cases}
\]

Here processes \(T(m') \) and \(V(m') \) have the following forms, where process \(C \) describes the exception flows of \(m \) and \(M \) coordinates the outgoing sequence flows and exception flows of \(m \).

\[
T(m') = \text{let } X = ((w.n \rightarrow (\text{parre}(n) \parallel m.\text{msg}? \rightarrow \text{Skip}) \parallel \text{extot}(m))) \triangle C) \parallel \alpha M \parallel M \\
W = ((s.tos? \rightarrow \text{Skip} \parallel \text{parre}(m)) \parallel X \parallel W) \sqcap (\Box i : E \bullet c.i \rightarrow \text{Skip}) \text{ in } W
\]

\[
V(m') = (s.tos? \rightarrow m.\text{msg}? \rightarrow c.m \rightarrow \text{Skip}) \sqcap (\Box n : E \setminus \{ m \} \bullet c.n \rightarrow \text{Skip})
\]

We now consider the operation \(\text{AddReceiveMgeFlow} \). We let \(J \) be the set of elements contained in the before state component \(\text{proc} \) if \(n \in J \) be either the activity with incoming sequence flow \(\text{tor} ? \) or the start event with the outgoing sequence flow \(\text{tor} ? \), and set \(F \subset J \) be the set of end events in \(J \). The semantics of \(\text{AddReceiveMgeFlow}(\text{proc}, \text{tor}?, \text{msg}?) \) is defined by the following process \(AR(\text{proc}, \text{tor}?, \text{msg}?) \),

\[
AR(\text{proc}, \text{tor}?, \text{msg}?) = \text{procs}(J \setminus \{ n \}) \parallel \text{alphas}(J \setminus \{ n \}) \parallel \alpha P(n'))\parallel P(n')
\]

where process \(P(n') \) is defined as follows:

\[
P(n') = \begin{cases}
S(n') & \text{if } n \text{ is a task and msg? is added as its incoming message flow} \\
R(n') & \text{if } n \text{ is an activity and msg? is added to a message event attached to } n \\
U(n') & \text{if } n \text{ is a start message event} \\
Q(n') & \text{if } n \text{ is an intermediate message event}
\end{cases}
\]

Here processes \(S(n') \), \(R(n') \), \(U(n') \) and \(Q(n') \) have the following forms,

\[
S(n') = \text{let } X = ((w.n \rightarrow \text{parre}(n) \parallel \text{extot}(n))) \triangle C) \parallel \alpha M \parallel M \\
W = ((s.tos? \rightarrow \text{Skip} \parallel \text{parre}(n)) \parallel m.\text{msg}? \rightarrow \text{Skip}) \parallel X \parallel W) \sqcap \Box FP \text{ in } W
\]

\[
R(n') = \text{let } X = ((N \parallel \text{parre}(n) \parallel \text{extot}(n))) \triangle C) \parallel \alpha M \parallel M \\
C = D \sqcap m.\text{msg}? \rightarrow \text{extot}(O) \\
M = L \sqcap m.\text{msg}? \rightarrow \text{extot}(O) \\
W = ((s.tos? \rightarrow \text{Skip} \parallel \text{parre}(n)) \parallel X \parallel W) \sqcap \Box FP \text{ in } W
\]

\[
U(n') = (m.\text{msg}? \rightarrow \text{extot}(n) \parallel FP) \sqcap FP \\
Q(n') = \text{let } W = ((s.tos? \rightarrow \text{Skip} \parallel m.\text{msg}? \rightarrow \text{Skip}) \parallel \text{extot}(n) \parallel W) \sqcap \Box FP \text{ in } W
\]

where \(FP = \Box i : F \bullet c.i \rightarrow \text{Skip}, N \) is defined as follows.

\[
N = \begin{cases}
w.n \rightarrow \text{Skip} & \text{if } n \text{ is a task} \\
\text{procs}(K) & \text{if } n \text{ is a subprocess, directly containing set of elements } K
\end{cases}
\]

Specifically, for \(S(n') \), process \(C \) describes the exception flows of \(n \) and \(M \) coordinates the outgoing sequence flows and exception flows of \(n \). For \(R(n') \), on the other hand, we let \(O \) be the intermediate message event attached to \(n \), to which \(msg? \) is added, then process \(D \sqcap \text{extot}(O) \) describes the exception flows of \(n \) and \(L \sqcap \text{extot}(O) \) coordinates the outgoing sequence flows and exception flows of \(n \).

We now consider \(\text{ConnectMgeFlowDiagram} \), we define \(DP \) to be the CSP process that models the collaboration of BPMN pools defined by the \(\text{pools} \) component of the before state \(\text{Diagram} \), where for each \(i \in \text{dom pools} \), we define \(PL(i) = \text{procs}({\text{pools}(i).proc}) \).

\[
OB = \parallel i : ((\text{dom pools}) \setminus \{ \text{id1?}, \text{id2?} \}) \bullet \alpha PL(i) \circ PL(i) \\
DP = OB \parallel \alpha OB \parallel \alpha PL(id1?) \cup \alpha PL(id2?) \parallel (PL(id1?)) \parallel \alpha PL(id1?) \parallel \alpha PL(id2?) \parallel PL(id2?)
\]
The semantics of ConnectMgeFlowDiagram(pools, id1?, id2?, msg?, tos?, tor?) is then defined by the following process.

\[
\begin{align*}
OB \parallel \alpha OB \mid \alpha PL(id1?) \cup \alpha PL(id2?) \cup \{m.myg?\} \\
(AS(pools(id1?).proc, tos?, msg?) \parallel \alpha PL(id1?) \cup \{m.myg?\} \mid \alpha PL(id2?) \cup \{m.myg?\}) \\
AR(pools(id2?).proc, tor?, msg?)
\end{align*}
\]

Figure 5.19: Applying ConnectMgeFlowDiagram

For example, we consider the BPMN processes shown in Figure 5.19. Figure 5.19(a) shows the before component pools of operation ConnectMgeFlowDiagram(pools, p, q, m, s1, s3), where p identifies BPMN pool P and q identifies BPMN pool Q, m identifies the message flow msg?, and s1 and s3 identify sequence flows tos? and tor? respectively. Equation 5.32 defines process \(D[pools]\) that models pools. On the other hand, Figure 5.19(b) shows the after component pools of operation ConnectMgeFlowDiagram(pools, p, q, m, s1, s3). Equation 5.33 defines process \(D[pools']\) that models pools'.

\[
\begin{align*}
P(start1) &= (s.s1 \rightarrow Skip \parallel c.s2 \rightarrow Skip) \parallel c.s2 \rightarrow Skip \\
P(s1) &= (s.s1 \rightarrow Skip \parallel w.A \rightarrow Skip \parallel s.s2 \rightarrow Skip \parallel P(s1)) \parallel c.s2 \rightarrow Skip \\
P(s2) &= s.s2 \rightarrow Skip \parallel c.s2 \rightarrow Skip \\
PL(p) &= \parallel i : \{start1, s1, s2\} \cdot \alpha P(i) \circ P(i) \\
P(start1) &= (s.s3 \rightarrow Skip \parallel c.s4 \rightarrow Skip) \parallel c.s4 \rightarrow Skip \\
P(s3) &= (s.s3 \rightarrow Skip \parallel w.B \rightarrow Skip \parallel s.s4 \rightarrow Skip \parallel P(s3)) \parallel c.s4 \rightarrow Skip \\
P(s4) &= s.s4 \rightarrow Skip \parallel c.s4 \rightarrow Skip \\
PL(q) &= \parallel i : \{start2, s3, s4\} \cdot \alpha P(i) \circ P(i) \\
D[pools] &= PL(p) \parallel \alpha PL(p) \parallel \alpha PL(q) \parallel PL(q)
\end{align*}
\]
\[
\begin{align*}
\text{P}(\text{start1}) &= (s.s1 \rightarrow \text{Skip} \parallel c.s2 \rightarrow \text{Skip}) \sqcap c.s2 \rightarrow \text{Skip} \\
\text{P}(s1) &= (s.s1 \rightarrow \text{Skip} \parallel w.A \rightarrow \text{Skip} \parallel m.m \rightarrow \text{Skip} \parallel s.s2 \rightarrow \text{Skip} \parallel P(s1)) \sqcap c.s2 \rightarrow \text{Skip} \\
\text{P}(s2) &= s.s2 \rightarrow \text{Skip} \parallel c.s2 \rightarrow \text{Skip} \\
\text{PL}(p) &= \parallel i : \{\text{start1, s1, s2}\} \bullet \alpha P(i) \circ P(i) \\
\text{P}(\text{start1}) &= (s.s3 \rightarrow \text{Skip} \parallel c.s4 \rightarrow \text{Skip}) \sqcap c.s4 \rightarrow \text{Skip} \\
\text{P}(s3) &= ((s.s3 \rightarrow \text{Skip} \parallel m.m \rightarrow \text{Skip}) \parallel w.B \rightarrow \text{Skip} \parallel s.s4 \rightarrow \text{Skip} \parallel P(s3)) \sqcap c.s4 \rightarrow \text{Skip} \\
\text{P}(s4) &= s.s4 \rightarrow \text{Skip} \parallel c.s4 \rightarrow \text{Skip} \\
\text{PL}(q) &= \parallel i : \{\text{start2, s3, s4}\} \bullet \alpha P(i) \circ P(i) \\
D[pools'] &= \text{PL}(p) \parallel \alpha \text{PL}(p) \parallel \alpha \text{PL}(q) \parallel \text{PL}(q) \\
\end{align*}
\]

5.8 Compositional Development

Our semantic model permits mechanical verification of BPMN processes against behavioural properties via FDR. Nevertheless, when business processes become large, their behaviour would become complex and model checking might not be feasible due to the \textit{state space explosion}. Compositional development allows one to verify behavioural correctness of a complex system by exploiting the transitive and monotonic properties of refinements [Ros98].

Specifically, we would like to show that the composition operations considered in Section 5.7 to be monotonic with respect to failures refinement (\sqsubseteq_F). However, we observe that in general these operations are not monotonic with respect to \sqsubseteq_F.

Consider the BPMN processes in Figure 5.20. They are constructed by a combination of operations SeqComp, Split, JoinOp and Loop. We let P_1, P_2, P_3 and P_4 denote the BPMN processes shown in Figures 5.20(a), (b), (c) and (d) respectively, and a, b and c denote task elements A, B and C of the
processes. We observe that both P_1 and P_2 deadlock, because in both cases not all of the AND join gateway’s incoming sequence flows can be triggered. As a result we have $\{(a, P_1), (a, P_2), (b, P_2)\} \cap \text{trgs} = \emptyset$. Due to the un-triggered elements, we also observe that P_1 and P_2 admit the same behaviour, that is, $P_1 \equiv_{\text{BPMN}} P_2$. We now consider P_3 and P_4 that are constructed by applying the operation Loop to P_1 and P_2 respectively. We observe that unlike P_1 and P_2, a can be triggered in both P_3 and P_4. However, after performing a, P_4 can trigger element b, while P_3 cannot, as a result we have $P_3 \not\equiv_{\text{BPMN}} P_4$. This shows that in general not only the operations are non-monotonic, but more importantly the equivalence \equiv_{BPMN} is not congruent with respect to these operations. The reason is because P_1 and P_2 contain elements that are not reachable, that is, $P_1 \notin \text{trgs}$ and $P_2 \notin \text{trgs}$. To ensure the composition operations can be applied monotonically, we assume the following conditions about BPMN diagrams and processes and state that the composition operations are monotonic with respect to the failures refinement:

(a) Given any two BPMN processes X and Y, such that X directly contains the set of elements I and Y directly contains the set of elements J, if we have $D_p[X] \sqsubseteq_F D_p[Y]$, where $D_p[X] = \| i : I \cdot \alpha P(i) \circ P(i) \|$ and $D_p[Y] = \| j : J \cdot \alpha P(j) \circ P(j) \|$, then the set of elements $I \setminus J$ can be partitioned into two sets: $\langle A, B \rangle$ partition $(I \setminus J)$:

(i) Each element $e \in A$ is either a data-based XOR split gateway, a subprocess, a nondeterministic sequential multiple instance activity or a nondeterministic parallel multiple instance activity such that there exists an element $e' \in J \setminus I$ where $P(e) \sqsubseteq_F P(e')$.

(ii) For each element $f \in B$, there exists some data-based XOR split gateway $e \in A$, such that there exists some element $e' \in J \setminus I$ where $P(e) \sqsubseteq_F P(e')$. Moreover, $\text{atom}(e').out \subset \text{atom}(e).out$ and either $\text{atom}(f).in \subset \text{atom}(e).out \enspace \text{atom}(e').out$ or there exists an element $g \in B$ such that $\text{atom}(g).in \subset \text{atom}(e).out \enspace \text{atom}(e').out$ and $(g, f) \in \text{edge}(X)^+$. Furthermore, $J \setminus I$ can be partitioned into two sets: $\langle M, N \rangle$ partition $J \setminus I$:

(iii) For each element $m \in M$, there exists exactly one element $e \in A$ such that $P(e) \sqsubseteq_F P(m)$,

(iv) Each element $e \in N$ is a XOR join gateway such that there exists a XOR join gateway $f \in B$ with the same outgoing sequence flow and whose set of incoming sequence flows is a superset of e’s.

(b) Given any two BPMN diagrams X and Y, such that X is the collaboration of the set of pools I and Y is the collaboration of the set of pools J. If we have $D_p[X] \sqsubseteq_F D_p[Y]$, where $D_p[X] = \| i : \text{dom} X.pools \cdot \alpha P(i, X) \circ P(i, X) \|$ and $D_p[Y] = \| j : \text{dom} Y.pools \cdot \alpha P(i, Y) \circ P(i, Y) \|$, and $P(i, X) = D_p[X].pools(i).proc$, we have $X.pools = Y.pools$ and $\forall i : \text{dom} X.pools \cdot P(i, X, i) \sqsubseteq_F P(i, Y, i)$.

Condition [a] is appropriate: according to our process semantics, only data-based XOR split gateways, subprocesses, nondeterministic sequential multiple instance activities and nondeterministic parallel multiple instance activities have nondeterministic behaviour. Moreover, Condition [a] relaxes the condition that the comparing BPMN processes must satisfy the absence of un-triggered elements property. Condition [b] is also appropriate: it is reasonable to compare behaviour of business collaborations if they have same participants during compositional development.

Theorem 5.4. Monotonicity. Assuming BPMN diagrams satisfy Conditions [a] and [b] the operations SeqComp, Split, EventSplitOp, JoinOp, Loop, EventLoop, AddException and $\text{ConnectMgeFlowDiagram}$ are monotonic with respect to the failures refinement.

Proof. See Page 257 ([Section C.1](#)) in Appendix [C].

We use Condition [a] to show that SeqComp, Split, EventSplitOp, JoinOp, Loop, EventLoop and AddException are monotonic. We now informally describe how we show that SeqComp is monotonic using two BPMN processes in Figure [5.21](#) as an example. We let X and Y denote the BPMN processes in Figure [5.21](#) respectively, and $I = \{e_1, x_1, O, S, x_2, e_2\}$ and $J = \{e_1, x_3, O, S', x_4, e_2\}$ be the set of elements directly contained in X and Y. We see that $P(x_1) \sqsubseteq_F P(x_3)$ and assume that $P(S) \sqsubseteq_F P(S')$, then due to Condition [b] we can partition $I \setminus J$ into $A = \{x_1, S\}$ and $B = \{Q, x_2\}$, and
we follow the same strategy for showing parallel composition operator. Informally given two BPMN diagrams corresponds to the behaviour of a BPMN element in that diagram. Due to the monotonicity of the CSP BPMN diagram is given by the parallel composition of CSP processes, such that each of the processes satisfy Condition a: If we let \(Y \) refine \(X \), giving the resulting parallel composition of \(X \) and \(Y \), we have the result that composing \(Q \) and \(X \) in parallel onto \(Y \) is semantically equivalent to composing \(x4 \) in parallel onto \(Y \). The reason is as follows: The process \(P(Q) \) initially offers to either perform the sequence flow \(s3 \) or cooperate with an end event to completion and terminate. Since \(P(x3) \) is composed in parallel for \(Y \) synchronising on the same alphabet as that of \(P(x1) \) for \(X \), we observe that \(P(Q) \) can only cooperate with an end event to completion and terminate. Similarly the only difference between \(P(x4) \) and \(P(x3) \) are that \(P(x3) \) initially also offers to perform sequence flow \(s5 \). However, since \(P(Q) \) can only cooperate with \(P(x3) \) reifying \(X \) stepwise to arrive

\[
\text{Figure 5.21: An illustration of Condition a}
\]

\(J \setminus I \) into \(M = \{x3, S'\} \) and \(N = \{x4\} \). As a result the BPMN processes \(X \) and \(Y \) satisfy Condition a. Now we consider \(\text{SeqComp} \) that adds a new task \(R \). This operation replaces the end event \(e2 \) with \(R \) and a new end event \(e3 \). The results are illustrated in Figures 5.21(3) and (4) respectively, where \(e3 \)'s incoming sequence flow is \(R \)'s outgoing sequence flow, and \(R \)'s incoming sequence flow is that of \(e2 \).

Due to Condition b, we can reconstruct \(X \) and \(Y \) stepwise, starting with composing \(\{P(e1), P(O), P(S), P(x1)\} \) in parallel for \(X \) and \(\{P(e1), P(O), P(S'), P(x3)\} \) for \(Y \). Since \(P(S') \) and \(P(x3) \) refine \(P(S) \) and \(P(x1) \), \(Y \) refines \(X \). Now we consider elements \(P, x2, x4 \) and \(e2 \). We observe that composing \(Q \) and \(x2 \) in parallel onto \(Y \) is semantically equivalent to composing \(x4 \) in parallel onto \(Y \). The reason is as follows: The process \(P(Q) \) initially offers to either perform the sequence flow \(s3 \) or cooperate with an end event to completion and terminate. Since \(P(x3) \) is composed in parallel for \(Y \) synchronising on the same alphabet as that of \(P(x1) \) for \(X \), we observe that \(P(Q) \) can only cooperate with an end event to completion and terminate. Similarly the only difference between \(P(x4) \) and \(P(x3) \) are that \(P(x3) \) initially also offers to perform sequence flow \(s5 \). However, since \(P(Q) \) can only cooperate with \(P(x3) \) reifying \(X \) stepwise to arrive

Going back to the BPMN processes \(P1 \) and \(P2 \) on Figures 5.20 we observe that \(P1 \) and \(P2 \) do not satisfy Condition a. If we let \(I \) and \(J \) be the set of elements directly contained in \(P1 \) and \(P2 \), we notice that \(c \in J \setminus I \) but \(c \) can be characterised in neither the partition \(N \) nor the partition \(M \).

We use Condition a to show \(\text{ConnectMrgFlowDiagram} \) is monotonic. Recall that the semantics of a BPMN diagram is given by the parallel composition of CSP processes, such that each of the processes corresponds to the behaviour of a BPMN element in that diagram. Due to the monotonicity of the CSP parallel composition operator. Informally given two BPMN diagrams \(X \) and \(Y \) such that \(Y \) refines \(X \), we follow the same strategy for showing \(\text{SeqComp} \) monotonic and reconstruct \(X \) and \(Y \) stepwise to arrive
as the after state of \textit{ConnectMgeFlowDiagram} while maintaining the refinement relation between \(Y\) and \(X\).

In general, for any subprocess \(s\), the CSP process that models \(s\)'s behaviour can be generalised as \(C[S]\) where \(S\) is the CSP process that models elements directly contained in \(s\), and \(C[\cdot]\) is a CSP process context that models the incoming, outgoing sequence and message flows as well as exception flows of \(s\). The following result shows that refinements are preserved from \(S\) to \(C[S]\).

Theorem 5.5. Given any subprocess \(s\) satisfying Conditions \(a\) and \(b\), and such that its behaviour is modelled by CSP process \(C[S]\), where \(S\) is the CSP process that models elements directly contained in \(s\) and \(C[\cdot]\) is a CSP process context that models \(s\)'s sequence, message and exception flows. Let \(t\) be any subprocess whose behaviour is modelled by CSP process \(C[T]\) and \(T\) is the CSP process that models elements directly contained in \(t\). If we have both \(S \subseteq_T T\) and \(C[S] \subseteq_T C[T]\), then we have \(C[S'] \subseteq_T C[T']\) where \(S'\) and \(T'\) are the results of applying any one of the operations \textit{SeqComp}, \textit{Split}, \textit{EventSplitOp}, \textit{JoinOp}, \textit{Loop}, \textit{EventLoop}, and \textit{AddException} on \(S\) and \(T\) respectively.

Proof. See Page 257 (Section C.1 in Appendix C).

A BPMN process’s behaviour is defined as a parallel composition of CSP processes, each modelling the behaviour of an element directly contained in the BPMN process. A consequence of Theorems 5.4 and 5.5 is that refinement is preserved between a subprocess and the BPMN process that directly contains it. The following result lifts operations \textit{SeqComp}, \textit{Split}, \textit{EventSplitOp}, \textit{JoinOp}, \textit{Loop}, \textit{EventLoop}, and \textit{AddException} to BPMN pools and diagrams, and follows immediately from the fact that the CSP parallel operator \parallel \ is monotonic with respect to refinements.

Corollary 5.6. Given a BPMN process \(X\) that directly contains some subprocess \(s\), such that \(X\)'s behaviour is modelled by the CSP process \(P(s) \parallel \alpha P(s) \parallel \alpha D \parallel D\), where \(D\) models the behaviour of other elements directly contained in \(X\). For any \(s'\) such that \(P(s) \subseteq_T P(s')\) we have

\[P(s) \parallel \alpha P(s) \parallel \alpha D \parallel D \subseteq_T P(s') \parallel \alpha P(s') \parallel \alpha D \parallel D \]

Due to monotonicity, the equivalence \(\equiv_{\text{BPMN}}\) defined in Definition 5.3 is a congruence with respect to the composition operations described above.

Corollary 5.7. Assuming BPMN processes satisfy Conditions \(a\) and \(b\) the equivalence \(\equiv_{\text{BPMN}}\) is a congruence with respect to operations \textit{SeqComp}, \textit{Split}, \textit{EventSplitOp}, \textit{JoinOp}, \textit{Loop}, \textit{EventLoop}, \textit{AddException} and \textit{ConnectMgeFlowDiagram}.

A congruence relationship allows one to substitute one part of a BPMN process with another that is semantically equivalent and obtain the same BPMN process.

5.8.1 Running Example

We now revisit our running example. Figure 5.22 shows an optimistic version of the customer business process that is originally shown at the top of Figure 5.10. It is modelled by BPMN pool \textit{OpCustomer}. After receiving an offer from the online shop, the customer spends some time deciding, which is modelled by the intermediate timer event, but always accepts the offer. Equation 5.34 defines process \(OCP\) that

![Figure 5.22: An optimistic customer](image)
models pool \(\text{OpCustomer} \), where for all \(i \in \{sCP, s3, s5, s6, s13\} \) process \(P(i) \) is defined in Equation 5.16.

\[
P(s1) = (s.s1 \rightarrow \text{Skip} \parallel (s.s2 \rightarrow \text{Skip} \sqcap s.s3 \rightarrow \text{Skip}) \parallel P(s1)) \sqcap c.s14 \rightarrow \text{Skip}
\]

\[
\text{OCP} = \bigparallel i : \{sCP, s1, s3, s5, s6, s13\} \bullet \alpha P(i) \setminus \{c.s4\} \circ P(i)
\]

In fact the optimistic customer process is a refinement of the customer process; we verify this by checking the refinement \(CP \subseteq \mathcal{F} OCP \) using FDR. Suppose we extend the customer’s business process with the following return policy.

After receiving the goods and the invoice, the customer may decide to either keep the goods or return them for repair. Depending on the policy of the online shop, if the customer chooses to return her goods for repair, the shop may either provide a full refund, or repair the goods and deliver them back to the customer. After every repair, the customer has the choice to send the goods back again if further repairs are required.

Figure 5.23 shows the result of extending the optimistic customer business process with the above return policy. Here we observe that this extension can be constructed by a combination of operations SeqComp, Split and EventSplitOp, JoinOp and EventLoop. Note that the same combination of operations can be applied to the original customer business process to model this return policy. If we let \(CP' \) be the resulting CSP process modelling the extended version of \(CP \) and \(OCP' \) be that of \(OCP \), by Theorem 5.4 we have \(CP' \subseteq \mathcal{F} OCP' \).

5.9 Behavioural Compatibility

BPMN diagrams with more than one pool represent business collaborations, in which each BPMN pool is a business participant. An example of a business collaboration is our online shop running example shown in Figure 5.10.

5.9.1 Responsiveness

Generally in a system of interacting components, individual components may use services provided externally and will require assurance both of appropriate functionality and of responsiveness [RRS05]. In particular the question of responsiveness of interoperating components, modelled in CSP, has been studied by Reed, Sinclair and Roscoe [RSR04]. Informally, the question of responsiveness is such that, given a component modelled by some process \(P \), which is itself deadlock-free, and placing it in parallel with another component, modelled by some process \(Q \), whether \(Q \) could cause \(P \) to block. Here we consider it to be reasonable to combine interoperating components, modelled as CSP processes, using the parallel operator [CPT01]. Formally Reed et al. provided two binary relations \(\text{RespondsToLive} \) and \(\text{RespondsTo} \) over CSP processes under the failures model as follow:

Definition 5.8. For any processes \(P \) and \(Q \), \(Q \) \(\text{RespondsToLive} \) \(P \) on \(A \) for \(A \subseteq J' \) if and only if for all traces \(s \in \text{seq}(\alpha P \cup \alpha Q) \) we have \((s, A) \in \mathcal{F}[P \parallel J'] \parallel Q] \Rightarrow (s \upharpoonright \alpha P, A) \in \mathcal{F}[P] \) where \(A' \) is a set of events \(A \cup \{\top\} \). We write \(s \upharpoonright A \) for the sequence whose members are those of \(s \) which are in \(A \). We say \(Q \) \(\text{RespondsToLive} \) \(P \) if and only if \(Q \) \(\text{RespondsToLive} \) \(P \) on \(J' \).
Definition 5.9. For any processes P and Q where there exists a set J of shared events, Q RespondsTo P if and only if for all traces $s \in \text{seq}(\alpha P \cup \alpha Q)$ and event sets X, such that $u = s | \alpha P$ and $t = s | \alpha Q$ and $(u, X) \in F[P] \wedge (\text{initials}(P/u) \cap J^*) \setminus X \neq \emptyset \Rightarrow (t, (\text{initials}(P/u) \cap J^*) \setminus X) \notin F[Q]$ where initials(P/s) is the set of possible events for P after trace s.

The condition Q RespondsToLive P on A says that the parallel combination $P \parallel Q$ may refuse the set of events A after trace s if P could refuse A after the trace $s | \alpha P$. Note that RespondsTo is the weakest refinement-closed strengthening of RespondsToLive, and we say Q is a responsive plugin to P if Q RespondsTo P holds. A relation \oplus is refinement-closed if and only if for all processes P and Q such that if $P \oplus Q$, then it is the case that $P' \parallel Q'$ for all $P \subseteq P'$ and $Q \subseteq Q'$. Furthermore Reed et al. have shown the following two results [RSR04]:

Theorem 5.10. Q RespondsTo P \iff Q' RespondsToLive P' for all Q' and P' such that $P \subseteq P'$ and $Q \subseteq Q'$.

Theorem 5.11. Suppose $N = \| i : \{1 \ldots , N\} \bullet \alpha P(i) \circ P(i) \|$ is a network of CSP processes. Suppose that Q is a plug-in service whose alphabet J is disjoint from $\alpha P(i) \cap \alpha P(j)$ for each $i \neq j$, then if N is deadlock-free, $J \cap \alpha P(j) \neq \emptyset$ for at least one j and Q RespondsToLive $P(i)$ for each i with $\alpha P(i) \cap J \neq \emptyset$, we have $N \| \alpha N | \alpha Q \|$ is also deadlock-free.

As a direct consequence of the above two theorems, we may establish the following theorem.

Theorem 5.12. Given a network of components $N = \{ i : I \bullet P(i) \}$, indexed by I, where each component is modelled by process $P(i)$ for $i \in I$ and the network $PS = \| i : I \bullet \alpha P(i) \circ P(i) \|$ is deadlock-free. Suppose process Q such that $\alpha Q \cap \alpha P(i) = \emptyset$ for $i, j : I$ and $i \neq j$, if then

$$\exists i : I \bullet \alpha Q \cap \alpha P(i) \neq \emptyset \wedge \forall i : I \bullet \alpha Q \cap \alpha P(i) \neq \emptyset \Rightarrow Q \text{ RespondsTo } P(i)$$

then $PS \| \bigcup \{ i : I \bullet \alpha P(i) \} | \alpha Q \|$ is also deadlock-free.

Proof. From Theorem 5.10 we know RespondsTo implies RespondsToLive and from Theorem 5.11 this holds for RespondsToLive, then by transitivity, this also holds for RespondsTo.

Furthermore, Reed et al. demonstrate in their paper how both binary relations may be verified mechanically using the FDR tool. Here we outline the procedure for translating the binary relation RespondsTo into a refinement check that can be checked by the FDR tool; the complete procedure can be found in Reed et al.’s paper [RSR04 Appendix B]. Briefly, to check if Q RespondsTo P on the alphabet J, one constructs a process P'^* that alternates between performing events from a given trace of P and the corresponding trace of P^*, where $P^* = P[a : aP \bullet a \leftarrow a^*]$ is P with all its events augmented with $*$, and that if P refuses X after an odd length trace $s \prec \prec a^*$, P^* refuses $X \setminus \{a\}$. This process P'^* is then composed with Q' synchronised on events in J, where Q' is Q with event $\Sigma \setminus J$ hidden.

As a result Q RespondsTo P if and only if $P'^* \parallel J \parallel Q'$ has no deadlock after an odd-length trace whose last member is in $J^* = \{ a : J \bullet a^* \}$. This check can then be specified as a refinement check

$Spec \subseteq P'^* \parallel J \parallel Q'$

that can be fed into the FDR tool, where $Spec$ is defined as follows:

$Spec = (\Box a : J \bullet a^* \rightarrow (\Box b : J \bullet b \rightarrow Spec) \Box (\text{Stop} \cap \text{Skip} \cap (\Box a : \alpha P \setminus J \bullet a \rightarrow Spec)))$

$Spec = (\Box a : \alpha P \setminus J \bullet a^* \rightarrow (\text{Stop} \cap \text{Skip} \cap (\Box a : \alpha P \bullet a \rightarrow Spec))) \cap \text{Skip} \cap \text{Stop}$

We consider to be reasonable to consider deadlock-freedom to be a basic notion of correctness in business processes, and adopt Reed et al.’s theory of responsiveness to study compatibility between participants in a business collaboration.

5.9.2 Compatibility

While in the theory of responsiveness the relation Q RespondsTo P holds even if P could deadlock, causing $P \parallel Q$ also to deadlock, in the study of a business collaboration we wish to establish the notion of compatibility whereby each participant is itself deadlock-free and given any pair of interacting participants (via message flows), one participant must be a responsive plugin to the other participant. Furthermore, in the theory of responsiveness both binary relations Q RespondsTo P and Q RespondsToLive P...
CHAPTER 5. PROCESS SEMANTICS

hold on the assumption that both \(P \) and \(Q \) may only perform events from \(J = \alpha P \cap \alpha Q \), that is, their joint alphabet. To relax this assumption we eagerly abstract the behaviour not relevant in the joint alphabet. We formalise the notion of compatibility between two BPMN process as follows:

Definition 5.13. Compatibility. BPMN processes \(p \) and \(q \) that interact via the set of message flows \(M \) and both satisfy the state schema \(\Sigma \) are compatible, denoted by the predicate compatible\((p, q) \), if and only if \(DF \subseteq \mathcal{F} P \land DF \subseteq \mathcal{F} Q \land (P \setminus H \mathcal{R} \setminus Q \setminus H \mathcal{R} P \setminus H) \), where \(H = \Sigma \setminus \{s : M \bullet m.s\} \), \(P = D_p[p] \) and \(Q = D_p[q] \).

Theorem 5.14. For any BPMN processes \(p \) and \(q \), if compatible\((p, q) \) then their collaboration is deadlock-free, that is, compatible\((p, q) \Rightarrow DF \subseteq \mathcal{F} (D_p[p] \parallel [\alpha D_p[p] \parallel \alpha D_p[q] \parallel D_p[q]) \).

Proof. See Page 258 (Section C.2 in Appendix C).

For example, in the online shop example shown in Figure 5.10, where CSP process onlineShop models the behaviour of BPMN pool Customer and OS models that of OnlineShop. We first verify that processes CP defined in Equation 5.10 and OS defined in Equation 5.15 to be deadlock free by checking the refinements \(DF \subseteq \mathcal{F} CP \) and \(DF \subseteq \mathcal{F} OS \), where \(DF \) is the characteristic deadlock free process defined in Equation 5.6.2. We also check that \(OS \setminus H \mathcal{R} CP \setminus H \) where \(H = \Sigma \setminus \{m.m1, m.m2, m.m3, m.m4, m.m5, m.m6\} \) is the set of events associated with message flows and is shared between \(CP \) and \(OS \). By Definition 5.13 compatible\((\text{OnlineShop}, \text{Customer}) \), and by Theorem 5.14 their collaboration is deadlock-free.

One pleasing result is that compatibility is refinement-closed.

Theorem 5.15. For any BPMN processes \(P \) and \(Q \), if compatible\((P, Q) \), then for all BPMN processes \(P' \) and \(Q' \) such that \(D_p[p] \subseteq \mathcal{F} D_p[p'] \) and \(D_p[q] \subseteq \mathcal{F} D_p[q'] \), compatible\((P', Q') \).

Proof. See Page 258 (Section C.2 in Appendix C).

This refinement closure property encourages independent compositional development using monotonic operations defined in the previous section. For example, we know that the original customer business process Customer is compatible with the online shop business process OnlineShop, that is, compatible\((\text{OnlineShop}, \text{Customer}) \). In Section 5.8.1 we showed the optimistic version of the customer business process OPCustomer to be a refinement of Customer, that is, \(CP \subseteq \mathcal{F} OCP \), where OCP models the behaviour of pool OPCustomer. By Theorem 5.15 we know that OPCustomer is also compatible with OnlineShop, that is, compatible\((\text{OnlineShop}, \text{OPCustomer}) \).

In general, if we let \(G \) be one of the monotonic operations SeqComp, Split, EventSplitOp, JoinOp, Loop, EventLoop, and AddException, if compatible\((G(P), G(Q)) \), for all \(D_p[p] \subseteq \mathcal{F} D_p[p'] \) and \(D_p[q] \subseteq \mathcal{F} D_p[q'] \), compatible\((G(P'), G(Q')) \).

Naturally one would like to extend the property of compatibility to business collaborations with any finite participants. Given an existing deadlock-free business collaboration we would like to know if the collaboration is still deadlock-free if we add another compatible participant. This allows us to construct business collaboration incrementally, even in a complex situation. We formalise this notion as follows:

Theorem 5.16. Given a collaboration of business participants (BPMN processes) \(B = \{i : I \bullet B(i)\} \), indexed by \(I \), where the semantics of each business participant is denoted by process \(P(i) = D_p[B(i)] \) for \(i \in I \) and the collaboration \(C = \{i : I \bullet \alpha P(i) \circ P(i) \} \) is deadlock-free. Suppose there is a new business participant \(R \), denoted by \(Q = D_p[R] \) such that \(\alpha Q \cap (\alpha P(i) \cap \alpha P(j)) = \emptyset \) for \(i, j : I \) and \(i \neq j \) (an appropriated assumption as by definition each message flow connects exactly two participants). Then if

\[
\exists i : I \bullet \alpha Q \cap \alpha P(i) \neq \emptyset \land \forall i : I \bullet (\alpha Q \cap \alpha P(i) \neq \emptyset \Rightarrow \text{compatible}(R, B(i)))
\]

then \(E = C \cup[i : I \bullet \alpha P(i) \vert \alpha Q] \) Q is also deadlock-free.

Proof. See Page 258 (Section C.2 in Appendix C).
For example, recall that we extended the customer business process with a return policy in Section 5.8.1. While the online shop business process is responsible for the shop’s sales, the shop has a separate repair and maintenance department. This is modelled by the BPMN pool *Maintenance* shown at the bottom of Figure 5.24. This figure also shows how to add *Maintenance* as a new participant to the collaboration. By Theorem 5.16, this new collaboration is deadlock free if \(\text{compatible}(\text{OnlineShop}, \text{Customer}) \), \(\text{compatible}(\text{Customer}, \text{Maintenance}) \) and \(\text{compatible}(\text{OnlineShop}, \text{Maintenance}) \).

![Figure 5.24: Adding the maintenance business process](image)

5.10 Summary

In this chapter, we considered the behavioural semantics for BPMN. Specifically, from Sections 5.2 to 5.5, we presented a CSP semantics for the subset of BPMN specified in Chapter 4. In Section 5.6, we considered safety and liveness specification of BPMN processes via traces and failures refinements. In Section 5.7, we provided a CSP semantics for BPMN composition operations introduced in Chapter 4, and in Section 5.8, we considered how to apply compositional development approach to construct business processes using the CSP semantics of composition operations and BPMN. In Section 5.9, we studied Reed et al.’s theory of responsiveness for interoperating components in a complex system and applied it to develop a formal notion of *compatibility*. We were able to show compatibility between deadlock-free business processes ensures their collaboration’s deadlock-freedom, and that adding a compatible deadlock-free business process to any complex deadlock-free business collaboration preserves the deadlock freedom of that collaboration.

A more detailed comparison of our approach with related work is provided in Chapter 9. Note that the CSP semantics of a BPMN process can be constructed automatically from a simple syntactic presentation of the diagram defined in Chapter 4. We do not expect the designer to write in this syntax directly, but to generate it from the diagrammatic notation.
Chapter 6

Modelling Relative Time

6.1 Introduction

In this chapter we consider timed behaviour in business processes, in particular, we provide an extension to the process semantics defined in Chapter 5 for modelling and reasoning about timed behaviour in BPMN. Specifically, we provide the following extensions to BPMN.

- We extend the semantics of timer events, such that each timer event waits for a duration of time when triggered.
- We introduce duration range into tasks, such that a task’s execution time is chosen nondeterministically over a double-bounded range.

6.1.1 Running Example

As a running example we consider a production business process in a product line. This product line consists of four types of artifacts: A1, A2, B1 and B2. Each member of the product line is composed of one or more artifacts. A BPMN pool for this production business process is shown in Figure 6.1 where each of tasks A1, A2, B1 and B2 is responsible for assembling its respective artifact for a product. Each task is allocated with timing information, specifying the minimum and the maximum duration between which the task is executed, and each timer event is specified with a duration to wait. By allocating different timing information to tasks and timer events as well as the number of iterations the multiple instance subprocesses A and B perform in the BPMN pool, we schedule the production business process for different products. Table 6.1 shows an example schedule of the production business process.

While a schedule is designed for a product, all valid schedules should satisfy the following requirement of the production business process.

At least one of artifacts A1 and A2 must be composed in between artifacts B1 and B2.

![Figure 6.1: A production business process](image-url)
We model this requirement with the following CSP process, where the work of tasks A_1, A_2, B_1 and B_2 are modelled by CSP events $w.A_1$, $w.A_2$, $w.B_1$ and $w.B_2$ respectively.

\[
\begin{align*}
\text{Spec}_0 &= (\forall x : \Sigma \setminus \{w.B_1\} \bullet x \rightarrow \text{Spec}_0) \sqcap w.B_1 \rightarrow \text{Spec}_1 \\
\text{Spec}_1 &= w.A_1 \rightarrow \text{Spec}_2 \sqcap w.A_2 \rightarrow \text{Spec}_2 \sqcap (\forall x : \Sigma \setminus \{w.B_2, w.A_1, w.A_2\} \bullet x \rightarrow \text{Spec}_1) \\
\text{Spec}_2 &= (\forall x : \Sigma \setminus \{w.B_1, w.B_2\} \bullet x \rightarrow \text{Spec}_2) \sqcap w.B_1 \rightarrow \text{Spec}_1 \sqcap w.B_2 \rightarrow \text{Spec}_0
\end{align*}
\]

By extending the process semantics, we can model how timing information influences a business process’s behaviour, and verify the production business process against behavioural properties such as process Spec_0 above.

Notation. For the rest of this chapter we identify each task and subprocess in Figure 6.1 by its activity’s name, and each of the other types of element by its label shown in italic font in the figure. For each task element A, the CSP event $w.A$ denotes A’s work, and for any element e, we provide the following abbreviations to refer to the CSP events denoting e’s incoming, outgoing and exception flows, where CSP event $s.f$ denotes sequence flow f.

\[
\begin{align*}
in(e) &= \{f : (\text{atom } e).\text{in} \bullet s.f\} \\
out(e) &= \{f : (\text{atom } e).\text{out} \bullet s.f\} \\
extit(e) &= \{f : \text{dom}(\text{atom } e).\text{exit} \bullet s.f\}
\end{align*}
\]

We also define $\text{work}(e)$ such that if e is a task with name n, then $\text{work}(e)$ is a singleton set, containing the CSP event $w.n$, where $w.n$ denotes e’s work. Otherwise $\text{work}(e)$ is the empty set.

\[
\text{work}(e) = \begin{cases}
\{w.\text{task}^{-}(\text{atom } e).\text{type}\} & \text{if } e \text{ is a task} \\
\emptyset & \text{otherwise}
\end{cases}
\]

Furthermore, we define $\text{min}(e)$ and $\text{max}(e)$ to refer to timed element e’s minimum and maximum durations.

\[
\begin{align*}
\text{min}(e) &= \begin{cases}
stime^{-}(\text{atom } e).\text{type} & \text{if } e \text{ is a start timer event} \\
stime^{-}(\text{atom } e).\text{type} & \text{if } e \text{ is an intermediate timer event} \\
\text{first}(\text{atom } e).\text{range} & \text{otherwise}
\end{cases} \\
\text{max}(e) &= \begin{cases}
stime^{-}(\text{atom } e).\text{type} & \text{if } e \text{ is a start timer event} \\
itime^{-}(\text{atom } e).\text{type} & \text{if } e \text{ is an intermediate timer event} \\
\text{second}(\text{atom } e).\text{range} & \text{otherwise}
\end{cases}
\end{align*}
\]
6.1.2 Contribution

In this chapter we extend the semantics defined in Chapter 5 to model relative time. This extension adopts the classical two-phase functioning approach to modelling real-time systems illustrated by languages such as Lustre [CPHP87] and Statecharts [Har87], and more recently to coordination models such as Linda [LBB06]. We summarise this approach as follows [LBB06]. In the first phase, elementary actions of statements are executed. They are assumed to be atomic in the sense that they take no time. Similarly, composition operators are assumed to be executed at no cost. In the second phase, when no actions can be reduced or when all the components encounter a special timed action, time progresses by one unit. We provide this extension in the form of transition rules. Similar to the process semantics defined in Chapter 5, this extension permits automatic verification via the FDR tool.

While our relative time extension permits the specification of real timing information about the behaviour of BPMN elements, at the level of CSP, our extension essentially uses this timing information to constrain the order of CSP events. As a result we focus on high level behavioural properties about the relative ordering of such events rather than timed properties.

6.1.3 Structure

The structure of this chapter is as follows. In Section 6.2 we give an overview of the relative timed extension and present preliminary definitions to assist the formal definition of the extension later in the chapter. We provide a formal definition of the extension in Sections 6.3, 6.4 and 6.5. Similar to Chapter 5, we have implemented the extension in Haskell, and for presentation purposes, some functions are partially presented in this chapter – their full definitions may be found in Appendix E. In Section 6.6 we analyse the relative timed extension. We summarise the contribution of this chapter in Section 6.7.

6.2 Preliminaries

6.2.1 Approach

In Chapter 5 we provided a CSP process semantics for BPMN. We modelled a BPMN pool as a parallel composition of CSP processes, each corresponding to an element directly contained in that pool. Throughout this chapter we refer to this parallel composition as the pool’s enactment process. We extend the process semantics with relative time by composing the enactment process in parallel with a coordination process. This coordination process is a CSP process that coordinates the enactment process’s timed behaviour.

In general, given a BPMN pool \(p \), we define the following CSP process \(T(p) \),

\[
T(p) = PL(p) \parallel \Sigma \parallel CP(p)
\]

where \(PL(p) \) is the enactment process of \(p \) and \(CP(p) \) is the coordination of process of \(p \). In this chapter we describe \(CP(p) \) in terms of the labelled transition system (LTS) of the enactment process \(PL(p) \).

A LTS of CSP process \(P \) is a set of nodes and for each event \(e \in \alpha P \cup \{\tau\} \), a relation \(\leadsto \) between nodes. Specifically, a LTS of \(P \) is an edge-labelled directed graph where each edge represents an event being performed by \(P \). Here we introduce some basic vocabulary for describing LTSs:

- \(S \xrightarrow{e} T \) denotes \((S, T) \in (\xrightarrow{e}) \);
- \(S \rightarrow \) denotes there exists a state \(T \) such that \((S, T) \in (\xrightarrow{e}) \);
- \(S \rightarrow e T \) denotes there exists some event \(e \) such that \(S \xrightarrow{e} T \);
- \(S \xrightarrow{\tau} T \) denotes an invisible, internal transition from \(S \) to \(T \);
- \(S \xrightarrow{t} T \) denotes \(S \xrightarrow{e_0} \ldots \xrightarrow{e_n} T \) for some nonempty \(t = (e_0 \ldots e_n) \);
- \(S \xrightarrow{t} T \) denotes there exists some nonempty sequence of events \(t \) such that \(S \xrightarrow{t} T \).
We also consider states of BPMN pools: a state of BPMN pool \(p \) is a snapshot of its execution. Here each state of pool \(p \) corresponds to a node in the LTS of \(PL(p) \).

Let \(PL(p) \) be the enactment process of BPMN pool \(p \), and \(A \) and \(B \) be \(p \)'s states; we say \(A \) is reachable from \(B \), if and only if there exists some trace \(s \circ t \in \text{traces}(PL(p)) \) such that \(S_0 \rightarrow B \land B \rightarrow A \), where \(S_0 \) is an initial state of \(p \). The coordination process \(CP(p) \) restricts \(PL(p) \)'s behaviour such that the resulting process \(T(p) \) only performs behaviour according to the definition of BPMN pool \(p \) and its timing specification. As a result pool \(p \)'s timing specification restricts the set of \(p \)'s reachable states.

We now introduce some terminologies to describe states in a BPMN pool. To model timed behaviour in a BPMN pool, we partition BPMN elements into timed and untimed:

Definition 6.1. Timed Element. Timer events and atomic tasks are timed elements. A timed element takes a positive amount of time to execute. This implies that a BPMN process containing tasks and timer events also takes a positive amount of time to execute. All other types of elements are untimed.

For example, in the BPMN pool shown in Figure 6.1, tasks \(A1, A2, A3 \) and \(A4 \) and the timer event are timed elements. At a reachable state of a BPMN pool, an element contained in the pool is either inactive or active.

Definition 6.2. Active. A BPMN element is active if and only if one of its incoming sequence flows is triggered and not all of its necessary outgoing sequence flows are triggered. A start event is active as soon as the process directly containing it becomes active.

For example, in the BPMN pool shown in Figure 6.1, task \(A1 \) is active after sequence flow \(s3 \) is triggered and before \(s5 \) is triggered. Similarly, the AND join gateway with incoming sequence flows \(s5 \) and \(s6 \) is active after one of \(s5 \) and \(s6 \) is triggered and before its outgoing sequence flow \(s7 \) is triggered.

Reachable states of a BPMN pool are defined in terms of the elements that the pool can execute. We partition the set of reachable states into untimed, time stable and timed states. We first give an overview of these various types of states; formal definitions are given from Section 6.3 onwards in the chapter. Specifically, at an untimed state, only active untimed elements can be executed, while in a timed state only active timed elements can be executed. A time stable state is a state between untimed and timed states where the set of timed elements for execution in the timed states are determined. For example, in the BPMN pool shown in Figure 6.1, the pool reaches a time stable state after triggering sequence flows \(s1 \) and \(s8 \), and at which point intermediate timer event \(timer1 \) and task \(B1 \) become active.

At a reachable state of a BPMN pool, an active element may be enactable. Here we give a definition of an enactable element.

Definition 6.3. Enactable. An active untimed BPMN element is enactable at an untimed state if and only if all of its required incoming sequence flows are triggered, and not all of its required outgoing sequence flows are triggered. Similarly a timed element at a timed state is enactable if and only if it has zero minimum duration, all of its required incoming sequence flows are triggered and not all of its required outgoing sequence flows are triggered.

![Figure 6.2: An example relative timed execution](image)

A relative timed execution of a BPMN pool \(p \) based on its timing information is a sequence of \(p \)'s states that leads to completion. In CSP, this is a trace of process \(PL(p) \) restricted by \(p \)'s coordination process \(CP(p) \). Figure 6.2 shows an example relative timed execution of a BPMN pool. Here \(S^0 \) is an initial state, and \(C \) is an ending state with no outgoing edge; states \(A^0 \ldots A^{j-1} \) are time stable states. We observe \(^\sim/(a_0, a_1, s_1 \ldots s_j, b_j, a_j) \) is a trace of \(PL(p) \), where \(^\sim/(a_0, a_1 \ldots a_j) \) concatenates the \(n \) sequences \(a_0, a_1 \ldots a_j \). The behaviour of the coordination process \(CP(p) \) can therefore be described as iterations over the following three steps.
1. All enactable untimed elements are executed until a time stable state of the BPMN pool is reached. Consider the example execution in Figure 6.2; the corresponding sequences of states representing this step are labelled X. We describe this step in Section 6.3.

2. At a time stable state, time progresses uniformly until at least either one active task’s minimum duration is reached or one active timer event’s duration is reached. Consider the example execution in Figure 6.2; the corresponding state transitions representing this step are labelled Y. Note that since no elements are executed, this step is modelled as τ transitions. We describe this step in Section 6.4.

3. All enactable timed elements are executed. Consider the example execution in Figure 6.2; the corresponding sequences of states representing this step are labelled Z. We describe this step in Section 6.5.

6.2.2 Syntactic Assumptions

In this chapter we provide a relative timed extension to the CSP semantics of BPMN pools. Here we describe some syntactic assumptions when applying this extension. These assumptions allow us to focus on the timing aspects of business process behaviour.

Start event Our relative time extension assumes each BPMN pools and subprocesses to have only one start event. Pools and subprocesses with multiple start events can be expressed using a combination of a start event, intermediate events and split/join gateways.

Sequence flow looping Our relative time extension considers only finite traces, we therefore do not sequential flow looping because in the untimed semantics it can generate infinite traces.

Parallel multiple instances Our relative time extension does not consider parallel multiple instances. Instead we model n parallel instances of activity T as the CSP process $\parallel i : \{1 \ldots n\} \cdot P(T)$, where $P(T)$ models an instance of T.

Message flows Our relative timed extension only considers single BPMN pools and as such we do not consider message flows, message events or event-based XOR gateways in this chapter.

Flow type In our relative timed extension, a multiple instance activity triggers its outgoing sequence flow after all of its instances have completed execution.

Error events In our relative timed extension, we only consider exception flows caused by intermediate timer events.

6.2.3 Implementation

We implement Haskell function $pTot$ to take a BPMN pool and return a CSP process that models the relative timed behaviour of the pool.

```haskell
pTot :: (PoolId, [Element]) -> Script
pTot (id,es) = Script d c (p ++ [coord(id,es), (tproc id, [], tproc)]) e s
  where
tproc = Parinter (ProcId (cterm id)) (SName "Events") (ProcId (plterm id))
  (Script d c p e s) = pool(id,es)
```

The returned CSP process is the partial interleaving of the enactment and coordination processes: the enactment process, which models the untimed CSP semantics of the pool, is defined by function $pool$, and the coordination process, which models the relative time extension, is defined by function $coord$. Function $coord$ is defined as follows.

```haskell
coord :: (PoolId, [Element]) -> ProcessDef
coord (id,ss) = ((cterm id), [], stable state)
  where state = (ss, [], (filter (isstart.etype.atom) ss), [], (filter (isstime.etype.atom) ss))
```

Here, $cterm$ identifies the coordination process, and the expression

```haskell
stable (ss, [], (filter (isstart.etype.atom) ss), [], (filter (isstime.etype.atom) ss))
```

returns the coordination process by taking the set of start events directly contained in the pool as these elements become enactable immediately at the start of the pool’s execution; the function $stable$ implements the first step of the coordination procedure and is presented in the next section.
6.3 Coordinating Untimed States

6.3.1 Introduction

This section describes Step 1 of the coordination introduced on Page 103. This step executes all enactmentable untimed elements to reach a time stable state. A reachable state of a BPMN pool is time stable if and only if all its active elements are timed. Definitions 6.4 and 6.5 formally define untimed and time stable states respectively.

An initial state of a BPMN pool is then the tuple \((S, \emptyset, I, \emptyset, J)\) where \(I = S \cap \{\text{Start} \bullet \text{ele}\}\) and \(J = S \cap \{\text{Start} \mid (\text{atom ele}).\text{type} \in \text{ran stime} \bullet \text{ele}\}\). For example, we consider the production business process shown in Figure 6.1. The only initial state of the BPMN pool is given by the tuple \((\{\text{start1, and1, A, B, and2, end1}\}, \emptyset, \{\text{start1}\}, \emptyset, \emptyset)\). Similarly, an ending state of a BPMN pool is the tuple \((S, \emptyset, \emptyset, \emptyset, \emptyset)\).

Definition 6.4. Untimed State. An untimed state of a BPMN pool \(P\) is a five-tuple \((S, M, E, W, T)\), where:

- \(S\) is the set of elements directly contained in \(P\).
- \(M : \text{Element} \rightarrow \mathbb{N}\) is a partial function that takes a multiple instance subprocess and returns the number of remaining instances the subprocess can execute.
- \(E\) is the set of enactmentable untimed elements.
- \(W\) is the set of active untimed elements that are not enactmentable such that \(W \cup E\) is the set of all active untimed elements and that \(W \cap E = \emptyset\).
- \(T\) is the set of active timed elements; we write \(Tm(X)\) to denote \(T\) of \(X\).

Definition 6.5. Time Stable State. A time stable state is an untimed state such that \(E\) is empty.

For example, we again consider the business process in Figure 6.1. One possible time stable state of the BPMN pool is given by the tuple \((\{\text{start1, and1, A, B, and2, end1}\}, \emptyset, \emptyset, \emptyset, \{B1, \text{timer1}\})\), at which point task \(B1\) and intermediate timer event \(\text{timer1}\) become enactmentable.

We define transition rules to model the coordination procedure at untimed states. We categorise transition rules according to the types of elements that enable the transitions. Table 6.2 lists the category prefixes and their corresponding descriptions. For example, transition rules, whose name begins with \(S\), define transitions to perform an outgoing sequence flow of an AND split gateway with multiple outgoing sequence flows.

<table>
<thead>
<tr>
<th>Category prefix</th>
<th>Transition description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>perform an outgoing sequence flow of an AND split gateway with multiple outgoing sequence flows</td>
</tr>
<tr>
<td>(U)</td>
<td>perform an outgoing sequence flow of an AND split gateway with one outgoing sequence flow or any other types of untimed element</td>
</tr>
<tr>
<td>(E)</td>
<td>perform the completion event of an end event</td>
</tr>
<tr>
<td>(M)</td>
<td>perform an outgoing sequence flow of a multiple instance subprocess</td>
</tr>
<tr>
<td>(L)</td>
<td>move a multiple instance subprocess to its next iteration</td>
</tr>
</tbody>
</table>

Table 6.2: Categories of transition rules at untimed states

We first consider categories \(S, U\) and \(E\) in Section 6.3.2; these rules define the coordination of atomic elements at untimed states. We then consider categories \(M\) and \(L\) in Section 6.3.3; these rules define the coordination of compound elements at untimed states. We provide an overview of our Haskell implementation for this coordination step in Section 6.3.5.
6.3.2 Coordinating Atomic Elements

Figures 6.3, 6.4 and 6.5 show the transition rules that coordinate atomic elements at an untimed state. Specifically, they define transitions between any two untimed states due to the behaviour of atomic elements. We write \(rm(e, s) \) to denote the BPMN element such that for BPMN element \(e \) and CSP event \(s \), the following equation is satisfied:

\[
\text{atom}(rm(e, s)) = (\mu \text{RmSeqflow} | \theta \text{Atom} = \text{atom}(e) \land s = s.sf' \cdot \theta \text{Atom}')
\]

(6.2)

Here CSP event \(s.sf' \) denotes sequence flow \(sf' \), and \(\text{RmSeqflow} \) is an operation schema on the \(\text{Atom} \) part of an element that removes the sequence flow \(sf' \) from that element.

\[
\begin{align*}
\text{RmSeqflow} & \equiv [\Delta \text{Atom}; sf'] : \text{Seqflow} \\
& \text{in}' = \text{in} \setminus \{ sf' \} \land \text{out}' = \text{out} \setminus \{ sf' \} \land \text{exit}' = \{ sf' \} = \{ \text{exit} \land \\
& \text{receive}' = \text{receive} \land \text{send}' = \text{send} \land \text{type}' = \text{type}
\end{align*}
\]

Given \(r \in E \) is an AND split gateway, \(\#\text{out}(r) > 1 \) and \(s \in \text{out}(r) \):

- \(e \in_p S \) is untimed, either \(s \in \text{in}(e) \) and if it is an AND join gateway then \(e \in W \) and \(\#\text{in}(e) = 1 \) or \(c \in_p S \) is a subprocess, \(s \in \text{in}(c) \), \(e \) is a start event and \((c, e) \in \text{contains} \) \([S-U] \)

\[
\begin{align*}
(S, M, E, W, T) \cdot \delta (S, M, \{E'(r)\} \cup \{\text{rm}(r, s), e\}, W'(e), T)
\end{align*}
\]

- \(e \in_p S \) or \(e \in W \) is an AND join gateway, \(s \in \text{in}(e) \) and \(\#\text{in}(e) > 1 \) \([S-J] \)

\[
\begin{align*}
(S, M, E, W, T) \cdot \delta (S, M, \{E'(r)\} \cup \{\text{rm}(r, s), e\}, W'(e), T)
\end{align*}
\]

- \(c \in_p S \) is a multiple instance subprocess, has \(l \) instances and \(s \in \text{in}(c) \) \([S-M] \)

\[
\begin{align*}
(S, M, E, W, T) \cdot \delta (S, M \cup \{c, l-1\}, \{E'(r)\} \cup \{\text{rm}(r, s), e\}, W, T)
\end{align*}
\]

- \(c \in_p S \) is a multiple instance subprocess, has \(l \) instances and \(s \in \text{in}(c) \) \([S-M'] \)

\[
\begin{align*}
(S, M, E, W, T) \cdot \delta (S, M \cup \{c, l-1\}, \{E'(r)\} \cup \{\text{rm}(r, s), e\}, W, T \cup \{e\})
\end{align*}
\]

- \(e \in_p S \) is timed, either \(s \in \text{in}(e) \) or \(c \in_p S \) is a subprocess, \(s \in \text{in}(e) \), \(e \) is a start timer event and \((c, e) \in \text{contains} \) \([S-T] \)

\[
\begin{align*}
(S, M, E, W, T) \cdot \delta (S, M, \{E'(r)\} \cup \{\text{rm}(r, s), e\}, W, T \cup \{e\})
\end{align*}
\]

Figure 6.3: Transition rules (1)

We now consider rules shown in Figure 6.3. We first describe the rules’ similarities before describing their differences. These rules define transitions that perform outgoing sequence flow \(s \) of some AND split gateway \(r \) with more than one outgoing sequence flow. After triggering \(s \), \(r \) is still enactable as its other outgoing sequence flows still need to be triggered. As a result \(r \) is changed to \(\text{rm}(r, s) \) in \(E \) to keep a record of \(r \)'s remaining outgoing sequence flows to be triggered.

The differences between Rules S-U, S-J, S-M, S-M’ and S-T shown in Figure 6.17 are as follows:

- Rule S-U defines transitions such that \(e \) is one of the following: an AND join gateway with one incoming sequence flow \(s \); a start event in a subprocess \(c \) with an incoming sequence flow \(s \); and
an untimed element that is not an AND join gateway and has s as one of its incoming sequence flows. For these cases, e becomes enactable after s is triggered, therefore e is added to E.

- Rule S-J defines transitions such that e is an AND join gateway that has more than one incoming sequence flow and where s is one of its incoming sequence flows. In this case e is active but not enactable since its other incoming sequence flows have not been triggered, therefore rm(e, s) is replaced with r in W; note that r needs not be in W initially.

- Rule S-M defines transitions such that e is a start event directly contained in some multiple instance subprocess c, and that c has incoming sequence flow s and specifies l instances. In this case e becomes enactable and is added to E. To keep track of the number of c’s remaining instances, the pair (e, l − 1) is added to M.

- Rule S-M’ defines transitions such that e is a start timer event directly contained in some multiple instance subprocess c, and that c has incoming sequence flow s and specifies l instances. In this case e cannot be executed in an untimed state and therefore is added to T. To keep track of the number of c’s remaining instances, the pair (e, l − 1) is added to M.

- Rule S-T defines transitions such that e is a timed element and has incoming sequence flow s. In this case e cannot be executed in an untimed state and therefore is added to T.

Given r ∈ E is untimed, s ∈ out(r) and if it is an AND split gateway, #in(e) = 1:

\[
\begin{align*}
e & \not\in_p S \text{ is untimed, either } s & \in \text{in}(e) \text{ and if it is an AND join gateway then } e & \in W \\
& \text{and } \#\text{in}(e) = 1 \text{ or } c & \in_p S \text{ is a subprocess, } s & \in \text{in}(c), e & \text{ is a start event and } (e, c) \in \text{contains} & \text{ [U-U]}
\end{align*}
\]

\[
\begin{align*}
(S, M, E, W, T) & =_{\omega} (S, M, (E \cup \{r\}) \cup \{e\}, W \setminus \{e\}, T) \\
\end{align*}
\]

\[
\begin{align*}
e & \in_p S \text{ or } e & \in W \text{ is an AND join gateway, } s & \in \text{in}(e) \text{ and } \#\text{in}(e) > 1 & \text{ [U-J]}
\end{align*}
\]

\[
\begin{align*}
(S, M, E, W, T) & =_{\omega} (S, M, E \cup \{r\}, (W \setminus \{e\}) \cup \{rm(e, s)\}, T) \\
\end{align*}
\]

\[
\begin{align*}
c & \in_p S \text{ is a multiple instance subprocess, has } l \text{ instances and } s & \in \text{in}(c) \\
& e & \text{ is a start event and } (e, c) \in \text{contains} & \text{ [U-M]}
\end{align*}
\]

\[
\begin{align*}
(S, M, E, W, T) & =_{\omega} (S, M \cup \{(e, l-1)\}, (E \setminus \{r\}) \cup \{e\}, W, T) \\
\end{align*}
\]

\[
\begin{align*}
c & \in_p S \text{ is a multiple instance subprocess, has } l \text{ instances and } s & \in \text{in}(c) \\
& e & \text{ is a start timer event and } (e, c) \in \text{contains} & \text{ [U-M’]}
\end{align*}
\]

\[
\begin{align*}
(S, M, E, W, T) & =_{\omega} (S, M \cup \{(e, l-1)\}, E \setminus \{r\}, W, T \cup \{e\}) \\
\end{align*}
\]

\[
\begin{align*}
e & \in_p S \text{ is timed, either } s & \in \text{in}(e) \text{ or } \\
& c & \in_p S \text{ is a subprocess, } s & \in \text{in}(c), e & \text{ is a start timer event and } (e, c) \in \text{contains} & \text{ [U-T]}
\end{align*}
\]

\[
\begin{align*}
(S, M, E, W, T) & =_{\omega} (S, M \setminus \{e\}, W, T \cup \{e\}) \\
\end{align*}
\]

Figure 6.4: Transition rules (2)

We now consider rules shown in Figure 6.3. These rules define transitions that perform outgoing sequence flow s of untimed element r such that if it is an AND split gateway then it has only one outgoing sequence flow. After triggering s, r is not longer enactable as it completes its execution,
therefore \(r \) is removed from \(E \). The differences between Rules U-U, U-J, U-M, U-M’ and U-T shown in Figure 6.4 correspond to those between Rules S-U, S-J, S-M, S-M’ and S-T shown in Figure 6.3.

We now consider rules shown in Figure 6.5. These rules define transitions that trigger completion event \(c.e \) of some end event \(e \). Rule E-C defines transitions such that \(e \) is an end event directly contained in the BPMN pool. In this case, no other element is active, otherwise the pool is deadlocked, and after \(c.e \) is performed, \(e \) has completed its execution and is removed from \(E \); this then leads to an ending state. Rule E-M defines transitions such that \(e \) is an end event directly contained in some compound element \(c \). In this case, \(e \) has completed execution and is removed from \(E \), and \(c \) becomes enactable and is added to \(E \).

Table 6.3 shows some examples of applying the transition rules shown in Figures 6.3, 6.4 and 6.5 to BPMN processes shown in Figure 6.6.

\[
\begin{align*}
\text{c.e is a completion event for end event } e &\in E \text{ and } e \in S & \text{[E-C]} \\
(S,\emptyset,\{e\},\emptyset,\emptyset) \xrightarrow{\text{c.e}} (S,\emptyset,\emptyset,\emptyset,\emptyset) \\
\text{c.e is a completion event for end event } e &\in E \text{ such that } e \in_p S, \text{ and } (e, c) \in \text{contains} \text{ for compound element } c \in_p S \text{ where } e \text{ is the only element in } E \text{ that is contained in } c \text{ and no element in } W \cup T \text{ is contained in } c & \text{[E-M]} \\
(S,M,E,W,T) \xrightarrow{\text{c.e}} (S,M,(E\setminus\{e\})\cup\{e\},W,T) \\
\end{align*}
\]

\[\text{Figure 6.5: Transition rules (3)}\]

<table>
<thead>
<tr>
<th>Figure</th>
<th>Rule</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6(1)</td>
<td>U − J</td>
<td>((S, M, E, W, T) \xrightarrow{\text{c.e}} (S, M, E \setminus {r}, (W \setminus {e}) \cup {\text{rm}(e, s)}, T))</td>
</tr>
<tr>
<td>6.6(2)</td>
<td>U − M</td>
<td>((S, M, E, W, T) \xrightarrow{\text{c.e}} (S, M \cup {(c, l_c)}, (E \setminus {r}) \cup {e}, W, T))</td>
</tr>
<tr>
<td>6.6(3)</td>
<td>U − T</td>
<td>((S, M, E, W, T) \xrightarrow{\text{c.e}} (S, M \setminus {r}, W, T \cup {e}))</td>
</tr>
<tr>
<td>6.6(4)</td>
<td>A − T</td>
<td>((S, M, E, W, T) \xrightarrow{\text{c.e}} (S, M, (E \setminus {r}) \cup {\text{rm}(r, s)}, W, T \cup {e}))</td>
</tr>
<tr>
<td>6.6(5)</td>
<td>E − M</td>
<td>((S, M, E, W, T) \xrightarrow{\text{c.e}} (S, M, (E \setminus {e}) \cup {c}, W, T))</td>
</tr>
</tbody>
</table>

Table 6.3: Applications of transition rules

\[\text{Figure 6.6: Illustrations of coordinating atomic elements}\]

6.3.3 Coordinating Compound Elements

Figures 6.7 and 6.8 define the transition rules to coordinate compound elements at an untimed state. Specifically, these rules define transitions that are made available after an end event contained in a compound element has performed its completion event, that is, after a transition defined by Rule E-M.
Given \(s \in \text{out}(m) \) for some compound element \(m \in E \), where \(m \in_p S \) is either a subprocess or a multiple instance subprocess such that \(M(m) = l \) and \(l = 0 \), let \(\text{ex}(m, X) = \{ x : X \mid \text{out}(x) \subseteq \text{exit}(m) \} \):

\[
\begin{align*}
\text{e} & \in_p S \text{ is untimed, either } s \in \text{in(e)} \text{ and if it is an AND join gateway then } e \in W \text{ and } \# \text{in(e)} = 1 \text{ or } e \in_p S \text{ is a subprocess, } s \in \text{in(e)}, e \text{ is a start event and } (e, c) \in \text{contains} \quad \text{[M-U]} \\
(S, M, E, W, T) & \xrightarrow{\text{e}} (S, M \setminus \{ (m, l) \}, E \setminus \{ e \}, W \cup \{ e \}, W \setminus \text{ex}(m, T)) \\
\text{e} & \in_p S \text{ or } e \in W \text{ is an AND join gateway, } s \in \text{in(e)} \text{ and } \# \text{in(e)} > 1 \quad \text{[M-J]} \\
(S, M, E, W, T) & \xrightarrow{\text{e}} (S, M \setminus \{ (m, l) \}, E \setminus \{ e \}, W \setminus \text{ex}(m, T)) \\
\text{c} & \in_p S \text{ is a multiple instance subprocess, has } l \text{ instances and } s \in \text{in(e)} \quad \text{[M-M]} \\
(S, M, E, W, T) & \xrightarrow{\text{c}} (S, M \setminus \{ (m, l) \}, E \setminus \{ e \}, W \setminus \text{ex}(m, T)) \\
\text{c} & \in_p S \text{ is a multiple instance subprocess, has } l \text{ instances and } s \in \text{in(e)} \text{ is an untimed start event and } (e, c) \in \text{contains} \quad \text{[M-M']} \\
(S, M, E, W, T) & \xrightarrow{\text{c}} (S, M \setminus \{ (m, l) \}, E \setminus \{ e \}, W \setminus \text{ex}(m, T)) \\
\text{e} & \in_p S \text{ is timed, either } s \in \text{in(e)} \text{ or } c \in_p S \text{ is a subprocess, } s \in \text{in(e)}, e \text{ is a start timer event and } (e, c) \in \text{contains} \quad \text{[M-T]} \\
(S, M, E, W, T) & \xrightarrow{\text{e}} (S, M \setminus \{ (m, l) \}, E \setminus \{ e \}, W, T \setminus \text{ex}(m, T)) \\
\end{align*}
\]

Figure 6.7: Transition rules (4)

Given multiple instance subprocess \(m \in E \) such that \(M(m) = l \) and \(l > 0 \):

\[
\begin{align*}
\text{e} & \text{ is an untimed start event such that } (e, m) \in \text{contains} \quad \text{[L-U]} \\
(S, M, E, W, T) & \xrightarrow{\text{e}} (S, M \cap \{ (m, l-1) \}, E \setminus \{ e \}, W, T) \\
\text{e} & \in_p S \text{ is a start timer event such that } (e, m) \in \text{contains} \quad \text{[L-T]} \\
(S, M, E, W, T) & \xrightarrow{\text{e}} (S, M \cap \{ (m, l-1) \}, E \setminus \{ e \}, W, T \setminus \{ e \}) \\
\end{align*}
\]

Figure 6.8: Transition rules (5)

The rules shown in Figure 6.7 define transitions that perform outgoing sequence flow \(s \) of some compound element \(m \in E \), where \(m \) is either a subprocess or a multiple instance subprocess specifying \(l \) instances but has no remaining instance to be executed. For these rules, \(m \) is removed from \(E \), and the pair \((m, l) \) is removed from \(M \). These rules also remove the set \(\text{ex}(m, T) \) of intermediate events that specifies timed exception flows of \(m \) from the set of active timed elements \(T \), where \(\text{ex}(m, X) \) is the set \(\{ x : X \mid \text{out}(x) \subseteq \text{exit}(m) \} \). Detailed presentations of specifying and coordinating timed exception flows are given in Sections 6.4 and 6.5. The differences between Rules M-U, M-J, M-M, M-M' and M-T
where we model an untimed state using the following type synonym.

We provide function

\[\text{stable} \] implementations to be triggered for subprocesses in a BPMN pool; and set subprocesses removed from multiple instance subprocesses correspond to those between Rules S-U, S-J, S-M, S-M’ and S-T shown in Figure 6.3.

The rules L-U and L-T shown in Figure 6.8 define transitions that trigger a new instance of some multiple instance subprocess \(m \), such that \(m \) directly contains some start event \(e \). Since \(e \) has no incoming sequence flow, this behaviour is modelled by the \(\tau \) transition. Specifically, in Rules L-U and L-T, \(m \) is removed from \(E \), while the pair \((m, l) \) in \(M \) is replaced by \((m, l - 1) \) to model the behaviour of triggering a new instance of \(m \). For Rule L-U, \(e \) is untimed, therefore \(e \) becomes enactable and is added to \(E \), while for Rule L-T, \(e \) is timed and is only enactable in a timed state, therefore it is added to \(T \).

6.3.4 Example

For example, Figure 6.9 shows the coordination of the BPMN pool shown in Figure 6.1 from its initial state to its first time stable state according to transition rules defined so far, where multiple instance subprocess \(A \) has \(i_A \) instances and \(B \) has \(i_B \) instances; element \(\text{and}^1 = \text{rm} \{ \text{and1} \}, s.s12 \) is the AND split gateway \(\text{and1} \) with sequence flow \(s12 \) removed, and element \(\text{and}^1'' = \text{rm} \{ \text{and1} \}, s.s13 \) is \(\text{and}1 \) with \(s13 \) removed; set \(ES = \{ \text{start1}, \text{end1} \} \) is the set of elements directly contained in the BPMN pool; and set \(MS = \{ (A, i_A - 1), (B, i_B - 1) \} \) is the set of pairs recording the number of remaining instances to be triggered for subprocesses \(A \) and \(B \).

This coordination can then be expressed as the CSP process \(U0 \) of the process definitions in Equation 6.3. Specifically, \(U0 \) defines the coordination process of the BPMN pool from its initial state to its first time stable state, where process \(T0 \) coordinates the behaviour of the BPMN pool at the time stable state. The coordination of time stable states and the definition of \(T0 \) are given in Section 6.4.

\[
\begin{align*}
U0 &= s.s11 \rightarrow U1 \\
U1 &= s.s12 \rightarrow U2 \quad \text{if } s.s13 \rightarrow U3 \\
U2 &= s.s13 \rightarrow U4 \quad \text{if } s.s1 \rightarrow U5 \\
U3 &= s.s12 \rightarrow U4 \quad s.s8 \rightarrow U6 \\
U4 &= s.s1 \rightarrow U7 \quad s.s8 \rightarrow U8 \\
U5 &= s.s13 \rightarrow U7 \\
U6 &= s.s12 \rightarrow U8 \\
U7 &= s.s8 \rightarrow T0 \\
U8 &= s.s1 \rightarrow T0
\end{align*}
\]

6.3.5 Implementation

We provide function \(\text{stable} \) to implement the coordination at untimed states; it is defined as follows,

\[
\begin{align*}
\text{stable} :: \text{UntimedState} \rightarrow \text{Process} \\
\text{stable} (ss, [], [], [0, 0]) &= \text{Skip} \\
\text{stable} (ss, ss', [], [], [ae, te]) &= \text{timer} ss ss' ae te \\
\text{stable} (ss, ss, ss', [], [], [ae, te]) &= \text{exts} [\text{branch} (ss, ss, ss', [], [], [ae, te]) e \mid e \ll= \text{ue}]
\end{align*}
\]

where we model an untimed state using the following type synonym.
CHAPTER 6. MODELLING RELATIVE TIME

6.4 Calculating Time Progression

This section describes Step 2 of the coordination introduced on Page 103. The step calculates the minimum amount of time that needs to progress at a time stable state before either an active task’s minimum duration or an active timer event’s duration is lapsed. We first use an example to describe our approach to calculate time progression. From the example we provide a general structure to the rest of this section.

We use the partial BPMN process in Figure 6.10 as an example to describe informally our approach to calculating time progression. We write \(d(w) = [a, b] \) to denote the duration of task \(w \) ranging between \(a \) and \(b \), where \(a \leq b \), and \(t(m) \) to denote the duration of timer event \(m \). Specifically, let tasks \(d(A) = [i, j] \) and \(d(B) = [k, l] \) such that \(i < j < k \). At the first time stable state, the set of active timed elements is \(T = \{A, B\} \); we label this time stable state \(X \) in this example. Since task \(A \) has the shortest minimum duration \(i \), time progresses for duration \(i \). Time progression is denoted by an internal transition \(X \rightarrow R \), where \(R \) is the initial timed state. At \(R \), \(d(A) = [0, j - i] \) and \(d(B) = [k - i, l - i] \), therefore \(A \) may be executed, while \(B \), with a non-zero minimum duration, is postponed until the next time stable state.

At timed state \(R \), \(A \) may be either executed or delayed until the next time stable state. We first consider the case in which \(A \) is executed and sequence flow \(s3 \) is triggered. In this case the coordination then reaches an untimed state, where gateway \(xor1 \) is enactable, and therefore either flow \(s2 \) or \(s1 \) can be triggered. If \(s2 \) is triggered, another time stable state is reached, where \(T = \{B, C\} \).

Conversely, if \(A \)’s execution is delayed, no untimed element can be executed, therefore the coordination reaches the next time state, where \(T = \{A, B\} \) and \(d(A) = [0, j - i] \) and \(d(B) = [k - i, l - i] \); we label this time stable state \(Y \) in this example. Since \(j < k \), time progresses \(j - i \) at \(Y \); this is denoted by the internal transition \(Y \rightarrow U \) to timed state \(U \). At \(U \), \(d(A) = [0, 0] \) and \(d(B) = [k - j, l - j] \), therefore \(A \) is executed, since \(B \) has a non-zero minimum duration, its execution is postponed until the next time stable state.

In general, in order to calculate time progression the following two pieces of information are required.

1. The possible exception flows caused by intermediate timer events attached to active tasks and subprocesses.
2. The possible activity instances that can be triggered by active multiple instance tasks and subpro-
cesses.

We describe how to obtain these two pieces of information in Sections 6.4.2 and 6.4.3 respectively. We
deﬁne the procedure to calculate time progression in Section 6.4.4 and we give an overview of our Haskell
implementation of this coordination step in Section 6.4.5. We ﬁrst provide some preliminary deﬁnitions
in Section 6.4.1 to assist deﬁning time progression calculation.

6.4.1 Preliminaries

We consider two adjacent time stable states $X \Rightarrow Y$ and provide the following deﬁnitions about timed
elements at time stable state Y.

Definition 6.6. Postponement. A timed element $t \in Tm(Y)$ is a postponed element at time stable
state Y if and only if $t \in Tm(X)$ and $d(t) = [i, j]$ where $i > 0$. The set of postponed elements at Y is
denoted by $Pp(Y) \subseteq Tm(Y)$.

Definition 6.7. Delay. A timed element $t \in Tm(Y)$ is a delayed element at time stable state Y if and
only if $t \notin Tm(X)$ and $d(t) = [0, j]$. The set of delayed elements at Y is denoted by $De(Y) \subseteq Tm(Y)$.

Definition 6.8. Freshness. A timed element $t \in Tm(Y)$ is fresh at time stable state Y if and
only if $t /\in Tm(X)$. The set of fresh timed elements at Y is denoted by $Fr(Y)$ such that $Fr(Y) = Tm(Y) \setminus (Pp(Y) \cup De(Y))$.

As described in the example above, time progression at some time stable state X is denoted as a
single internal transition τ such that $X \xrightarrow{\tau} T$, where T is a timed state at which enactable timed elements
can be executed. We provide a formal deﬁnition of timed states. Transition rules between timed states
are deﬁned in Section 6.5.

Definition 6.9. Timed State. A timed state of a BPMN pool P is a seven-tuple (S, M, E, W, P, C, O),
where:

- S is the set of elements directly contained in P.
- $M : \text{Element} \rightarrow \mathbb{N}$ is a partial function that takes a multiple instance subprocess and returns the
 number of remaining instances the subprocess can execute.
- E is the set of enactable untimed elements; elements in this set will not be executed until P’s
 coordination has reached an untimed state.
- W is the set of active untimed elements that are not enactable.
- P is the set of postponed elements and active multiple instance task elements.
- C is the set of enactable timed elements.
- O is the set of task and multiple instance task elements whose outgoing sequence ﬂows can be
 triggered.

The (initial) timed state that follows immediately from a time stable state is then characterised by
the tuple $(S, M, \emptyset, W, P, C, \emptyset)$.

Definition 6.10. Initial Timed State. An initial timed state is a timed state (S, M, E, W, P, C, O)
such that E and O are empty.

While components S, M and W of an initial timed state are deﬁned by its immediate preceding time
stable state (S, M, \emptyset, W, T), by calculating time progression, we determine components P and C.
6.4.2 Timed Exception Association

In this section we describe the procedure to calculate the associated timed exception flows of a timed element at a time stable state. Associated time exception flows were first introduced in Section 6.3.3, where the transition rules for coordinating an outgoing sequence flow of a compound element are defined.

For example, consider subprocess C in Figure 6.11, which contains task A. If $A \in Tm(X)$ is an active timed element at some time stable state X where $d(A) = [i, j]$, and if the duration of intermediate timer event $t2$ is at most i, that is, $t(t2) \leq i$, then $t2$ may interrupt A's execution and trigger exception flow $s7$. The same applies to events $t1$ and $t3$. As a result the calculation of time progression must consider these exception flows. We now provide a definition of exception flow associations.

Definition 6.11. **Timed exception association.** An associated timed exception flow of an element e is a pair (f, t) such that either $(f, t) \in (atom e).exit$ and e is an activity element, or $(f, t) \in (atom c).exit$ for some compound element c such that $(e, c) \in contains^+$. Formally the set of e’s associated timed exception flows is defined as follows:

$$assoc(e) = (atom e).exit \cup \bigcup \{c : Element \mid (e, c) \in contains^+ \bullet (atom c).exit\}$$

We record timed exception associations from the set of elements in a time stable state in the following way: for each timed exception flow (f, t), we construct an intermediate timer event that has type t and an outgoing sequence flow f. We write $exp(f, t)$ to denote this element; an illustration of this is shown in Figure 6.12.

6.4.3 Multiple Instance

In this section we consider the calculation of multiple instance tasks. For each active multiple instance task $m \in Tm(X)$ in time stable state X, we construct a task element t to model a single instance of m, and a resulting multiple instance n to model m with the number of available instances decreased by one. We write $splitsq(m)$ to denote the pair (n, t). Figure 6.13 shows an illustration of splitting a multiple instance task element.

We record information about multiple instance tasks in some time stable state X in the following way: given a pair $(n, t) = splitsq(m)$ of multiple instance task m at X, we record $n \in Pp(X)$ as a
postponed element at X. We also partition the set of active multiple instance tasks in a time stable state into the following four sets:

1. Set of fresh active multiple instance tasks $M_f(X) \subseteq Fr(X)$.

2. Set of active multiple instance tasks $M_p(X) \subseteq Pp(X)$, whose instances have been postponed, that is, for all $n \in M_p(X)$ where $(n, t) = splitsq(m)$ for some multiple instance task m, we have $t \in Pp(X)$.

3. Set of active multiple instance tasks $M_d(X) \subseteq Pp(X)$, whose instances have been delayed, that is, for all $n \in M_d(X)$ where $(n, t) = splitsq(m)$ for some multiple instance task m, we have $t \in De(X)$.

4. Set of active multiple instance tasks $M_n(X) \subseteq Pp(X)$, whose instances have been neither delayed nor postponed, that is, for all $n \in M_n(X)$, where $(n, t) = splitsq(m)$ for some multiple instance task m, we have $t \notin Pp(X) \cup De(X)$.

![Figure 6.13: An illustration of splitting a multiple instance task](image)

6.4.4 Minimal Time Progression

Transition rule A-E shown in Figure 6.14 defines transitions that progress time from a time stable state to a timed state. Functions $dmin$ and $dmax$ in the rule are defined as follows: given some element e and duration d, $dmin(e, d)$ denotes the element derived from decreasing duration d from $min(e)$ and $dmax(e, d)$ denotes the element derived from decreasing d from $max(e)$. Note that the minimum and maximum durations of a timer event are the same, such that $dmax(e, d)$ becomes the identity function if e is a timer event. We now provide the following textual description of the transition rule where X is a time stable state.

1. Set $Tm(X)$ of timed elements is partitioned into sets of delayed $De(X)$, postponed $Pp(X)$ and fresh $Fr(X)$ elements as defined in Section 6.4.1

2. Set Nr is the union of the set of fresh elements $Fr(X)$ and the set of timer events modelling associated timed exception flows of elements in $Fr(X)$ such that timer events in this set are not postponed elements. The construction of timer events recording associated timed exception flows is defined in Section 6.4.2

3. Set Er is composed from the set Nr without elements in the set $M_f(X)$ of fresh multiple instance tasks, and the set of task instances of multiple instance task elements from sets $M_f(X)$ and $M_n(X)$; the specification of task instances is defined in Section 6.4.3 Set Er contains all active fresh timed elements at X.

4. Set Os is the set of postponed elements that are not multiple instance task. Specifically, set Os contains active postponed timed elements at X.

5. The minimum time progression $dur(X)$ is defined as follows.

$$dur(X) = \text{minimum} \{ e : Os \cup Er \cdot min(e) \} \cup \{ e : De(X) \cdot max(e) \}$$

Here $min(e)$ and $max(e)$ return the minimum and maximum duration of timed element e. Specifically, $dur(X)$ is the smallest value from the set constructed from the minimum duration of fresh Nr and postponed Os elements, and the maximum duration of delayed De elements. $dur(X)$ is the least amount of time that needs to progress before either one active task’s minimum duration is reached or one active timer event’s duration is reached.
Let X be the time stable state (S, M, \emptyset, W, T):

\[
(Dc(X), Pp(X), Fr(X)) \text{ partition } T \\
Nr = Fr(X) \cup \{ \{ e : Fr(X) \bullet \exp(\text{assoc}(e)) \} \setminus Pp(X) \} \\
Er = (Nr \setminus M_1(X)) \cup \{ m : M_1(X) \cup M_2(X) \bullet \text{second}(\text{splitsq}(m)) \} \\
Os = Pp(X) \setminus (M_n(X) \cup M_p(X) \cup M_2(X)) \\
\text{dur}(X) = \text{minimum}(\{ e : Os \cup Er \bullet \text{min}(e) \} \cup \{ e : De(X) \bullet \text{max}(e) \}) \\
As = \{ e : Os \cup Er \bullet \text{dmax}(\text{dmin}(e, \text{dur}(X)), \text{dur}(X)) \} \cup \{ e : De(X) \bullet \text{dmax}(e, \text{dur}(X)) \} \\
Ac = \{ e : As \mid \text{min}(e) > 0 \}
\]

\[
(S, M, \emptyset, W, T) \overset{A-E}{\rightarrow} (S, M, \emptyset, W, A_c \cup M_p(X) \cup M_2(X) \cup \{ m : M_n(X) \cup M_1(X) \bullet \text{first}(\text{splitsq}(m)) \}, As \setminus Ac, \emptyset)
\]

Figure 6.14: Transition rule (6)

6. Set As contains timed elements derived decreasing duration $\text{dur}(X)$ from elements in sets Nr, De and Os. This models minimum time progression at X.

7. Set Ac is a subset of As such that each element $e \in Ac$ has a non-zero positive minimum duration $\text{min}(e) > 0$. This set contains elements that are to be postponed until the next time stable state as their minimum durations have not been reached.

Transition rule A-E shown in Figure 6.14 therefore specifies the following transition from time stable state X to the subsequent initial timed state,

\[
(S, M, \emptyset, W, T) \overset{A-E}{\rightarrow} (S, M, \emptyset, W, P, As \setminus Ac, \emptyset)
\]

where set $As \setminus Ac$ is the set of timed elements with zero minimum duration, and set P is the set of postponed elements and active multiple instance tasks, and is defined as follows.

\[
P = Ac \cup M_p(X) \cup M_2(X) \cup \{ m : M_n(X) \cup M_1(X) \bullet \text{first}(\text{splitsq}(m)) \}
\]

Figure 6.15: A BPMN subprocess element illustrating time progression

For example, we consider the partial BPMN process in Figure 6.15. We assume there exists a time stable state S such that the set of fresh timed elements are tasks A, B and C where $d(A) = [i, j]$, $d(B) = [k, l]$ and $d(C) = [m, n]$ and $m < i$ and $m < k$. By Rule A-E, $\text{dur}(S) = m$, hence both A and B are postponed for duration m, and during this duration, task C may either be executed or delayed nondeterministically.

If task C is delayed, then in the subsequent time stable T, where $S \rightarrow T$, $De(T) = \{ C \}$ and $Pp(T) = \{ A, B \}$ such that $d(A) = [i - m, j - m]$, $d(B) = [k - m, l - m]$ and $d(C) = [0, n - m]$. If $i < k$ and $i < n$ then after duration $i - m$, A becomes enactable. If $k < i$ and $k < n$, then after duration
$k - m$, B becomes enactable, and if $n < j$ and $n < k$ then after duration $n - m$, C can no longer be delayed.

If task C is executed, in the subsequent time state T, $Fr(T) = \{D\}$ and $Pp(T) = \{A, B\}$, where $d(D) = [a, p]$. If $a < i - m$ and $a < k - m$, after duration a, D may either be executed or delayed.

We now return to our running example. Given time stable state shown at the bottom of Figure 6.9 if we assume the example schedule shown in Table 6.1 and apply Rule A-E, we yield the transition $(ES, MS, 0, 0, \{timer1, B1\}) \rightarrow (ES, MS, 0, 0, \{B1\}, \{timer1\}, 0)$, such that $timer1' = dmin(timer1, 30)$ and $B1' = dmax(dmin(B1, 30), 30)$, where 30 minutes is the minimum duration and minute is the smallest unit of time used in the schedule in Table 6.1.

6.4.5 Implementation

Record that function \texttt{stable} evaluates the expression $\texttt{timer ss ms ae rn}$, and function \texttt{timer} is defined as follows.

```haskell
timer :: [Element] -> [Element] -> [Element] -> Process

let (de, ps, fr) = fdexcept ss rn

(de, ps, fr) = par (unzip.map splitsq) id (parpost (union ps de) ps)

(fm, fi) = unzip.map splitsq.filter (ismiseq.type.atom) fr

(pm, as) = sorting op de (unions ((fr \ fm), fi, ni))

(en, ac) = break ((> 0).minrange) as

in exe (ss, ms, [], ae, (unions [ac, pm, nm, fm]), en, [1])
```

The first argument \texttt{ss} is the list of elements contained in the BPMN process; the second argument \texttt{ms} is the list of pairs recording active multiple instance subprocesses and their remaining iterations; the third argument \texttt{ae} is the list of active untimed elements that are not enactable; and the fourth argument \texttt{rn} is the list of active time elements.

The full definition of \texttt{timer} can be found in Section 6.3. We now provide an overview of how \texttt{timer} implements transition rule A-E shown in Figure 6.14. Specifically, function \texttt{timer} contains several local definitions, which match the conditions of transition rule A-E. From top to bottom, given some time stable state X:

- The first local definition is the triple of lists of elements (de, ps, fr). The list de corresponds to the set of delayed elements $De(X)$, ps corresponds to the set of postponed elements $Pp(X)$, and fr corresponds to the set of fresh timed elements $Fr(X)$.
- The second local definition is the pair (nm, ni, op). The list nm corresponds to the set \{$m : M_n(X) \cdot \text{first}(splitsq(m))\}$, ni corresponds to the set \{$m : M_n(X) \cdot \text{second}(splitsq(m))\}$, and op corresponds to the set $Pp(X) \setminus M_n(X)$.
- The third local definition is the pair of lists (fm, fi). The list fm corresponds to the set \{$m : M_f(X) \cdot \text{first}(splitsq(m))\}$, and fi corresponds to the set \{$m : M_f(X) \cdot \text{second}(splitsq(m))\}$.
- The fourth local definition is the pair of lists (pm, as). The value pm corresponds to the set $M_p(X)$, and as corresponds to the set As defined in transition rule A-E.
- The fifth local definition is the pair of lists (en, ac). The list en corresponds to the set $As \setminus Ac$, and ac corresponds to the set Ac. Both are defined in Rule A-E.

After evaluating the local definitions, function \texttt{timer} evaluates the expression $\texttt{exe (ss, ms, [], ae, (unions [ac, pm, nm, fm]), en, [1])}$, where \texttt{exe} implements the coordination step at a timed state and is presented in Section 6.5. The tuple $(ss, ms, [], ae, (unions [ac, pm, nm, fm]), en, [1])$ records the initial timed state as defined in Definition 6.11, where the set $(\text{unions [ac, pm, nm, fm]})$ is the set of postponed elements and active multiple instance tasks.
6.5 Coordinating Timed States

6.5.1 Introduction

This section describes Step 3 of the coordination introduced on Page 103. This step executes all enactable timed elements to reach an untimed state.

In Section 6.4.1 we gave a definition of timed states (Definition 6.9) and initial timed states (Definition 6.10). At a timed state, where all enactable timed elements have either completed execution, delayed or interrupted, the coordination procedure proceeds to an untimed state, thereby commencing the untimed state coordination. Untimed state coordination is Step 1 of the coordination procedure on Page 103 and was described in Section 6.3. Definition 6.12 defines the transition rule $T-C$ from such a timed state to the subsequent untimed state.

Definition 6.12. Timed Complete Transition Rule $T-C$. Given a timed state (S, M, W, E, P, C, O) such that $C = \emptyset$ and $O = \emptyset$, the timed complete transition rule $T-C$ is defined as $(S, M, E, W, P, C, O) \xrightarrow{\tau} (S, M, E, W, P)$.

Running Example. As a running example, we consider the partial BPMN process in Figure 6.16. We assume an initial timed state X such that its component C, the set of enactment timed elements, contains the following: Task E, multiple instance task B contained in the multiple instance subprocess A, associated timed exception flows e and f, and intermediate timer event g.

![Figure 6.16: An illustration of timed elements coordination](image)

Similar to untimed state coordination, we define transition rules to model the coordination procedure at timed states. We categorise transition rules according to the types of elements that enable the transitions. Table 6.4 lists the category prefixes and their corresponding descriptions. For example transition rules whose name begin with V define transitions that perform an outgoing sequence flow of either a start timer event or an intermediate timer event that is not an associated timed exception flow.

6.5.2 Coordinating Timer Events

Transition rules shown in Figure 6.17 define transitions to trigger an outgoing sequence flow of either a start timer event or an intermediate timer event that is not an associated timed exception flow.
CHAPTER 6. MODELLING RELATIVE TIME

<table>
<thead>
<tr>
<th>Category prefix</th>
<th>Transition description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>perform an outgoing sequence flow of either a start timer event or an intermediate timer event that is not an associated timed exception flow</td>
</tr>
<tr>
<td>T</td>
<td>perform an outgoing sequence flow of a task or a multiple instance task, or perform the work of a task or a multiple instance task</td>
</tr>
<tr>
<td>X</td>
<td>perform an associated timed exception flow</td>
</tr>
</tbody>
</table>

Table 6.4: Transition rule categories for timed states

We first describe the rules’ similarities before describing their differences. Rules shown in Figure 6.17 define transitions to trigger an outgoing sequence flow s of a timer event r. After performing s, r completes its execution, and therefore is removed from C.

Given \(r \in C \) is a start timer event or an intermediate timer event such that \(\text{in}(r) \neq \emptyset \), and \(s \in \text{out}(r) \):

\[
\begin{align*}
\text{V-U} & \quad (S, M, E, W, P, C, O) \sim \langle S, M, E, W \setminus \{e\}, P, C \setminus \{r\}, O \rangle \\
\text{V-J} & \quad (S, M, E, W, P, C, O) \sim \langle S, M, E, (W \setminus \{e\}) \cup \{\text{in}(e)\}, P, C \setminus \{r\}, O \rangle \\
\text{V-M} & \quad (S, M, E, W, P, C, O) \sim \langle S, M \cup \{(c, l-1)\}, E \cup \{c\}, W, P \cup \{e\}, C \setminus \{r\}, O \rangle \\
\text{V-M'} & \quad (S, M, E, W, P, C, O) \sim \langle S, M \cup \{(c, l-1)\}, E, W, P \cup \{e\}, C \setminus \{r\}, O \rangle \\
\text{V-T} & \quad (S, M, E, W, P, C, O) \sim \langle S, M, E, W, P \cup \{e\}, C \setminus \{r\}, O \rangle
\end{align*}
\]

Figure 6.17: Transition rules (7)

The differences between Rules V-U, V-J, V-M, V-M’ and V-T shown in Figure 6.17 are as follows.

- Rule V-U transitions such that \(e \) is one of the following: an AND join gateway with one incoming sequence flow \(s \); a start event in a subprocess \(c \); with an incoming sequence flow \(s \); and an untimed element that is not an AND join gateway and has \(s \) as one of its incoming sequence flows. For these cases, \(e \) becomes enactable (in an untimed state) after \(s \) is triggered, therefore \(e \) is added to \(E \).
- Rule V-J defines transitions such that \(e \) is an AND join gateway that has more than one incoming sequence flow and where \(s \) is one of its incoming sequence flows. In this case \(e \) is active but not
enactable since its other incoming sequence flows have not been triggered, therefore \(rm(e,s) \) is replaced with \(r \) in \(W \); note that \(r \) needs not be in \(W \) initially.

- Rule V-M defines transitions such that \(e \) is a start event directly contained in some multiple instance subprocess \(c \), and that \(c \) has incoming sequence flow \(s \) and specifies \(l \) instances. In this case \(e \) becomes enactable (at an untimed state) and is added to \(E \). To keep track of the number of \(c \)'s remaining instances, the pair \((c, l-1)\) is added to \(M \).

- Rule V-M' defines such that \(e \) is a start timer event directly contained in some multiple instance subprocess \(c \), and that \(c \) has incoming sequence flow \(s \) and specifies \(l \) instances. In this case \(e \) is a timed element and therefore is added to \(P \). Also to keep track of the number of \(c \)'s remaining instances, the pair \((c, l-1)\) is added to \(M \).

- Rule V-T defines transitions such that \(e \) is a timed element and has incoming sequence flow \(s \). In this case \(e \) is a timed element and is therefore added to \(P \).

For example, consider the BPMN process in Figure 6.16. According to Rule V-T, the intermediate timer event \(g \) completes its execution by triggering its outgoing sequence flow \(s_2 \), which is also the incoming sequence flow of task element \(F \). This is modelled by the following transition.

\[
(S, M, E, W, P, C, O)^{s_2} \rightarrow (S, M, E, W, P \cup \{F\}, C \setminus \{g\}, O)
\]

6.5.3 Coordinating Task Elements

Figures 6.18 and 6.19 define the transition rules to coordinate enactable task and multiple instance task elements.

Unlike timer events, executing a task element consists of performing two CSP events that denote its work and its outgoing sequence flow. For task \(t \) with outgoing sequence flow \(f \), the CSP event \(w, t \) denotes \(t \)'s work and event \(s, f \) denotes \(t \)'s outgoing sequence flow \(f \). Moreover, a task element has a duration range, and may nondeterministically choose to delay its execution until its maximum duration is lapsed.

Figure 6.18: Transition rules (8)

We consider the transition rules shown in Figure 6.18. These rules define transitions to either perform a task’s work or delay its execution. Rule T-D defines transitions to delay the execution of some element
that is either a task element or a task instance of a multiple instance task element. Transitions defined by this rule perform the \(\tau \) event to model this nondeterministic choice and move element \(e \) from the set of enactable timed elements \(C \) to set \(P \); \(P \) is the set of timed elements that are either postponed or delayed. Rule T-E defines transitions to perform the work of some task element \(e \). Transitions defined by this rule perform the CSP event \(w.e \) to denote \(e \)’s work and move \(e \) from the set of enactable timed element \(C \) to set \(O \); \(O \) is a set of task elements and multiple instance tasks whose outgoing sequence flows are available to be triggered. Rules T-I and T-I’ define transitions to perform the work of an instance \(e \) of some multiple instance task \(m \in P \). In Rule T-I, \(m \) has 0 remaining instances, while in Rule T-I’, \(m \) has one or more remaining instances. Both transition rules perform the CSP event \(w.e \), to denote \(e \)’s work and remove \(e \) from the set of enactable elements \(C \). Rule T-I also moves \(m \) from \(P \) to \(O \) as \(m \) has executed all its instances and therefore its outgoing sequence flow is available to be triggered. For Rule T-I’, however, \(m \) has one or more instances to execute and therefore remains in set \(P \).

For example, consider the BPMN process in Figure 6.16. According to Rule T-D, if task \(E \) has a non-zero maximum duration, it can delay its execution, yielding the following transition:

\[
(S, M, E, W, P, C, O) \xrightarrow{\tau} (S, M, E, W, P \cup \{e\}, C \setminus \{e\}, O)
\]

Here we use \(e \) to denote task \(E \) to avoid the confusion with the state’s component \(E \). Conversely, according to Rule T-E, \(E \) can perform its work, yielding the following transition,

\[
(S, M, E, W, P, C, O) \xrightarrow{w.e} (S, M, E, W, P, C \setminus \{e\}, O \cup \{e\})
\]

where we use \(e \) to denote task \(E \) and CSP event \(w.e \) denotes \(e \)’s work; Similarly, according to Rule T-I, if multiple instance task \(B \in P \) has one remaining instance \(b \) and \(b \) performs its work, yielding the following transition,

\[
(S, M, E, W, P, C, O) \xrightarrow{w.B} (S, M, E, W, P \setminus \{B\}, C \setminus \{b\}, O \cup \{B\})
\]

where CSP event \(w.B \) denotes \(B \)’s work.

We now consider transition rules shown in Figure 6.19; these rules define transitions to trigger the outgoing sequence flow \(s \) of element \(r \in O \) that is either a task or a multiple instance task. After triggering \(s \), \(r \) completes its execution and is removed from \(O \). Since \(r \) completes its execution, transitions defined by these rules also remove \(r \)’s timed exception flows from \(P \) and \(C \). The differences between Rules T-U, T-J, T-M, T-M’ and T-T shown in Figure 6.19 correspond to those between Rules V-U, V-J, V-M, V-M’ and V-T shown in Figure 6.17.

For example, we consider the BPMN process in Figure 6.16. According to Rule T-U, task element \(E \) can trigger outgoing sequence flow \(s3 \) to complete its execution; \(s3 \) is also the incoming sequence flow of XOR split gateway \(i \). This behaviour yields the following transition,

\[
(S, M, E, W, P, C, O) \xrightarrow{s3} (S, M, E \cup \{i\}, W, P, C \setminus \{f\}, O \setminus \{e\})
\]

where we use \(e \) to denote task \(E \) to avoid confusion with component \(E \) of the timed state, and where \(f \) is \(E \)’s timed exception flow.

Similarly, according to Rule T-J, if task \(D \in P \) is postponed, multiple instance task \(B \in O \) can trigger outgoing sequence flow \(s5 \) to complete its execution; \(s5 \) is also the incoming sequence flow of AND join gateway \(h \). Since \(h \) has two incoming sequence flows, namely \(\{s5, s6\} \), this behaviour yields the following transition.

\[
(S, M, E, W, P, C, O) \xrightarrow{s5} (S, M, E, W \setminus \{h\} \cup \{rm(s5, h)\}, P, C, O \setminus \{B\})
\]

Conversely, if task \(D \) has already triggered sequence flow \(s6 \), and multiple instance task \(B \) triggers sequence flow \(s5 \), then according to Rule T-U, this behaviour yields the following transition.

\[
(S, M, E, W, P, C, O) \xrightarrow{s5} (S, M, E \cup \{h\}, W \setminus \{h\}, P, C, O \setminus \{B\})
\]
Given $r \in O$ is a task or a multiple task instance that has 0 instance, such that $s \in out(r)$:

- $e \in_p S$ is untimed, either $s \in in(e)$ and if it is an AND join gateway then $e \in W$ and $\#in(e) = 1$ or $e \in_p S$ is a subprocess, $s \in in(e)$, e is a start event and $(e, c) \in contains$

\[
(S, M, E, W, P, C, O) \xrightarrow{T-U} (S, M, E, W \cup \{e\}, W \setminus \{e\}, P \setminus \{r, P\}, C \setminus \{r, C\}, O \setminus \{r\})
\]

- $e \in_p S$ or $e \in W$ is an AND join gateway, $s \in in(e)$ and $\#in(e) > 1$

\[
(S, M, E, W, P, C, O) \xrightarrow{T-J} (S, M, E, (W \setminus \{e\}) \cup \{rm(e, s)\}, P \setminus \{r, P\}, C \setminus \{r, C\}, O \setminus \{r\})
\]

- $c \in_p S$ is a multiple instance subprocess, has l instances and $s \in in(c)$

\[
(S, M, E, W, P, C, O) \xrightarrow{T-M} (S, M, E, (W \setminus \{e\}) \cup \{in(e, s)\}, P \setminus \{r, P\}, C \setminus \{r, C\}, O \setminus \{r\})
\]

- $c \in_p S$ is a multiple instance subprocess, has l instances and $s \in in(c)$

\[
(S, M, E, W, P, C, O) \xrightarrow{T-M'} (S, M, E, (W \setminus \{e\}) \cup \{in(e, s)\}, P \setminus \{r, P\}, C \setminus \{r, C\}, O \setminus \{r\})
\]

- $e \in_p S$ is timed, either $s \in in(e)$ or $c \in_p S$ is a subprocess, $s \in in(c)$, e is a start timer event and $(r, C) \in contains$

\[
(S, M, E, W, P, C, O) \xrightarrow{T-T} (S, M, E, W \setminus \{e\}, P \setminus \{r, P\}, C \setminus \{r, C\}, O \setminus \{r\})
\]

Figure 6.19: Transition rules (9)

6.5.4 Coordinating Timed Exception Flows

This section describes the coordination of timed exception flows. After an exception flow attached to a task or a multiple instance task is triggered, the execution of that task or multiple instance task is interrupted. Similarly, after an exception flow attached to a subprocess or a multiple instance subprocess is triggered, the executions of that subprocess or multiple instance subprocess as well as all elements contained in that subprocess are interrupted. To model the interruption caused by an exception flow, we provide some preliminaries in Definition 6.13.

Definition 6.13. Given a timed state (S, M, E, W, P, C, O), the functions $assocs(f, t)$, $mults(f, t)$ and $timers(f, t)$ are defined as follows:

- $assocs(f, t) = \{ e : \text{Element} \mid e \in_p S \land (f, t) \in assoc(e) \}$ takes a timed exception flow (f, t) and returns the set containing all elements that have the associated timed exception flow (f, t).

- $mults(f, t) = assocs(f, t) \subseteq M$ is a subset of M, such that the first component of each element in that subset records a multiple instance subprocess that has the associated timed exception flow (f, t).

- $timers(f, t) = \{ c : C \cup P \mid out(c) \subseteq \text{exit}\{ assocs(f, t) \} \}$ is the set of associated timed exception flows attached to elements in $assocs(f, t)$.

Figure 6.20 shows the transition rules for coordinating timed exception flows. Specifically, the rules define transitions that perform the outgoing sequence flow f of some intermediate timer event $r \in C$, which models the associated exception flow (f, t). Specifically, after performing sequence flow f, all elements recorded in the timed state, which are associated timed exception flow (f, t), are interrupted.
CHAPTER 6. MODELLING RELATIVE TIME

Given \(r \in C \) is an intermediate timer event \(\text{exp}(f, t) \) for some associated timed exception flow \((f, t) \in \text{assoc}(e)\) of some activity element \(e\). Let \(s\) be the CSP event to denote the sequence flow \(f\) and \(A\), \(U\) and \(V\) be abbreviations for sets \(\text{assocs}(f, t)\), \(\text{mults}(f, t)\) and \(\text{timers}(f, t)\) respectively.

\[\begin{align*}
 e \in_p S & \text{ is untimed, either } s \in \text{in}(e) \text{ and if it is an AND join gateway then } e \in W \\
 & \text{ and } \#\text{in}(e) = 1 \text{ or } e \in_p S \text{ is a subprocess, } s \in \text{in}(e), e \text{ is a start event and } (e, c) \in \text{contains} \\
 & (S, M, E, W, P, C, O) \Rightarrow (S, M \setminus U, \{e\} \cup \{c\}, W \setminus \{\text{in}(e)\} \cup \{c\}, P \setminus (A \cup V), C \setminus (A \cup V), O \setminus A) \\
 e \in_p S \text{ or } e \in W & \text{ is an AND join gateway, } s \in \text{in}(e) \text{ and } \#\text{in}(e) > 1 \\
 & (S, M, E, W, P, C, O) \Rightarrow (S, M \setminus U, E \setminus A, W \setminus \{\text{in}(e)\} \cup \{r_m(e, s)\}, P \setminus (A \cup V), C \setminus (A \cup V), O \setminus A) \\
 c \in_p S & \text{ is a multiple instance subprocess, has } l \text{ instances and } s \in \text{in}(c) \\
 e & \text{ is an start timer event and } (e, c) \in \text{contains} \\
 & (S, M, E, W, P, C, O) \Rightarrow (S, M \setminus U, \{(e, c, l-1)\}, E \setminus A, W \setminus A, P \setminus (A \cup V), C \setminus (A \cup V), O \setminus A) \\
 c \in_p S & \text{ is a multiple instance subprocess, has } l \text{ instances and } s \in \text{in}(c) \\
 e & \text{ is an start timer event and } (e, c) \in \text{contains} \\
 & (S, M, E, W, P, C, O) \Rightarrow (S, M \setminus U, \{(e, c, l-1)\}, E \setminus A, W \setminus A, (P \setminus (A \cup V)) \cup \{e\}, C \setminus (A \cup V), O \setminus A) \\
 e \in_p S & \text{ is timed, either } s \in \text{in}(e) \text{ or } c \in_p S \text{ is a subprocess, } s \in \text{in}(e), e \text{ is a start timer event and } (e, c) \in \text{contains} \\
 & (S, M, E, W, P, C, O) \Rightarrow (S, M \setminus U, E \setminus A, W \setminus A, (P \setminus (A \cup V)) \cup \{e\}, C \setminus (A \cup V), O \setminus A)
\end{align*} \]

Figure 6.20: Transition rules (10)

As a result the following modifications are applied to timed state \((S, M, E, W, P, C, O)\), where sets \(A\), \(U\) and \(V\) are abbreviations for sets \(\text{assocs}(f, t)\), \(\text{mults}(f, t)\) and \(\text{timers}(f, t)\):

- Elements in \(M\), whose first component is a multiple instance subprocess that has the associated exception flow \((f, t)\), are removed. The result is the set \(M \setminus U\).
- Elements with associated exception flows \((f, t)\) are removed from \(W\). The result is the set \(W \setminus A\).
- Elements with associated exception flows \((f, t)\) are removed from \(E\). The result is the set \(E \setminus A\).
- Elements with associated exception flows \((f, t)\) as well as intermediate timer events modelling timed exception flows \((g, h)\) attached to one of those elements are removed from \(P\). The result is the set \(P \setminus (A \cup V)\).
- Elements with associated exception flows \((f, t)\) as well as intermediate timer events modelling timed exception flows \((g, h)\) attached to one of those elements are removed from \(C\). The result is the set \(C \setminus (A \cup V)\).
- Elements with associated exception flows \((f, t)\) are removed from \(O\). The result is the set \(O \setminus A\).

The differences between Rules X-U, X-J, X-M, X-M’ and X-T shown in Figure 6.20 correspond to those between Rules V-U, V-J, V-M, V-M’ and V-T shown in Figure 6.17.

For example, consider the BPMN process in Figure 6.16. According to Rule X-T, the intermediate timer event \(f\) may interrupt task \(E\)’s execution and trigger sequence flow \(s4\); \(s4\) is also the incoming
sequence flow of task \(K \). This behaviour yields the following transition, where we use \(x \) to denote task \(E \) to avoid confusion:

\[
(S, M, E, W, P, C, O) \xrightarrow{s \rightarrow 4} (S, M, E, W, P \cup \{ K \}, C \setminus \{ x, f \}, O \setminus \{ x \})
\]

If task \(D \in P \) is postponed and the intermediate timer event \(e \) may interrupt subprocess \(A \)'s execution and trigger sequence flow \(s1; s1 \) is also the incoming sequence flow of XOR join gateway \(j \). This behaviour yields the following transition,

\[
(S, M, E, W, P, C, O) \xrightarrow{s \rightarrow 1} (S, M \setminus \{ (A, l_A) \}), E \cup \{ j \}, W, P \setminus \{ D, B \}, C \setminus \{ b, e \}, O \setminus \{ b \})
\]

where \(l_A \) records the number of multiple instance subprocess \(A \)'s remaining instances, and \(b \) is a task instance of multiple instance task \(B \).

6.5.5 Example

Figure 6.21 shows parts of the relative timed coordination of the BPMN pool shown in Figure 6.1. Specifically, it defines the following steps.

1. Transition 1 models minimal time progression from the first time stable state \((ES, MS, \emptyset, \emptyset, \{ timer1, B1 \})\). Minimal time progression is defined by the transition rule shown on Figure 6.14 and this particular transition has been illustrated at the end of Section 6.4.4 where the minimum duration is 30 minutes such that \(timer1 = dmin(timer1, 30) \) and \(B1' = dmax(dmin(B1, 30), 30) \).

2. Transition 2 defines the timed state coordination of the intermediate timer event \(timer1 \).

3. Transition 3 is the timed complete transition to the subsequent untimed state, defined by the transition rule in Definition 6.12

4. Transitions 4 - 7 define untimed state coordination of the AND split gateway \(and3 \) to the next time stable state \((ES, MS, \emptyset, \emptyset, \{ B1', A1, A2 \})\).

5. Transition 8 models the minimal time progression from the time stable state \((ES, MS, \emptyset, \emptyset, \{ B1', A1, A2 \})\) to timed state \((ES, MS, \emptyset, \emptyset, \{ B1''\}, \{ A1', A2' \}, \emptyset)\), where the minimum duration is 60 minutes; \(A1' = dmax(dmin(A1, 60), 60) \), \(A2' = dmax(dmin(A2, 60), 60) \) and \(B1'' = dmax(dmin(B1', 60), 60) \).

6. Transitions 9 - 32 define the timed state coordination of tasks \(A1' \) and \(A2' \).

7. Transitions 33 - 36 define the possible timed complete transitions to the next untimed state.

This coordination is expressed as the CSP process \(T0 \) defined in Equation 6.4 where \(\triangleright \) is a derived CSP operator \(\triangleright \) and is defined as follows:

\[
P \triangleright Q = (P \square a \rightarrow Q) \setminus \{ a \} \quad [a \text{ does not appear in } P \text{ or } Q.]
\]

Specifically, \(T0 \) defines the coordination process of the BPMN pool from the first time stable state to four subsequent possible untimed states; these four untimed states are shown as the ending states of transitions 33 – 36 and are denoted by process terms \(U21, U22, U23 \) and \(U24 \) in Equation 6.4.

\[
\begin{align*}
T0 &= s.s2 \rightarrow U9 & T14 &= (w.A1 \rightarrow T17 \square s.s6 \rightarrow T19) \triangleright T15 \\
U9 &= s.s3 \rightarrow U10 \square s.s4 \rightarrow U11 & T15 &= s.s6 \rightarrow U21 \\
U10 &= s.s4 \rightarrow T10 & T16 &= s.s5 \rightarrow U22 \\
U11 &= s.s3 \rightarrow T10 & T17 &= s.s5 \rightarrow T20 \square s.s6 \rightarrow T21 \\
T10 &= (w.A1 \rightarrow T13 \square w.A2 \rightarrow T14) & T18 &= w.A2 \rightarrow T20 \triangleright U22 \\
& \triangleright (T11 \sqcap T12) & \triangleright (T11 \sqcap T12) \\
T11 &= w.A2 \rightarrow T15 \triangleright U24 & T19 &= w.A2 \rightarrow T21 \triangleright U21 \\
T12 &= w.A1 \rightarrow T16 \triangleright U24 & T20 &= s.s6 \rightarrow U23 \\
T13 &= (w.A2 \rightarrow T17 \square s.s5 \rightarrow T18) \triangleright T16 & T21 &= s.s5 \rightarrow U23
\end{align*}
\]

(6.4)
Figure 6.21: Coordinating BPMN process shown in Figure 6.1.
6.5.6 Implementation

We provide function `exe` to implement the coordination of timed states and is defined as follows,

```
exe :: TimedState -> Process
exe (ss,ms,es,ae,ps,cs,os) = stable (ss,ms,es,ae,ps,cs,os)
exe (ss,ms,es,ae,ps,cs) =
    exts ([(csbranch (ss,ms,es,ae,ps,cs,os) e | e <- cs) ++
         [osbranch (ss,ms,es,ae,ps,cs,os) e | e <- os]])
```

where we model a timed state using the following type synonym.

```
type TimedState = ([Element],[(Element,Int)],[Element],[Element],[Element],[Element],[Element])
```

Specifically, function `exe` takes a tuple `(ss,ms,ae,es,ps,cs,os)` recording a timed state. Here `ss` models component `S`, `ms` models `M`, `ue` models `E`, `ae` models `W`, `ps` models `P`, `cs` models `C` and `os` models `O`.

Function `exe` implements transition rules shown in Figures 6.17, 6.18, 6.19 and 6.20 by evaluating the following clauses. The first clause implements timed complete transition rule T-C, and the second clause matches any other timed states. At this point, the coordination is at a timed state with enactable elements, and `exe` returns a CSP process that defines the external choice over all possible transitions. Transition rules shown in Figures 6.17, 6.18 and 6.20 are implemented by the function `csbranch`, while transition rules shown in Figure 6.19 are implemented by the function `osbranch`. The definition of these functions can be found in Section E.4.

6.6 Analysis

We provided an extension to model BPMN process’s relative timed behaviour in the form of transition rules. Given a BPMN pool `p`, we define the CSP process `T(p) = PL(p) || Σ || CP(p)`, where `PL(p)` is the enactment process of `p` and `CP(p)` is the coordination process of `p`; `PL(p)` models the un timed behaviour of `p`, while `CP(p)` coordinates `p`’s timed behaviour and is calculated using the transition rules. Given any BPMN pool `p`, we establish the following two properties about `p`’s coordination process `CP(p)`:

1. `CP(p)` ensures time progression between any two consecutive time stable state.
2. If `p`’s enactment process `PL(p)` is deadlock free, then `PL(p) || Σ || CP(p)` is also deadlock free.

Property 1 ensures the coordination process `CP(p)` performs some timed element’s behaviour between any two adjacent time stable states; here a timed element’s behaviour is either performing a task element/instance’s work, delaying a task element/instance, triggering a task element/instance’s outgoing sequence flow, or triggering a timed exception flow. We provide the following definition of time progression between two adjacent stable states `X =⇒ Y`, that is, `X` proceeds to `Y` via a sequence of timed states followed by a sequence of untimed states.

Definition 6.14. Time Progression. Given any two consecutive time stable states `X` and `Y` such that `X =⇒ Y`, time progresses from `X` to `Y`, denoted as `pg(X,Y)`, if and only if at least one of the following holds.

1. `Pp(X) ⊆ Pp(Y)`
2. `De(X) ⊆ De(Y)`
3. `(Fr(X) ∪ Mf(X)) ⊆ Pp(Y)`

Lemma 6.15. Given two consecutive time stable states `X` and `Y`, such that `X =⇒ Y`, we have `pg(X,Y)`.

Proof. See Page 258 (Section C.3).
Consider again the example described in Section 6.4.4. Here we assume the execution of the partial BPMN process shown in Figure 6.15 has reached time stable state S such that its set of fresh timed elements are tasks A, B and C where $d(A) = [i, j]$, $d(B) = [k, l]$ and $d(C) = [m, n]$ and $m < i$ and $m < k$. By Rule A-E, $dur(S) = m$, and both A and B are postponed for duration m, during which task C can be either executed or delayed. If task C is delayed, then in the subsequent time stable T, where $S \Rightarrow T$, $Dec(T) = \{C\}$ and $Pp(T) = \{A, B\}$ such that $d(A) = [i - m, j - m]$, $d(B) = [k - m, l - m]$ and $d(C) = [0, n - m]$. If $i < k$ and $i < n$ then after duration $i - m$, A becomes enactable, therefore time progresses from S to T.

Property 2 ensures that given any BPMN pool p, $CP(p)$ cannot cause $PL(p)$ to deadlock. Theorem 6.16 establishes this property.

Theorem 6.16. Deadlock Freedom. Given any BPMN pool p, such that if process $PL(p)$, modelling p's untimed behaviour, is deadlock free, then process $PL(p) \parallel \Sigma CP(p)$ is also deadlock free.

Proof. See Page 261 (Section C.3).

Property 2 also shows that deadlock freedom is an untimed property, that is, if p's untimed behaviour is deadlock free, p's relative timed behaviour is also deadlock free, regardless of the timing information specified.

We now return to the running example. The following CSP process $Product$ models the relative timed behaviour of the production business process diagram shown in Figure 6.1.

$$Product = EP \parallel \Sigma CP$$

The process $Product$ is the parallel composition of the enactment process EP and the coordination process CP. The definition of EP is straightforward, and has been omitted; the definition of process CP is given by the set of process equations (6.5) on Page 127 at the end of the chapter.

By Theorem 6.16, we check whether $Product$ is deadlock-free by checking the following refinement assertion using the FDR tool.

$$DF \sqsubseteq_{x} EP$$

Here process DF is the characteristic deadlock free process defined in Equation 5.6.2 on Page 77.

We also check if $Product$ satisfies the requirement introduced at the beginning of this chapter. The requirement states that “at least one of artifacts $A1$ and $A2$ must be composed in between artifacts $B1$ and $B2$”. The following process, $Spec0$, models this requirement, where the work of tasks $A1$, $A2$, $B1$ and $B2$ are modelled by CSP events $w.A1$, $w.A2$, $w.B1$ and $w.B2$ respectively.

$$Spec0 = \epsilon \cap x : \Sigma \setminus \{w.B1\} \bullet x \rightarrow Spec0 \cap w.B1 \rightarrow Spec1$$

$$Spec1 = \epsilon \cap w.A1 \rightarrow Spec2 \cap w.A2 \rightarrow Spec2 \cap (\bigcap x : \Sigma \setminus \{w.B2, w.A1, w.A2\} \bullet x \rightarrow Spec1)$$

$$Spec2 = \epsilon \cap x : \Sigma \setminus \{w.B1, w.B2\} \bullet x \rightarrow Spec2 \cap w.B1 \rightarrow Spec1 \cap w.B2 \rightarrow Spec0$$

We check if $Product$ satisfies the requirement by checking the following refinement assertion using the FDR tool.

$$Spec0 \sqsubseteq_{x} Product \setminus (\Sigma \setminus \{w.A1, w.A2, w.B1, w.B2\})$$

This refinement does not hold and the trace $(w.A2, w.A1, w.B1, w.B2)$ is given as a counterexample by FDR. This counterexample shows the possibility of performing tasks $A1$ and $A2$ before task $B1$ and that task $B2$ can be performed after task $B1$ without performing any of tasks $A1$ and $A2$.

6.7 Summary

In this chapter we provided an extension to the process semantics presented in Chapter 5 to model BPMN process’s relative timed behaviour. We adopted a variant of the two-phase functioning approach widely used in real-time systems and timed coordination languages [LJBB06] and defined a set of transition rules to coordinate the timed behaviour of BPMN processes. We formalised the coordination procedure...
by showing that the coordination procedure yields CSP processes that cannot cause their untimed counterpart to deadlock. We have also illustrated by examples how to use the extension and described an implementation in Haskell.
\[CP = s.s11 \rightarrow (C01 \square C02) \]
\[C01 = s.s12 \rightarrow (C03 \square C04) \]
\[C02 = s.s13 \rightarrow (C05 \square C06) \]
\[C03 = s.s1 \rightarrow s.s13 \rightarrow s.s8 \rightarrow C14 \]
\[C04 = s.s13 \rightarrow (C07 \square C08) \]
\[C05 = s.s8 \rightarrow s.s12 \rightarrow s.s1 \rightarrow C14 \]
\[C06 = s.s12 \rightarrow (C09 \square C10) \]
\[C07 = s.s8 \rightarrow s.s1 \rightarrow C14 \]
\[C08 = w.A1 \rightarrow C71 \triangleright w.A2 \rightarrow C34 \]
\[C09 = s.s1 \rightarrow s.s8 \rightarrow C14 \]
\[C10 = s.s5 \rightarrow s.s7 \rightarrow C59 \]
\[C11 = s.s4 \rightarrow s.s3 \rightarrow (C18 \square C13) \]
\[C12 = s.s3 \rightarrow s.s4 \rightarrow (C18 \square C13) \]
\[C13 = (s.s6 \rightarrow C63) \]
\[C14 = s.s2 \rightarrow (C11 \square C12) \]
\[C15 = w.B1 \rightarrow C31 \triangleright C36 \]
\[C16 = w.B1 \rightarrow C31 \triangleright C36 \]
\[C17 = w.A2 \rightarrow s.s6 \rightarrow C63 \]
\[C18 = w.A1 \rightarrow s.s5 \rightarrow C52 \]
\[C19 = w.A1 \rightarrow s.s5 \rightarrow C52 \]
\[C20 = s.s6 \rightarrow C53 \square s.s9 \rightarrow C62 \]
\[C21 = s.s5 \rightarrow w.B1 \rightarrow C53 \]
\[C22 = w.A1 \rightarrow C40 \triangleright C34 \]
\[C23 = s.s5 \rightarrow w.B1 \rightarrow C53 \triangleright C63 \]
\[C24 = s.s6 \rightarrow s.s7 \rightarrow C59 \]
\[C25 = w.A2 \rightarrow C20 \square s.s9 \rightarrow w.A2 \rightarrow C62 \]
\[C26 = C65 \rightarrow C28 \]
\[C27 = C65 \rightarrow C28 \]
\[C28 = w.A1 \rightarrow C49 \triangleright C37 \]
\[C29 = s.s9 \rightarrow C34 \]
\[C30 = s.s9 \rightarrow w.A1 \rightarrow C60 \]
\[C31 = w.A1 \rightarrow ((w.B1 \rightarrow C32 \triangleright C30) \square s.s5 \rightarrow C90 \square C82) \]
\[C32 = s.s6 \rightarrow w.A1 \rightarrow C60 \]
\[C33 = w.A2 \rightarrow C34 \]
\[C34 = s.s6 \rightarrow w.A1 \rightarrow C60 \]
\[C35 = w.A1 \rightarrow C30 \triangleright s.s6 \rightarrow C27 \]
\[C36 = w.A1 \rightarrow s.s5 \rightarrow C63 \triangleright C27 \]
\[C37 = w.B1 \rightarrow C61 \triangleright C44 \]
\[C38 = s.s6 \rightarrow C39 \]
\[C39 = w.A1 \rightarrow C49 \triangleright C47 \]
\[C40 = s.s5 \rightarrow C62 \square s.s6 \rightarrow C60 \]
\[C41 = w.A2 \rightarrow C32 \square s.s5 \rightarrow C25 \square s.s9 \rightarrow C71 \]
\[C42 = s.s6 \rightarrow C37 \square (w.B1 \rightarrow C43 \triangleright s.s6 \rightarrow C44) \]
\[C43 = s.s6 \rightarrow C61 \square C29 \]
\[C44 = w.A2 \rightarrow C88 \]
\[C45 = s.s6 \rightarrow C61 \square C29 \]
\[C46 = w.A1 \rightarrow C71 \triangleright w.A2 \rightarrow C34 \]
\[C47 = C77 \square s.s9 \rightarrow C22 \square s.s6 \rightarrow C31 \]
\[C48 = w.B2 \rightarrow s.s10 \rightarrow c.end3 \rightarrow C92 \]
\[C49 = s.s5 \rightarrow C53 \square s.s9 \rightarrow C60 \]
\[C50 = s.s6 \rightarrow (w.A1 \rightarrow C39 \triangleright (C68 \square C24)) \]

\[\text{(6.5)} \]
Chapter 7

Modelling Empirical Studies

7.1 Introduction

In this chapter we consider extending the application scope of BPMN by investigating an alternative class of workflows. Specifically we propose a declarative model for *empirical studies*, and a method for transforming this model into BPMN so that one may leverage both BPMN’s graphical expressiveness and the formal semantics which we have provided. We first provide the following definition of an empirical study and motivate our approach with an example.

Definition 7.1. Empirical Study. An empirical study is a plan consisting of a series of scientific procedures interleaved with a set of observations performed over a period of time; these observations may be manually performed or automated.

7.1.1 Motivating Example

A clinical trial is a typical long-running empirical study. In a clinical trial, observations are made as a series of case report form submissions detailing the health of the patient. Case reports are performed at specific times in the trial, and are interleaved with clinical interventions. The precise description of both reports and interventions are then recorded in a patient study calendar similar to the one shown in Figure 7.1 [CAL].

![Figure 7.1: A screenshot of the patient study calendar](image)

Specification. Currently clinical trial designers (or ‘study planners’) supply both schedule and procedural information about case reports and interventions either textually or by inputting textual information and selecting options about them on XML-based data entry forms [CHG+07]. An example of this is shown in Figure 7.2. However, the ordering constraints on observations and scientific procedures may be complex, and a precise specification of this information is time consuming and prone to error.
Verification. Table 7.1 shows the schedule, dosage and method of administration for each drug administration in an intervention of a clinical trial. During an intervention it is important that drugs are given to patients safely and effectively. Specifically, clinical interventions must satisfy a set of oncological safety principles [HSW95]. For example, the safety principle Sequencing ensures that an intervention “order(s) (essential) actions temporally for good effect and least harm”. Here we may be interested in the following particular instance of this principle for the intervention schedule in Table 7.1.

No more than one dosage of Gemcitabine (TG_G) may be given after the administration of Cyclophosphamide (EC_C) and before Epirubicin (EC_E).

Without a precise declarative specification of the schedule, it is difficult to guarantee the safety of the intervention.

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Schedule</th>
<th>Dosage</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclophosphamide</td>
<td>EC_C</td>
<td>every 14 to 20 days</td>
<td>175mg/m^2</td>
<td>Intravenous bolus</td>
</tr>
<tr>
<td>Epirubicin</td>
<td>EC_E</td>
<td>every 18 to 21 days</td>
<td>2000mg/m^2</td>
<td>Intravenous infusion</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>TG_T</td>
<td>every 5 to 10 days</td>
<td>90mg/m^2</td>
<td>Slow push/ fast drip</td>
</tr>
<tr>
<td>Gemcitabine</td>
<td>TG_G</td>
<td>within 10 days after TG</td>
<td>600mg/m^2</td>
<td>3 hours infusion</td>
</tr>
</tbody>
</table>

Table 7.1: Drug administration schedule for an example clinical trial

This requirement of precise specification suggests the use of a graphical modelling language, while the verification problem may be addressed by a language with a formal semantics and accompanying mechanical verification tools. We believe both these requirements can be addressed by specifying empirical schedules as workflow instances in BPMN.

Figure 7.3 shows a BPMN diagram describing the clinical intervention described in Table 7.1. Note specific details (e.g. dosage) of each drug administration are recorded in the syntax of the subprocess element. The construction procedure for this will be described later in the chapter.
7.1.2 Contributions and Structure of Chapter

The main contributions of this chapter are as follows:

- We introduce a generic empirical studies model, Empiricol, an extension of the clinical trial workflow model defined in the CancerGrid project [CHG*07], for modelling empirical studies declaratively.

- We describe bidirectional transformation functions between Empiricol and BPMN. While the transformation from BPMN to Empiricol provides a medium for empirical studies to be specified graphically as workflows, transforming from Empiricol to BPMN allows graphical visualisation, simulation and verification.

The rest of this chapter is structured as follows. Section 7.2 describes the abstract syntax and the semantics of the empirical studies model Empiricol. Section 7.3 presents the bidirectional transformation functions between Empiricol and BPMN. Complete definitions of the transformation functions can be found in Appendices F and G. Section 7.4 discusses how this transformation allows simulation and automation of empirical studies (verification of empirical studies is discussed via a case study in Chapter 8). Section 7.5 discusses related work and summarises the contribution of this chapter.

7.2 Abstract Syntax of Empiricol

In this section we describe the syntax of the empirical studies model Empiricol. This model generalises the clinical trial workflow model defined in the CancerGrid project [CHG*07]. An empirical workflow is a list of parameterised generic activity interdependence sequence rules, with each rule modelling the dependency between the prerequisite and the dependent observations. Figure 7.4 shows the abstract syntax of Empiricol. Empiricol is a list of EventSequencing values, with each value records a sequence rule. The data type EventSequencing has four constructors, with each constructor recording a type of sequence rules for a particular part of the empirical workflow.

```
type Empiricol = [EventSequencing]
data EventSequencing = Start DptEvent | NStop PreAct |
    Event ActivityId PreAct DptEvent Condition Condition DptAct [RepeatExp] Works
    data ActivityId = START | NSTOP | Id String
```

Specifically an empirical workflow has exactly one starting sequence rule that models the start of the workflow; the starting sequence rule is recorded using the constructor Start. An empirical workflow has also exactly one ending sequence rule that models the end of the workflow; the ending sequence rule is recorded by the constructor NStop. An empirical workflow has one or more sequence rules defining activities in the workflow; each activity is captured by the constructor Event. Unless stated otherwise, we assume the term sequence rules for referring to activity-defining sequences, that is, those captured by Event.
We now describe each argument encapsulated by Event:

- The ActivityId value records a unique name, for identifying the sequence rule. The data type ActivityId defines three constructors: START and NSTOP identify the starting and terminating sequences respectively, and Id records the unique name of a sequence rule in its String parameter.

- The PreAct value records the sequence rule’s prerequisite; prerequisites are presented in Section 7.2.2.

- The DptEvent value records the sequence rule’s dependency rule; dependencies are presented in Section 7.2.2.

- The fourth and fifth values of type Condition record the starting and terminating conditions of the sequence rule; conditions are presented in Section 7.2.5.

- The DptAct value records the observation group of the sequence rule; the construction of observation groups is presented in Section 7.2.1.

- The RepeatExp value is a list of observation repetitions defined by the sequence rule; repetitions is explained in Section 7.2.3.

- The Works value records the work group of the sequence rule; work groups are explained in Section 7.2.4.

7.2.1 Observation Group

We define a single observation by the tuple type Observation,

\[\text{type Observation} = (\text{ActivityId}, \text{Duration}, \text{Duration}, \text{Repeat}, \text{Condition}, \text{ActType}) \]

where the first component is a unique name from a set of names (ActivityId) distinct from those identifying sequence rules. Each observation specifies a delay; a delay has the type Duration. It is a double bounded range, of which the minimum and maximum are specified by the second and third components of Observation.

\[\text{data Duration} = \text{UNBOUNDED} | \text{Dur String} \]

Each duration records a string value, whose format is in accordance with the XML schema duration datatype [XS004, Section 3.2.6]. For example in a clinical trial, a follow-up case report is made between two and three months after all case reports associated with the end of the treatment have been carried out. Each observation may be repeated one or more times, and this is specified by the fourth component, Repeat. We explain the data type Repeat in Section 7.2.3. Each observation is conditioned by
the Condition value such that the observation must be terminated if the condition is satisfied. Each observation may either be performed manually or automated, and this information is recorded by the sixth component, ActType of Observation.

Each rule defines a workflow of observations, which is recorded by the data type DptAct.

```haskell
type DptAct = Swf
```

The workflows recorded by the datatype DptAct structurally conforms to a subclass of Kiepuszewski’s structure workflow model [Kie02, Section 4.1.3]. Informally a structure workflow is a workflow where each XOR-split has a corresponding XOR-join, and each AND-split has a corresponding AND-join, and arbitrary cycles are not allowed. Our data type further restricts structure workflow such that each workflow is acyclic; we call this model the acyclic structure workflow model.

We provide the following definition of the acyclic workflow model based on the data type Swf:

Definition 7.2. Acyclic Structure Workflow. An acyclic structure workflow (ASW) is inductively defined as follows:

1. NoFlow defines a null activity and is an ASW.
2. If a :: Acts is a single activity, then Single a :: Swf defines an ASW. Here a is both the initial and final activities. This workflow yields to completion when the activity identified by a has been executed.
3. Let ws :: [Swf] be a list of n ASWs where n ≥ 1; their sequential composition Seq ws :: Swf defines an ASW. Given an observation group Seq ws, we describe its semantics inductively:
 (a) The initial ASW is head ws, its initial activity may be performed when all activities associated with the containing rule’s prerequisites have been satisfied; prerequisites are explained in Section 7.2.2.
 (b) For any ASW ws!!i where i ranges over 1..n-1, its initial activity may be performed when the final activity from ws!!i-1 has completed execution.
 (c) Seq ws yields to completion when activities from ASW last ws have completed execution.
4. Let ws :: [Swf] be a list of n ASWs, an application of exclusive choice over them Choice ws :: Swf is an ASW. It yields to completion when the final activity from one of ws!!i where i ranges over 0..n-1 has completed execution.
5. Let ws :: [Swf] be a list of n ASWs; their interleaving Par ws :: Swf is an ASW. It yields to completion when the final activities from all of ASWs from the list have been completed.
6. Nothing else defines an ASW.

Kiepuszewski showed that structure workflow models are deadlock-free [Kie02, Section 5.3].

Theorem 7.3. Structured Workflow Models are deadlock-free.

Since individual activity in an ASW may terminate if and only if either it has completed execution or the condition of the activity is satisfied, ASW is a subset of structure workflow, a trivial consequence of this is that ASW is also deadlock-free.

Corollary 7.4. ASWs are deadlock-free.

Each activity a in the ASW definition Single a is defined by the data type Acts,

```haskell
data Acts = Dp Observation | Wk Work | Wu WorkSUnit
```

where observation groups restrict each a in Single a to be Dp o for some observation o :: Observation. The set of all observation groups is a subset of the AWF model and we define DptAct as a type synonym to Swf. Note that there are also two subsets of the ASW model, restricting activity a to the other two constructors of Acts. These will be described in Section 7.2.4.
7.2.2 Prerequisites and Dependencies

A sequence rule may only be evaluated if its prerequisite is satisfied. A prerequisite is a collection of names for identifying sequence rules and is organised as a tree. Prerequisites are recorded in the second argument of Event with the type PreAct. The completion of a sequence rule’s evaluation triggers the evaluation of the rule’s dependencies. Similar to a prerequisite, a dependency is a collection of names for identifying sequence rules and is also organised as a tree. Dependencies are recorded in the third argument with the type DptEvent. Both PreAct and DptEvent are defined as follows.

\[
\text{type PreAct} = \text{Tree} \\
\text{type DptEvent} = \text{Tree} \\
\text{data Tree} = \text{All} [\text{Tree}] \mid \text{OneOf} [\text{Tree}] \mid \text{Leaf} \text{ActivityId}
\]

Both DptEvent and PreAct are specialisations of the data type Tree; a Tree value records a tree structure. Here we provide the inductive definition of construction and satisfiability of Tree; while construction is the same across different specialisations, satisfiability depends on the semantics of the specific specialisation.

Definition 7.5. Tree. The construction and satisfiability of a tree is inductively defined as follows:

1. If \(\text{id :: ActivityId} \) is a unique name that identifies a particular sequence rule, then \(\text{Leaf id} :: \text{Tree} \) defines a tree. The tree is satisfied if and only if the sequence rule \(\text{id} \) is satisfied.

2. If \(\text{ts :: [Tree]} \) is a list of trees, then \(\text{All ts :: Tree} \) is a tree and is satisfied if and only if all trees \(\text{ts} \) are satisfied.

3. If \(\text{ts :: [Tree]} \) is a list of trees, then \(\text{OneOf ts :: Tree} \) is a tree and is satisfied if and only if one of the trees \(\text{ts} \) is satisfied.

4. Nothing else defines a tree.

We now describe the satisfiability of trees. A prerequisite tree identifies the preceding sequence rules that must have been evaluated before its containing sequence rule may be evaluated. In particular, the prerequisite tree \(\text{Leaf i} \) is satisfied if and only if the preceding sequence rule identified by \(\text{i} \) has been evaluated. A dependency tree, on the other hand, identifies the succeeding sequence rules, each of whose prerequisite identifies the containing sequence rule. In particular, the dependency tree \(\text{Leaf i} \) is satisfied if and only if the succeeding sequence rule identified by \(\text{i} \) is triggered.

![Figure 7.5: An illustration of prerequisite and dependence](image)

For example, Figure 7.5 shows a partial BPMN diagram modelling a part of an empirical workflow, each (collapsed) subprocess element modelling a distinct sequence rule. In particular, both subprocesses C and D have the prerequisite tree \(\text{All [A,B]} \) where A and B are Leaf values identifying the sequence rules modelled by subprocesses A and B. Conversely, both subprocesses A and B have the dependency tree \(\text{OneOf [C,D]} \) where C and D are Leaf values identifying the sequence rules modelled by subprocesses C and D.

7.2.3 Repetition

Each sequence rule also defines a (possibly empty) list of repeat clauses; this is recorded by the sixth argument of Event, and has the type [RepeatEx]. These clauses are evaluated sequentially over the list after one default iteration of performing the rule’s observations.
type RepeatExp = (Duration, Duration, Repeat, Repeat, Condition)
type Repeat = Int

Each clause has the type \(\text{RepeatExp}\) and contains a terminating condition specified by the fifth component with the type \(\text{Condition}\). The construction and the evaluation of conditions is described in Section 7.2.5. Each clause also records the minimum and maximum numbers of repetitions, specified by the third and fourth components of \(\text{RepeatExp}\) respectively, and a delay between a minimal period of duration and a maximal period of duration, by the first and second components of \(\text{RepeatExp}\) respectively. Specifically while the condition of the clause holds and the number of repetitions still lies in between minimum and maximum, all observations defined in the containing sequence rule are repeated with the delay specified by the clause. We now define the evaluation of a list of repeat clauses.

Definition 7.6. Evaluation of Repeat Clause List. Given a list of repeat clauses \(\text{res} :: [\text{RepeatExp}]\) defined in some sequence rule \(\text{sr}\), its evaluation is inductively defined as follows:

1. If \(\text{res}\) is empty, it terminates.
2. The initial repeat clause is \(\text{head res}\). It is evaluated after the default iteration of \(\text{sr}\)’s observations have completed, or the condition defined by the fifth component of \(\text{head res}\) is satisfied.
3. A given repeat clause terminates if either its maximum number of repetitions has been reached, or its minimum number of repetitions has been reached and the terminating condition is satisfied.
4. For any clause \(\text{res!!n}\) where \(n\) ranges over \([1..(\text{length res} - 1)]\), it may be evaluated after the evaluation of the clause \(\text{res!!(n-1)}\) terminates.
5. \(\text{res}\) terminates when \(\text{last res}\) terminates.

For example, the follow up sequence rule of a clinical trial might specify that follow up case report should be made every three months for three times after the initial case reports have been made, after which case reportings should be performed every six months for four times.

7.2.4 Work Group

Each sequence rule might include work units, recorded by the last argument of the constructor \(\text{Event}\). Each work unit represents an empirical procedure such as administering a medical treatment on a patient in a clinical trial. In each sequence rule, the procedures defined by the rule’s work units are interleaved with the rule’s observations. Each collection of work units is a \(\text{procedure workflow}\) defined by the data type \(\text{Works}\).

type Works = Swf

This is a specialisation of the ASW model. In particular, the specialisation restricts each \(a\) in \(\text{Single a}\) in a procedure workflow to be \(\text{Wk w}\) for some procedure \(w :: \text{Work}\). We present the definition of \(\text{Work}\).

```plaintext
data Work = WkS WorkMUnit | WkM WorkMBlock
type WorkMBlock = (WorkId, WorkBlock, Duration, Repeat)
type WorkMUnit = (WorkId, Procedure, Duration, Duration, Repeat)
```

The data type \(\text{Work}\) defines two constructors, \(\text{WkS}\) and \(\text{WkM}\). A \(\text{WkS w}\) value records a single repeatable procedure, while a \(\text{WkM w}\) value records a repeatable workflow of procedures. We first consider single repeatable procedures, whose definition is provided as follows.

Definition 7.7. Single Repeatable Procedure. A single repeatable procedure (SRP) is a quintuple \((I, P, M, N, R)\) such that:

- \(I\) uniquely identifies the procedure;
- \(P\) records the definition of the procedure;
- \(M\) records the minimum duration before the procedure may be executed;
- \(N\) records the maximum duration after which the procedure must be terminated; and
R records the repeat clause, which defines if and how the procedure should be repeated.

Each SRP is defined by a tuple type WorkMUnit, and its procedural definition is recorded using the data type Procedure. A Procedure value is either the null constructor DetailHidden representing unknown procedural information or one of the other constructors each capturing a different type of procedure.

```
data Procedure = DetailHidden | ProcedureA Treatment | ProcedureB ...
data Treatment = Treatment Name Quantity Method
```

In our current definition the constructor ProcedureA t stores a Treatment value recording the name of the drug, its dosage and method of administration. Here the ellipsis ... indicates the data type Procedure may be extended to cater for other types of empirical studies.

We now consider repeatable workflow of procedures, whose definition is provided as follows:

Definition 7.8. Repeatable Workflow of Procedures. A repeatable workflow of procedures (RWP) is a quadruple \((I, W, M, R)\) such that:

- \(I\) uniquely identifies the procedure;
- \(W\) records an ASW defining a workflow of procedures;
- \(M\) records the minimum duration before the workflow may be triggered; and
- \(R\) records the repeat clause, which defines if and how the workflow should be repeated.

Each RWP is defined by a tuple type WorkMBlock. In particular its workflow of procedures is recorded by the type WorkBlock, and is a specialisation of Swf, restricting each \(a\) in Single \(a\) in the workflow to be \(Wu w\) for some single non-repeatable procedure \(w :: WorkSUnit\).

```
type WorkBlock = Swf
type WorkSUnit = (WorkId, Procedure, Duration, Duration)
```

The definition of a single non-repeatable procedure is provided as follows:

Definition 7.9. Single Non-Repeatable Procedure. A single non-repeatable procedure (SNP) is a quadruple \((I, P, M, N)\) such that:

- \(I\) uniquely identifies the procedure;
- \(P\) records the definition of the procedure;
- \(M\) records the minimum duration before the procedure may be executed; and
- \(N\) records the maximum duration after which the procedure must be terminated.

7.2.5 Conditions

The third and fourth arguments of a sequence rule are two conditional statements, each of type Condition. The third argument defines the condition for triggering the evaluation the sequence rule, and the fourth argument defines the condition for terminating the evaluation of the sequence rule.

Our definition of Condition extends the skip logic used in the CancerGrid Workflow Model \cite{CHG07}. Specifically, its syntax captures expressions in conjunctive normal form.

```
data Condition = NoCond | Ands [Ors]
data Ors = Ors [SCondition]
type SCondition = (Range, Property)
data Range = Bound RangeBound RangeBound | Emu [String]
data RangeBound = NoBound | Abdate Duration | Abdec Float | Rldec Property Float | Rlint Property Int
```

Each condition \(c :: Condition\) yields a Boolean value and is either true by default, denoted by the constructor NoCond, or defined as the conjunction of clauses, each of which is a disjunction of Boolean conditions, of type SCondition. The type SCondition is satisfied if the value of the specified property (typed Property) falls into the specified range (typed Range) at the time of evaluation. A Property
value is a name that identifies a particular property in the domain of the empirical study. A Range is either an enumeration of String values via the constructor Emu, or an interval of two numeric values via the constructor Range over two arguments of type RangeBound, which may be absolute or relative to a property.

7.3 Transformation

In this section we describe the bidirectional transformation between empirical workflows of type Empiricol and their corresponding BPMN diagrams. Specifically we have implemented a total function transforming Empiricol to BPMN, the data type for recording the abstract syntax of BPMN, and a partial function, transforming BPMN to Empiricol.

\[eTob :: \text{Empiricol} \rightarrow \text{BPMN} \]
\[bTob :: \text{BPMN} \rightarrow \text{Empiricol} \]

We first describe the transformation from a single sequence rule to a BPMN subprocess, by considering the transformation over each of the components that makes up the tuple of a sequence rule. We then describe the composition of sequence rules to model a complete observation workflow. Full definitions of the transformations can be found in Appendices \(F\) and \(G\).

7.3.1 Activities

This section considers the transformation of activities (Single) defined in an ASW. The transformation of ASW is presented in Section 7.3.2.

7.3.1.1 Observation

We consider the transformation of an observation. Each observation is graphically represented by either a BPMN multiple instance task (Miseq), or an atomic task (Task) if the repeat value is one. In both cases, the minimum and maximum durations of an observation are mapped to the Range value of the BPMN element and both the observation identifier and its ActType value are mapped to the name of the task element via the function \(\text{idToTName}\). For example Observation A with the ActType value Manual is translated to the TaskName value A_Manual. Conversely the function \(\text{idsTname}\) takes a task name and returns the corresponding observation identifier and ActType value.

\[\text{idToTn} :: \text{ActivityId} \rightarrow \text{ActType} \rightarrow \text{TaskName} \]
\[\text{idsTname} :: \text{TaskName} \rightarrow (\text{ActivityId},\text{ActType}) \]

The condition of the observation may be translated into a rule exception flow, that is, an intermediate rule (Irule) element attached to the task element.

We have implemented two functions to assist the transformation between an observation and its corresponding task element. In particular, the function \(\text{dptact}\) takes a task element and returns an Observation value recording the observation modelled by that element. The function \(\text{mkdpt}\) takes a sequence flow (Seqflow) and an observation, and returns a pair where the first component is either an atomic task element or a multiple instance task element, and the second component is a fresh sequence flow; a sequence flow is fresh if it has not been declared so far in the transformation process; a sequence flow is fresh with respect to a list of elements if it has not been declared in that list.

\[\text{dptact} :: \text{Element} \rightarrow \text{Observation} \]
\[\text{mkdpt} :: \text{Observation} \rightarrow \text{Seqflow} \rightarrow (\text{Element},\text{Seqflow}) \]

7.3.1.2 Procedure

We consider the transformation of a SRP, a SNP and a RWP. A SRP is modelled by either a multiple instance task or an atomic task if the repeat value is one. In both cases, the minimum and maximum durations of a SRP are mapped to the Range value of the BPMN element and the procedure identifier is mapped to the name of the task element via the function \(\text{wkToTk}\). Conversely the function \(\text{tkTowk}\) takes a task name and returns the corresponding procedure identifier.

\[\text{wkToTk} :: \text{WorkId} \rightarrow \text{TaskName} \]
\[\text{tkTowk} :: \text{TaskName} \rightarrow \text{WorkId} \]
A SNP is modelled by an atomic task as it is not repeatable. Similar to SRP, the minimum and maximum durations of a SNP are mapped to the Range value of the BPMN element and the procedure identifier is mapped to the name of the task element via the function wkToTk.

A RWP is modelled by either a multiple instance subprocess or an atomic subprocess if the repeat value is one. Figure 7.6 shows an example BPMN subprocess modelling a RWP. Note that the RWP's procedure workflow, denoted by W in Definition 7.8, is modelled by the BPMN elements directly contained in the subprocess R_1. In Figure 7.6 the elements contained in the subprocess model the procedure workflow $\text{Choice} \left[\text{Seq} \left[P_1, \text{Par} \left[P_3, P_4 \right] \right], P_2 \right]$. The transformation of the procedure workflow, which is an ASW, is presented in Section 7.3.2. The minimum duration of the RWP (M in Definition 7.8) is modelled by the start timer event contained in the subprocess.

We implement four functions for the transformation between a procedure and its corresponding BPMN task. The function wk takes a BPMN task and returns a Work value encapsulating either a SRP or a RWP, while function wb takes a BPMN task and returns a WorkSUnit value recording the corresponding SNP.

\[
\text{wk :: Element \to Work} \quad \text{wb :: Element \to WorkSUnit}
\]

The function mkwk takes either a SRP (WorkMUnit) or a SNP (WorkSUnit) and a sequence flow (Seqflow) and returns a pair where the first component is either an atomic task or a multiple instance task and the second component is a fresh sequence flow. The function mkwb takes a RWP (WorkMBlock) and a sequence flow, and returns a subprocess modelling the RWP and a fresh sequence flow.

\[
\text{mkwk :: Either WorkMUnit WorkSUnit \to Seqflow \to (Element, Seqflow)} \quad \text{mkwb :: WorkMBlock \to Seqflow \to (Element, Seqflow)}
\]

7.3.2 Acyclic Structured Workflows

Each sequence rule defines one observation workflow and at most one procedure workflow specifying the work units of the sequence rule. Each of these workflows defines an ASW, whose syntax has been presented in Section 7.2.1. While the previous section described the transformation between individual workflow activities and their respective BPMN constructs, this section describes the transformation of ASWs.

An ASW specifies the control flow of a collection of activities. Figure 7.6 showed a BPMN subprocess modelling a RWP, which is a collection of procedures. Figure 7.7 on the other hand, shows a BPMN subprocess modelling a procedure workflow, where the subprocess R_1 in Figure 7.6 is shown as a collapsed subprocess in Figure 7.7. Specifically the figure depicts a BPMN subprocess modelling the procedure $\text{Par} [\text{Seq}[R_1, \text{Choice}[R_3, R_4], R_2]]$.

We implement two functions swfsub and swfs for the transformation between ASW and BPMN. We first consider swfsub.

The function swfsub takes a WfType value, for identifying whether the ASW specifies an observation workflow, a procedure workflow or a RWP, a sequence flow, a Struct value, and returns a BPMN subprocess modelling that ASW and a fresh sequence flow.

\[
\text{type Struct = Either (Swf, ActivityId) (String, Swf, Duration, Repeat)} \\
\text{data WfType = Dpt | Wks | Wbs}
\]
Figure 7.7: A BPMN subprocess element modelling a procedure workflow

swfsub :: WfType -> Seqflow -> Struct -> (Element,Seqflow)
swfsub w s d = (Compound a (start:end:sf), sflow e)

The Struct value contains either a pair or a quadruple of values. If it is a pair of an ASW (Swf) and the sequence rule’s name (ActivityId), then the ASW specifies either an observation workflow or a procedure workflow and the rule’s name is used for constructing the name of the subprocess. If it is a quadruple of String value, an ASW, a Duration and a Repeat value, then the quadruple corresponds to a RWP. Specifically swfsub returns a subprocess element, and a fresh sequence flow. The subprocess element has the form Compound a (start:end:sf), in which start and end denotes the start and end events contained in that subprocess; sf is a list of elements defined by the expression extswf (sflow s) wf, where wf is the ASW and sflow s is the outgoing sequence flow of the start event start. The function extswf is defined as follows:

extswf :: Seqflow -> Swf -> ([Element],Seqflow)
extswf s NoFlow = ([],s)
extswf s (Choice ws) = extswfm Xgate s ws
extswf s (Par ws) = extswfm Agate s ws
extswf s (Seq ws) = ((par concat last).unzip.(swfm id s)) ws
extswf s (Single g) = sg s g

Specifically given a sequence flow and an ASW, the function returns a pair, where the first component is a list of BPMN elements modelling the ASW and the second component is a fresh sequence flow with respect to that list of elements. Note that the value sg s g evaluates the activity using the functions defined in Section 7.3.1. The function extswf is defined in terms of two other functions: swfm and extswfm. We first consider swfm, which is defined as follows:

swfm :: (Seqflow -> Seqflow) -> Seqflow -> [Swf] -> [([Element],Seqflow)]
swfm f [] = []
swfm f (ds:) = (g,t):(swfm f (f t) ds) where (g,t) = extswf s d

It takes a function f of type Seqflow -> Seqflow, a sequence flow and a list of ASWs, and returns a list of pairs, where each pair consists of a list of BPMN elements and a fresh sequence flow from the list. Essentially, function swfm applies extswf to every ASW from the list (third argument) and for every ASW in that applies f to the sequence flow in the second argument.

If the list of ASWs are sequentially composed, then the function f = id is the identity function. This is because for every ASW evaluated, the outermost outgoing sequence flow of the BPMN construct modelling the ASW must be the outermost incoming sequence flow of the BPMN construct modelling the subsequent ASW; Figure 7.8 shows a partial BPMN process specifying the Seq construct. In this example the outermost sequence flows are denoted by s1 and s2.

Figure 7.8: A BPMN model of the Seq construct
Conversely if the list of ASWs are interleaved or the exclusively chosen from, then function $f = sflow$, which takes a sequence flow and creates a fresh sequence flow. This is because each ASW in the list is executed on a separate flow and requires a fresh sequence flow.

We now consider $extswfm$, which is defined as follows:

$$extswfm :: Type \rightarrow Seqflow \rightarrow ([Swf]) \rightarrow ([Element], Seqflow)$$

$$extswfm t s wf = ((g:j:(concat fe)), (head.outs.atom) j)$$

where $(g,_) = node (Left [s]) (Left (concatMap (ins.atom.head) fe)) "$" ("Gate"++(si s)) t

$(fe,fs) = unzip (swfm sflow (sflow s) wf)$

$(j,_) = node (Left fs) (Right 1) "$" ("Gate"++((si.head) fs)) t$

It takes a BPMN $Type$ value, a sequence flow and a list of ASWs, and returns a pair of a list of BPMN elements and a fresh sequence flow. The $Type$ value either is $Agate$, the type of a parallel gateway, if the list of ASWs are interleaved, or $Xgate$, the type of a data-based XOR gateway, if the exclusive choice is applied to the list of ASWs. Specifically, function $extswfm$ returns a list of BPMN elements and a fresh sequence flow such that the list contains a (AND/XOR) split gateway, a (AND/XOR) join gateway, and a list of BPMN elements modelling the list of ASWs. In particular, the outgoing sequence flows of the split gateway correspond to the outermost incoming sequence flows of the BPMN elements, each of which models an ASW from the list, while the incoming sequence flows of the join gateway correspond to their outermost outgoing sequence flows. Figure 7.7 shows a BPMN representation of a Par value. In particular, $s1$ and $s2$ are the outgoing sequence flows of the AND split gateway and are also the outermost incoming sequence flows of ASWs Seq $[R1, Choice[R3,R4]]$ and R2, while $s3$ and $s4$ are the incoming sequence flows of the AND join gateway and are also the outermost outgoing sequence flows of the ASWs.

We now consider the transformation from BPMN to ASW. The function $swfs$ takes a $WfType$ value and a BPMN subprocess, and returns an ASW modelled by that BPMN subprocess.

$$swfs :: WfType \rightarrow Element \rightarrow Swf$$

$$swfs w e = maybe NoFlow ((gswf w es).head.outs.atom) (find (isstart.etype.atom) es)$$

where $es = embedding e$

Specifically, it locates the start event directly contained in the subprocess. If this element exists, then by definition of ASW it is unique in the subprocess, and the function evaluates the expression $gswf w es s$ where s is the outgoing sequence flow of the start element. If the subprocess does not contain a start event, the function returns $NoFlow$, signifying an empty ASW. The function $gswf$ is defined as follows:

$$gswf :: WfType \rightarrow [Element] \rightarrow Seqflow \rightarrow Swf$$

$$gswf w es s = maybe NoFlow ((gswf w es).head.outs.atom) (find (isstart.etype.atom) es)$$

where $es = embedding e$

Specifically the function $gswf$ checks whether there exists a directed successor of the start event. If so, the function applies Seq over the expression fst $(seqswf w s es)$, and the function evaluates the expression $gswf w es s$ where s is the outgoing sequence flow of the start element. If the subprocess does not contain a start event, the function returns $NoFlow$, signifying an empty ASW. The function $gswf$ is defined as follows:

$$seqswf :: WfType \rightarrow Seqflow \rightarrow [Element] \rightarrow Element \rightarrow [(Swf,Maybe Seqflow)]$$

$$seqswf s w es e |
| isxs e = [(Choice f,n)]++cs
| isas e = [(Par f,n)]++cs
| disjs [isjx,isaj] e = [(NoFlow,(listToMaybe.outs.atom) e)]
| (inb w) e =
| [(single w e,(listToMaybe.outs.atom) e)]++
| (seqswfs w ((head.outs.atom) e) es) |
| otherwise = []
| where (f,n) = swfsult w es ((outs.atom) e)
| cs = maybe [] (as -> seqswfs w a s) n

If e is a (data-based) XOR split gateway, the function returns the list $[(Choice f,n)]++cs$, and if e is an AND split gateway, the function returns the list $[(Par f,n)]++cs$. The value f is the list of ASWs modelled by the succeeding elements of the gateway, n is the outermost outgoing sequence flow of the BPMN elements that model either Par f or Choice f, and cs contains subsequent ASWs in the Seq defined by $gswf$.
Figure 7.9: A BPMN subprocess modelling an observation workflow

Figure 7.9 shows a BPMN subprocess modelling an observation workflow, where the sequence flow s1 is the outermost outgoing sequence flow of the interleaving of tasks O1 and O2, capturing the ASW Par [O1,O2]. The calculation of n allows the function to locate the subsequent BPMN construct, which is the exclusive choice of tasks O3 and O4, capturing the ASW Choice [O3,O4]. The complete ASW hence is Seq [Par [O1,O2],Choice [O3,O4]], where the application of Seq is defined by gswf.

7.3.3 Repeat Clauses

This section describes the transformation between a list of repeat clauses, each of type RepeatExp, and its corresponding BPMN subprocess. A single repeat clause specifies how many repetitions an observation workflow should perform. Since an observation workflow is modelled by a BPMN subprocess, a repeat clause can be naturally modelled as a sequential multiple instance subprocess.

Figure 7.10(a) shows a BPMN subprocess modelling a single repeat clause. According to the semantics of a repeat clause, a repeat clause in a sequence rule repeats all observations defined in that rule; the number of repetitions from a clause ranges between a minimum and a maximum values, and there is a delay, ranging between a minimum and a maximum durations, before a repetition can start.

Specifically we model repeated observations as a subprocess according to the transformation of observation workflows in Section 7.3.2. Each repeat clause is modelled as a sequential multiple instance subprocess, such that it has one incoming and one outgoing sequence flow, denoted as the outermost incoming and outgoing sequence flows respectively. The type of a sequential multiple instance subprocess element, Miseqs, takes an integer value, which specifies the maximum number of repetitions, while the minimum duration is modelled by the start timer event. Both the terminating condition and the maximum duration are modelled by attaching intermediate events to the subprocess, thereby creating exception flows that model the behaviour.

Below shows an example of how to model the clause’s repetition range and terminating condition,

rep = Miseqs "Treatment" (Fix 2) RepeatB BPMN.All
cond = And [cond01,cond02]
cond01 = Sgl (Lt (Pty (Nm "LoopCounter" InT)) (Rge (Inv 5 10)))
cond02 = Sgl (Eq (Pty (Nm "Abnormal Blood Count" EmT)) (Rge (Emv ["VHigh","VLow"])))

where the element type rep records information about a repetitive observation during a study of an
effect of a medical intervention. The condition \texttt{cond} is a conjunction of Conditions \texttt{cond01} and \texttt{cond02}: Condition \texttt{cond01} is satisfied if the current number of repetitions is less than a value chosen over the closed interval \([5..10]\), and Condition \texttt{cond02} is satisfied if the abnormal blood count of the patient is either very high or very low.

A list of repeat clauses is therefore transformed iteratively over each clause starting from head of the list. Figure 7.10(b) shows a BPMN subprocess modelling a list of two repeat clauses, where individual repeat clauses are shown as collapsed subprocesses.

7.3.4 Empirical Workflows

We have so far described the transformation for repeat clauses, observation and procedure workflows, constituting the sixth, seventh and eighth components of a sequence rule. In this section we consider the transformation of a sequence rule and an empirical workflow.

Figure 7.11: A BPMN subprocess representing a single sequence rule

Figure 7.11 shows a BPMN subprocess modelling a single sequence rule. The subprocess directly contains three other subprocesses in collapsed view that model observations, procedures and repeat clauses of the sequence rule. A sequence rule first performs its observations once, which are modelled by the subprocess \texttt{OW}, after which the list of repeat clauses, which are modelled by the subprocess \texttt{RS}, is evaluated and performed. As explained in Section 7.2, procedures are interleaved with observations, we therefore use an AND split gateway to initialise both observations and procedures. We do not place explicit control flow constraints on the interleaving of the procedure and observation workflows as the particular order of execution is determined by their timing information. If no procedure is defined in the sequence rule, the corresponding subprocess will not have parallel gateways and will be represented by a sequential composition of \texttt{OW} and \texttt{RS} subprocess elements.

Finally the start rule event and the attached intermediate rule event model the starting and the terminating conditions of the sequence rule. For example, in a clinical trial a sequence rule may be defined for administering a new drug on a patient, where the insulin level of the patient is to be monitored before and during the treatment. The following two conditions can be specified,

\[
\text{start} = \text{Ands} \left[\text{Ors} \left[\text{Emu} \left[\text{"Normal"}, \text{"Insulin Levels"} \right] \right] \right]
\]

\[
\text{terminating} = \text{Ands} \left[\text{Ors} \left[\text{Emu} \left[\text{"Low"}, \text{"Insulin Levels"} \right] \right] \right]
\]

where \texttt{start} is modelled by the start rule event and \texttt{terminating} is modelled by the attached intermediate rule event.

An empirical workflow, of type \texttt{Empiricol}, is a list of sequence rules connected according to each rule’s prerequisite and dependency. Figure 7.12 shows a single empirical workflow modelled as a BPMN pool.

Note that the order of execution of individual sequence rules also conforms an ASW. We first consider the transformation of sequence rules to a BPMN process.

7.3.4.1 From Empiricol Workflow to BPMN

We define the function \texttt{flow}, which takes an empirical workflow, a list of subprocess elements, each modelling a sequence rule in the workflow, and a sequence flow fresh from the list of subprocesses, and returns a list of all elements, such that these elements are directly contained in a BPMN pool that models the empirical workflow.
CHAPTER 7. MODELLING EMPIRICAL STUDIES

Figure 7.12: A BPMN process describing an empirical workflow

```
flow :: Empiricol -> [Element] -> Seqflow -> [Element]
flow ws es s = pres ws ne (sflow ns) where (ne,ns) = dpts ws es s

The function first evaluates the expression dpts ws es s, where dpts is defined as follows:

dpts :: Empiricol -> [Element] -> Seqflow -> ([Element],Seqflow)
dpts [] es s = (es,s)
dpts ((NStop _):ws) es s = dpts ws es s
dpts (w:ws) es s = dpts ws (update es (a:nss)) ts
  where (nss,ts) = btree Dpts es b ((normtree.getDe) w)
        (a,b) = cg Dpts (Left w) es (Nothing,Just s)
```

This function takes a list of sequence rules, a list of subprocesses and a sequence flow, and connects each BPMN subprocess to its direct successors by evaluating the dependency tree of the sequence rule that the subprocess models. Specifically for each non terminating sequence rule, that is, each rule which is not a NStop value, the function returns a list of subprocess elements nss such that they are connected by sequence flows according to the rule’s dependency and a fresh sequence flow. This list of subprocesses is then used to update the list of BPMN elements es before proceeding to the next sequence rule. The calculation of dependency is defined by the function btree Dpts, which is applied over the outgoing sequence flow of the subprocess that models the sequence rule, and the rule’s dependency. Dpts is a null constructor of type TreeType, which specifies the given Tree value to be a rule’s dependency. The functional composition normtree.getDe selects and normalises the rule’s dependency. Normalisation ensures constructors All and OneOf are never applied over a singleton list.

The function btree is defined as follows:

```
btree :: TreeType -> [Element] -> Seqflow -> Tree -> ([Element],Seqflow)
btree y es s t =
  if (length.gtree) t > 1 then ((g:(concat fs)),(sflow.newest) ks)
  else (par (:\[\]) sflow) (cg y (Right (treeid t)) es (sf y (treeid t) s))
  where (fs,ks) = unzip (btree2 y es s ts)
  g|y= =Pres=f s t( g a t eyts( c o n c a t M a p( o u t s . a t o m . h e a d )f s ) )
  |y= =D pts=f s t( g a t eyts( c o n c a t M a p( i n s . a t o m . h e a d )f s ) )
```

Specifically if the dependency tree is a Leaf value (single leaf node), the function returns a singleton list and a sequence flow such that the list contains the element, identified by the ActivityId value encapsulated by the leaf node, the sequence flow is an incoming sequence flow of the element in the list.

Otherwise if the dependency tree is either a OneOf or an All value, the function applies the function btree2 over the list of dependency trees recorded by the constructor. The function btree2 is defined as follows:

```
btree2 :: TreeType -> [Element] -> Seqflow -> [Tree] -> [(Element,Seqflow)]
btree2 _ _ _ [] = []
btree2 y es s (t:ts) =
  if (length.gtree) t > 1 then (n,u):btree2 y (update es n) u ts)
  else (((fromJust.(findele (Right (treeid t)))) es),s):(btree2 y es s ts))
  where (n,u) = btree y es s t
```

This function takes a specification type (TreeType), the list of BPMN elements constructed so far, a sequence flow and a list of trees, and returns a list of pairs, where each pair is a list of elements and a sequence flow such that the elements model one of the trees and the sequence flow is fresh from the list of elements. Note that each tree is evaluated by applying the function btree. Specifically each pair
represents a branch and these branches are connected via corresponding split and join gateways by the function \texttt{btree}.

After constructing parts of the BPMN pool that model each sequence rule’s dependency, the function \texttt{flow} evaluates the expression \(\texttt{pres ws ne (sflow ns)} \), where \(\texttt{ne} \) from the expression is the list of subprocesses updated with dependency information, \(\texttt{sflow ns} \) is a sequence flow fresh from the list of subprocesses, and function \(\texttt{pres} \) is defined as follows:

\begin{verbatim}
pres :: [Element] -> Seqflow -> [Element]
pres [] es s = es
pres ((Empiricol.Start _):ws) es s = pres ws es s
pres (w:ws) es s
 | (length.getPr) w == 1 = pres ws ess
 | otherwise = pres ws (update es (a:mss)) rs
 where (mss,rs) = btree Pres es ((head.ins.atom) a) ((normtree.getPr) w)
 a = setflows ((fromJust.(find leftr)) es) [s]
\end{verbatim}

This function takes a list of sequence rules, a list of BPMN elements and a sequence flow, and connects BPMN elements using sequence flows according to the prerequisite of the given sequence rules. Specifically for each sequence rule which is not a \texttt{Start} value, it applies the function \(\texttt{btree Pres} \) over the incoming sequence flow of the subprocess, that models the rule, and the rule’s prerequisite tree. \(\texttt{Pres} \) is a null constructor of type \texttt{TreeType}, which specifies the given \texttt{Tree} value to be a rule’s prerequisite.

7.3.4.2 From BPMN to Empiricol Workflow

We now consider the transformation from BPMN to empirical workflow. Since the transformations from BPMN subprocess to a sequence rule’s observation workflow, repeat clauses and procedure workflow have been considered, this section focuses on the construction of prerequisite and dependency trees.

We provide the following generic function \(\texttt{tree} \) for constructing both types of trees:

\begin{verbatim}
tree :: TreeType -> [Element] -> Seqflow -> Tree

tree t (e:es) s = ((\x -> g x es s).fromJust.(find f)) es
 where (f,g) | t == Pres = ((elem s).allouts,presap)
 | t = =Dpt s = (elems . ins . atom, dptsap)
\end{verbatim}

Specifically the function takes a \texttt{TreeType} value, the list of BPMN elements modelling the empirical workflow and a sequence flow, and returns one of the following:

- a prerequisite tree if and only if \texttt{TreeType} value is \texttt{Pres} and the sequence flow is the incoming sequence flow of a subprocess modelling the sequence rule of which the prerequisite tree is defined; or
- a dependence tree if and only if \texttt{TreeType} value is \texttt{Dpts} and the sequence flow is the outgoing sequence flow or an exception flow of a subprocess modelling the sequence rule of which the dependency tree is defined.

To construct a prerequisite tree, the function applies \(\texttt{preap} \) over the element, which has \(s \) as one of its outgoing sequence and exception flows (the direct predecessor of the subprocess that models the sequence rule), the list of BPMN elements modelling the empirical workflow and \(s \). The definition of \(\texttt{preap} \) is defined as follows:

\begin{verbatim}
preap :: Element -> [Element] -> Seqflow -> Tree
preap e es s | (isstart . etype) a = Leaf START
 | isxj e = OneOf (map (trees Pres (es++[e])) (ins a))
 | isaj e = Empiricol.All (map (trees Pres (es++[e])) (ins a))
 | disje [insx,insa] e = tree Pres (es++[e]) ((head.ins) a)
 | (iscompound . etype) a = Leaf (ename e)
 where a = atom e
\end{verbatim}

This function \(\texttt{preap} \) checks if element \(e \) is one of the following:

- If \(e \) is a start event, then a leaf node of the prerequisite tree has been reached, therefore the function returns \texttt{Leaf START}.

• If \(e \) is a XOR join gateway (a join gateway has multiple incoming sequence flows and one outgoing sequence flow), then semantically the satisfaction of one of the gateway’s direct predecessors would satisfy the prerequisite. Therefore the function returns OneOf \(ss \) where \(ss \) is the evaluation of the expression \(\text{map} (\text{trees Pres} (es++[e])) (\text{ins a}) \).

• If \(e \) is an AND join gateway, then semantically only the satisfaction of all of the gateway’s direct predecessors would satisfy the prerequisite. Therefore the function returns All \(ss \) where \(ss \) is the evaluation of the expression \(\text{map} (\text{trees Pres} (es++[e])) (\text{ins a}) \).

• If \(e \) is a split gateway (a split gateway has one incoming sequence flow and multiple outgoing sequence flows), then the satisfaction of its unique predecessor would satisfy the prerequisite. Therefore the function applies \(\text{tree} \) over the incoming sequence flow of \(e \).

• If \(e \) is a subprocess, then it would model a sequence rule and the completion of the rule’s evaluation would satisfy the prerequisite. Therefore the function returns \(\text{Leaf} (\text{ename} e) \) where \(\text{ename} e \) returns the unique identifier of the sequence rule modelled by \(e \).

Conversely to construct a dependency tree, the function applies \(\text{dptap} \) over the element \(e \), which has \(s \) as one of its incoming sequence flows (the direct successor of the subprocess that models the sequence rule), the list of BPMN elements \(es \), modelling the empirical workflow and \(a \). The definition of \(\text{dptap} \) is defined as follows:

\[
\text{dptap} :: \text{Element} -> [\text{Element}] -> \text{Seqflow} -> \text{Tree} \\
\text{dptap} e es s | (\text{isend.ettype}) a = \text{Leaf NSTOP} \\
| (\text{isabort.ettype}) a = \text{Leaf ASTOP} \\
| \text{iss} e = \text{OneOf} (\text{map} (\text{trees Dpts} (es++[e])) (\text{outs a})) \\
| \text{iss} e = \text{Empirical All} (\text{map} (\text{trees Dpts} (es++[e])) (\text{outs a})) \\
| \text{disj} [\text{isaj},\text{isxj}] e = \text{tree Dpts} (es++[e]) (\text{head.outs a}) \\
| (\text{iscompound.ettype}) a = \text{Leaf} (\text{ename} e) \\
\text{where} a = \text{atom} e
\]

It is easy to see the definition of this function mirrors that of \(\text{preap} \).

7.4 On Simulation and Automation

In this section we discuss briefly the application of business process management techniques to empirical studies. We describe informally, via a simple example, how modelling empirical studies in BPMN allows their study plans to be simulated and partially automated by translating the BPMN diagrams into executable BPEL processes. A more comprehensive empirical study example is presented in Chapter 8, using which we show how transforming empirical workflows to BPMN assists verifying the correctness of empirical studies.

![Figure 7.13: A BPMN pool describing the workflow of a clinical trial](image)

As useful as it is to visualise and formally specify a complete study plan, it is also beneficial to validate the plan before its execution phase, especially if the study has a long running duration; it would be undesirable to run into an error three months into the study. One method of validating a study is by simulation. When considering either simulating or automating a portion of a study, we assume the observations specified in that portion can be appropriately simulated or automated; an observation might
define the action of recording a measurement from a display interfacing with a software application or
submitting a web form to a web service for analysis.

Figure 7.13 shows a BPMN pool modelling the workflow of a phase III chemotherapy clinical trial. In
this trial there are two sets of interventions, each interleaved with observation consisting of submitting
forms about specific medical conditions of the patients (case reporting). The following observation
workflow is defined by the sequence rule modelled by the subprocess Case Reporting in the figure. An
expanded view of this subprocess is shown in Figure 7.14.

```
Seq [Single (Id "Hypertensity Report", Dur "P7D", Dur "P7D", None, Manual),
Choice [Dp (Id "Tumour Measurement Report", Dur "P1D", Dur "P1D",
Ands [Ors [(Emu ["low"], "blood pressure")], Manual),
Dp (Id "Toxicity Review", Dur "P1D", Dur "P1D",
Ands [Ors [(Emu ["high"], "blood pressure")], Manual)]
```

Figure 7.14: A BPMN subprocess of an observation block

While submitting a report form is a manual task, due to the transformation, it is possible to simu-
late this action by translating its corresponding BPMN subprocess into a sequence of BPEL activities
according the mapping provided by the BPMN official documentation [OMG08, Annex A].

```
<sequence>
  <wait for="PT7M"><operation name="sendHypertensityReport">
    <input message="hypertensityMessage" /></operation></wait>
  <switch>
    <case condition="getVariableData('blood pressure') == high">
      <wait for="PT1M"><operation name="sendToxicityReview">
        <input message="toxicityMessage" /></operation></wait></case>
    <case condition="getVariableData('blood pressure') == low">
      <wait for="PT1M"><operation name="sendTumourReport">
        <input message="tumourMessage" /></operation></wait></case>
  </switch></sequence>
```

Here each wait activity is an invocation upon the elapse of a specified duration. Since the derived BPEL
process is for simulation, we scale down the specified duration of each observation. For example operation
sendHypertensityReport simulates the hypertensity report being sent. While the observation workflow
above specifies this report to be sent after seven days, we scale down the duration to seven minutes
(PT7M). Note that each invocation in a BPEL process is necessarily of a web service; if the specified
observation defines an action to invoke a web service, e.g. uploading a web form, the translated BPEL
operation will also be invoking that web service, and otherwise, for simulation purposes, a "dummy" web
service could be used for merely receiving appropriate messages. Similarly, partial automation is also
possible by translating appropriate observations into BPEL processes which may be executed during the
execution phase of the study.

7.5 Summary

Specifications of long running empirical studies are complex; the production of a complete specification
can be time-consuming and prone to error. We have described a graphical method to assist this type of
specification. We have introduced a workflow model suitable for specifying empirical studies, which then
can be populated onto a calendar for scheduling, and described bidirectional transformations, which allow
empirical studies to be modelled graphically using BPMN, and to be simulated and partially automated as BPEL processes. Transforming empirical studies to BPMN also assists verifying the correctness of empirical studies against (clinical) safety properties.

To the best of our knowledge, this chapter describes the first attempt to apply graphical workflow technology to empirical studies and calendar scheduling, while large amounts of research [LAB+06, DBG+04, OAF+04, CGH+06, BJA+08] have focused on the application of workflow notations and implementations to “in silico” scientific experiments. Similarly, research effort has been directed towards effective planning of specific types of long running empirical studies, namely clinical trials and guidelines. Related works in scientific workflows and clinical trial planning have been considered in Chapter 3.
Chapter 8

Case Studies

8.1 Introduction

This chapter presents two comprehensive case studies illustrating the semantics defined in Chapters 5 and 6, and the empirical studies model *Empiricol* presented in Chapter 7. In Section 8.2, we consider a collaborative business process describing an airline ticket reservation system, shown in Figure 8.12. This business process has been adopted from the WSCI specification document [W3C02]. We investigate some general behavioural requirements such as deadlock freedom and compatibility, and some specific requirements by applying the notion of compositionality and CSP refinements. In Section 8.3, we consider an empirical workflow specification based on Neo-tAnGo [ECH04], a phase III breast cancer clinical trial. In particular, we investigate the construction of the empirical study using the empirical studies model *Empiricol*, and how transforming it into BPMN assists visualisation and simulation of the study. We also investigate the correctness of the study via a set of oncological safety principles [HSW95]. We summarise the contribution of this chapter in Section 8.4.

8.2 Ticket Reservation Process

This section considers the airline ticket reservation business process shown in Figure 8.12 on Page 171. This business process is adapted from the WSCI specification document [W3C02]. The business process describes the collaboration of three participants: a traveller, a travel agent, and an airline reservation system, which are specified by BPMN pools *Traveller*, *Agent* and *Airline* respectively.

We model the workflow of individual participants in Sections 8.2.1, 8.2.2 and 8.2.3; in Section 8.2.4 we model their collaboration; in Section 8.2.5 we investigate behavioural properties concerning individual participants as well as their collaboration; and in Section 8.2.6 we consider composition development of the business process.

8.2.1 Traveller

The traveller can order a trip by setting up an itinerary for airline tickets, she can then reserve the seats and subsequently proceed with the booking, after which the travel agent and the airline will send her the invoice and the tickets respectively. Figure 8.1 shows the BPMN pool *Traveller* specifying the workflow of the traveller participant.

Specifically, the traveller may choose her travel plan (from a catalogue), and submit her choice to the travel agent via some local web service (e.g., web form) (*Order_Trip*). For various reasons the traveller may choose to change her itinerary (*Change_Itinerary*); she may also decide not to take the trip, in which case she may cancel her order (*Cancel_Itinerary*). In case she decides to accept the proposed itinerary, she may proceed to reserve this itinerary (*Send_Confirmation*) and provide her credit card information to the travel agent. After reservation the traveller may either purchase her tickets (*Book_Tickets*) or cancel them (*Cancel_Tickets*); if she chooses to cancel her tickets, she will have to wait for the cancellation to be processed (*Accept_Cancellation*). Also if she takes too long at purchasing her tickets, a time out will occur; the tickets will then be released from the traveller and she will receive a cancellation notification (*Accept_Cancellation*). From the traveller’s point of view, the time restriction would normally be enforced by the travel agent, therefore the time out is modelled as a message exception flow attached to the task *Book_Tickets*. After the traveller has purchased her tickets, she will receive the invoice from the travel agent (*Receive_Invoice*) and tickets from the airline (*Receive_Tickets*). From the point of view of the traveller’s workflow, the order in which she receives the invoice and tickets is not important.

The BPMN pool *Traveller* is constructed by applying the following sequence of syntactic operations:
1. SeqComp adds the task Order_Trip;
2. Split adds a XOR split gateway;
3. SeqComp adds the task Change_Itinerary;
4. JoinOp adds a XOR join gateway to join the XOR split gateway and task Change_Itinerary;
5. Loop adds a sequential loop back to the task Change_Itinerary;
6. Split adds a XOR split gateway;
7. Two SeqComp add two tasks Send_Confirmation and Cancel_Itinerary;
8. Split adds a XOR split gateway;
9. Two SeqComp add two tasks Book_Tickets and Cancel_Tickets;
10. AddException creates an exception flow by attaching an intermediate message event to Book_Tickets;
11. JoinOp adds a XOR join gateway to join the exception flow from Book_Tickets and Cancel_Tickets;
12. SeqComp adds task Accept_Cancellation;
13. Split adds an AND split gateway after task Book_Tickets;
14. Two SeqComp add two tasks Receive_Tickets and Receive_Invoice; and

Figure 8.1: Traveller

8.2.2 Travel Agent

The main purpose of the travel agent is to mediate interactions between the traveller who wants to buy airline tickets and the airline who supplies them. Figure 8.2 shows the BPMN pool Agent specifying the workflow of the travel agent participant.

Once the travel agent receives an initial order from the traveller (Receive_Order), the agent verifies seating availability with the airline; this is modelled by a message flow (dashed line) connecting task Receive_Order from the travel agent to task Verify_Order from the airline reservation system; this is shown in Figure 8.12. In order to cater for the possibility of the traveller making changes to her itinerary, the travel agent verifies with the airline the availability of the seats (Receive_Changes) every time there is a change to the itinerary. There is a period of time between each change to the itinerary, and this is modelled by the intermediate timer event. Once the traveller has agreed upon a particular itinerary, the
travel agent will reserve the seats for the traveller (\textit{Reserve_Seats}). During the reservation period the traveller may cancel her itinerary, thereby withdrawing her itinerary (\textit{Withdraw_Itinerary}); cancellation is modelled as a message exception flow of task \textit{Reserve_Seats}.

Once the reservation has been completed, the travel agent receives either a confirmation notice from the traveller (\textit{Receive_Confirmation}), in which case he receives the credit card information from the traveller and proceeds with the booking (\textit{Book_Seats}), or a cancellation request (\textit{Cancel_Reservation}), in which case the travel agent will first request cancellation from the airline (\textit{Request_Cancellation}), then wait for a notification confirming the cancellation from the airline (\textit{Receive_Notification}), and then send the notification to the traveller (\textit{Send_Notification}). Also during the booking phase, if either an error (e.g. incorrect card information), modelled as an error exception flow, or a time out (\textit{Reservation_Timeout}) occurs, a cancellation notification will be sent to the traveller. Otherwise, the booking invoice will be sent to the traveller for billing (\textit{Send_Invoice}). Note that from the point of view of the travel agent, time restriction on booking is determined by the particular airline, therefore the time out is modelled as a message exception flow attached to task \textit{Book_Seats}.

The BPMN pool Agent is constructed by applying the following sequence of syntactic operations:

1. Two \texttt{SeqComp} add the task \textit{Receive_Order} and the intermediate timer event;
2. EventLoop adds an event-based XOR split gateway, tasks \textit{Receive_Order} and \textit{Reserve_Seats}, and a XOR join gateway;
3. \texttt{AddException} creates an exception flow by attaching an intermediate message event to task \textit{Reserve_Seats};
4. \texttt{SeqComp} adds task \textit{Withdraw_Itinerary};
5. EventSplitOp adds an event-based XOR gateway, and tasks \textit{Receive_Confirmation} and \textit{Cancel_Reservation};
6. Two \texttt{SeqComp} add tasks \textit{Book_Seats} and \textit{Send_Invoice};
7. \texttt{AddException} creates two exception flows by attaching an intermediate message event and an intermediate error event to \textit{Book_Seats};
8. \texttt{SeqComp} adds task \textit{Reservation_Timeout};
9. JoinOp adds a XOR join gateway to merge together the exception flow created by the intermediate error event and task \textit{Cancel_Reservation};
10. Two \textit{SeqComp} add tasks \textit{Request_Cancellation} and \textit{Receive_Notification};

11. \textit{JoinOp} adds a XOR join gateway to merge tasks \textit{Reservation_Timeout} and \textit{Receive_Notification};
and

12. \textit{SeqComp} adds task \textit{Send_Notification}.

\section*{8.2.3 Airline Reservation System}

The airline reservation system receives a request to check for seating availability, it then checks for seating availability, reserves the seats, completes the booking and delivers the tickets. Figure 8.3 shows the BPMN pool \textit{Airline} describing the workflow of the reservation system.

![Reservation System Diagram](image)

Specifically, upon receiving a seating order, the airline verifies the order (\textit{Verify_Orders}). The airline then receives request to change the seating order zero or more times, and at each time the reservation system verifies the change (\textit{Verify_Seats}). Similar to the travel agent, there is a period of time between each seating change, and this is modelled by the intermediate timer event, after which the reservation system can receive the message to reserve the seats and proceed to reserving the seats (\textit{Receive_Reservation}). At this point the reservation system receives either the order to finalise the booking (\textit{Perform_Booking}) or a reservation cancellation notification. In the latter case, the reservation system removes the seat reservations (\textit{Receive_Cancellation}) and sends a cancellation notification (\textit{Notify_Cancellation}). Note that a time out occurs if the booking is not finalised within the time limit after reservations have been made; this is modelled by the timer exception flow (\textit{Itimer}) attached to the task \textit{Perform_Booking}. If a time out occurs, the booking is cancelled and a time out notification (\textit{Notify_Timeout}) and a cancellation notification (\textit{Notify_Cancellation}) will be sent out. Otherwise once the booking is finalised, the seat tickets will be sent out (\textit{Send_Tickets}).

The BPMN pool \textit{Airline} is constructed by applying the following sequence of syntactic operations:

1. Two \textit{SeqComp} add the task \textit{Verify_Orders} and the intermediate timer event;
2. \textit{EventLoop} adds an event-based XOR split gateway, tasks \textit{Verify_Seats} and \textit{Receive_Reservation}, and a XOR join gateway;
3. \textit{EventSplitOp} adds an event-based XOR gateway, and tasks \textit{Perform_Booking} and \textit{Receive_Cancellation};
4. \textit{SeqComp} adds tasks \textit{Send_Tickets};
5. \textit{AddException} creates an exception flow by attaching an intermediate timer event to \textit{Perform_Booking};
6. \textit{SeqComp} adds task \textit{Notify_Timeout};
7. *JoinOp* adds a XOR join gateway to merge tasks *Notify Timeout* and *Receive Cancellation*; and

8. *SeqComp* adds task *Notify Cancellation*.

8.2.4 Collaboration

Figure 8.12 shows the BPMN diagram modelling the collaboration of *Traveller*, *Agent* and *Airline* in the ticket reservation business process. Using the process semantics defined in Chapter 5, we translate the behaviour of the BPMN diagram into the following CSP process `Collab`.

\[
Collab = P(\text{Traveller}) \sqcup (\alpha P(\text{Traveller}) \cup \alpha P(\text{Agent}) \cup \alpha P(\text{Airline})) \sqcup P(\text{Agent}) \sqcup (\alpha P(\text{Agent}) \cup \alpha P(\text{Airline})) \sqcup P(\text{Airline})
\]

(8.1)

The behaviour of BPMN pools *Traveller*, *Agent* and *Airline* are modelled by CSP processes `P(Traveller)`, `P(Agent)` and `P(Airline)` respectively. Here we provide the definition of `P(Traveller)`.

\[
P(\text{Start1}) = (s.\text{Order Trip} \rightarrow \text{EP}) \sqcup \text{EP}
\]

\[
P(\text{Order Trip}) = (s.\text{Order Trip} \rightarrow w.\text{Order Trip} \rightarrow m.\text{m1} \rightarrow s.\text{Xsplit1} \rightarrow \\
\hspace{1cm} P(\text{Order Trip})) \sqcup \text{EP}
\]

\[
P(\text{Xsplit1}) = ((s.\text{Xsplit1} \rightarrow (s.\text{Xjoin1} \rightarrow \text{Skip} \sqcap s.\text{Xjoin2} \rightarrow \text{Skip})) \sqcup P(\text{Xsplit1})) \sqcup \text{EP}
\]

\[
P(\text{Xjoin1}) = ((s.\text{Xjoin1} \rightarrow \text{Skip} \sqcap s.\text{Xjoin12} \rightarrow \text{Skip}) \sqcup s.\text{Xsplit2} \rightarrow P(\text{Xjoin1})) \sqcup \text{EP}
\]

\[
P(\text{Xjoin2}) = ((s.\text{Xjoin2} \rightarrow \text{Skip} \sqcap s.\text{Xjoin22} \rightarrow \text{Skip}) \sqcup s.\text{Change Itinerary} \rightarrow \\
\hspace{1cm} P(\text{Xjoin2})) \sqcup \text{EP}
\]

\[
P(\text{Xsplit2}) = ((s.\text{Xsplit2} \rightarrow (s.\text{Xjoin22} \rightarrow \text{Skip} \sqcap s.\text{Xsplit3} \rightarrow \text{Skip})) \sqcup P(\text{Xsplit2})) \sqcup \text{EP}
\]

\[
P(\text{Xsplit3}) = ((s.\text{Xsplit3} \rightarrow (s.\text{Cancel Itinerary} \rightarrow \text{Skip} \sqcap \\
\hspace{1cm} s.\text{Send Confirmation} \rightarrow \text{Skip})) \sqcup P(\text{Xsplit3})) \sqcup \text{EP}
\]

\[
P(\text{Change Itinerary}) = (s.\text{Change Itinerary} \rightarrow w.\text{Change Itinerary} \rightarrow m.\text{m2} \rightarrow s.\text{Xjoin12} \rightarrow \\
\hspace{1cm} P(\text{Change Itinerary})) \sqcup \text{EP}
\]

\[
P(\text{Cancel Itinerary}) = (s.\text{Cancel Itinerary} \rightarrow w.\text{Cancel Itinerary} \rightarrow m.\text{m3} \rightarrow s.\text{EP} \rightarrow \\
\hspace{1cm} P(\text{Cancel Itinerary})) \sqcup \text{EP}
\]
\[P(\text{Send_Confirmation}) = (s.\text{Send_Confirmation} \rightarrow w.\text{Send_Confirmation} \rightarrow m.m4 \rightarrow s.\text{Xsplit4} \rightarrow P(\text{Send_Confirmation})) \square EP \]

\[P(\text{Xsplit4}) = ((s.\text{Xsplit4} \rightarrow (s.\text{Cancel_Ticket} \rightarrow \text{Skip} \sqcap s.\text{Book_Ticket} \rightarrow \text{Skip})) \sqsupset P(\text{Xsplit4})) \square EP \]

\[P(\text{Cancel_Tickets}) = (s.\text{Cancel_Tickets} \rightarrow w.\text{Cancel_Tickets} \rightarrow m.m5 \rightarrow s.\text{Xjoin31} \rightarrow P(\text{Cancel_Tickets})) \square EP \]

\[P(\text{Book_Tickets}) = \text{let } W = w.\text{Book_Tickets} \rightarrow m.m6 \rightarrow s.\text{Asplit1} \rightarrow \text{Skip} \]

\[\quad C = m.m8 \rightarrow s.\text{Xjoin32} \rightarrow \text{Skip} \]

\[\quad M = m.m8 \rightarrow s.\text{Xjoin32} \rightarrow \text{Skip} \sqcap s.\text{Asplit1} \rightarrow \text{Skip} \]

\[\quad \text{in } (s.\text{Book_Tickets} \rightarrow (W \triangle C) \llbracket \{m.m8, s.\text{Xjoin32}, s.\text{Asplit1}\} \rrbracket M) \sqsupset P(\text{Book_Tickets})) \square EP \]

\[P(\text{Xjoin3}) = ((s.\text{Xjoin3} \rightarrow \text{Skip} \sqcap s.\text{Xjoin32} \rightarrow \text{Skip}) \sqsupset s.\text{Accept_Cancellation} \rightarrow P(\text{Xjoin3})) \square EP \]

\[P(\text{Accept_Cancellation}) = ((s.\text{Accept_Cancellation} \rightarrow \text{Skip} \llbracket m.m7 \rightarrow \text{Skip} \rrbracket \sqsupset w.\text{Accept_Cancellation} \rightarrow s.E2 \rightarrow P(\text{Accept_Cancellation})) \square EP \]

\[P(\text{Asplit1}) = ((s.\text{Asplit1} \rightarrow (s.\text{Receive_Tickets} \rightarrow \text{Skip} \llbracket s.\text{Receive_Invoice} \rightarrow \text{Skip} \rrbracket) \sqsupset P(\text{Asplit1})) \square EP \]

\[P(\text{Receive_Tickets}) = ((s.\text{Receive_Tickets} \rightarrow \text{Skip} \llbracket m.m10 \rightarrow \text{Skip} \rrbracket \sqsupset w.\text{Receive_Tickets} \rightarrow s.\text{Ajoin1} \rightarrow P(\text{Receive_Tickets})) \square EP \]

\[P(\text{Receive_Invoice}) = ((s.\text{Receive_Invoice} \rightarrow \text{Skip} \llbracket m.m9 \rightarrow \text{Skip} \rrbracket \sqsupset w.\text{Receive_Invoice} \rightarrow s.\text{Ajoin2} \rightarrow P(\text{Receive_Invoice})) \square EP \]

\[P(\text{Ajoin1}) = ((s.\text{Ajoin1} \rightarrow \text{Skip} \llbracket s.\text{Ajoin12} \rightarrow \text{Skip} \rrbracket \sqsupset s.E3 \rightarrow P(\text{Ajoin1})) \square EP \]

\[P(\text{E1}) = (s.E1 \rightarrow \text{Skip} \llbracket c.E1 \rightarrow \text{Skip} \rrbracket \sqcap c.E2 \rightarrow \text{Skip} \sqcap c.E3 \rightarrow \text{Skip} \]

\[P(\text{E2}) = s.E2 \rightarrow \text{Skip} \llbracket c.E2 \rightarrow \text{Skip} \rrbracket \sqcap c.E1 \rightarrow \text{Skip} \sqcap c.E3 \rightarrow \text{Skip} \]

\[P(\text{E3}) = s.E3 \rightarrow \text{Skip} \llbracket c.E3 \rightarrow \text{Skip} \rrbracket \sqcap c.E1 \rightarrow \text{Skip} \sqcap c.E2 \rightarrow \text{Skip} \]

\[EP = c.E1 \rightarrow \text{Skip} \sqcap c.E2 \rightarrow \text{Skip} \sqcap c.E3 \rightarrow \text{Skip} \]

\[P(\text{Traveller}) = \text{let } S = \{ \text{Start1, Order_Trip, Xsplit1, Xsplit2, Xsplit3, Xsplit4, Xjoin1, Xjoin2, Xjoin3, Asplit1, Ajoin1, Change_Itinerary, Cancel_Itinerary, Send_Confirmation, Cancel_Tickets, Book_Tickets, Accept_Cancellation, Receive_Tickets, Receive_Invoice, E1, E2, E3} \}

\[\text{in } \| i : S \bullet \alpha P(i) \circ P(i) \] (8.2)

8.2.5 Requirements

Table 8.1 shows two general requirements (G1 and G2) and five specific requirements (S1, S2, S3, S4 and S5), against which we verify the ticket reservation process.

8.2.5.1 Requirement G1

Requirement G1 states that the workflow of an individual participant is deadlock-free, that is, we are interested to know if any possible order of execution could lead to a situation where the business transaction has not been completed and yet no more progress can be made. In our process semantics, the property of deadlock freedom may be asserted by the following property,

\[\forall i : \{\text{Travel, Agent, Airline}\} \bullet DF \sqsubseteq P(i) \] (8.3)

where \(P(i) \) denotes the process semantics of participant \(i \), and \(DF \) is the characteristic deadlock freedom process (Equation 5.6.2 on Page 77). Property 8.3 may be split into individual refinement assertions
Table 8.1: Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>All participants must be deadlock-free.</td>
</tr>
<tr>
<td>G2</td>
<td>The collaboration must be deadlock-free.</td>
</tr>
<tr>
<td>S1</td>
<td>Once the traveller has confirmed her order, she receives either both tickets and invoice or a notification of cancellation.</td>
</tr>
<tr>
<td>S2</td>
<td>It is not possible for the travel agent to request cancellation and for the traveller to receive tickets.</td>
</tr>
<tr>
<td>S3</td>
<td>If the traveller issues a cancellation, she must receive a notification.</td>
</tr>
<tr>
<td>S4</td>
<td>If the airline reservation system issues a time out during the booking process, the traveller must receive a notification of cancellation.</td>
</tr>
<tr>
<td>S5</td>
<td>The travel agent must not allow any kind of cancellation after the traveller has booked her tickets, if an invoice is to be sent to the traveller.</td>
</tr>
</tbody>
</table>

and verified using the FDR tool. Requirement G1 is satisfied.

8.2.5.2 Requirement G2

Requirement G2 states that the collaboration is deadlock-free. Since we know individual participants are themselves deadlock-free, it is sufficient to show that they are behaviourally compatible.

Recall that we write $\text{compatible}(P, Q)$ if BPMN processes P and Q are compatible. Since this binary relation compatible is symmetric by Definition 5.13 due to Theorem 5.16, it suffices to prove the following predicate expression.

$$\text{compatible}(\text{Travel, Agent}) \land \text{compatible}(\text{Travel, Airline}) \land \text{compatible}(\text{Agent, Airline})$$

By using the mechanical procedure devised for responsiveness, we initially find that the first conjunct, $\text{compatible}(\text{Travel, Agent})$, does not hold. The FDR tool returns a counter example in which the CSP process $P(\text{Travel}) \ || \alpha P(\text{Travel}) \ | \alpha P(\text{Agent}) \ | P(\text{Agent})$ deadlocks after the following trace restricted to the set of events $\{w\}$ that model work done in BPMN tasks.

$$\langle w.\text{Order_Trip}, w.\text{Cancel_Itinerary}, w.\text{Receive_Order}, w.\text{Reserve_Seat} \rangle$$

The trace shows that after the reservation process has completed, it is still possible for the traveller to cancel her itinerary (Cancel_Itinerary) by sending a message to the travel agent’s reservation process (Reserve_Seat), which causes the deadlock. One possible set of changes to the collaboration between the traveller and the travel agent is shown in Figure 8.4. We describe the changes as follows:

- **Traveller** – First insert two new tasks Place_Reservation and Confirm_Reservation before task Send_Confirmation, then move the original XOR gateway between Cancel_Itinerary and Send_Confirmation to between Cancel_Itinerary and Confirm_Reservation.

- **Agent** – Replace task Reserve_Seats with an intermediate message event and a task Send_Reservation, and adds an event-based XOR gateway, choosing between task Commit_Reservation and another intermediate message event.

- **Interactions** – Connect the following message flows:
 - from Place_Reservation to the intermediate message event that directly precedes task Send_Reservation
 - from Confirm_Reservation to Commit_Reservation
from *Cancel* _Itinerary_ to the intermediate message event that directly precedes task *
Withdraw* _Itinerary_.

After the above changes, we observe that the interaction between the workflows of traveller and travel agent deadlocks after the following trace restricted to set of events \(\{ w \} \) that model work done in BPMN tasks.

\[
\begin{align*}
&\langle w.\text{Order}_\text{Trip}, w.\text{Place}_\text{Reservation}, w.\text{Receive}_\text{Order}, w.\text{Confirm}_\text{Reservation}, \\
&w.\text{Send}_\text{Confirmation}, w.\text{Send}_\text{Reservation}, w.\text{Commit}_\text{Reservation}, w.\text{Book}_\text{Tickets}, \\
&w.\text{Receive}_\text{Confirm}, w.\text{Reservation}_\text{Timeout}, w.\text{Receive}_\text{Tickets} \rangle
\end{align*}
\]

The trace shows that while a time out (Reservation Timeout) occurs during task *Book Seats*, the travel agent is unable to communicate this information to the traveller, hence the traveller assumes the booking is successful; the fact that *w.Receive_Tickets* is performed is irrelevant as task *Receive_Tickets* does not interact with the travel agent. Assuming the traveller is using a web site to carry out the booking, this misinformation could lead to a HTTP 404 error response, which gives no information about the current transaction.
Figure 8.15 shows one possible set of changes to the workflows of the traveller and travel agent; the description of the changes is similar to those described for Figure 8.3 and thus has been omitted.

Figure 8.13 shows a modified BPMN diagram describing the airline ticket reservation business process that satisfies Requirements G1 and G2. The modification is based on further investigation to establish compatible(Travel, Airline) and compatible(Agent, Airline). We have omitted the textual description of the modification. Note that the changes may not reflect those shown in Figures 8.4 and 8.5 as the modification in Figure 8.13 has also taken into account compatibilities between Agent and Airline, and between Traveller and Airline.

Specially in Figure 8.13 BPMN pools CTraveller, CAgent and CAirline model the corrected version of the traveller, the travel agent and the airline business processes. The CSP process CCollab in the following Equation 8.4 models the behaviour of the BPMN diagram of the ticket reservation business process shown in Figure 8.13.

\[
CCollab = P(CTraveller) \parallel \alpha P(CAgent) \cup \alpha P(CAirline) \\
(P(CAgent) \parallel \alpha P(CAgent) \parallel \alpha P(CAirline)) P(CAirline)
\]

(8.4)

8.2.5.3 Requirement S1

Requirement S1 states that if the traveller has confirmed her order, she receives either both tickets and invoice or a notification of cancellation. Here we abstract the CSP process modelling the BPMN diagram from irrelevant events. Specifically, Requirement S1 concerns events in the following set A,

\[
A = \{w.\text{Send_Confirmation}, w.\text{Accept_Cancellation}, w.\text{Receive_Tickets}, w.\text{Receive_Invoice}\}
\]

and the following CSP process Spec models Requirement S1,

\[
\begin{align*}
\text{Spec} &= \text{Spec0} \cap \text{Spec1} \\
\text{Spec0} &= \text{Proceed(\{}w.\text{Send_Confirmation}\}) \cap \text{Spec0} \cap \text{Spec1} \\
\text{Spec1} &= w.\text{Send_Confirmation} \rightarrow \text{Spec2} \cap \text{Spec3} \cap \text{Spec4} \\
\text{Spec2} &= w.\text{Receive_Tickets} \rightarrow \text{Spec5} \\
\text{Spec3} &= w.\text{Receive_Invoice} \rightarrow \text{Spec6} \\
\text{Spec4} &= w.\text{Accept_Cancellation} \rightarrow \text{Spec0} \cap \text{Spec1} \\
\text{Spec5} &= w.\text{Receive_Invoice} \rightarrow \text{Spec0} \cap \text{Spec1} \\
\text{Spec6} &= w.\text{Receive_Tickets} \rightarrow \text{Spec0} \cap \text{Spec1}
\end{align*}
\]

where Proceed is defined as follows:

\[
\text{Proceed}(X, P) = \text{Stop} \cap \text{Skip} \cap (\exists x : \Sigma \times X \cdot x \rightarrow P)
\]

(8.5)

We verify the BPMN diagram against Requirement S1 by checking the refinement assertion \(\text{Spec} \sqsubseteq_{F} CCollab \setminus (\Sigma \setminus A)\) using the FDR tool. Requirement S1 holds.

8.2.5.4 Requirement S2

Requirement S2 states that it is not possible for the travel agent to request cancellation and for the traveller to receive tickets. The following CSP process Spec models Requirement S2,

\[
\begin{align*}
\text{Spec} &= \text{Spec0} \cap \text{Spec1} \cap \text{Spec2} \\
\text{Spec0} &= \text{Proceed(\{}w.\text{Cancel_Itinerary}, w.\text{Cancel_Tickets}\}) \cap \text{Spec0} \cap \text{Spec1} \cap \text{Spec2} \\
\text{Spec1} &= w.\text{Cancel_Tickets} \rightarrow \text{Spec3} \cap \text{Spec1} \cap \text{Spec2} \\
\text{Spec2} &= w.\text{Cancel_Itinerary} \rightarrow \text{Spec3} \cap \text{Spec1} \cap \text{Spec2} \\
\text{Spec3} &= \text{Proceed(A, Spec3} \cap \text{Spec1} \cap \text{Spec2})
\end{align*}
\]

where the following set A contains events that are relevant to this requirement.

\[
A = \{w.\text{Cancel_Itinerary}, w.\text{Cancel_Tickets}, w.\text{Receive_Tickets}\}
\]

We verify the BPMN diagram against Requirement S2 by checking the refinement assertion \(\text{Spec} \sqsubseteq_{F} CCollab \setminus (\Sigma \setminus A)\) using the FDR tool. Requirement S2 holds.
8.2.5.5 Requirement S3

Requirement S3 states that if the traveller issues a cancellation, she must receive a notification. The following CSP process $Spec$ models Requirement S3.

\[
Spec = Spec0 \cap Spec1 \\
Spec0 = Proceed\{\{w.\text{Cancel_Tickets}\}, Spec0 \cap Spec1\} \\
Spec1 = w.\text{Cancel_Tickets} \rightarrow Spec2 \\
Spec2 = w.\text{Accept_Cancellation} \rightarrow Spec0 \cap Spec1
\]

We verify the BPMN diagram against Requirement S3 by checking the refinement assertion $Spec \sqsubseteq_F CCollab \setminus (\Sigma \setminus \{w.\text{Cancel_Tickets}, w.\text{Accept_Cancellation}\})$ using FDR. Requirement S3 holds.

8.2.5.6 Requirement S4

Requirement S4 states that if airline reservation system issues a time out during the booking process, the traveller must receive a cancellation notification. The following CSP process $Spec$ models Requirement S4.

\[
Spec = Spec0 \cap Spec1 \\
Spec0 = Proceed\{\{w.\text{Notify_Timeout}\}, Spec0 \cap Spec1\} \\
Spec1 = w.\text{Notify_Timeout} \rightarrow Spec2 \\
Spec2 = w.\text{Accept_Cancellation} \rightarrow Spec0 \cap Spec1
\]

We verify the BPMN diagram against Requirement S4 by checking the refinement assertion $Spec \sqsubseteq_F CCollab \setminus (\Sigma \setminus \{w.\text{Notify_Timeout}, w.\text{Accept_Cancellation}\})$ using FDR. Requirement S4 holds.

8.2.5.7 Requirement S5

Requirement S5 states that the travel agent must not allow any kind of cancellation after the traveller has booked her tickets, if an invoice is to be sent to the traveller. The following CSP process $Spec$ models Requirement S5,

\[
Spec = Spec0 \cap Spec1 \\
Spec0 = Proceed\{\{w.\text{Book_Seats}\}, Spec0 \cap Spec1\} \\
Spec1 = w.\text{Book_Seats} \rightarrow (Spec2 \cap Spec3 \cap Spec4 \cap Spec5 \cap Spec6) \\
Spec2 = Proceed\{\{w.\text{Book_Seats}, w.\text{Send_Invoice}\}, Spec7 \cap Spec1\} \\
Spec3 = w.\text{Send_Invoice} \rightarrow (Spec0 \cap Spec1) \\
Spec4 = w.\text{Book_Seats} \rightarrow (Spec2 \cap Spec4 \cap Spec8 \cap Spec9) \\
Spec5 = Proceed\{\{w.\text{Send_Invoice}\}, Spec3\} \\
Spec6 = w.\text{Book_Seats} \rightarrow Spec3 \\
Spec7 = Proceed\{\{w.\text{Book_Seats}, w.\text{Send_Invoice}\}, Spec0 \cap Spec1\} \\
Spec8 = Proceed\{\{w.\text{Book_Seats}, w.\text{Send_Invoice}\}, Spec3\} \\
Spec9 = w.\text{Book_Seats} \rightarrow (Spec3)
\]

where the following set A contains events that are relevant to this requirement.

\[
A = \{w.\text{Book_Seats}, w.\text{Booking_Error}, w.\text{Booking_Timeout}, w.\text{Send_Invoice}\}
\]

We verify the BPMN diagram against Requirement S5 by checking the refinement assertion $Spec \sqsubseteq_F CCollab \setminus (\Sigma \setminus A)$ using FDR. Requirement S5 holds.
8.2.6 Compositional Development

Figure 8.6 shows four BPMN pools: CTraveller, Traveller1, Traveller2 and Traveller3. BPMN pool CTraveller describes the corrected version of the traveller participant. Equation 8.6 defines process P(CTraveller) that models BPMN pool CTraveller shown in Figure 8.6. Here for all i in the following set I, process $P(i)$ is the same as that defined in the original Equation 8.2.

\[
I = \{\text{Start1, Order_Trip, Xsplit1, Xjoin1, Xjoin2, Asplit1, Ajoin1, Change_Itinerary, Cancel_Itinerary, Cancel_Tickets, Accept_Cancellation, Receive_Tickets, Receive_Invoice, E1, E2, E3}\}
\]
\[
I' = I \cup \{\text{Xsplit2, Xsplit3, Xsplit4, Xjoin3, Place_Reservation, Confirm_Reservation, Send_Confirmation, Book_Tickets}\}
\]
\[
P(\text{Xsplit2}) = ((s.\text{Xsplit2} \rightarrow (s.\text{Xjoin2} \rightarrow \text{Skip} \sqcap s.\text{Place_Reservation} \rightarrow \text{Skip})) \vartriangleleft P(\text{Xsplit2}) \sqcap EP
\]
\[
P(\text{Place_Reservation}) = (s.\text{Place_Reservation} \rightarrow w.\text{Place_Reservation} \rightarrow m.m11 \rightarrow s.\text{Xsplit3} \rightarrow P(\text{Place_Reservation}) \sqcap EP
\]
\[
P(\text{Xsplit3}) = ((s.\text{Xsplit3} \rightarrow (s.\text{Cancel_Itinerary} \rightarrow \text{Skip} \sqcap s.\text{Confirm_Reservation} \rightarrow \text{Skip})) \vartriangleleft P(\text{Xsplit3}) \sqcap EP
\]
\[
P(\text{Confirm_Reservation}) = (s.\text{Confirm_Reservation} \rightarrow w.\text{Confirm_Reservation} \rightarrow m.m12 \rightarrow s.\text{Xsplit4} \rightarrow P(\text{Confirm_Reservation}) \sqcap EP
\]
\[
P(\text{Xsplit4}) = ((s.\text{Xsplit4} \rightarrow (s.\text{Cancel_Ticket} \rightarrow \text{Skip} \sqcap s.\text{Send_Confirmation} \rightarrow \text{Skip})) \vartriangleleft P(\text{Xsplit4}) \sqcap EP
\]
\[
P(\text{Send_Confirmation}) = (s.\text{Send_Confirmation} \rightarrow w.\text{Send_Confirmation} \rightarrow m.m4 \rightarrow s.\text{Book_Ticket} \rightarrow P(\text{Send_Confirmation}) \sqcap EP
\]
\[
P(\text{Book_Tickets}) = \text{let } W = w.\text{Book_Tickets} \rightarrow m.m6 \rightarrow s.\text{Asplit1} \rightarrow \text{Skip}
\]
\[
C = m.m8 \rightarrow s.\text{Xjoin32} \rightarrow \text{Skip} \sqcap m.m13 \rightarrow s.\text{Xjoin33} \rightarrow \text{Skip}
\]
\[
M = m.m8 \rightarrow s.\text{Xjoin32} \rightarrow \text{Skip} \sqcap m.m13 \rightarrow s.\text{Xjoin33} \rightarrow \text{Skip} \sqcap \text{Asplit1} \rightarrow \text{Skip}
\]
\[
S = \{m.m8, s.\text{Xjoin32}, m.m13, s.\text{Xjoin33}, s.\text{Asplit1}\}
\]
\[
\text{in } ((s.\text{Book_Tickets} \rightarrow (W \sqcap C) \sqcap S) \vartriangleleft P(\text{Book_Tickets})) \sqcap EP
\]
\[
P(\text{Xjoin3}) = ((s.\text{Xjoin3} \rightarrow \text{Skip} \sqcap s.\text{Xjoin32} \rightarrow \text{Skip} \sqcap s.\text{Xjoin33} \rightarrow \text{Skip}) \vartriangleleft s.\text{Accept_Cancellation} \rightarrow P(\text{Xjoin3}) \sqcap EP
\]
\[
P(\text{CTraveller}) = \{i : I'' \bullet \alpha P(i) \circ P(i)\}
\]

8.2.6.1 Modification 1

BPMN pool Traveller1 in Figure 8.6 models a traveller behaviour that changes her itinerary at most once. Equation 8.7 defines CSP process $P(\text{Traveller1})$ that models BPMN pool Traveller1, where $P(\text{Xsplit2}')$ is a refinement of process $P(\text{Xsplit2})$ and function S is defined as follows:

\[
S(x) = \begin{cases}
\alpha P(\text{Xsplit2}) & \text{if } x = \text{Xsplit2}' \\
\alpha P(x) & \text{otherwise}
\end{cases}
\]

\[
I'' = (I' \setminus \{\text{Xsplit2}\}) \cup \{\text{Xsplit2}'\}
\]
\[
P(\text{Xsplit2}') = (s.\text{Xsplit2} \rightarrow s.\text{Place_Reservation} \rightarrow P(\text{Xsplit2}') \sqcap EP
\]
\[
P(\text{Traveller1}) = \{i : I'' \bullet S(i) \circ P(i)\}
\]

(8.7)
Figure 8.6: Variations of the Traveller workflow

Since the parallel composition operator (||) is monotonic over \(\mathcal{F} \), \(P(C\text{Traveller}) \subseteq \mathcal{F} P(\text{Traveller1}) \), that is, \(P(\text{Traveller1}) \) is a refinement of \(P(C\text{Traveller}) \), and as a result \(P(\text{Traveller1}) \) preserves deadlock freedom. Since compatibility is a refinement-closed property, BPMN pool \(\text{Traveller1} \) is compatible with
BPMN pools CAirline and CAgent of the BPMN diagram in Figure 8.13. The following CSP process Collab1 models the behaviour of the ticket reservation business process with the modified traveller participant Traveller 1.

\[
\text{Collab1} = P(\text{Traveller1}) \parallel \alpha P(\text{CTraveller}) | \alpha P(\text{CAgent}) \cup \alpha P(\text{CAirline}) \\
(P(\text{CAgent}) \parallel \alpha P(\text{CAgent}) | \alpha P(\text{CAirline}) \parallel P(\text{CAirline}))
\] (8.8)

By the monotonicity of ||, CCollab \(\subseteq_\) Collab1, as a result Collab1 preserves Requirements S1, S2, S3, S4 and S5.

8.2.6.2 Modification 2

BPMN pool Traveller 2 on Figure 8.6 models a traveller who does not make any changes to her itinerary; this change of behaviour can be due to additional cost incurred upon changing an existing itinerary. Equation 8.9 defines process \(P(\text{Traveller2})\) which models BPMN pool Traveller 2, where \(P(Xsplit1')\) is a refinement of \(P(Xsplit1)\), and function \(S'\) is defined as follows:

\[
S'(x) = \begin{cases}
\alpha P(Xsplit1) & \text{if } x = Xsplit1' \\
S(x) & \text{otherwise}
\end{cases}
\]

\[
\begin{align*}
I'' &= (I'' \setminus \{Xsplit1\}) \cup \{Xsplit1'\} \\
P(Xsplit1') &= (s.Xsplit1 \rightarrow s.Xjoin1 \rightarrow P(Xsplit1')) \boxdot EP \\
P(\text{Traveller2}) &= \parallel i : I'' \bullet S(i) \circ P(i)
\end{align*}
\] (8.9)

By the monotonicity of operator ||, \(P(\text{Traveller1}) \subseteq P(\text{Traveller2})\), that is, \(P(\text{Traveller2})\) is a refinement of \(P(\text{Traveller1})\), and as a result \(P(\text{Traveller2})\) preserves deadlock freedom. Since compatibility is a refinement-closed property, BPMN pool Traveller 2 is compatible with BPMN pools CAirline and CAgent shown in Figure 8.13. The following CSP process Collab2 models the behaviour of the ticket reservation business process with the modified traveller participant Traveller 2.

\[
\text{Collab2} = P(\text{Traveller2}) \parallel \alpha P(\text{CTraveller}) | \alpha P(\text{CAgent}) \cup \alpha P(\text{CAirline}) \\
(P(\text{CAgent}) \parallel \alpha P(\text{CAgent}) | \alpha P(\text{CAirline}) \parallel P(\text{CAirline}))
\] (8.10)

Likewise, due to the monotonicity of ||, CCollab \(\subseteq_\) Collab2, as a result Collab2 preserves Requirements S1, S2, S3, S4 and S5.

8.2.6.3 Modification 3

BPMN pool Traveller 3 on Figure 8.6 models a traveller who does not cancel her orders; this change of behaviour may be due to restrictions applied to different classes of tickets. This modification is achieved by removing tasks Cancel_Itinerary and Cancel_Ticket from BPMN pool Traveller 2. Equation 8.11 defines process \(P(\text{Traveller3})\) that models BPMN pool Traveller 3, where \(P(Xsplit3')\) and \(P(Xsplit4')\) are refinements of processes \(P(Xsplit3)\) and \(P(Xsplit4)\) respectively, and function \(S''\) is defined as follows:

\[
S''(x) = \begin{cases}
\alpha P(Xsplit3) & \text{if } x = Xsplit3' \\
\alpha P(Xsplit4) & \text{if } x = Xsplit4' \\
S'(x) & \text{otherwise}
\end{cases}
\]

\[
\begin{align*}
I''' &= (I'' \setminus \{Xsplit3, Xsplit4\}) \cup \{Xsplit3', Xsplit4'\} \\
P(Xsplit3') &= ((s.Xsplit3 \rightarrow s.Confirm_Reservation \rightarrow Skip) \circ P(Xsplit3')) \boxdot EP \\
P(Xsplit4') &= ((s.Xsplit4 \rightarrow s.Send_Confirmation \rightarrow Skip) \circ P(Xsplit4')) \boxdot EP \\
P(\text{Traveller3}) &= \parallel i : I''' \bullet S''(i) \circ P(i)
\end{align*}
\] (8.11)

By the monotonicity of operator ||, \(P(\text{Traveller2}) \subseteq P(\text{Traveller3})\), as a result \(P(\text{Traveller3})\) preserves deadlock freedom and is compatible with BPMN pools CAirline and CAgent shown in Figure 8.13.
The following CSP process Collab3 models the behaviour of the ticket reservation business process with the modified traveller participant Traveller3.

$$\begin{align*}
\text{Collab3} &= P(\text{Traveller3}) \parallel \alpha P(\text{CTraveller}) \cup \alpha P(\text{CAgent}) \cup \alpha P(\text{CAirline}) \\
&\quad \parallel (P(\text{CAgent}) \parallel \alpha P(\text{CAgent}) \cup \alpha P(\text{CAirline})) \parallel (P(\text{CAirline})) \tag{8.12}
\end{align*}$$

Again, by the monotonicity of operator \parallel, $\text{Collab2} \subseteq \text{Collab3}$, as a result Collab3 preserves Requirements S1, S2, S3, S4 and S5.

8.2.6.4 Extension

We extend the ticket reservation business process with refunding and upgrading processes. The refunding and upgrading processes are managed by the customer service department of the airline. This is modelled by the BPMN pool CustomerService shown at the bottom half of Figure 8.7. The BPMN pool ETraveller on the top of the figure models the traveller’s workflow extended with the interaction with the customer service department. Figure 8.14 shows the complete ticket reservation process extended with refunding and upgrading processes.

After the traveller receives the tickets and the invoice, she applies to refund or upgrade her airline tickets zero or more times. If she decides to apply for a refund, the customer service department would
receive such a request (Refund), and the department internally decides if the refund application is to be accepted. If the refund application is accepted (Accept_Refund), the department first receives the tickets (Receive_Void_Tickets) before sending the refund (Send_Refund), thereby completing the order. Conversely, if the refund application is not accepted, a rejection notification is sent (Send_Rejection). If the traveller decides to apply for an upgrade (Upgrade), the customer service department internally decides if the upgrade application is to be accepted. If the upgrade application is accepted (Proceed_Upgrade), the department sends out new tickets (Send_New_Ticket). Conversely, if the upgrade application is not accepted, a decline notification is sent (Send_Debnale).

The following CSP process ECollab models the behaviour of the extended ticket reservation business process, where $P(CustomerService)$ denotes the CSP process that models the behaviour of BPMN pool CustomerService; here we have omitted the definition of process $P(CustomerService)$.

\[
ECollab = P(CustomerService) \\
\quad \| \alpha P(CustomerService) | \alpha P(ETraveller) \cup \alpha P(CAgent) \cup \alpha P(CAirline) \| \\
\quad (P(ETraveller) \| \alpha P(ETraveller) | \alpha P(CAgent) \cup \alpha P(CAirline) | P(CAirline) \| \alpha P(CAgent) | \alpha P(CAirline) | P(CAirline)) \tag{8.13}
\]

Since BPMN pool CustomerService does not directly interact with pools CAgent and CAirline, we can verify that the extended ticket reservation business process shown in Figure 8.14 is deadlock free if compatible(CAgent, ETraveller), compatible(CAirline, ETraveller), compatible(CAgent, CAirline) and compatible(ETraveller, CustomerService). We use the FDR tool to verify that the extended ticket reservation business process satisfies Requirements S1, S2, S3, S4 and S5.

This extension of the traveller’s workflow is constructed using a combination of syntactic operations presented in Chapters 3 and 4. As a result applying the same sequence of operations various versions of the traveller’s workflow shown in Figure 8.13 preserve their refinement. Since compatibility is a refinement-closed property, the extended versions of the traveller’s workflow are also compatible with BPMN pools CAgent, CAirline and CustomerService. Furthermore we know the parallel composition operator is monotonic over F, therefore their collaborations also satisfy Requirements S1, S2, S3, S4 and S5.

8.3 Clinical Trial Protocol

In this section we consider an empirical study adopted from a phase III breast cancer clinical trial – Neo-tAnGo [ECH +04], a neoadjuvant study for the treatment of high-risk early breast cancer with molecular profiling, proteomics and candidate gene analysis. The following is the description of the trial’s primary objective from the official textual protocol document [ECH +04].

A phase III, randomised trial with two-by-two factorial design addressing both the role of Gemcitabine in a sequential neoadjuvant chemotherapy regimen of Epirubicin/Cyclophosphamide and Paclitaxel, and the role of sequencing of these treatment components in terms of short-term and long-term outcome in women presenting with high-risk early breast cancer.

8.3.1 Specification

Neoadjuvant chemotherapy refers to the delivery of chemotherapy prior to the definitive surgical or other local (e.g. radiotherapeutic) procedure. The rationale here is to shrink the primary tumour and reduce the chance of it showering off malignant cells into the circulation (metastases), allowing the subsequent operation or radiotherapeutic procedure to carry a better chance of achieving cure.

Specifically this clinical trial employs a 20-week neoadjuvant chemotherapy regimen; 800 patients are randomised to receive Gemcitabine or not, together with a randomisation for sequence of chemotherapy. In particular, each patient receives either $EC + T$ or $EC + TG$, with a second randomisation to sequence, that is, T before G, or G before T, where E, C, T and G denote Epirubicin, Cyclophosphamide, Paclitaxel and Gemcitabine respectively. Each possible sequence of chemotherapy is known as an arm in the trial. Figure 8.8 shows the schema of the trial [ECH +04 Page 4], where each part of the trial is detailed in the list below. Note that in this case study we are interested in the chemotherapeutic

1 Some details of the trial have been modified for purpose of the case study.
interventions of the trial and therefore do not intend to model the core biopsy, the selection (eligibility
criteria) and randomisation processes.

- **Arm A:**
 - Epirubicin (90 mg/m² by slow push into fast drip), every 2 weeks for 5 cycles;
 - Cyclophosphamide (600 mg/m² by slow push infusion), every 3 weeks for 4 cycles;
 - Paclitaxel (175 mg/m² by 3 hour infusion), every 2 weeks for 4 cycles.

- **Arm B1:**
 - Epirubicin (90 mg/m² by slow push into fast drip), every 2 weeks for 5 cycles;
 - Cyclophosphamide (600 mg/m² by slow push infusion), every 3 weeks for 4 cycles;
 - Paclitaxel (175 mg/m² by 3 hour infusion), followed by Gemcitabine (2000 mg/m² by 60
 minute infusion) within 2 days, every 2 weeks for 4 cycles.

- **Arm B2:**
 - Epirubicin (90 mg/m² by slow push into fast drip), every 2 weeks for 5 cycles;
 - Cyclophosphamide (600 mg/m² by slow push infusion), every 3 weeks for 4 cycles;
 - Gemcitabine (2000 mg/m² by 60 minute infusion), followed by Paclitaxel (175 mg/m² by 3
 hour infusion), within 2 days, every 2 weeks for 4 cycles.

During chemotherapy, associated case report forms must be submitted according to some predefined
schedule. In this case study, case reporting takes place periodically every 2 weeks for 5 cycles.

![Figure 8.8: Neo-tAnGo trial schema](image)

8.3.2 Modelling

We describe how to model the clinical trial using the empirical workflow model Empiricol. We map
each arm of the trial to a sequence rule, that is, each arm corresponds to a single EventSequencing
value. In particular, each sequence rule has the form,

```
Event (Id i) (Leaf START) (Leaf NSTOP) NoCond NoCond
(Single (Dp (Id i,Dur "P14D",Dur "P14D",5,NoCond,Manual))) [] fw(i)
```

where \(fw(i)\) returns the procedural workflow for the rule identified by \(i\). Given \(i\) ranges over values \(A, B1\) and \(B2\), we enumerate the values of \(fw(i)\),

- \(fw("A") = \)
 - \(Par\ [Single (Wk (WkS ("A_E",te,Dur "P14D",Dur "P14D",5)),)
 Single (Wk (WkS ("A_C",tc,Dur "P21D",Dur "P21D",4)))]\)
 - \(Single (Wk (WkS ("A_T",tt,Dur "P14D",Dur "P14D",4)))]\)

- \(fw("B1") =\)
 - \(Par\ [Single (Wk (WkS ("B1_E",te,Dur "P14D",Dur "P14D",5)),\]
 Single (Wk (WkS ("B1_C",tc,Dur "P21D",Dur "P21D",4)))]\)
 - \(Single (Wk (WkS ("B1_T",tt,Dur "P14D",Dur "P14D",4)))]\)

Single (Wk (WkS ("B1_C",tc,Dur "P21D",Dur "P21D",4))),
\nfw("B2") =
\nwhere the values te, tc, tt and tg are defined as follows:
\nte = ProcedureA (Treatment "Epirubicin" "90" "slow push into fast drip")
tc = ProcedureA (Treatment "Cyclophosphamide" "600" "slow push infusion")
tt = ProcedureA (Treatment "Paclitaxel" "175" "3 hour infusion")
tg = ProcedureA (Treatment "Gemcitabine" "2000" "60 minute infusion")
\nThe constructor Treatment encapsulates details of ProcedureA such that Treatment n d m records the administration of d units (mg/m²) of drug n using method m.
\nWe extend this list of sequence rules with the appropriate starting (Start) and ending (NStop) sequences, such that starting sequence’s dependency tree is the same as the ending sequence’s prerequisite tree and is defined as OneOf [Leaf (Id "A"),Leaf (Id "B1"),Leaf (Id "B2")].
\nGiven the above description of the empirical workflow, we employ the function etb, to transform the trial to the BPMN diagram shown in Figure 8.9.

Figure 8.9: BPMN model of Neo-tAnGo chemotherapy

In this figure, each collapsed subprocess models a sequence rule. For example, subprocess A, which is shown in expanded view in Figure 8.10, corresponds to sequence rule A.

Chapter 7 motivates the need to simulate empirical workflows and demonstrates how a workflow can be simulated by transforming its BPMN model to an executable BPEL process. Here we consider how this technique can be applied to the Neo-tAnGo clinical trial. The following BPEL code implements the BPMN model in Figure 8.9 according to the mapping provided by the BPMN’s official documentation [OMG08, Annex A].

Specifically it implements an exclusive choice via the <pick> construct, respecting the fact that each patient undergoes treatment from precisely one arm during the trial. The values activityA, activityB1 and activityB2 are placeholders for implementation of sequence rules A, B1 and B2 respectively.

For illustration purposes we consider sequence rule B2 (activityB2) while other rules may be simulated in similar manner. The interleaving of the procedural and observation workflows of rule B2 is implemented in BPEL as follows:
where \texttt{procedureB2} implements the procedural workflow and \texttt{observationB2} implements the observation workflow. We first consider the procedural workflow, which is implemented in BPEL as follows:

\begin{verbatim}
<sequence>
 <flow>
 <while condition="B2_E_lc < 5">
 <sequence>
 <wait><for>"P14D"</for></wait><invoke operation="B2_E" />...
 <assign name="B2_E_incr_lc">...
 </sequence>
 </while>
 <while condition="B2_C_lc < 4">
 <sequence>
 <wait><for>"P21D"</for></wait><invoke operation="B2_C" />...
 <assign name="B2_C_incr_lc">...
 </sequence>
 </while>
 <while condition="B2_GT_lc < 4">
 <sequence>
 <wait><for>"P14D"</for></wait><invoke operation="B2_T" />...
 <wait><for>"P2D"</for></wait><invoke operation="B2_G" />...
 <assign name="B2_GT_incr_lc">...
 </sequence>
 </while>
 </flow>
</sequence>
\end{verbatim}

Here, each invocation activity of the form \texttt{<invoke operation="B2_T" />...} represents a single chemotherapy session. For the purpose of simulation, it suffices to use “dummy” services to simulate these activities. Specifically the BPEL mapping above implements the interleaving of three \texttt{<while>} activities using the \texttt{<flow>} activity. The first \texttt{<while>} activity implements a SRP (Single Repeatable Procedure) that models the Epirubicin chemotherapy; the second \texttt{<while>} implements the SRP a SRP that models the Cyclophosphamide chemotherapy; and the third \texttt{<while>} implements a RWP (Repeatable Workflow Procedure) that models the Paclitaxel/Gemcitabine chemotherapy. It is easy to see that similar transformations can be performed on the procedural workflow of the other rules.

We now consider observation workflows. The following shows the BPEL mapping of the observation workflow specified by sequence rule \textit{B2}; this mapping is in accordance with BPMN’s official documentation \cite{OMG08}.

\begin{verbatim}
<sequence>
 <while condition="DptB2_lc < 5">
 ...
 </while>
</sequence>
\end{verbatim}
This BPEL mapping defines a `<sequence>` activity, which encapsulates a `<while>` activity that implements the observation workflows of B2’s case reporting; observation workflow of the other rules can be transformed in the similar way.

8.3.3 Requirements

For treatment in a clinical trial, compliance with the trial protocol is important to ensure efficacy and safety. Table 8.2 shows a set of generic oncological safety principles derived by Hammond et al. [HSW95].

<table>
<thead>
<tr>
<th>Types</th>
<th>Description</th>
<th>Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning</td>
<td>Warn about hazards due to inadequate execution of essential actions</td>
<td>P</td>
</tr>
<tr>
<td>Reaction</td>
<td>React appropriately to ameliorate detected hazards</td>
<td>P</td>
</tr>
<tr>
<td>Exacerbation</td>
<td>Avoid exacerbating anticipated hazards</td>
<td>P</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Monitor responses which herald hazardous situations</td>
<td>P+O</td>
</tr>
<tr>
<td>Efficacy</td>
<td>Ensure that overall plans are efficacious in pursuing stated objectives</td>
<td>P</td>
</tr>
<tr>
<td>Sequencing</td>
<td>Order (essential) actions temporally for good effect and least harm</td>
<td>P</td>
</tr>
<tr>
<td>Diminution</td>
<td>Avoid undermining the benefits of essential actions</td>
<td>P</td>
</tr>
<tr>
<td>Critiquing</td>
<td>Critique the proposal of certain hazardous actions even if they are well motivated</td>
<td>P</td>
</tr>
<tr>
<td>Prevention</td>
<td>Prevent or ameliorate hazards before executing an essential action</td>
<td>P</td>
</tr>
</tbody>
</table>

Table 8.2: Safety principles in oncology

The third column of the table partitions the set of principles into two groups – principles in group P+O concerns both procedural and observational behaviours, while principles in group P concerns only procedural behaviour. The application of safety principles requires the existence of an expert knowledge base on drug efficacy and toxicity; we assume this knowledge base and derive the following set of behavioural requirements for chemotherapy treatments.

N1 Paclitaxel must be administered after the administrations of Epirubicin and before that of Cyclophosphamide.

N2 No Gemcitabine should be administered between the administrations of Epirubicin and Cyclophosphamide.

N3 After every application of Paclitaxel, data must be collected via case reporting.

While Requirements N1 and N2 concern only procedural behaviour, Requirement N3 concerns both procedural and observational behaviours. Before addressing the requirements in detail, in the following section we consider how the structure and the semantics of Empiricol permit compositional verification.

8.3.3.1 Compositional Verification

We show how to verify empirical workflow compositionally by verifying its sequence rules individually. We first consider compositional verification of CSP processes and then show how these results can be applied to empirical workflows.

Consider some CSP process \(Q, R \) and \(S \), and some set of CSP events \(A \). Using the definition of failures refinement, we infer the following:

\[
S \subseteq_\mathcal{F} (Q \cap R) \setminus A
\]
This means Q and R refine S if and only if $Q \cap R$ refines S. This gives us the following law (labelled refine-\cap-dist).

$$S \subseteq_{\mathcal{F}} (Q \cap R) \setminus A \Leftrightarrow S \subseteq_{\mathcal{F}} (Q \cap R) \setminus A$$

We now consider the CSP process $Q \parallel R$. If we assume the following conditions:

1. $\alpha Q \cap \alpha R = \emptyset$
2. $\alpha S \subseteq \alpha Q$
3. $\text{Skip} \equiv_{\mathcal{F}} R \setminus \Sigma$: R is deadlock free and contains only finite traces.

Then given $A = \Sigma \setminus \alpha S$, we infer the following:

$$S \subseteq_{\mathcal{F}} (Q \parallel R) \setminus A$$
$$\Leftrightarrow S \subseteq_{\mathcal{F}} (Q \setminus A) \parallel R \setminus A$$
$$\Leftrightarrow S \subseteq_{\mathcal{F}} ((Q \setminus A) \parallel \text{Skip})$$
$$\Leftrightarrow S \subseteq_{\mathcal{F}} Q \setminus A$$

This means if $Q \setminus A$ refines S and only if $(Q \parallel R) \setminus A$ refines S given the assumptions above. This gives us the following law (labelled refine-\parallel-dist).

$$S \subseteq_{\mathcal{F}} Q \setminus A \Leftrightarrow S \subseteq_{\mathcal{F}} (Q \parallel R) \setminus A$$

We now consider these two laws can be applied to the Empiricol. Consider the BPMN diagram in Figure 8.9 after the start event is triggered, the XOR split gateway only triggers one of three subprocesses denoting the three separate treatment arms. By the process semantics of XOR split gateway, this choice is internal. Let CSP process Trial denote the process that models the behaviour of the diagram, and CSP processes AP, $B1P$ and $B2P$ denote the relative timed models of the subprocesses. By Law refine-\cap-dist above, we can see for any specification process S where $A = \Sigma \setminus \alpha S$:

$$S \subseteq_{\mathcal{F}} \text{Trial} \setminus A \Leftrightarrow S \subseteq_{\mathcal{F}} AP \setminus A \wedge S \subseteq_{\mathcal{F}} B1P \setminus A \wedge S \subseteq_{\mathcal{F}} B2P \setminus A$$

(8.14)

We now consider each subprocess in Figure 8.9 individually. Each subprocess models a sequence rule; after the start event of the subprocess is triggered, the parallel gateway triggers both subprocesses modelling the rule’s procedural workflow and observation workflow. In terms of semantics, the behaviour of both workflows are interleaved. This is because by the definition of the diagram’s process semantics, their process alphabets are disjoint and their process behaviours only synchronise on their own alphabets. Furthermore, by Corollary 7.4 both workflows have finite behaviour and are deadlock free. If we let processes AWP, $B1WP$ and $B2WP$ to describe behaviour of the BPMN subprocesses modelling the procedural workflow of treatment Arms A (WkA), $B1$ (WkB1) and $B2$ (WkB2) respectively. By Law refine-\parallel-dist above, and Equivalence 8.14 we have the following logical equivalence.

$$S \subseteq_{\mathcal{F}} \text{Trial} \setminus A \Leftrightarrow S \subseteq_{\mathcal{F}} AWP \setminus A \wedge S \subseteq_{\mathcal{F}} B1PW \setminus A \wedge S \subseteq_{\mathcal{F}} B2PW \setminus A$$

(8.15)

Following the relative timed extension presented in Chapter 6, we consider the semantics of procedural workflow of $B1$. Let CSP events $w.G$, $w.T$, $w.C$ and $w.E$ model Gemcitabine, Paclitaxel, Cyclophosphamide and Epirubicin chemotherapy procedures. Equation 8.16 shows the definition of process $B1PW$. $B1PW$ is defined by parallel composing the enactment process $TP(B1P)$, modelling untimed behaviour of procedural workflow of treatment Arm $B1$, and the coordination process $CP(B1P)$, coordinating the relative timed behaviour of the enactment process $TP(B1P)$. $TP(B1P)$ is defined in Equation 8.17 and
$CP(B1P)$ is defined in Equation 8.18 the behaviour of the procedural workflow of the treatment Arms A and $B2$ can be defined in the similar way.

$$B1PW = TP(B1P) \parallel \Sigma \parallel CP(B1P) \quad (8.16)$$

\[
P(start1) = (s.ASplit \rightarrow c.endB1 \rightarrow \text{Skip}) \sqcup c.endB1 \rightarrow \text{Skip}
\]

\[
P(ASplit) = \{(s.ASplit \rightarrow (s.C \rightarrow \text{Skip}) || s.E \rightarrow \text{Skip} || s.Sub \rightarrow \text{Skip})\} \sqcup
\]

\[
P(Sub) = \text{let} \ P(start2) = (s.T \rightarrow c.endB12 \rightarrow \text{Skip}) \sqcup c.endB12 \rightarrow \text{Skip}
\]

\[
P(T) = (s.T \rightarrow w.T \rightarrow s.G \rightarrow P(T)) \sqcup c.endB12 \rightarrow \text{Skip}
\]

\[
P(G) = (s.G \rightarrow w.G \rightarrow s.endB12 \rightarrow P(G)) \sqcup c.endB12 \rightarrow \text{Skip}
\]

\[
P(endB12) = s.endB12 \rightarrow c.endB12 \rightarrow \text{Skip}
\]

\[
SP = \parallel i : \{\text{start2}, T, G, endB12\} \bullet \alpha P(i) \circ P(i)
\]

\[
P(E) = (s.E \rightarrow (i : (1..5) \bullet w.E \rightarrow \text{Skip})) \sqcup s.Ajoin1 \rightarrow P(E) \sqcup c.endB1 \rightarrow \text{Skip}
\]

\[
P(C) = (s.C \rightarrow (i : (1..5) \bullet w.C \rightarrow \text{Skip})) \sqcup s.Ajoin2 \rightarrow P(C) \sqcup c.endB1 \rightarrow \text{Skip}
\]

\[
P(Ajoin) = \{(s.Ajoin1 \rightarrow \text{Skip} || s.Ajoin2 \rightarrow \text{Skip} || s.Ajoin3 \rightarrow \text{Skip}) \sqcup
\]

\[
s.endB1 \rightarrow P(Ajoin) \sqcup c.endB1 \rightarrow \text{Skip}
\]

\[
P(endB1) = s.endB1 \rightarrow c.endB1 \rightarrow \text{Skip}
\]

\[
TP(B1P) = \parallel i : \{\text{start1}, ASplit, Sub, E, C, Ajoin, endB1\} \bullet \alpha P(i) \circ P(i) \quad (8.17)
\]

\[
CP(B1P) = s.ASplit \rightarrow (C16 \sqcup C17 \sqcup C18)
\]

\[
C01 = w.G \rightarrow C03
\]

\[
C02 = w.C \rightarrow C03
\]

\[
C03 = s.endB12 \rightarrow c.endB12 \rightarrow C05
\]

\[
C04 = s.endB12 \rightarrow w.C \rightarrow c.endB12 \rightarrow C05
\]

\[
C05 = s.Ajoin3 \rightarrow w.E \rightarrow s.Ajoin1 \rightarrow w.C \rightarrow s.Ajoin2 \rightarrow s.endB1 \rightarrow c.endB1 \rightarrow \text{Skip}
\]

\[
C06 = w.C \rightarrow w.E \rightarrow C08
\]

\[
C07 = w.E \rightarrow w.C \rightarrow C08
\]

\[
C08 = s.T \rightarrow w.T \rightarrow s.G \rightarrow w.G \rightarrow s.endB12 \rightarrow c.endB12 \rightarrow w.E \rightarrow s.T \rightarrow w.T \rightarrow s.G \rightarrow C09
\]

\[
C09 = (w.C \rightarrow C01) \sqcup ((w.G \rightarrow (C02 \sqcup C04)) \sqcup (w.C \rightarrow C01))
\]

\[
C10 = w.E \rightarrow s.T \rightarrow C12
\]

\[
C11 = s.T \rightarrow w.E \rightarrow C12
\]

\[
C12 = w.T \rightarrow s.G \rightarrow w.G \rightarrow s.endB12 \rightarrow c.endB12 \rightarrow w.C \rightarrow w.E \rightarrow s.T \rightarrow w.T \rightarrow s.G \rightarrow w.G \rightarrow s.endB12 \rightarrow c.endB12 \rightarrow (C06 \sqcup C07)
\]

\[
C13 = s.E \rightarrow (C11 \sqcup C10)
\]

\[
C14 = s.C \rightarrow (C11 \sqcup C10)
\]

\[
C15 = s.Sub \rightarrow (C11 \sqcup C10)
\]

\[
C16 = s.C \rightarrow ((s.E \rightarrow C15) \sqcup (s.Sub \rightarrow C13))
\]

\[
C17 = s.E \rightarrow ((s.C \rightarrow C15) \sqcup (s.Sub \rightarrow C14))
\]

\[
C18 = s.Sub \rightarrow ((s.C \rightarrow C13) \sqcup (s.E \rightarrow C14)) \quad (8.18)
\]
8.3.3.2 Requirement N1

Requirement N1 states that Paclitaxel must be administered between the administrations of Epirubicin and Cyclophosphamide. The following CSP process Spec models Requirement N1.

\[
\begin{align*}
\text{Spec} & = \text{Spec0} \cap \text{Spec1} \\
\text{Spec0} & = \text{Proceed}(\{ w.E \}, \text{Spec}) \\
\text{Spec1} & = w.E \rightarrow \text{Spec2} \cap \text{Spec3} \cap \text{Spec4} \cap \text{Spec5} \\
\text{Spec2} & = \text{Proceed}(\{ w.C, w.E \}, \text{Spec6} \cap \text{Spec1}) \\
\text{Spec3} & = w.E \rightarrow \text{Spec7} \cap \text{Spec3} \cap \text{Spec4} \cap \text{Spec8} \\
\text{Spec4} & = \text{Proceed}(\{ w.C, w.E \}, \text{Spec9}) \\
\text{Spec5} & = w.T \rightarrow (\text{Spec10} \cap \text{Spec11}) \\
\text{Spec6} & = \text{Proceed}(\{ w.C, w.E \}, \text{Spec12} \cap \text{Spec1}) \\
\text{Spec7} & = \text{Proceed}(\{ w.C, w.E \}, \text{Spec6} \cap \text{Spec1}) \\
\text{Spec8} & = w.T \rightarrow \text{Spec13} \\
\text{Spec9} & = w.T \rightarrow \text{Spec10} \\
\text{Spec10} & = w.C \rightarrow \text{Spec} \\
\text{Spec11} & = \text{Proceed}(\{ w.E \}, \text{Spec10}) \\
\text{Spec12} & = \text{Proceed}(\{ w.C, w.E \}, \text{Spec}) \\
\text{Spec13} & = \text{Proceed}(\{ w.C, w.E \}, \text{Spec10})
\end{align*}
\]

Since Requirement N1 does not impose behavioural constraints on the observation workflows, by Equivalence 8.15 we verify the diagram’s behaviour against N1 by verifying the behaviour of individual procedural workflow of the subprocesses. Formally we have the following logical equivalence.

\[\text{Spec} \subseteq F \text{Trial} \setminus H \Leftrightarrow \text{Spec} \subseteq F \text{APW} \setminus H \land \text{Spec} \subseteq F \text{B1PW} \setminus H \land \text{Spec} \subseteq F \text{B2PW} \setminus H \]

Here, processes AWP, B1WP and B2WP describe the behaviour of the BPMN subprocesses modelling the procedural workflow of treatment Arms A (WkA), B1 (WkB1) and B2 (WkB2) respectively. We abstract irrelevant behaviour by hiding the set of events \(H = \Sigma \setminus \alpha \text{Spec} \).

We check whether the BPMN diagram satisfies this property by checking the above refinement assertion using the FDR tool. We first consider whether process AWP \(\setminus H \) is a refinement of Spec. This refinement does not hold and the trace \(\langle w.T, w.E, w.C \rangle \) is given as a counterexample by FDR. This counterexample shows the possibility of administering Epirubicin and then Cyclophosphamide without administering Paclitaxel in between. While there are several solutions to overcome this problem, such as changing the timing specification of the trial plan, thereby requiring revision to the trial protocol, deciding which solution is preferable would require clinical insight.
8.3.3.3 Requirement N2

Requirement N2 states that no Gemcitabine should be administered in between the administrations of Epirubicin and Cyclophosphamide. The following CSP process $Spec$ models Requirement N2.

\[
\begin{align*}
Spec &= Spec0 \cap Spec1 \\
Spec0 &= Proceed(\{w,E\}, Spec) \\
Spec1 &= w.E \rightarrow Spec2 \cap Spec3 \cap Spec4 \cap Spec5 \cap Spec6 \\
Spec2 &= Proceed(\{w.E, w.C\}, Spec7 \cap Spec1) \\
Spec3 &= w.C \rightarrow Spec \\
Spec4 &= w.E \rightarrow Spec2 \cap Spec4 \cap Spec8 \cap Spec9 \\
Spec5 &= Proceed(\{w.E, w.G\}, Spec3) \\
Spec6 &= w.E \rightarrow (Spec3) \\
Spec7 &= Proceed(\{w.E, w.C\}, Spec) \\
Spec8 &= Proceed(\{w.E, w.C, w.G\}, Spec3) \\
Spec9 &= w.E \rightarrow Spec3
\end{align*}
\]

The administrations of Epirubicin and Cyclophosphamide in all treatment arms are interleaved, that is, there is no explicit ordering imposed by sequence flows. While process $Spec$ only considers the behaviour after the administration of Epirubicin chemotherapy and before that of Cyclophosphamide, we need to also consider the behaviour after the administration of Cyclophosphamide chemotherapy and before that of Epirubicin. We capture this via the following CSP process $Spec'$.

\[
\begin{align*}
Spec' &= Spec'0 \cap Spec'1 \\
Spec'0 &= Proceed(\{w.C\}, Spec') \\
Spec'1 &= w.C \rightarrow Spec'2 \cap Spec'3 \cap Spec'4 \cap Spec'5 \cap Spec'6 \\
Spec'2 &= Proceed(\{w.C, w.E\}, Spec'7 \cap Spec'1) \\
Spec'3 &= w.E \rightarrow Spec' \\
Spec'4 &= w.C \rightarrow Spec'2 \cap Spec'4 \cap Spec'8 \cap Spec'9 \\
Spec'5 &= Proceed(\{w.C, w.G\}, Spec'3) \\
Spec'6 &= w.C \rightarrow (Spec'3) \\
Spec'7 &= Proceed(\{w.C, w.E\}, Spec') \\
Spec'8 &= Proceed(\{w.C, w.E, w.G\}, Spec'3) \\
Spec'9 &= w.C \rightarrow Spec'3
\end{align*}
\]

We verify the diagram’s behaviour compositionally by considering each treatment arm individually. Moreover, it is sufficient to verify the behaviour of each treatment arm by considering its procedural workflow, and since treatment Arm A does not contain any application of Gemcitabine, we only need to consider arms $B1$ and $B2$. By Equivalence [8.15] we have the following logical equivalence, where process terms Trial, $B1PW$ and $B2PW$ are defined as before. Irrelevant behaviours are abstracted by hiding the set of events $H = \Sigma \setminus \alpha Spec$.

\[
\begin{align*}
Spec \sqsubseteq_S Trial \setminus H \land Spec' \sqsubseteq_S Trial \setminus H \iff \\
Spec \sqsubseteq_S B1PW \setminus H \land Spec' \sqsubseteq_S B1PW \setminus H \land Spec \sqsubseteq_S B2PW \setminus H \land Spec' \sqsubseteq_S B2PW \setminus H
\end{align*}
\]

Similar to the verification of Requirement N1, we verify the behaviour of the BPMN diagram in Figure [8.9] by checking individual assertions at the right hand side of the equivalence. We first consider whether process $B1PW \setminus H$ is a failure refinement of $Spec$. This refinement does not hold and the trace $(w.G, w.C)$ is given as a counterexample. This counterexample shows the possibility to administer Gemcitabine after Epirubicin and before Cyclophosphamide. Again deciding how to correct this behaviour would require clinical insight.
8.3.3.4 Requirement N3

Requirement N3 states that after every application of Paclitaxel, data must be collected via case reporting. Here we express this requirement as the following CSP process \(\text{Spec} \), where events \(w.T \) and \(w.S \) model administering Paclitaxel and case reporting respectively.

\[
\begin{align*}
\text{Spec} &= \text{Spec}0 \cap \text{Spec}1 \\
\text{Spec}0 &= \text{Proceed}\{w.T\}, \text{Spec}0 \cap \text{Spec}1 \\
\text{Spec}1 &= w.T \rightarrow \text{Spec}2 \\
\text{Spec}2 &= w.S \rightarrow \text{Spec}0 \cap \text{Spec}1
\end{align*}
\]

The verification of the diagram’s behaviour against Requirement N3 is achieved by verifying the behaviour of individual subprocesses. Note that this requirement concerns the behaviour of both procedure (Paclitaxel chemotherapy) and observation (case reporting), therefore it is necessary to consider the behaviour of both workflows together. However, it is sufficient to verify the behaviour of each treatment arm by considering the interleaving behaviour of the Paclitaxel chemotherapy procedure and case reporting. To illustrate this, consider the subprocess in Figure 8.10 on Page 164, which models sequence rule \(A \). We observe that the behaviour of multiple instances tasks \(A.C \) (Cyclophosphamide chemotherapy) and \(A.E \) (Epirubicin chemotherapy) do not interfere with the behavioural constraints between tasks \(A.T \) and \(A.CRF \). Figure 8.11(a) shows how we abstract behaviour of the BPMN subprocess \(A \) in Figure 8.10. For subprocesses \(B_1 \) and \(B_2 \), however, it is necessary to consider the behaviour of \(B_1.G \) and \(B_2.G \) (Gemcitabine chemotherapy) as this behaviour is a dependency for the behaviour of \(B_1.T \) and \(B_2.T \) respectively. For example, Figure 8.11(b) shows how we abstract behaviour of the BPMN subprocess \(B_1 \). By Equivalence 8.15, we have the following logical equivalence, where processes \(AS \), \(B1S \) and \(B2S \) describe the behaviour of the abstracted versions of BPMN subprocesses \(A \), \(B_1 \) and \(B_2 \) respectively.

\[
\text{Spec} \sqsubseteq \mathcal{F} \text{Trial} \setminus H \iff \text{Spec} \sqsubseteq \mathcal{F} \setminus AS \setminus H \land \text{Spec} \sqsubseteq \mathcal{F} \setminus B1S \setminus H \land \text{Spec} \sqsubseteq \mathcal{F} \setminus B2S \setminus H
\]

We verify the behaviour of the BPMN diagram in Figure 8.9 by checking individual assertions at the right hand side of the equivalence. We first consider if process \(AS \setminus H \) is a refinement of \(\text{Spec} \). This refinement does not hold. The trace \(\langle w.S, w.T, w.T \rangle \) is returned as a counterexample by FDR. This trace shows the possibility of administering two dosages of Paclitaxel without case reporting. Clinical insight is again required to choose appropriate correction to this behaviour.

8.4 Summary

In this chapter we presented two case studies. The first case study was a collaborative business process describing an airline ticket reservation system, in which we investigated the compatibility and compositional development. The second case study was an empirical workflow specification based on a phase III breast cancer clinical trial. We studied the modelling of the trial protocol using our empirical workflow, the specification of oncological safety requirements and the verification of the protocol against these requirements by applying the relative timed extension, compositional reasoning and model checking.
Figure 8.12: Airline Ticket Reservation
Figure 8.13: Corrected Airline Ticket Reservation
Figure 8.14: Extended Airline Ticket Reservation
Chapter 9

Formalising BPMN

This chapter reports some of the current approaches to formalising BPMN. Comparisons between them and our formalisations are given where possible. Related research efforts on BPMN have been aiming to provide a suitable formalisations for BPMN. At the time of our development of BPMN semantics, the most prominent ones in this area included Dijkman et al.’s Petri net semantics [DDO08], and Dumas et al.’s rule-based semantics focusing on BPMN’s inclusive (OR) join gateway [DGHW07]. Since then, there have been other attempts to provide alternative semantic models to BPMN. These include, but are not limited to, Arbab et al.’s formalisation in Reo [AKS08, KA09], Prandi et al.’s translation from BPMN to Calculus for Orchestrating Web Services (COWS) [PQZ08], and Ye et al.’s translation from BPMN to Yet Another Workflow Language (YAWL) [YSSW08].

This chapter is structured as follows. In Sections 9.1, 9.2, 9.3 and 9.4 we discuss related work on formalising BPMN using Petri nets, YAWL, Reo, COWS respectively. We summarize the contribution of this chapter in Section 9.5.

9.1 Petri nets

Petri nets originated from the early work of Petri [Pet62]. Petri nets have been used quite extensively to study the behaviour of workflow [vdAtHKB03, vdAtH05, Kie02, DDO08]. Specifically a Petri net is a directed bipartite graph with two node types called places and transitions. Places are denoted by circles such that each place can contain a non-negative number of tokens; transitions are denoted by rectangles. The nodes are connected via directed arcs. Here we present the formal definition of Petri nets [vdA97].

Definition 9.1. Petri Net. A Petri net is a triple \(N = (P, T, F) \) where

- \(P \) is a finite set of places;
- \(T \) is a finite set of transitions \((P \cap T = \emptyset) \);
- \(F \subseteq (P \times T) \cup (T \times P) \) is a set of arcs (flow relation).

Place \(p \) is called an input place of transition \(t \) if and only if there exists a directed arc \((p, t) \in F\) from \(p \) to \(t \). Place \(p \) is called an output place of transition \(t \) if and only if there exists a directed arc from \(t \) to \(p \). The set \(\bullet t \) denotes the set of input places for transition \(t \). The sets \(\bullet t \), \(\bullet p \) and \(p \) hence have similar meanings. A Petri net is strongly connected if and only if, for every pair of nodes \(x, y \in P \cup T \), there is a directed path leading from \(x \) to \(y \).

During the execution of a Petri net, each place holds zero or more tokens, and a state of a Petri net, called a marking, is a function from each place in the net to a number of tokens it holds. In a given marking, a transition \(t \) is enabled if every input place in \(\bullet t \) has at least one token; firing \(t \) removes a token from every input place in \(\bullet t \) and adds a token to every output place in \(t \bullet \). The state of the Petri net transitions from one to the next by firing any one of the enabled transitions. A marking of a Petri net is dead if it does not enable any transition, and a transition in a Petri net is dead if and only if the net has no marking that enables it.

Dijkman et al. [DDO08] provide a semantics for BPMN in Petri nets. In particular, they provide a semantics that maps BPMN pools into Workflow nets. A Workflow net is a Petri net such that there is a unique source place \(i (\bullet i = \emptyset) \), a unique sink place \(o (o \bullet = \emptyset) \), and every other place and transition is on a directed path from the unique source place to the unique sink place.
Definition 9.2. **Workflow net.** A Petri net $N = (P, T, F)$ is a Workflow net if and only if:

- N has two special places: i and o. Place i is a source place: $i = \emptyset$. Place o is a sink place: $o = \emptyset$.
- If we add a transition t to N which connects place o with i (i.e. $t = \{o\}$ and $t = \{i\}$), then the resulting Petri net is strongly connected.

There are similarities and differences between their semantics and that presented in Chapter 5. Specifically, their Petri net semantics models behaviour of tasks, events, gateways and message flows to be instantaneous, and message flows to be synchronous communications between BPMN pools. A BPMN task or an intermediate event is mapped to a transition with one input place and one output place, where the transition models the execution of the element. A start or an end event is mapped to a similar set of nodes where the transition is used to signal when the process starts or ends. AND and data-based XOR gateways are mapped to Petri-net nodes with silent transitions capturing their routing behaviour. For example, an AND split gateway is mapped to a silent transition t that has a single input place $#t = 1$ and multiple output places $#t > 1$, where each output place models an outgoing sequence flow of the gateway. A data-based XOR split gateway, on the other hand, is mapped to several silent transitions ts such that each $t \in ts$ has a single output place $#t = 1$ modelling an outgoing sequence flow of the gateway and all silent transitions in ts have a common single input place $#t = 1$ modelling the exclusive choice over outgoing sequence flows. These decisions are the same as those we have made for our process semantics; they give rise to a suitable level of abstraction for reasoning about interaction behaviour between BPMN elements.

There are also differences: Dijkman et al.'s Petri net semantics models multiple instance activities implicitly by translating each multiple instance activity into individual activities and gateways. Our semantic definition, on the other hand, models the behaviour of multiple instance activities directly. Moreover, Dijkman et al. only consider multiple instance activities with a fixed numbers of instances, that is, the number of instances is known before the execution of the activity. In contrast, our semantics permits both fixed and nondeterministic numbers of instances, modelling situations in which the number of instances is only known at run time. Note that multiple instance activity elements with nondeterministic number of instances cannot be implicitly modelled compositionally using activity and gateway elements.

BPMN processes, which are translated to Petri nets using Dijkman et al.’s semantics, can be mechanically verified using the process mining tool ProM against general behavioural properties such as deadlock/livelock freedom and the absence of dead tasks. A BPMN process is deadlock free if its corresponding Petri net has no dead marking, while a BPMN process has no dead task if the corresponding Petri net has no dead transition. Similarly, using the FDR tool, our process semantics also permits mechanical verification of BPMN processes against these general behavioural properties; general behavioural properties are modelled as CSP processes and verification corresponds to refinement checks.

Extensive research works have been carried to investigate properties of Petri nets and Workflow nets. For example, Workflow nets have been analysed with respect to liveness, boundedness and soundness properties. Furthermore a timed formalisation of workflow nets using timed Petri nets has subsequently been provided by Ling et al. While it would be interesting to see how these properties can be exploited in the context of BPMN, they were not considered in Dijkman et al.’s formalisation. Moreover, neither compositional reasoning nor the notion of behavioural compatibility were considered in their work.

9.2 YAWL

Yet Another Workflow Language (YAWL), a workflow language developed by van der Aalst et al., is based on the investigation of workflow patterns and the expressiveness of existed workflow modelling notations. Its semantics is provided in terms of extended Workflow nets. Here we present the formal definition of an extended Workflow net.
Definition 9.3. **Extended Workflow net.** An extended Workflow net N is a tuple $(C, i, o, T, F, \text{split}, \text{join}, \text{rem}, \text{nofi})$ such that:

- C is a set of conditions;
- $i \in C$ is the input condition;
- $o \in C$ is the output condition;
- T is a set of tasks;
- $F \subseteq (C \setminus \{o\} \times T) \cup (T \times C \setminus \{i\}) \cup (T \times T)$ is the flow relation; every node in the graph $(C \cup T, F)$ is on a directed path from i to o;
- $\text{split} : T \to \{\text{AND}, \text{XOR}, \text{OR}\}$ specifies the split behaviour of each task;
- $\text{join} : T \to \{\text{AND}, \text{XOR}, \text{OR}\}$ specifies the join behaviour of each task;
- $\text{rem} : T \to P(T \cup C \setminus \{i, o\})$ specifies additional tokens to be removed by emptying a part of the workflow; and
- $\text{nofi} : T \to N \times N^{\inf} \times N^{\inf} \times \{\text{dynamic, static}\}$ specifies the multiplicity of each task (minimum, maximum, threshold of continuation, and dynamic/static creation of instances).

An extended Workflow net is composed of conditions and tasks. In terms of Petri nets (Definition 9.1), conditions correspond to places and tasks correspond to transitions. In particular from the definition of an extended Workflow net, the tuple (C, T, F) corresponds to a Petri net. Similar to Workflow nets (Definition 9.2), an extended Workflow net has a unique input and output conditions. Unlike Petri nets, the flow relation F of an extended Workflow net can connect two tasks directly. In terms of Petri nets, this is interpreted as placing a “hidden” place between the two transitions. Functions split and join specify split and join behaviour of each transition, rem specifies the additional tokens to be removed by emptying a part of the Workflow net, and nofi specifies the multiplicity of each transition.

Extended Workflow nets provide the expressivity for modelling workflows containing multiple instance, inclusive splits/joins and cancellation patterns \[vdAtHKB03\]; these patterns have been known to be difficult to model with existing modelling notations \[vdAtH05\].

In YAWL, a task is either atomic or composite, and a workflow specification in YAWL is a set of extended Workflow nets, such that each composite task refers to a unique extended Workflow net in that set. In formal analysis, van der Aalst et al. \[vdAtH05\] provide some compositionality results on the soundness property of YAWL \[vdA97\]. Specifically, a workflow net is sound if and only if it terminates without deadlock and is absence of dead tasks. van der Aalst et al. showed that YAWL is compositional with respect to soundness: a workflow specification in YAWL is sound if and only if each extended Workflow net in the the workflow specification’s set is sound.

Ye et al. \[YSSW08\] provided a translation from BPMN to YAWL. Unlike other formalisms that have been used to model BPMN, YAWL is itself a workflow language and many constructs in YAWL fit naturally with BPMN elements and objects. This is reflected in Ye et al.’s approach. Specifically, a YAWL workflow specification represents a BPMN diagram; YAWL atomic tasks correspond to BPMN task elements; composite tasks correspond to subprocesses; functions split and join correspond to the behaviour of AND, XOR and OR split/join gateways; function rem corresponds to the behaviour of exception flows; and function nofi corresponds to the behaviour of multiple instance activities. Note that the distinction between sequence and message flows, as well as the concept of pools are not explicit. Unlike the other formalisation presented in this chapter, Ye et al. also consider the semantics of ad-hoc subprocesses by mapping them to YAWL’s composite tasks.

To enable automatic verification of BPMN processes modelled in YAWL, Ye et al. developed a BPMN2YAWL plugin for the process mining tool ProM \[vDdMV+05\]. While YAWL offers a compositional way to verify YAWL workflow with respect to the soundness properties \[vdA97\], this compositionality result has not been applied in Ye et al.’s mapping. Furthermore, neither any other compositional reasoning nor the notion of behavioural compatibility was considered in their approach.
CHAPTER 9. FORMALISING BPMN

9.3 Reo

Reo [Arb04] is a formal language for constructing channel-based models that exhibit exogenous coordination. In Reo, a system consists of a number of components executing at one or more locations, communicating through connectors that coordinate their activities. Each connector in Reo is constructed compositionally out of simpler connectors which are in turn composed out of channels.

Specifically a channel has two directed ends, through which components refer to and manipulate that channel and the data it carries. There are two types of channel ends: sources and sinks. A source channel end accepts data into its channel. A sink channel end dispenses data out of its channel. Typical channel types include FIFO1, synchronous and lossy synchronous: a FIFO1 channel represents an asynchronous channel with one buffer cell that can hold one data item; a synchronous channel has a source and a sink ends with no buffer. It accepts a data item through its source end if and only if it can simultaneously dispense it through its sink, and a lossy synchronous channel is similar to synchronous channel except that it always accepts data items from its source and a data item is transferred if it can be dispensed through the channel’s sink, otherwise the item is lost.

The semantics of Reo is based on Constraint Automata. A Constraint Automaton, introduced by Baier et al. [BSAR06], is conceptually a generalization of probabilistic automata where data constraints, instead of probabilities, influence applicable state transitions. We present a formal definition of Constraint Automata from Baier et al.’s work [BSAR06].

Definition 9.4. Constraint Automata. A constraint automaton is a tuple $A = (S, S_0, N, \rightarrow)$ where

- S is a set of states
- $S_0 \subseteq S$ is the set of initial states
- N is a set of names
- $\rightarrow \subseteq (S \times P N \times G \times S)$ is the transition relation of A, where G is possible guards of the transition in the relation. For $(q, n, g, p) \in \rightarrow$, $n \in P N$ is the name-set and $g \in G$ the guard of the transition.

There exist several extensions to Constraint Automata for modelling and automated analysis of time, resource and QoS aspects of Reo coordination models [ACMM07, AbdBR07].

Arbab et al. [AKS08] provide a translation from BPMN to Reo. Due to the extensions to Reo’s Constraint Automata semantics, this translation permits formal reasoning about BPMN processes against time and resource properties.

In their Reo semantics, the interactions between BPMN elements are modelled as data flows through Reo channels. A BPMN task is modelled in Reo as a simple FIFO1 channel, where data flow in the source end of the channel corresponds to the start of the task, data flow in the sink end of the channel corresponds to the end of the task, while the data token residing in the channel buffer implies that the task is being executed. A subprocess is modelled using a Reo connector that preserves the number of the subprocess’ incoming and outgoing flows. An event with no trigger is modelled as a single Reo node, while events with triggers are modelled using Reo channels. For example, a message event with an incoming message flow is modelled as a synchronous drain. An AND split gateway is composed of multiple diverging synchronous channels, each represents one of the gateway’s outgoing sequence flows. An AND join gateway consists of multiple synchronous channels representing the gateway’s incoming sequence flows; these channels are synchronized using a synchronous drain, while the gateway’s outgoing sequence flow is modelled using lossy synchronous channels.

The Reo translation described so far yields the same level of abstraction as our process semantics in which the focus is on the behaviour due to the interaction between elements in a BPMN process. We now consider a number of differences in their modelling decision. In their Reo semantics, a data-based XOR split gateway is modelled using a synchronous channel to model the gateway’s incoming flow, and multiple filter channels with a common source model its outgoing flows. Filter transition conditions are defined by Boolean expressions that are used to determine which outgoing sequence flow to take. Data dependence allows one to specify exactly the condition under which an outgoing sequence flow is triggered, however, this means it is important to ensure the Boolean conditions are mutually exclusive, otherwise it can lead to deadlocks or dead tasks. In our process semantics, the choice between outgoing
sequence flows of a XOR split gateway is modelled using the nondeterministic choice operator, thereby abstracting process data and ensuring only one flow is triggered.

Nevertheless, using data dependent Boolean conditions, an OR split gateway can be modelled similarly to the data-based XOR gateway by relaxing the need for the Boolean conditions to be mutually exclusive. Again, incorrect Boolean conditions can lead to deadlock or dead tasks. Additionally, using Reo, various complex gateways can be constructed. Due to data abstraction OR split gateway and other complex gateways were not considered in our formalisation.

Another difference in their modelling decisions is to allow both synchronous and asynchronous communications via message flows between BPMN pools. This provides a high level of flexibility to model communications between participants in the business collaboration. However, the authors did not clearly present how to reason about the behaviour of BPMN processes compositionally in the presence of both synchronous and asynchronous communications.

In their more recent work (KAL09), they generalised the representation of business processes and presented a framework for modeling and verifying service-based business processes against external compliance regulations such as Segregation of Duties (SoD) and privacy protection policies. The verification of a (BPMN) business process modelled in Reo against compliance regulations is achieved using the Vereofy model checker [BBKK09]. One of the input languages of Vereofy is the Reo Scripting Language (RSI), a textual version of Reo. Vereofy supports linear and branching-time model checking. Compliance regulations about the business process are specified as behavioural properties about the Reo circuit that models the business process. These properties can be expressed in several formalisms such as Linear Temporal Logic (LTL) and Computation Tree Logic (CTL). Similar to their analysis approach, we have considered the problem of property specification for business processes using temporal logic [WGT10], in particular we generalised Dwyer et al.’s Property Specification Patterns (PSP) [DAC99], and translated PSP properties into a bounded positive fragment of LTL [Low08]; these LTL formulae are then automatically translated into CSP processes for simple refinement checks using the FDR tool [Low08].

Alternatively, a compliance requirement can be seen as an informal description of the characteristic business process satisfying the requirement, which can be formally modelled as a Reo model. The verification of business process modelled in Reo against this requirement can then be achieved by checking bisimulation equivalence between their Reo models. Similarly, in this thesis a behavioural property about a BPMN processes is specified as a CSP process and the verification is achieved by using the FDR tool to automatically check if the CSP process modelling the behaviour of the BPMN process refines that expressing the behavioural property. Note that neither compositional reasoning nor the notion of behavioural compatibility was considered for Arbab et al.’s Reo semantics.

9.4 COWS

The Calculus of Orchestrating Web Services (COWS) [LPT07] is a process algebra that combines elements well-known to process algebras with constructs in BPEL [BPE03]. The computation unit of COWS is a service. Here we provide the grammar of the COWS language [LPT07].

\[
s ::= u!w | [d]s \circ g \circ s \circ \{s\} \circ \text{kill}(k) \circ s
g ::= 0 \circ p?w.s \circ g + g
\]

Specifically, \(u!w\) is a service that invokes an activity over endpoint \(u\) with parameter \(w\); \([d]s\) denotes the scope of \(d\) to be \(s\); \(g\) is a guarded command, which can either be the empty activity \(0\), or a service \(p?w.s\) that halts until communication is received via endpoint \(p\) with the possible instantiation of parameter \(w\) before proceeding to become \(s\), or a choice between two guarded commands \(g + g\). \(s \circ \{s\}\) is the parallel composition of two services; \(\{s\}\) protects service \(s\) from termination while \(\text{kill}(k)\) forces termination of unprotected parallel services that are in the scope of \(k\). \(ss\) is the replication of \(s\) and \(ss\) behaves as \(ss \circ s\). High level imperative constructs such as conditional statements and sequential composition can be encoded using COWS primitive operators as follows,

\[
\text{if } c \text{ then } s_1 \text{ else } s_2 = [p](p!c \circ (p?true.s_1 + p?false.s_2))
\]

\[
s_1; s_2 = [p_{s_1_done}](s_1 \circ p_{s_1_done}?.s_2)
\]

\footnote{The original grammar uses \(s \circ t\) to denote the parallel composition of \(s\) and \(t\), we have replaced it with \(s \circ t\) to avoid clashes with the BNF \(\circ\).}
where \hat{c} evaluates the condition c and can either assume the value true or the value false. For sequential composition, $p_{s_{1}\text{.done}}$ is a special endpoint for termination of service s_1. COWS has an operation semantics and is given in terms of a structural congruence and a labelled transition relation [LP10].

Prandi et al. [PQZ08] provided a translation from a subset of BPMN to COWS. Their choice of BPMN elements to model is a subset of that considered in this thesis with the addition of OR split and join gateways. Specifically, they do not consider subprocesses and multiple instances. Similar to our process semantics, they model a BPMN process as a parallel composition of COWS services, each corresponding to the behaviour of a BPMN element contained in that process. Incoming sequence and message flows are modelled as request activities, while outgoing sequence and message flows are modelled as invoking activities. A task with an incoming sequence flow i, outgoing sequence flow o and incoming message flow m is modelled as the service $*([w]i?.m?w.o!)$; an AND split gateway with an incoming sequence flow i, and two outgoing sequence flows o_1 and o_2 is modelled as the service $*(i?.(o_1! \parallel o_2!))$; and an AND join gateway with incoming sequence flows i_1 and i_2, and outgoing sequence flow o is modelled as the service $*((i_1? \parallel i_2?); o!)$.

In their paper [PQZ08] Prandi et al. considered quantitative analysis of BPMN processes using a stochastic extension of COWS [PQ07]. Using this extension, COWS service modelling the behaviour of a BPMN process can also be expressed as Continuous Time Markov Chains for analysis. Specifically, each basic action is associated with a random duration governed by a negative exponential distribution that is characterized by a unique rate r, therefore the probability that an action is performed within a period of time of length t is $1 - e^{-rt}$. To enable automated analysis of BPMN processes modelled in COWS, Prandi et al. implemented the semantics of COWS in PRISM [HKNP06], a stochastic model checker. Note that neither compositional reasoning nor the notion of behavioural compatibility was considered in Prandi et al.’s formalisation.

9.5 Summary

In this chapter we looked at some of the current approaches to formalise BPMN. In Section 9.1 we looked at Dijkman et al.’s Petri nets approach; in Section 9.2 we considered van der Aalst et al.’s YAWL workflow language and Ling et al.’s mapping from BPMN to YAWL; in Section 9.3 we presented Arbab et al.’s Reo coordination language and their mapping from BPMN to Reo, which facilitated the analysis of BPMN process with respect to compliance requirements; and in Section 9.4 we presented Lapadula et al.’s process algebra COWS and Prandi et al.’s translation from BPMN to COWS, which facilitated quantitative analysis of BPMN processes.
Chapter 10

Conclusion

In this final chapter we reflect on the contributions presented in this thesis. We first provide a summary and draw some conclusions; we discuss some limitation of our research and propose possible directions in future research to overcome them.

10.1 Summary of Contributions

In this thesis we have provided a CSP-based formal framework for declaratively and graphically specifying both service-centric systems and empirical studies described in Business Process Modelling Notation, and verifying these workflow processes against abstract behavioural properties via automatic refinement checking. We achieved this by formalising the syntax of BPMN using the Z schema language and defining two new process semantic models on that syntax in the language of CSP. One considers purely untimed behaviours of BPMN diagrams, while the other one extends the first one with timing information. We exploited CSP’s process-based specification and refinement orderings to capture abstract behavioural properties, against which workflow processes described in BPMN may be verified.

In Chapter 4 we studied in detail the syntax as well as the informal semantics of BPMN, and provided a formalisation of a BPMN subset in Z. We studied several syntactic operations for constructing BPMN diagrams, provided corresponding Z formalisations, and using which we investigated their logical preconditions.

In Chapter 5 we considered an untimed process semantic model for BPMN. In this semantics, each BPMN element is represented as a CSP process, where each element’s sequence flows and message flows are represented as CSP events. Consequently each BPMN diagram may be represented as a parallel composition of CSP processes where the flow of control between elements is modelled by synchronising the shared interface of the parallel composition. This semantics permits hierarchical composition allowing formal reasoning at various levels of abstractions as well as semantic comparisons between BPMN diagrams via CSP’s refinement. We studied the semantics and the compositionality of the syntactic operations defined in Chapter 4. Specifically we showed these operations to be monotonic with respect to CSP’s failures refinement – this encourages compositional development of workflows.

We also considered Reed et al.’s CSP theory of responsiveness for interoperating components in a complex system and using which we developed a formal notion of behavioural compatibility in the context of our semantic model. We were able to show that compatibility between deadlock-free business processes ensures their interaction to be deadlock free. This property was then extended such that the composition of a compatible business process to a deadlock-free business collaboration guarantees the overall collaboration to be also free of deadlock.

In Chapter 6 we introduced a timed model for BPMN by augmenting its untimed counterpart with the notion of relative time in the form of delays chosen non-deterministically over a double-bounded range. This model adopts a variant of the two-phase functioning approach widely used in real-time systems and timed coordination languages [LBB06]. We have formalised the coordination procedure, and established a formal relationship between the timed coordination and the untimed enactment processes for BPMN. Specifically we have shown the coordination procedure yields coordination processes that do not cause their enactment counterpart to deadlock. Using this model, BPMN diagrams could be used to describe concurrent behaviour with timing restrictions.

Chapter 7 studied the application of BPMN and the semantic models defined in this thesis to the specification and analysis of empirical studies. We achieved this by defining a generic workflow model Empiricol for modelling empirical studies declaratively; specifically this model generalised the workflow model implemented in the CancerGrid trial model [CHG+07]. We provided bidirectional transformation functions between Empiricol and BPMN. The transformation from BPMN to Empiricol provided a
medium for empirical studies to be specified graphically as workflows, while transforming Empiricol to BPMN permits graphical visualisation, simulation and verification of empirical studies.

In Chapter 8, two comprehensive case studies were presented. The first one was on a collaborative business process describing an airline ticket reservation system, in which we considered compatibility between participants in the business process and verified behavioural properties using a combination of refinement checking and compositional reasoning. The second one was on the empirical workflow specification of a phase III breast cancer clinical trial. We studied the modelling of the trial protocol using Empiricol, the specification of oncological safety requirements and the verification of the protocol against these requirements by employing our relative timed extension, compositional reasoning and refinement checking.

10.2 Discussions

10.2.1 Process Semantics

During the development of the CSP-based semantic model for BPMN described in Chapter 5, we had to first choose and formalise the syntax of a subset of BPMN; this was provided in Chapter 4. By choosing only a subset of BPMN, we were able to focus on a particular aspect of workflow behaviour. Specifically we focused on the control flow behaviour of BPMN. We denote the behaviour of a BPMN diagram by a parallel composition of CSP processes, each modelling the semantics of individual BPMN elements contained in the diagram. While our approach allows compositional modelling and reasoning, it turned out to be relatively more difficult to model the control flow behaviour of termination and exception flows. This is because to model termination and exception flows we are required to use the CSP interrupt operator. The use of the interrupt operator considerably increases the state space of the CSP model and hence would make model checking less efficient. In retrospect, should we have chosen another process-algebraic model, such as π-calculus or ACP, and provided a compositional semantic definition similar to the one defined in this thesis, the same issue would arise. On the other hand, we could have considered a Petri net-based approach similar to that of Dijkstra et al.’s [DDO08]. However, as demonstrated by Dijkman et al.’s model [DDO08, Figure 9], a Petri net model of exception flows would be complex. Moreover a Petri-net model does not lend itself to compositional reasoning. Furthermore, none of these formalisms provide natural refinement orders which we could exploit to allow formal comparison of BPMN diagrams. While we might have possibly overcome this issue by providing a semantics directly to BPMN, we did not choose this option. This is because we aim to develop a framework for reasoning about BPMN models automatically and mechanically, and existing formalisms would provide the necessary foundational theories and associated tool support.

10.2.2 Modelling Relative Time

In this thesis we have chosen to study relative timed behaviour of BPMN processes. We have provided an extension to the process semantics to model relative timed behaviour of BPMN processes. This has allowed us to a) reuse the process semantic definition and b) to show that given a BPMN diagram, its coordination process is at least a responsive plugin-in to its enactment process. Due to properties of responsiveness, liveness properties such as deadlock freedom may be preserved from the untimed model to the timed one. However, one of the limitations this model has is that it does not consider infinite behaviours. In retrospect, focusing on alternatives that would also have allowed us to study correspondences with the untimed model, a primary candidate formalism, which we could have chosen, is Timed-CSP [Sch00]. Timed-CSP is a timed variant of CSP and has been given a timed failures semantics, which is a continuous timed model and has a natural projection to CSP’s failures semantics. Due to Ouaknine’s extension of the digitization technique [Oua01], it has become possible to model check Timed-CSP processes using FDR.

10.2.3 Modelling Empirical Studies

In Chapter 7 we studied the application of BPMN and the semantic models for the specification and analysis of empirical studies. In particular we defined a generic empirical studies model Empiricol for modelling empirical studies and bidirectional transformation functions between Empiricol and BPMN.
While we have chosen Haskell to implement the transformation procedures, other existing transformation languages could suffice to implement the transformation procedures. However, since we have chosen Haskell to implement the semantic models defined in this thesis, Haskell was a natural choice for implementing the transformation functions.

10.3 Limitations and Future Research

10.3.1 Efficiency and Methodology

The semantic models and the specification technique described in this thesis aim to support automatic verification and therefore focus on analyses of workflow processes whose behaviours may be modelled using finite states machines. However, it is well-known that automatic verification techniques such as model checking for finite state systems with many parallel components suffer from the problem of combinatorial explosion. To deal with this problem, several approaches have been taken in the model checking community as a whole: for refinement checking CSP there are binary decision diagrams (BDDs) [Yan96], and hierarchical compression [Ros98]. However, these techniques alone are not enough. Modelling large complex concurrent systems not only requires a thorough understanding of the syntax and semantics of the modelling language used, but also the methodology for composing and abstracting models so that formal analyses may be carried out compositionally and cost-effectively. This methodological requirement becomes especially important when considering analyses of workflow processes. The reason is twofold. Firstly workflow designers cannot be assumed to have the required experience to directly apply compositional and abstraction techniques developed in the formal engineering methods community, and secondly for these techniques to be usable for workflow development, they would require to be lifted to the level of the workflow modelling language. As a result, we believe it is necessary to investigate and develop a suitable methodology which applies the core idea of composition and abstraction in formal engineering methods but at the same time is amenable to workflow designers so that they may be applied directly to workflow modelling languages like BPMN.

10.3.2 Executable Semantics

While the semantic models developed in this thesis lend themselves to formal development of workflow processes, they are denotational and not operational. Operational semantics, on the other hand, interpret programs as transition systems, and are relatively closer to implementations. As such an operational semantics based on transition systems might be provided to BPMN as an alternative mathematical formalisation for some implementation strategy. Specifically by giving BPMN an operational semantics that is congruent to the models presented in this thesis, it would provide a precise understanding of the execution of BPMN. It also would be possible to carry out compositional reasoning at the (denotational) model level and transfer verified properties to the implementation level. Moreover, an executable semantics for BPMN would allow simulation of business processes and encourage the use of other transition-system-based verification tools for formal analyses. There are a number of verification tools for analysing labelled transition systems. Closely related to the language of CSP are Sun et al.'s Process Analysis Toolkit [SLD08], and Kramer et al.'s Labelled Transition System Analyser [MK99].

10.3.3 Completeness

This thesis only studied a subset of BPMN constructs. In particular we did not consider BPMN's transactional and data flow behaviours. For reasons of completeness, a natural extension to our study would be to investigate the semantics of these constructs. However, to ensure compactness and focus of our models, we believe both transactional and data flow behaviours should be formalised using alternative models. In particular transactional behaviour in BPMN may be modelled using Butler et al.'s Compensating CSP [BHF05, BR05], which has a traces semantics and a congruent operation semantics for modelling compensation actions, while data flow behaviour in BPMN may be modelled using Josephs's Dataflow Sequential Processes [Jos05], which has been given several denotational models in the style of those for CSP. By choosing these variants, one could aim provide a more holistic model of business processes as well as study particular aspects of their behaviours in isolation.
10.3.4 Runtime Verification

Our proposed framework focuses on static verifications; however, runtime verification has also been an important area of research for ensuring correctness of systems [FF95]. It is well known that not all desired requirements of a software system may be verified statically and this is also true even if one could show the system does meet its requirements prior to deployment. This is because during the execution of the system, there could be unpredicted changes to the environment of the system or simply the system might fail to anticipate the behaviour of all the agents, including humans, interacting with it [SM06]. We therefore propose, as future work, to extend our current framework to provide a runtime monitoring facility, and in particular behavioural properties specified during static verification should be reused as the source of requirements to be monitored at run time.

10.3.5 Schedulability

In Chapter 6, we presented a relative timed model for BPMN. In this model each atomic task element is annotated with a minimum and a maximum time such that the task nondeterministically takes a duration bounded by them to complete. This formalisation of timed behaviour could be extended to study the notion of schedulability. In schedulability analysis, each task is annotated with a deadline and a system can be scheduled if there exists a scheduling strategy such that all possible sequences of activities in the system may be completed within their deadlines. Notable work in formalising schedulability includes Ferman et al.’s task automata approach [FaPPY07]. A task automaton is an extended timed automaton and one of its characteristics is that it may be used to describe tasks that may have interval execution times representing the best case and the worst case execution times.

10.4 Summary

We have presented a summary and drawn conclusions on the contributions made in this thesis. We have also discussed possible directions for future research.
Appendix A

Z Specification of BPMN Syntax

A.1 Preliminaries

This section provides the basic and free type definitions for our Z specification.

\[
\text{Exception ::= exception}\{N\} | \text{anynonexception}
\]

\[
\text{Message ::= message}\{Mgeflow\} | \text{nomenmessage}
\]

\[
\text{Range ::= } N \times N
\]

\[
\text{Type ::= itime}\{N\} | \text{stime}\{N\} | \text{ierror}\{Exception\} | \text{eerror}\{Exception\} | \text{srule}\{BCondition\} | \text{irule}\{BCondition\} | \text{start} | \text{end} | \text{smessage}\{Message\} | \text{imessage}\{Message\} | \text{emessage}\{Message\} | \text{agate} | \text{xgate} | \text{exgate} | \text{task}\{TaskName\} | \text{subprocess}\{BName\} | \text{miseq}\{TaskName \times (Loops \times FlowType)\} | \text{miseqs}\{BName \times (Loops \times FlowType)\} | \text{mipar}\{TaskName \times (Loops \times FlowType)\} | \text{mipars}\{BName \times (Loops \times FlowType)\}
\]

A.2 Events

\[
\text{OneInOutFlow}
\]

\[
\text{ele} : \text{Element}
\]

\[
\#(\text{atom ele}).in = 1 \land \#(\text{atom ele}).out = 1
\]

A.3 Activities

\[
\text{Process ::= } \exists_1 \text{Element}
\]

\[
\text{outs} : \text{Element} \to \mathbb{N} \text{Seqflow}
\]

\[
\forall e : \text{Element} \land \text{outs} e = (\text{atom e}).out \cup \text{dom}(\text{atom e}).exit
\]

\[
\text{getmsg} : \text{Type} \to \text{Message}
\]

\[
\forall t : \text{Type} \land (t \in \text{ran smessage} \Rightarrow \text{getmsg } t = \text{smessage}^\sim t) \land (t \in \text{ran imessage} \Rightarrow \text{getmsg } t = \text{imessage}^\sim t) \land (t \in \text{ran emessage} \Rightarrow \text{getmsg } t = \text{emessage}^\sim t)
\]
APPENDIX A. Z SPECIFICATION OF BPMN SYNTAX

getSd, getRec : Atom → P Mgeflow

∀ a : Atom •
(a.type ∈ ran emessage ∧ getmsg a.type ≠ nomessage ⇒
getSd a = {message~(getmsg a.type)}) ∧
(a.type ∉ ran emessage ∨ getmsg a.type = nomessage ⇒
getSd a = a.send) ∧
(a.type ∈ ran smessage ∪ ran imessage ∧ getmsg a.type ≠ nomessage ⇒
getRec a = {message~(getmsg a.type)}) ∧
(a.type ∉ ran smessage ∪ ran imessage ∨ getmsg a.type = nomessage ⇒
getRec a = a.receive ∪
{ t : ran a.exit | t ∈ ran imessage ∧ getmsg t ≠ nomessage • message~(getmsg t)})

getMsg : Atom → F Mgeflow

getMsg = getSd ∪ getRec

errorCode : errorCodeTypes → N

∀ t : errorCodeTypes •
(t ∈ ran ierror ⇒ errorCode(t) = (exception~(ierror~t))) ∧
(t ∈ ran eerror ⇒ errorCode(t) = (exception~(eerror~t)))

A.4 Pools and Diagrams

\[\text{eventgate} = \{ \text{Gate} \mid (\text{atom ele}).\text{type} = \text{exgate} \cdot \text{ele} \} \]

\[\text{sendelement} = \{ \text{ele} : \text{Element} \mid \text{Inter} \lor \text{FullTask} \} \]

direct : (Process × Element) → Process

∀ p : Process; e : Element •
e ∈ p ⇒ direct(p, e) = p ∧
e ∈ p ∧ e ∉ p ∧ (∃ 1 f : Element • f ∈ p ∧ (e, f) ∈ contains) ⇒
direct(p, e) = (μ f : Element | f ∈ p ∧ (e, f) ∈ contains • content(f))

getIns, getOuts, getSeqflows : P Element → P Seqflow

∀ es : P Element •
getIns es = \bigcup\{ e : \text{Element} \mid e ∈ p es • (atom e).in \} ∧
getOuts es = \bigcup\{ e : \text{Element} \mid e ∈ p es • outs(e) \} ∧
getSeqflows = getIns ∪ getOuts

getSds, getRecs, getMsgs : P Element → P Mgeflow

∀ es : P Recs •
getSds es = \bigcup\{ e : \text{Element} \mid e ∈ p es • getSd(atom e) \} ∧
getRecs es = \bigcup\{ e : \text{Element} \mid e ∈ p es • getRec(atom e) \} ∧
getMsgs = getRecs ∪ getSds

A.5 Initialisation Theorems

A.5.1 Start and End Elements

Theorem \([4.4] \text{Initialisation Theorem for Atom}, \exists \text{Atom’} \cdot \text{StartAtomInit}\)
Proof.

\[\exists \text{Atom'} \bullet \text{StartAtomInit} \]

\[\iff \exists \text{Atom'} \bullet \text{Atom'} = \text{startatom} \quad \text{[def of StartAtomInit and schema quantification]} \]

\[\iff \exists \text{type'} : \text{Type}; \text{in'}, \text{out'} : \mathbb{F} \text{Seqflow}; \text{exit'} : \text{Seqflow} \Rightarrow \text{Type}; \quad \text{[def of Atom' and schema binding]} \]

\[\text{range'} : \text{Range}; \text{send'}, \text{receive'} : \mathbb{F} \text{Mgeflow} \bullet \]

\[\text{disjoint} \langle \text{in'}, \text{out'}, \text{dom} \text{exit'} \rangle \land \]

\[\text{send'} \cap \text{receive'} = \emptyset \land \]

\[\text{type'} = \text{start} \land \]

\[\text{in'} = \emptyset \land \]

\[\text{out'} = \{ \text{seq1} \} \land \]

\[\text{exit'} = \emptyset \land \]

\[\text{range'} = (0,0) \land \]

\[\text{send'} = \emptyset \land \]

\[\text{receive'} = \emptyset \]

\[\iff \text{disjoint} \langle \emptyset, \{ \text{seq1} \}, \text{dom} \emptyset \rangle \land \quad \text{[one-point x 7]} \]

\[\emptyset \cap \emptyset = \emptyset \land \]

\[\text{start} \in \text{Type} \land \]

\[\emptyset \in \mathbb{F} \text{Seqflow} \land \]

\[\{ \text{seq1} \} \in \mathbb{F} \text{Seqflow} \land \]

\[\emptyset \in \text{Seqflow} \Rightarrow \text{Type} \land \]

\[(0,0) \in \text{Range} \land \]

\[\emptyset \in \mathbb{F} \text{Mgeflow} \land \]

\[\emptyset \in \mathbb{F} \text{Mgeflow} \]

\[\iff (0,0) \in \text{Range} \quad \text{[property of disjoint and } \cap, \text{ def of } \mathbb{F}, \Rightarrow \text{ and Type]} \]

\[\iff \text{true} \quad \text{[0 } \in \mathbb{N} \text{ and Range } = \mathbb{N} \times \mathbb{N}] \]

\[\square \]

Theorem (4.5) Initialisation Theorem for Atom). \(\exists \text{Atom'} \bullet \text{EndAtomInit} \)

Proof. Similar to the proof of Theorem 4.4. \(\square \)

The following is the initialisation theorem for FlowObject.

Theorem (4.6) Initialisation Theorem for FlowObject). \(\exists \text{FlowObject'} \bullet \text{StartInit} \)

Proof.

\[\exists \text{FlowObject'} \bullet \text{StartInit} \]

\[\iff \exists \text{FlowObject'} \bullet \text{ele'} = \text{startele} \quad \text{[def of StartInit and schema quantification]} \]

\[\iff \exists \text{ele'} : \text{Element} \bullet (\text{Activity'} \lor \text{Gate'} \lor \text{Event'}) \land \text{ele'} = \text{startele} \quad \text{[def of FlowObject']} \]

\[\iff (\exists \text{ele'} : \text{Element} \bullet (\text{Activity'} \land \text{ele'} = \text{startele}) \lor \quad \text{[def of Event, } \land\lor\text{-dist and } \exists\lor\text{-dist]} \]

\[(\exists \text{ele'} : \text{Element} \bullet \text{Gate'} \land \text{ele'} = \text{startele}) \lor \]

\[(\exists \text{ele'} : \text{Element} \bullet \text{Start'} \land \text{ele'} = \text{startele}) \lor \]

\[(\exists \text{ele'} : \text{Element} \bullet \text{End'} \land \text{ele'} = \text{startele})) \]

It is sufficient to show one of the disjuncts is true. We consider the third disjunct.

\[\exists \text{ele'} : \text{Element} \bullet \text{Start'} \land \text{ele'} = \text{startele} \]
\[\exists \text{ele'} \quad \text{[def of } \text{Start'} \text{ and } \text{NonActivity'}] \]

\[\text{ele'} \in \text{ran atomic } \wedge \]
\[\#(\text{atom ele'}).exit + \#(\text{atom ele'}).send + \#(\text{atom ele'}).receive = 0 \wedge \]
\[\text{first(}\text{atom ele').range} = 0 \wedge \]
\[\text{second(}\text{atom ele').range} = 0 \wedge \]
\[(\text{atom ele').type} \in \{\text{start}\} \cup \text{ran stime} \cup \text{ran smessage} \cup \text{ran srule} \wedge \]
\[\#(\text{atom ele').in} = 0 \wedge \]
\[\#(\text{atom ele').out} = 1 \wedge \]
\[\text{ele'} = \text{startele} \]

\[\iff \text{startele} \in \text{ran atomic } \text{[one-point]} \]
\[\#(\text{atom startele).exit} + \#(\text{atom startele).send} + \#(\text{atom startele).receive} = 0 \wedge \]
\[\text{first(}\text{atom startele).range} = 0 \wedge \]
\[\text{second(}\text{atom startele).range} = 0 \wedge \]
\[(\text{atom startele).type} \in \{\text{start}\} \cup \text{ran stime} \cup \text{ran smessage} \cup \text{ran srule} \wedge \]
\[\#(\text{atom startele).in} = 0 \wedge \]
\[\#(\text{atom startele).out} = 1 \wedge \]
\[\text{startele} \in \text{Element} \]

\[\iff \text{true} \quad \text{[def of startele and startatom, and Theorem 4.4]} \]

Theorem (4.7 Initialisation Theorem for FlowObject). \(\exists \text{FlowObject'} \bullet \text{EndInit} \)

Proof. Similar to the proof of Theorem 4.6 by applying Theorem 4.5 and proving the expression \(\exists \text{ele'} : \text{Element} \bullet \text{End'} \wedge \text{ele'} = \text{endele} \).

A.5.2 Process

Here we prove some properties about the values startele, endele and initialproc that will be useful when proving the initialisation theorem for schema GenProc.

Lemma A.1. \(\langle \text{edge \{startele, endele\}} \rangle^+ = \{\langle \text{startele, endele} \rangle \} \)

Proof. We first enumerate and label the following facts about startele and endele.

\[\text{outs(startele)} \neq \emptyset \wedge (\text{atom endele}).in \neq \emptyset \wedge (\text{atom startele}).in = \emptyset \wedge \text{outs(endele)} = \emptyset \quad \text{(A.1)} \]

\[\langle \text{edge \{startele, endele\}} \rangle^+ = \{\langle e, f : \text{startele, endele} \rangle | \langle (\text{atom e}).out \cup \text{dom(}\text{atom e).exit} \rangle \cap (\text{atom f}).in \neq \emptyset \} \rangle^+ \quad \text{[def of edge]} \]

\[= \{\langle \text{startele, endele} \rangle \}^+ \quad \text{[Expression A.1]} \]

\[= \{\langle \text{startele, endele} \rangle \} \quad \text{[endele} \notin \text{dom(}\text{startele, endele)}] \]
Lemma A.2. \(\{ g : \text{Element} \mid g \in _g _p \text{ initialproc} \} = \text{initialproc} \)

Proof.

\[
\{ g : \text{Element} \mid g \in _g _p \text{ initialproc} \} \\
= \{ g : \text{Element} \mid g \in \text{initialproc} \lor (\exists f : \text{Element} \bullet f \in \text{initialproc} \land g \in _e f) \} [\text{def of } _p] \\
= \{ g : \text{Element} \mid g \in \text{initialproc} \} \cup \{ g : \text{Element} \mid (\exists f : \text{Element} \bullet f \in \text{initialproc} \land (g, f) \in \text{contains}^+) \} [\text{def of } _e] \\
= \text{initialproc} \cup \{ g : \text{Element} \mid (\exists f : \text{Element} \bullet f \in \text{initialproc} \land (g, f) \in \text{contains}^+) \} [\text{set-theory}] \\
= \text{initialproc} \cup \{ g : \text{Element} \mid (\exists f : \text{Element} \bullet f \in \text{initialproc} \land (g, f) \in \text{contains}^+) \} [\text{def of } _e] \\
= \text{initialproc} \cup \{ g : \text{Element} \mid (\exists f : \text{Element} \bullet f \in \text{initialproc} \land (g, f) \in \text{contains}^+) \} [\text{def of contains}] \\
= \text{initialproc} \cup \{ g : \text{Element} \mid (\exists f : \text{Element} \bullet f \in \text{initialproc} \land (g, f) \in \text{contains}^+) \} [\text{def of initialproc}] \\
= \text{initialproc} \cup \{ g : \text{Element} \mid (\exists f : \text{Element} \bullet f \in \text{initialproc} \land (g, f) \in \text{contains}^+) \} [\text{def of contains}] \\
= \text{initialproc} \cup \{ g : \text{Element} \mid (\exists f : \text{Element} \bullet f \in \text{initialproc} \land (g, f) \in \text{contains}^+) \} [\text{def of initialproc}] \\
\]

We now prove the initialisation theorem for schema \(\text{GenProc} \).

Theorem 4.8 Initialisation Theorem for \(\text{GenProc} \). \(\exists \text{GenProc}' \bullet \text{GenProcInit} \)

Proof.

\[\exists \text{GenProc}' \bullet \text{GenProcInit} \]

\[\iff \exists \text{GenProc} \bullet \text{proc}' = \{ \text{startele, endele} \} [\text{def of } \text{GenProcInit, initialproc, schema quantification}] \]

\[\iff \exists \text{proc}' : \text{Process} \bullet [\text{def of } \text{GenProc}', \text{WFProcess}] \]

\[
\text{proc}' \in \text{processSet} \cap \neg \text{noOverLap} \land \\
(\exists e, f : \text{proc}' \bullet e \in \{ \text{Start} \bullet \text{ele} \} \land f \in \{ \text{End} \bullet \text{ele} \}) \land \\
\neg (\exists e : \text{proc}' \bullet e \in \{ \text{Inter} \mid (\text{atom ele}).\text{type} \in \text{ran ierror} \bullet \text{ele} \}) \land \\
\text{proc}' \in \text{onlyFlowObject} \land \\
\text{proc}' = \{ \text{startele, endele} \} \land \\
\iff \{ \text{startele, endele} \} \in \text{processSet} \cap \neg \text{noOverLap} \land [\text{one-point}] \\
(\exists e, f : \{ \text{startele, endele} \} \bullet e \in \{ \text{Start} \bullet \text{ele} \} \land f \in \{ \text{End} \bullet \text{ele} \}) \land \\
\neg (\exists e : \{ \text{startele, endele} \} \bullet e \in \{ \text{Inter} \mid (\text{atom ele}).\text{type} \in \text{ran ierror} \bullet \text{ele} \}) \land \\
\{ \text{startele, endele} \} \in \text{onlyFlowObject} \land \\
\{ \text{startele, endele} \} \in \text{Process} \land \\
\iff \{ \text{startele, endele} \} \in \neg \text{noOverLap} \land [\text{def of processSet and intersection}] \\
\{ \text{startele, endele} \} \in \text{endsConnected} \land \\
\{ \text{startele, endele} \} \in \neg \text{UnConnected} \land \\
\]

\(\Box \)
\(\exists e, f : \{\text{startele, endele}\} \bullet e \in \{\text{Start} \bullet \text{ele}\} \land f \in \{\text{End} \bullet \text{ele}\} \land\)
\(\neg (\exists e : \{\text{startele, endele}\} \bullet e \in \{\text{Inter} \mid (\text{atom ele}).\text{type} \in \text{ran ierror} \bullet \text{ele}\} \land\)
\(\{\text{startele, endele}\} \in \text{onlyFlowObject} \land\)
\(\{\text{startele, endele}\} \in \text{Process}\)

We consider each of the seven conjuncts individually. We now consider the first conjunct.

\(\{\text{startele, endele}\} \in \text{noOverLap}\)
\[\forall e : \{g : \text{Element} \mid g \in_p \{\text{startele, endele}\}\} \bullet\]
\[\bigcup\{k : \{\text{startele, endele}\} \bullet (\text{atom k}).\text{in} \cup \text{outs}(k)\} \cap\]
\[\bigcup\{k : \text{content e} \bullet (\text{atom k}).\text{in} \cup \text{outs}(k)\} = \emptyset \land\]
\((\forall f : \{g : \text{Element} \mid g \in_p \{\text{startele, endele}\}\} \bullet e \neq f \Rightarrow\)
\[((\text{atom e}).\text{in} \cap (\text{atom f}).\text{in} = \emptyset \land\]
\[\text{outs}(e) \cap \text{outs}(f) = \emptyset \land\]
\[\bigcup\{k : \text{content e} \bullet (\text{atom k}).\text{in} \cup \text{outs}(k)\} \cap \bigcup\{k : \text{content f} \bullet (\text{atom k}).\text{in} \cup \text{outs}(k)\} = \emptyset \land\]
\[\text{getMsg} (\text{atom e}) \cap \text{getMsg} (\text{atom f}) = \emptyset)\]
\[\Rightarrow \forall e, f : \{\text{startele, endele}\} \bullet\]
\[\bigcup\{k : \{\text{startele, endele}\} \bullet (\text{atom k}).\text{in} \cup \text{outs}(k)\} \cap\]
\[\bigcup\{k : \text{content e} \bullet (\text{atom k}).\text{in} \cup \text{outs}(k)\} = \emptyset \land\]
\((e \neq f) \Rightarrow\]
\[((\text{atom e}).\text{in} \cap (\text{atom f}).\text{in} = \emptyset \land\]
\[\text{outs}(e) \cap \text{outs}(f) = \emptyset \land\]
\[\bigcup\{k : \text{content e} \bullet (\text{atom k}).\text{in} \cup \text{outs}(k)\} \cap \bigcup\{k : \text{content f} \bullet (\text{atom k}).\text{in} \cup \text{outs}(k)\} = \emptyset \land\]
\[\text{getMsg} (\text{atom e}) \cap \text{getMsg} (\text{atom f}) = \emptyset)\]
\[\Rightarrow (\text{startele} \neq \text{endele}) \Rightarrow\]
\[\forall e : \{\text{startele, endele}\} \bullet\]
\[((\text{atom startele}).\text{in} \cap (\text{atom endele}).\text{in} = \emptyset \land\]
\[((\text{atom startele}).\text{out} \cup \text{dom} (\text{atom startele}).\text{exit}) \cap\]
\[((\text{atom endele}).\text{out} \cup \text{dom} (\text{atom endele}).\text{exit}) = \emptyset) \land\]
\[\text{getMsg} (\text{atom startele}) \cap \text{getMsg} (\text{atom endele}) = \emptyset)\)
\[\Rightarrow ((\text{startatom}.\text{in} \cap \text{endatom}.\text{in} = \emptyset \land\]
\[((\text{startatom}.\text{out} \cup \text{dom} (\text{startatom}).\text{exit}) \cap (\text{endatom}.\text{out} \cup \text{dom} \text{endatom}.\text{exit}) = \emptyset) \land\]
\[\text{getMsg} (\text{startatom}) \cap \text{getMsg} (\text{endatom}) = \emptyset)\)
\[\Rightarrow ((\emptyset \cap \{\text{seq}1\} = \emptyset) \land\]
\[((\{\text{seq}1\} \cup \emptyset) \cap (\emptyset \cup \text{dom} \emptyset) = \emptyset) \land\]
\[\text{getMsg} \text{startatom} \cap \text{getMsg} \text{endatom} = \emptyset)\)
\[\Rightarrow \text{getRec} \text{startatom} \cap \text{getRec} \text{endatom} = \emptyset\]
\[\Rightarrow (\text{startatom}.\text{send} \cup \text{startatom}.\text{receive}) \cap (\text{endatom}.\text{send} \cup \text{endatom}.\text{receive}) = \emptyset\]
\[\Rightarrow \text{true}\]

We now consider the second conjunct.

\(\{\text{startele, endele}\} \in \text{endsConnected}\)
\[\forall e : \{\text{startele, endele}\} \bullet\]
\[e \notin \{\text{End} \bullet \text{ele}\} \Rightarrow\]

[def of endsConnected]
We now consider the third conjunct.

\[
\begin{align*}
\forall e \in \{\text{startele, endele}\} & \implies (\forall s : \text{outs}(e) \implies \exists f : \{\text{startele, endele}\} \implies s \in (\text{atom f}).\text{in}) \land \\
(\forall s : (\text{atom startele}).\text{in} \implies \exists f : \{\text{startele, endele}\} \implies s \in \text{outs}(f)) \\
\forall s : (\text{atom startele}).\text{in} \implies \exists f : \{\text{startele, endele}\} & \implies s \in \text{outs}(f) \land \\
\forall s : (\text{atom endele}).\text{in} \implies \exists f : \{\text{startele, endele}\} & \implies s \in \text{outs}(f) \land \\
\exists f : \{\text{startele, endele}\} \implies \exists s : (\text{atom f}).\text{in} \land \\
\exists f : \{\text{startele, endele}\} & \implies \exists s : \text{outs}(f) \\
\exists s : \text{outs}(\text{startele}) & \implies \exists f : \{\text{startele, endele}\} \implies s \in (\text{atom f}).\text{in} \\
\forall s : (\text{atom endele}).\text{in} \implies \exists f : \{\text{startele, endele}\} & \implies s \in \text{outs}(f) \\
\exists f : \{\text{startele, endele}\} \implies \exists s : (\text{atom f}).\text{in} \land \\
\exists f : \{\text{startele, endele}\} & \implies \exists s : \text{outs}(\text{startele}) \\
\forall e, f : \{\text{startele, endele}\} & \implies e \in \{\text{Start} \bullet \text{ele}\} \land f \in \{\text{End} \bullet \text{ele}\} \\
\exists e : \{\text{startele, endele}\} & \implies e \in \{\text{Start} \bullet \text{ele}\} \land [f \text{ is not free in } e \in \{\text{Start} \bullet \text{ele}\}] \\
\exists f : \{\text{startele, endele}\} \implies f \in \{\text{End} \bullet \text{ele}\} \\
\exists \text{startele} \in \{\text{Start} \bullet \text{ele}\} \lor \exists \text{endele} \in \{\text{Start} \bullet \text{ele}\} & \implies \text{startele} \lor \exists \text{endele} \in \{\text{End} \bullet \text{ele}\} \\
\forall e, f : \{\text{startele, endele}\} & \implies e \notin \{\text{Inter} \mid (\text{atom ele}).\text{type} \in \text{ran ierror} \bullet \text{ele}\} \\
\exists \text{startele} \in \{\text{Inter} \mid (\text{atom ele}).\text{type} \in \text{ran ierror} \bullet \text{ele}\} & \implies \text{startele} \notin \{\text{Inter} \mid (\text{atom ele}).\text{type} \in \text{ran ierror} \bullet \text{ele}\} \land [\text{property of } \exists \text{ and } \forall] \\
\exists \text{startele} \in \{\text{Inter} \mid (\text{atom ele}).\text{type} \in \text{ran ierror} \bullet \text{ele}\} \land [\text{def of } \forall] \\
\end{align*}
\]
We consider these two conjuncts individually. We consider the first conjunct.

\[
\text{endele} \notin \{ \text{Inter} \mid (\text{atom ele}).\text{type} \in \text{ran ierror} \bullet \text{ele} \} \\
\Leftrightarrow \text{true} \\
[(\text{atomic startele}).\text{type} = \text{start} \text{ and } (\text{atomic endele}).\text{type} = \text{end}]
\]

We now consider the sixth conjunct.

\[
\{\text{startele}, \text{endele}\} \in \text{onlyFlowObject} \\
\Leftrightarrow \forall e: \{ g: \text{Element} \mid g \in_p \{ \text{startele}, \text{endele}\} \} \bullet e \in \{ \text{FlowObject} \bullet \text{ele} \} \quad \text{[def of onlyFlowObject]} \\
\Leftrightarrow \text{startele} \in \{ \text{FlowObject} \bullet \text{ele} \} \land \text{startele} \in \{ \text{FlowObject} \bullet \text{ele} \} \\
\Leftrightarrow \text{true} \\
\text{[Theorem 4.6 and 4.7]}
\]

We finally consider the seventh conjunct.

\[
\{\text{startele}, \text{endele}\} \in \text{Process} \\
\Leftrightarrow \{\text{startele}, \text{endele}\} \in \mathbb{F}_1 \text{Element} \quad \text{[def of Process]} \\
\Leftrightarrow \text{true} \quad \text{[startele} \in \text{Element and endele} \in \text{Element]} \\
\]

The completes the proof. □

A.5.3 Pool

Theorem (4.9 Initialisation Theorem for Pool). \(\exists \text{Pool'} \bullet \text{PoolInit} \)

Proof.

\[
\exists \text{Pool'} \bullet \text{PoolInit} \\
\Leftrightarrow \exists \text{Pool'} \bullet \text{proc'} = \text{initialproc} \quad \text{[def of PoolInit and schema quantification]} \\
\Leftrightarrow \exists \text{proc'} : \text{Process} \bullet \text{proc'} = \text{initialproc} \quad \text{[def of Pool']} \\
\]

\[
\{\text{startele}, \text{endele}\} \in \text{processSet} \cap \text{noOverLap} \\
\Leftrightarrow \{\text{startele}, \text{endele}\} \in \text{processSet} \cap \text{noOverLap} \land \\
(\exists e, f: \text{proc'} \bullet e \in \{ \text{Start} \bullet \text{ele} \} \land f \in \{ \text{End} \bullet \text{ele} \}) \land \\
(\exists e: \text{proc'} \bullet e \in \{ \text{Inter} \mid (\text{atom ele}).\text{type} \in \text{ran ierror} \bullet \text{ele} \} \land \\
\text{proc'} \in \text{onlyFlowObject} \land \\
\text{proc'} \in \{ \text{proc} : \text{Process} \mid \text{hasExgates} \} \land \\
\text{proc'} = \text{initialproc} \\
\]

\[
\{\text{startele}, \text{endele}\} \in \text{processSet} \cap \text{noOverLap} \land \\
(\exists e, f: \{ \text{startele}, \text{endele}\} \bullet e \in \{ \text{Start} \bullet \text{ele} \} \land f \in \{ \text{End} \bullet \text{ele} \}) \land \\
(\exists e: \{ \text{startele}, \text{endele}\} \bullet e \in \{ \text{Inter} \mid (\text{atom ele}).\text{type} \in \text{ran ierror} \bullet \text{ele} \} \land \\
\text{startele}, \text{endele} \in \text{onlyFlowObject} \land \\
\{\text{startele}, \text{endele}\} \in \{ \text{proc} : \text{Process} \mid \text{hasExgates} \} \land \\
\{\text{startele}, \text{endele}\} \in \text{Process} \land \\
\{\text{startele}, \text{endele}\} \in \{ \text{proc} : \text{Process} \mid \text{hasExgates} \} \land \text{proc'} = \text{initialproc} \land \\
\{\text{startele}, \text{endele}\} \in \{ \text{proc} : \text{Process} \mid \text{hasExgates} \} \land \text{proc'} = \text{initialproc} \land \\
\{\text{startele}, \text{endele}\} \in \text{Process} \quad \text{[Theorem 4.8]}
\]

We consider these two conjuncts individually. We consider the first conjunct.

\[
\{\text{startele}, \text{endele}\} \in \{ \text{proc} : \text{Process} \mid \text{hasExgates} \} \\
\Leftrightarrow \forall f: \{ g: \text{Element} \mid g \in_p \{ \text{startele}, \text{endele}\} \} \bullet \\
f \in \text{eventgate} \Rightarrow \\
(\forall e: \text{Element} \bullet (f, e) \in \text{edge}(\text{direct}([\{\text{startele}, \text{endele}\}, e])) \Rightarrow e \in \text{sendelement}) \\
\Leftrightarrow \{\text{startele} \in \text{eventgate} \Rightarrow \\
(\forall e: \text{Element} \bullet (\text{startele}, e) \in \text{edge}(\text{direct}([\{\text{startele}, \text{endele}\}, e])) \Rightarrow e \in \text{sendelement}) \land \\
(\text{endele} \in \text{eventgate} \Rightarrow \\
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]
We consider each conjunct individually. We first consider the first conjunct.

\[(\forall e : \text{Element} \bullet \text{endele}, e) \in \text{edge}((\text{startele}, \text{endele}, e)) \Rightarrow e \in \text{sendelement})\]

\[\iff (\text{startele} \in \{\text{Gate} | (\text{atom ele}).\text{type} = \text{ezgate} \bullet \text{ele} \Rightarrow (\forall e : \text{Element} \bullet \text{endele}, e) \in \text{edge}((\text{startele}, \text{endele}, e)) \Rightarrow e \in \text{sendelement})) \land \]

\[(\text{endele} \in \{\text{Gate} | (\text{atom ele}).\text{type} = \text{ezgate} \bullet \text{ele} \Rightarrow (\forall e : \text{Element} \bullet \text{endele}, e) \in \text{edge}((\text{startele}, \text{endele}, e)) \Rightarrow e \in \text{sendelement})) \Rightarrow \text{true}\]

\[\iff \exists \]

We now consider the second conjunct.

\[\{\text{startele, endele}\} \in \text{Process}\]

\[\iff \{\text{startele, endele}\} \in F_1 \text{Element} \]

\[\iff \text{true} \]

The completes the proof. \[\square\]

A.5.4 Diagram

Here we first prove some properties about initialproc that will be useful for proving the initialisation theorem for schema Diagram.

Theorem 4.10 Initialisation Theorem for Diagram. \(\exists \text{Diagram}' \bullet \text{DiagramInit} \)

Proof.

\[\exists \text{Diagram}' \bullet \text{DiagramInit} \]

\[\iff \exists \text{Diagram}' \bullet [\text{Diagram'} \mid \text{pool'} = \text{initialpool}] \]

\[\iff \exists \text{pool'} : \text{PoolId} \mapsto \text{Pool} \bullet \]

\[\text{pool'} \neq \emptyset \land \]

\[(\forall p, q : \text{ran pool'} \bullet p \neq q \Rightarrow \text{getSeqflows p.proc} \cap \text{getSeqflows q.proc} = \emptyset) \land \]

\[(\forall p, q : \text{ran pool'} \bullet \]

\[(p \neq q \Rightarrow \text{getSds p.proc} \cap \text{getSds q.proc} = \emptyset \land \text{getRecs p.proc} \cap \text{getRecs q.proc} = \emptyset) \]

\[(\forall p : \text{ran pool'} \bullet \]

\[((\forall m : \text{getSds p.proc} \bullet (\exists q : \text{ran pool'} \bullet p \neq q \land m \in \text{getRecs p.proc})) \land \]

\[(\forall m : \text{getRecs p.proc} \bullet (\exists q : \text{ran pool'} \bullet (p \neq q \land m \in \text{getSds p.proc})))) \land \]

\[\text{pool'} = \text{initialpool} \]

\[\iff [\text{one-point and initialpool} \neq \emptyset] \]

\[(\forall p, q : \text{ran initialpool} \bullet p \neq q \Rightarrow \text{getSeqflows p.proc} \cap \text{getSeqflows q.proc} = \emptyset) \land \]

\[(\forall p, q : \text{ran initialpool} \bullet \]

\[(p \neq q \Rightarrow \text{getSds p.proc} \cap \text{getSds q.proc} = \emptyset \land \text{getRecs p.proc} \cap \text{getRecs q.proc} = \emptyset) \]

\[(\forall p : \text{ran initialpool} \bullet \]

\[((\forall m : \text{getSds p.proc} \bullet (\exists q : \text{ran initialpool} \bullet p \neq q \land m \in \text{getRecs p.proc})) \land \]

\[\land \text{initialpool} \in \text{PoolId} \mapsto \text{Pool} \]

We consider each conjunct individually. We first consider the first conjunct.

\[\forall p, q : \text{ran initialpool} \bullet p \neq q \Rightarrow \text{getSeqflows p.proc} \cap \text{getSeqflows q.proc} = \emptyset \]

\[\iff \forall p, q : \text{ran pool1} \mapsto \{\text{proc} \sim \text{initialproc}\} \bullet \]

\[p \neq q \Rightarrow \text{getSeqflows p.proc} \cap \text{getSeqflows q.proc} = \emptyset \]

\[\iff \forall p, q : \{\text{proc} \sim \text{initialproc}\} \bullet \]

\[\text{def of ran} \]
We now consider the second conjunct.

\[
(\forall p, q : \text{ran initialpool} \bullet \\
\quad (p \neq q \Rightarrow \text{getSeqflows p.proc} \cap \text{getSeqflows q.proc} = \emptyset \land \text{getRecs p.proc} \cap \text{getRecs q.proc} = \emptyset))
\]

\[
\Leftrightarrow (\forall p, q : \{\langle \text{proc} \sim \text{initialproc} \rangle \bullet [\text{def of initialpool and ran}] \\
\quad (p \neq q \Rightarrow \text{getSeqflows p.proc} \cap \text{getSeqflows q.proc} = \emptyset \land \text{getRecs p.proc} \cap \text{getRecs q.proc} = \emptyset)) \\
\Leftrightarrow (\forall p : \{\langle \text{proc} \sim \text{initialproc} \rangle \bullet [\text{def of initialpool and ran}] \\
\quad (\forall m : \text{getSeqflows p.proc} \bullet (\exists q : \text{ran initialpool} \bullet (p \neq q \land m \in \text{getRecs p.proc})))) \\
\Leftrightarrow (\forall m : \text{getSeqflows p.proc} \bullet (\exists q : \{\langle \text{proc} \sim \text{initialproc} \rangle \bullet (p \neq q \land m \in \text{getRecs p.proc})))) \\
\Leftrightarrow (\forall m : \text{getSeqflows p.proc} \bullet (\exists q : \{\langle \text{proc} \sim \text{initialproc} \rangle \bullet (p \neq q \land m \in \text{getRecs initialproc}))) \\
\Leftrightarrow true [\text{def of initialpool}, \emptyset \cup \emptyset = \emptyset \land \forall x : \emptyset \bullet p \text{ is true}]
\]

We now consider the third conjunct.

\[
\forall p : \text{ran initialpool} \bullet \\
\quad ((\forall m : \text{getSeqflows p.proc} \bullet (\exists q : \text{ran initialpool} \bullet (p \neq q \land m \in \text{getRecs p.proc})))) \land \\
\quad (\forall m : \text{getSeqflows p.proc} \bullet (\exists q : \text{ran initialpool} \bullet (p \neq q \land m \in \text{getSeqflows p.proc}))) \\
\Leftrightarrow \forall p : \{\langle \text{proc} \sim \text{initialproc} \rangle \bullet [\text{def of initialpool and ran}] \\
\quad ((\forall m : \text{getSeqflows p.proc} \bullet (\exists q : \{\langle \text{proc} \sim \text{initialproc} \rangle \bullet (p \neq q \land m \in \text{getRecs p.proc})))) \land \\
\quad (\forall m : \text{getRecs p.proc} \bullet (\exists q : \{\langle \text{proc} \sim \text{initialproc} \rangle \bullet (p \neq q \land m \in \text{getRecs p.proc})))) \\
\Leftrightarrow (\forall m : \text{getSeqflows initialproc} \bullet [\text{def of initialpool and ran}] \\
\quad (\exists q : \{\langle \text{proc} \sim \text{initialproc} \rangle \bullet (p \neq q \land m \in \text{getRecs initialproc}))) \\
\Leftrightarrow true [\text{def of initialpool}, \emptyset \cup \emptyset = \emptyset \land \forall x : \emptyset \bullet p \text{ is true}]
\]

We now consider the fourth conjunct.

\[
\text{initialpool} \in \text{PoolId} \implies \text{Pool} \\
\Leftrightarrow \{\text{pool1} \mapsto \langle \text{proc} \sim \text{initialproc} \rangle \} \in \text{PoolId} \implies \text{Pool} [\text{def of initialpool}] \\
\Leftrightarrow true [\text{pool1} \in \text{PoolId} \land \{\langle \text{proc} \sim \text{initialproc} \rangle \} \in \text{Pool}]
\]

This completes the proof.
A.6 Diagram Construction

A.6.1 Preliminaries

A.6.1.1 States and Functions

\[\text{InitialInter} \triangleq [\text{Inter} \mid (\text{atom ele}).\text{type} \in \{ \text{imessage} (\text{nomessage}) \} \cup \text{ran} \text{itime}] \]

\[\text{InitialEnd} \triangleq [\text{End} \mid (\text{atom ele}).\text{type} = \text{end}] \]

\[\text{NonEvSplit} \triangleq [\text{Gate} \mid (\text{atom ele}).\text{type} \neq \text{exgate} \land \#(\text{atom ele}).\text{in} = 1] \]

\[\text{EventSplit} \triangleq [\text{Gate} \mid (\text{atom ele}).\text{type} = \text{exgate} \land \#(\text{atom ele}).\text{in} = 1] \]

\[\text{NonEvJoin} \triangleq [\text{Gate} \mid (\text{atom ele}).\text{type} \neq \text{exgate} \land \#(\text{atom ele}).\text{out} = 1] \]

\[\text{NonInternal} \triangleq [\text{ele} : \text{Element} \mid \text{getMsgs} \{ \text{ele} \} = \emptyset \land (\text{atom ele}).\text{exit} = \emptyset] \]

\[\text{OneInOutAtom} \triangleq (\text{FullTask} \land \text{NonInternal}) \lor \text{InitialInter} \]

\[\text{OneInOutObject} \triangleq (\text{Activity} \land \text{NonInternal}) \lor \text{InitialInter} \]

\[\forall p : \text{Process} \bullet \]
\[\text{alls} p = \{ s : \text{Segflow} ; g : \text{Element} \mid g \in p \land s \in (\text{atom g}).\text{in} \} \land \]
\[\text{ends} p = (\text{alls} p) \triangleright \{ \text{InitialEnd} \bullet \text{ele} \} \land \]
\[\text{activities} p = (\text{alls} p) \triangleright \{ \text{Activity} \bullet \text{ele} \} \land \]
\[\text{subs} p = (\text{alls} p) \triangleright \{ \text{FullSub} \bullet \text{ele} \} \land \]
\[\text{tasks} p = (\text{alls} p) \triangleright \{ \text{FullTask} \bullet \text{ele} \} \land \]
\[\text{errors} p = (\text{alls} p) \triangleright \{ \text{End} \mid (\text{atom ele}).\text{type} \in \text{ran} \text{error} \bullet \text{ele} \} \land \]
\[\text{nonsends} p = \{ s : \text{Segflow} ; g, f : \text{Element} \mid g \in p \land f = (\text{alls} p) s \land s \in (\text{atom g}).\text{out} \land g \notin \text{eventgate} \bullet \{ s, f \} \}
\]

\[\text{uniqueEnds} : \mathbb{P}(\mathbb{F}_1, \text{Element}) \]

\[\forall es : \mathbb{F}_1 \text{Element} \bullet (es \in \text{uniqueEnds} \Leftrightarrow (es \in \text{uniqueIns} \land es \subseteq \{ \text{InitialEnd} \bullet \text{ele} \})) \]

The function \text{cont} takes a process \text{ps} (nonempty finite set of elements) and a finite set of elements \text{es}, and returns a possibly empty subset of \text{ps} such that each element contains the set of elements \text{es}.

\[\text{cont} : (\text{Process} \times \mathbb{F}_1 \text{Element}) \rightarrow \mathbb{F}_1 \text{Element} \]

\[\forall ps : \text{Process} ; es : \mathbb{F}_1 \text{Element} \bullet \]
\[\text{cont}(ps, es) = \{ e : ps \mid es \subseteq \{ f : \text{Element} \mid f \in e \} \} \]

The function \text{rep} takes a compound element and a nonempty finite set of elements (process), and replaces the content of the compound element with that finite set.

\[\text{rep} : (\text{Element} \times \text{Process}) \rightarrow \text{Element} \]

\[\text{rep} = (\lambda e : \text{Element} ; ps : \text{Process} \mid e \in \text{ran} \text{compound} \bullet \text{compound}(\text{atom e}, ps)) \]

The function \text{modify} takes a process \text{ps} and three finite sets of elements \text{ns}, \text{rs}, \text{cs} such that it performs the following operation on \text{ps}:

- recursively finds the subprocess \text{s} \in \text{ps} that contains \text{rs};
- removes \text{rs} from \text{s} and adds elements from \text{ns} and \text{cs} to \text{s}.
This is a partial function as it is only defined for inputs where elements in rs are contained in ps.

A.6.1.2 Operation Schemas

The following axiomatic definition \(cge \) specifies functionally the replacement of an incoming sequence flow of a BPMN element.

\[
\begin{align*}
\forall e \in \text{Element} &; f, t \in \text{Seqflow} \quad \text{let } c \equiv [\{ \text{in } \sim ((\text{atom } e).\text{in} \setminus \{ f \}) \cup \{ t \}, \text{out } \sim (\text{atom } e).\text{out}, \\
& \text{range } \sim (\text{atom } e).\text{range}, \text{exit } \sim (\text{atom } e).\text{exit}, \text{receive } \sim (\text{atom } e).\text{receive}, \\
& \text{send } \sim (\text{atom } e).\text{send}, \text{type } \sim (\text{atom } e).\text{type} \} \quad \Rightarrow \\
& (e \in \text{ran } \text{atomic} \Rightarrow c(e, f, t) = \text{atomic}(c) \land \\
& e \in \text{ran } \text{compound} \Rightarrow c(e, f, t) = \text{compound}(c, \text{content}(e))]
\end{align*}
\]

The axiomatic definition \(ce \) specifies the following operations on a BPMN element: The addition of an exception flow, and the replacement of a set of contained elements, if the BPMN element is a compound element.

\[
\begin{align*}
\forall e \in \text{Element} &; st : \text{Seqflow} \times \text{Type}; es, fs : \mathbb{F} \text{Element} \quad \text{let } c \equiv [\{ \text{exit } \sim ((\text{atom } e).\text{exit} \cup \{ st \}), \text{in } \sim (\text{atom } e).\text{in}, \text{out } \sim (\text{atom } e).\text{out}, \\
& \text{range } \sim (\text{atom } e).\text{range}, \text{type } \sim (\text{atom } e).\text{type}, \text{receive } \sim (\text{atom } e).\text{receive}, \\
& \text{send } \sim (\text{atom } e).\text{send} \} \quad \Rightarrow \\
& (e \in \text{ran } \text{atomic} \Rightarrow ce(e, st, es, fs) = \text{atomic}(c) \land \\
& e \in \text{ran } \text{compound} \Rightarrow ce(e, st, es, fs) = \text{compound}(c, ((\text{content}(c) \setminus es) \cup fs)))
\end{align*}
\]

The definition \(ct \) specifies the replacement of type value of a BPMN element.

\[
\begin{align*}
\forall e \in \text{Element} &; t : \text{Type} \quad \text{let } c \equiv [\{ \text{type } \sim t, \text{in } \sim (\text{atom } e).\text{in}, \text{out } \sim (\text{atom } e).\text{out}, \text{range } \sim (\text{atom } e).\text{range}, \\
& \text{exit } \sim (\text{atom } e).\text{exit}, \text{receive } \sim (\text{atom } e).\text{receive}, \text{send } \sim (\text{atom } e).\text{send} \} \quad \Rightarrow \\
& (e \in \text{ran } \text{atomic} \Rightarrow ct(e, t) = \text{atomic}(c) \land \\
& e \in \text{ran } \text{compound} \Rightarrow ct(e, t) = \text{compound}(c, \text{content}(e))]
\end{align*}
\]

The definition \(cm \) specifies the addition of one or more incoming and outgoing message flows of a BPMN element.

\[
\begin{align*}
\forall e \in \text{Element} &; sm, rm : \mathbb{F} \text{Mgflow}; ef : \text{Seqflow} \Rightarrow \text{Type} \quad \text{let } c \equiv [\{ \text{send } \sim (\text{atom } e).\text{send} \cup sm, \text{receive } \sim (\text{atom } e).\text{receive} \cup rm, \\
& \text{exit } \sim ef, \text{in } \sim (\text{atom } e).\text{in}, \text{out } \sim (\text{atom } e).\text{out}, \text{range } \sim (\text{atom } e).\text{range}, \\
& \text{type } \sim (\text{atom } e).\text{type} \} \quad \Rightarrow \\
& e \in \text{ran } \text{atomic} \Rightarrow cm(e, sm, rm, ef) = \text{atomic}(c)
\end{align*}
\]

We provide a generic function that takes a relation \(r \), and two values \(f \) and \(t \), such that it overrides each pair of the form \((s, f)\) for some \(s \) with the value \((s, t)\).
\[[X, Y] \]

\[\text{range} : ((X \leftrightarrow Y) \times Y \times Y) \rightarrow (X \leftrightarrow Y) \]

\[\forall r : X \leftrightarrow Y; f, t : Y \bullet \text{range}(r, f, t) = r \oplus \{ d : (\text{dom}(r \triangleright \{f\})) \bullet d \mapsto t \} \]

A.6.2 Collaboration

\[\text{msgrecs, msgsends} : \text{Process} \rightarrow (\text{Seqflow} \Rightarrow \text{Element}) \]

\[\forall p : \text{Process} \bullet \]

\[\text{msgsends} p = \{ s : \text{Seqflow}; g : \text{Element} \mid (\text{alls } p) s = g \land g \in \{ \text{ele} : \text{Element} \mid \text{EMgeEvent} \} \} \wedge \]

\[\text{msgrecs} p = \{ s : \text{Seqflow}; g : \text{Element} \mid g \in p \land g \in \{ \text{ele} : \text{Element} \mid \text{SMgeEvent} \lor \text{IMgeEvent} \} \wedge s \in (\text{atom } g).\text{out} \} \]
Appendix B

Preconditions

B.1 Preliminaries

Lemma B.1. \(\text{GenProc} \Rightarrow [\text{proc} : \text{Process} | \forall e : \{g : \text{Element} | g \in_p \text{proc}\} \bullet e \in \{\text{FlowObject} \bullet \text{ele}\}] \)

Proof.

\[
\begin{align*}
\text{GenProc} & \quad \Leftrightarrow [\WFProcess | \text{proc} \in \text{onlyFlowObject}] \\
& \quad \Leftrightarrow [\WFProcess | (\forall e : \{g : \text{Element} | g \in_p \text{proc}\} \bullet e \in \{\text{FlowObject} \bullet \text{ele}\})] \quad \text{[def of onlyFlowObject]} \\
& \quad \Rightarrow [\text{proc} : \text{Process} | \forall e : \{g : \text{Element} | g \in_p \text{proc}\} \bullet e \in \{\text{FlowObject} \bullet \text{ele}\}] \quad \text{[def of WFProcess and property of \(\Rightarrow \)]}
\end{align*}
\]

\(\Box\)

Lemma B.2 \([4.12]\).

\[
\begin{align*}
\forall ps, qs : \text{Process} & \bullet \\
& ((ps \in \{\text{proc} : \text{Process} | \text{Pool}\} \land qs \in \{\text{proc} : \text{Process} | \text{Pool}\}) \Rightarrow \\
& (\forall s : ps \bullet \\
& \quad s \in \text{ran compound} \land \\
& \quad \text{getSeqflows}(qs) \cap (\text{getSeqflows}(ps \setminus \{s\}) \cup (\text{atom s}).\text{in} \cup \text{outs}(s)) = \emptyset \land \\
& \quad \text{getMsgs}(qs) \cap (\text{getMsgs}(ps \setminus \{s\}) \cup \text{getMsg}(\text{atom s})) = \emptyset \land \\
& \quad \{e : qs | (\text{atom e}).\text{type} \in \text{ran eerror}\} = \{e : \text{content}(s) | (\text{atom e}).\text{type} \in \text{ran eerror}\} \Rightarrow \\
& \quad ((ps \setminus \{s\}) \cup \{\text{rep}(s, qs)\}) \in \{\text{proc} : \text{Process} | \text{Pool}\})
\end{align*}
\]

Proof.

\[
\begin{align*}
\forall ps, qs : \text{Process} & \bullet \\
& ((ps \in \{\text{proc} : \text{Process} | \text{Pool}\} \land \\
& qs \in \{\text{proc} : \text{Process} | \text{Pool}\}) \Rightarrow \\
& (\forall s : ps \bullet \\
& \quad s \in \text{ran compound} \land \\
& \quad \text{getSeqflows}(qs) \cap (\text{getSeqflows}(ps \setminus \{s\}) \cup (\text{atom s}).\text{in} \cup \text{outs}(s)) = \emptyset \land \\
& \quad \text{getMsgs}(qs) \cap (\text{getMsgs}(ps \setminus \{s\}) \cup \text{getMsg}(\text{atom s})) = \emptyset \land \\
& \quad \{e : qs | (\text{atom e}).\text{type} \in \text{ran eerror}\} = \{e : \text{content}(s) | (\text{atom e}).\text{type} \in \text{ran eerror}\} \Rightarrow \\
& \quad ((ps \setminus \{s\}) \cup \{\text{rep}(s, qs)\}) \in \{\text{proc} : \text{Process} | \text{Pool}\})
\end{align*}
\]

\(\Leftrightarrow \forall ps, qs : \text{Process} \bullet \quad \text{[def of Pool]} \\
((ps \in \{\text{proc} : \text{Process} | \text{GenProc} \land \text{hasExgates}\} \land \\
qs \in \{\text{proc} : \text{Process} | \text{GenProc} \land \text{hasExgates}\}) \Rightarrow \\
(\forall s : ps \bullet \\
\quad s \in \text{ran compound} \land \\
& \quad \text{getSeqflows}(qs) \cap (\text{getSeqflows}(ps \setminus \{s\}) \cup (\text{atom s}).\text{in} \cup \text{outs}(s)) = \emptyset \land \\
& \quad \text{getMsgs}(qs) \cap (\text{getMsgs}(ps \setminus \{s\}) \cup \text{getMsg}(\text{atom s})) = \emptyset \land \\
& \quad \{e : qs | (\text{atom e}).\text{type} \in \text{ran eerror}\} = \{e : \text{content}(s) | (\text{atom e}).\text{type} \in \text{ran eerror}\} \Rightarrow \\
& \quad ((ps \setminus \{s\}) \cup \{\text{rep}(s, qs)\}) \in \{\text{proc} : \text{Process} | \text{Pool}\})
\)
\[
\{ e : q_s | (\text{atom } e).\text{type} \in \text{ran } e\text{error} \} = \{ e : \text{content}(s) | (\text{atom } e).\text{type} \in \text{ran } e\text{error} \} \\
((ps \setminus \{ s \}) \cup \{ \text{rep}(s, qs) \}) \in \{ \text{proc} : \text{Process} | \text{Pool} \})
\]

\[\forall ps, qs : \text{Process} \bullet (\forall s : ps \bullet \text{proc} : \text{Process} | \text{GenProc} \land \text{hasExgates}) \land \text{compound}(\text{atom } s, qs) \} \in \{ \text{proc} : \text{Process} | \text{GenProc} \land \text{hasExgates} \})
\]

\[
\forall ps, qs : \text{Process} \bullet (\forall s : ps \bullet (ps \setminus \{ s \}) \cup \{ \text{rep}(s, qs) \}) \in \{ \text{proc} : \text{Process} | \text{GenProc} \land \text{hasExgates} \})
\]

We consider the first conjunct of the consequent.

\[
\Rightarrow \text{ps} \in \{ \text{proc} : \text{Process} | \text{GenProc} \land \text{hasExgates} \} \land \text{compound}(\text{atom } s, qs) \} \in \{ \text{proc} : \text{Process} | \text{GenProc} \land \text{hasExgates} \})
\]

\[
\Rightarrow \text{ps} \in \{ \text{onlyFlowObject} \} \land \text{compound}(\text{atom } s, qs) \} \in \{ \text{proc} : \text{Process} | \text{WFProcess} \}) \land \text{compound}(\text{atom } s, qs) \} \in \{ \text{proc} : \text{Process} | \text{GenProc} \land \text{hasExgates} \})
\]
APPENDIX B. PRECONDITIONS

\[\text{getMsgs}(q) \cap (\text{getMsgs}(p \setminus \{s\}) \cup \text{getMsg} \ (\text{atom} \ s)) = \emptyset \land \\
\{e : q | (\text{atom} \ e).\text{type} \in \text{ran} \text{error}\} = \{e : \text{content}(s) | (\text{atom} \ e).\text{type} \in \text{ran} \text{error}\}\]

\[\forall s : \{g : \text{Element} | g \in_p p\} \bullet s \in \{\text{FlowObject} \bullet \text{ele}\} \land \\
\text{qs} \in \{\text{proc} : \text{Process} | \text{WFProcess}\} \land \\
s \in \text{ran} \text{compound} \land \\
\text{getSeqflows}(q) \cap (\text{getSeqflows}(p \setminus \{s\}) \cup (\text{atom} \ s).\text{in} \cup \text{outs}(s)) = \emptyset \land \\
\text{getMsgs}(q) \cap (\text{getMsgs}(p \setminus \{s\}) \cup \text{getMsg} \ (\text{atom} \ s)) = \emptyset \land \\
\{e : q | (\text{atom} \ e).\text{type} \in \text{ran} \text{error}\} = \{e : \text{content}(s) | (\text{atom} \ e).\text{type} \in \text{ran} \text{error}\} \land \\
s \in \{\text{FullSub} \bullet \text{ele}\}\]

\[\Rightarrow \]

\[\{e : q | (\text{atom} \ e).\text{type} \in \text{ran} \text{error}\} = \{e : \text{content}(s) | (\text{atom} \ e).\text{type} \in \text{ran} \text{error}\}\]

\[\Rightarrow \]

\[\forall s : \{g : \text{Element} | g \in_p p\} \bullet s \in \{\text{FlowObject} \bullet \text{ele}\} \land \\
\text{qs} \in \{\text{proc} : \text{Process} | \text{WFProcess}\} \land \\
(\forall e : \{g : \text{Element} | g \in_p q\} \bullet e \in \{\text{FlowObject} \bullet \text{ele}\} \land \\
s \in \text{ran} \text{compound} \land \\
\text{getSeqflows}(q) \cap (\text{getSeqflows}(p \setminus \{s\}) \cup (\text{atom} \ s).\text{in} \cup \text{outs}(s)) = \emptyset \land \\
\text{getMsgs}(q) \cap (\text{getMsgs}(p \setminus \{s\}) \cup \text{getMsg} \ (\text{atom} \ s)) = \emptyset \land \\
\{e : q | (\text{atom} \ e).\text{type} \in \text{ran} \text{error}\} = \{e : \text{content}(s) | (\text{atom} \ e).\text{type} \in \text{ran} \text{error}\} \land \\
\text{rep}(s, q) \in \{\text{FullSub} \bullet \text{ele}\}\]

\[\Rightarrow \]

\[\forall s : \{g : \text{Element} | g \in_p p\} \bullet s \in \{\text{FlowObject} \bullet \text{ele}\} \land \\
\text{qs} \in \{\text{proc} : \text{Process} | \text{WFProcess}\} \land \\
s \in \text{ran} \text{compound} \land \\
\text{getSeqflows}(q) \cap (\text{getSeqflows}(p \setminus \{s\}) \cup (\text{atom} \ s).\text{in} \cup \text{outs}(s)) = \emptyset \land \\
\text{getMsgs}(q) \cap (\text{getMsgs}(p \setminus \{s\}) \cup \text{getMsg} \ (\text{atom} \ s)) = \emptyset \land \\
\{e : q | (\text{atom} \ e).\text{type} \in \text{ran} \text{error}\} = \{e : \text{content}(s) | (\text{atom} \ e).\text{type} \in \text{ran} \text{error}\} \land \\
(\forall t : \{g : \text{Element} | g \in_p ((p \setminus \{s\}) \cup \{\text{rep}(s, q)\})\} \bullet t \in \{\text{FlowObject} \bullet \text{ele}\}\]

\[\Rightarrow \]

\[\exists e, f : \text{ps} \bullet e \in \{\text{Start} \bullet \text{ele}\} \land f \in \{\text{End} \bullet \text{ele}\} \land \\
(\neg (\exists e : \text{ps} \bullet e \in \{\text{Inter} | (\text{atom} \ e).\text{type} \in \text{ran} \text{error} \bullet \text{ele}\})\) \land \\
\text{qs} \in \text{noOverLap} \land \\
\text{qs} \in \text{processSet} \land \\
(\exists e, f : \text{qs} \bullet e \in \{\text{Start} \bullet \text{ele}\} \land f \in \{\text{End} \bullet \text{ele}\} \land \\
(\neg (\exists e : \text{qs} \bullet e \in \{\text{Inter} | (\text{atom} \ e).\text{type} \in \text{ran} \text{error} \bullet \text{ele}\})\) \land
\[s \in \text{ran} \ \text{compound} \land \]
\[\text{getSeqflows}(qs) \cap (\text{getSeqflows}(ps \setminus \{s\}) \cup (\text{atom} \ s).\text{in} \cup \text{outs}(s)) = \emptyset \land \]
\[\text{getMsgs}(qs) \cap (\text{getMsgs}(ps \setminus \{s\}) \cup \text{getMsg}(\text{atom} \ s)) = \emptyset \land \]
\[\{ e : qs \mid (\text{atom} \ e).\text{type} \in \text{ran} \text{error} \} = \{ e : \text{content}(s) \mid (\text{atom} \ e).\text{type} \in \text{ran} \text{error} \} \land \]
\[\forall t : \{ g : \text{Element} \mid g \in_p ((ps \setminus \{s\}) \cup \{\text{rep}(s, qs)\}) \} \bullet t \in \{\text{FlowObject} \bullet \text{ele}\} \]
\[\Rightarrow (\forall e : \{ g : \text{Element} \mid g \in_p ps\}) \]
\[[\text{def of noOverLap} \]
\[\bigcup \{ k : ps \bullet (\text{atom} \ k).\text{in} \cup \text{outs}(k) \} \cap \bigcup \{ k : \text{content} \ e \bullet (\text{atom} \ k).\text{in} \cup \text{outs}(k) \} = \emptyset \land \]
\[(\forall f : \{ g : \text{Element} \mid g \in_p ps\} \bullet e \neq f \Rightarrow \]
\[(\text{atom} \ e).\text{in} \cap (\text{atom} \ f).\text{in} = \emptyset \land \]
\[\text{outs}(e) \cap \text{outs}(f) = \emptyset \land \]
\[\bigcup \{ k : \text{content} \ e \bullet (\text{atom} \ k).\text{in} \cup \text{outs}(k) \} \cap \bigcup \{ k : \text{content} \ f \bullet (\text{atom} \ k).\text{in} \cup \text{outs}(k) \} = \emptyset \land \]
\[\text{getMsg}(\text{atom} \ e) \cap \text{getMsg}(\text{atom} \ f) = \emptyset \} \land \]
\[ps \in \text{processSet} \land \]
\[(\exists e, f : ps \bullet e \in \{\text{Start} \bullet \text{ele}\} \land f \in \{\text{End} \bullet \text{ele}\}) \land \]
\[(\forall e : ps \bullet e \in \{\text{Inter} \mid (\text{atom} \ \text{ele}).\text{type} \in \text{ran} \text{error} \bullet \text{ele}\}) \land \]
\[(\forall e : \{ g : \text{Element} \mid g \in_p ps\} \bullet e \neq f \Rightarrow \]
\[(\text{atom} \ e).\text{in} \cap (\text{atom} \ f).\text{in} = \emptyset \land \]
\[\text{outs}(e) \cap \text{outs}(f) = \emptyset \land \]
\[\bigcup \{ k : \text{content} \ e \bullet (\text{atom} \ k).\text{in} \cup \text{outs}(k) \} \cap \bigcup \{ k : \text{content} \ f \bullet (\text{atom} \ k).\text{in} \cup \text{outs}(k) \} = \emptyset \land \]
\[\text{getMsg}(\text{atom} \ e) \cap \text{getMsg}(\text{atom} \ f) = \emptyset \} \land \]
\[qs \in \text{processSet} \land \]
\[(\exists e, f : qs \bullet e \in \{\text{Start} \bullet \text{ele}\} \land f \in \{\text{End} \bullet \text{ele}\}) \land \]
\[(\forall e : qs \bullet e \in \{\text{Inter} \mid (\text{atom} \ \text{ele}).\text{type} \in \text{ran} \text{error} \bullet \text{ele}\}) \land \]
\[s \in \text{ran} \ \text{compound} \land \]
\[\text{getSeqflows}(qs) \cap (\text{getSeqflows}(ps \setminus \{s\}) \cup (\text{atom} \ s).\text{in} \cup \text{outs}(s)) = \emptyset \land \]
\[\text{getMsgs}(qs) \cap (\text{getMsgs}(ps \setminus \{s\}) \cup \text{getMsg}(\text{atom} \ s)) = \emptyset \land \]
\[\{ e : qs \mid (\text{atom} \ e).\text{type} \in \text{ran} \text{error} \} = \{ e : \text{content}(s) \mid (\text{atom} \ e).\text{type} \in \text{ran} \text{error} \} \land \]
\[\forall t : \{ g : \text{Element} \mid g \in_p ((qs \setminus \{s\}) \cup \{\text{rep}(s, qs)\}) \} \bullet t \in \{\text{FlowObject} \bullet \text{ele}\} \land \]
\[(\text{noOverLap}) \]
\[\Rightarrow ps \in \text{processSet} \land \]
\[[\text{def of ps and qs} \]
\[qs \in \text{processSet} \land \]}
We consider the second conjunct of the consequent.

\(s \in \text{ran compound} \land \)

\[\text{getSeqflows}(qs) \cap (\text{getSeqflows}(ps \setminus \{s\}) \cup (\text{atom s}).\text{in} \cup \text{outs}(s)) = \emptyset \land \]

\[\text{getMsgs}(qs) \cap (\text{getMsgs}(ps \setminus \{s\}) \cup \text{getMsg (atom s)}) = \emptyset \land \]

\{ e : qs | (\text{atom e}).type \in \text{ran error} \} = \{ e : \text{content}(s) | (\text{atom e}).type \in \text{ran error} \} \land \]

\((\forall t : g : \text{Element} | g \in_p ((ps \setminus \{s\}) \cup \{\text{rep}(s, qs)\})) \bullet t \in \{\text{FlowObject} \bullet \text{ele}\} \land \]

\[((ps \setminus \{s\}) \cup \{\text{rep}(s, qs)\}) \in \text{noOverLap} \land \]

\((\exists e, f : ((ps \setminus \{s\}) \cup \{\text{rep}(s, qs)\}) \bullet e \in \{\text{Start} \bullet \text{ele}\} \land f \in \{\text{End} \bullet \text{ele}\} \land \]

\((\forall e : ps \bullet \quad \text{[def of processSet and property of } \cap \quad \}

\(e \notin \{ \text{End} \bullet \text{ele} \} \Rightarrow (\exists f : ps \bullet f \in \{ \text{End} \bullet \text{ele}\} \land (e, f) \in (\text{edge ps}^+)) \land \]

\((e \notin \{ \text{Start} \bullet \text{ele} \} \Rightarrow (\exists f : ps \bullet f \in \{ \text{Start} \bullet \text{ele}\} \land (f, e) \in (\text{edge ps}^+)) \land \]

\((\forall e : ps \bullet \quad \text{[def of processSet and property of } \cap \quad \}

\[(\forall s : \text{outs}(e) \bullet \exists f : ps \bullet s \in (\text{atom f}).\text{in}) \land \]

\((\forall s : (\text{atom e}).\text{in} \bullet \exists f : ps \bullet s \in \text{outs}(f)) \land \]

\[qs \in \text{processSet} \land \]

\(s \in \text{ran compound} \land \)

\[\text{getSeqflows}(qs) \cap (\text{getSeqflows}(ps \setminus \{s\}) \cup (\text{atom s}).\text{in} \cup \text{outs}(s)) = \emptyset \land \]

\[\text{getMsgs}(qs) \cap (\text{getMsgs}(ps \setminus \{s\}) \cup \text{getMsg (atom s)}) = \emptyset \land \]

\{ e : qs | (\text{atom e}).type \in \text{ran error} \} = \{ e : \text{content}(s) | (\text{atom e}).type \in \text{ran error} \} \land \]

\((\forall s : \text{proc : Process } | \text{genExgates}) \land \]

\[qs \in \{ \text{proc : Process } | \text{GenProc } \land \text{hasExgates} \} \land \]

\(s \in \text{ran compound} \land \)

\[\text{getSeqflows}(qs) \cap (\text{getSeqflows}(ps \setminus \{s\}) \cup (\text{atom s}).\text{in} \cup \text{outs}(s)) = \emptyset \land \]

\[\text{getMsgs}(qs) \cap (\text{getMsgs}(ps \setminus \{s\}) \cup \text{getMsg (atom s)}) = \emptyset \land \]

\{ e : qs | (\text{atom e}).type \in \text{ran error} \} = \{ e : \text{content}(s) | (\text{atom e}).type \in \text{ran error} \} \land \]

\[(\forall f : g : \text{Element} | g \in_p ps \bullet \quad \text{[properties of } \Rightarrow \quad \}

\[qs \in \{ \text{proc : Process } | \text{hasExgates} \} \land \]

\(s \in \text{ran compound} \land \)

\[\text{getSeqflows}(qs) \cap (\text{getSeqflows}(ps \setminus \{s\}) \cup (\text{atom s}).\text{in} \cup \text{outs}(s)) = \emptyset \land \]

\[\text{getMsgs}(qs) \cap (\text{getMsgs}(ps \setminus \{s\}) \cup \text{getMsg (atom s)}) = \emptyset \land \]

\{ e : qs | (\text{atom e}).type \in \text{ran error} \} = \{ e : \text{content}(s) | (\text{atom e}).type \in \text{ran error} \} \land \]

\[(\forall f : g : \text{Element} | g \in_p \text{qs} \bullet \quad \text{[def of } \text{hasExgates} \quad \}

\[(\forall e : \text{Element} \bullet (f, e) \in \text{edge}(\text{direct}(ps, e)) \Rightarrow e \in \text{sendelement}) \land \]

\[(\forall f : g : \text{Element} | g \in_p \text{qs} \bullet \quad \text{[def of } \text{hasExgates} \quad \}

\[(\forall e : \text{Element} \bullet (f, e) \in \text{edge}(\text{direct}(qs, e)) \Rightarrow e \in \text{sendelement}) \land \]

\(s \in \text{ran compound} \land \)

\[\text{getSeqflows}(qs) \cap (\text{getSeqflows}(ps \setminus \{s\}) \cup (\text{atom s}).\text{in} \cup \text{outs}(s)) = \emptyset \land \]

We consider the second conjunct of the consequent.

\[ps \in \{ \text{proc : Process } | \text{GenProc } \land \text{hasExgates} \} \land \]

\[qs \in \{ \text{proc : Process } | \text{GenProc } \land \text{hasExgates} \} \land \]
We now consider the first disjunct the before state component and constraints on the input components of the precondition schema. We first expand the constraint on

\[\forall c : \text{Element}; f, t : \text{Seqflow} \bullet \\
\Rightarrow \begin{array}{l}
\neg (\text{atom c).in} \land f \in (\text{atom c).in} \Rightarrow \#(\text{cge(c, f, t)}).in = \#(\text{atom c).in} \\
\end{array}
\]

Proof.

\[
\begin{align*}
\#(\text{atom cge(c, f, t)}).in \\
= \#(((\text{atom c}.in \setminus \{f\}) \cup \{t\}) & \\
= \#((\text{atom c}.in \setminus \{f\}) + 1 & [\text{def of cge}] \\
= \#(\text{atom c}.in) - 1 + 1 & [f \in (\text{atom c}.in] \\
= \#(\text{atom c}.in) & [\text{arith}]
\end{align*}
\]

\[\square\]

\section*{B.2 Precondition of ChangeFlow}

\subsection*{B.2.1 Preliminaries}

Lemma B.3.

\[\forall c : \text{Element}; f, t : \text{Seqflow} \bullet \\
ele \not\in \{\text{Start} \bullet ele\} \land \\
to? \not\in \text{getSeqflows}\{ele\} \land \\
from? \in (\text{atom ele}.in) \land \\
cge(ele, from?, to?) \in \{\text{ele : Element | FlowObject}\} \\
\]

We have shown all constraints specified in the consequent follow from constraints in the antecedent. This completes the proof.

\[\square\]

\subsection*{B.2.2 Simplification}

\[\begin{align*}
\text{pre ChangeFlow} & \\
\Leftrightarrow [\text{FlowObject: from?, to? : Seqflow} & \text{[def of ChangeFlow, schema quantification, one-point]} \\
\text{ele} \not\in \{\text{Start} \bullet ele\} \land \\
to? \not\in \text{getSeqflows}\{ele\} \land \\
\text{from?} \in (\text{atom ele}.in) \land \\
cge(ele, from?, to?) \in \{\text{ele : Element | FlowObject}\} & \\
\end{align*}
\]

We now show that \(\text{cge(ele, from?, to?) \in \{\text{ele : Element | FlowObject}\}\) follows from both the declaration and constraints on the input components of the precondition schema. We first expand the constraint on the before state component \(\text{ele} \in \{\text{ele : Element | FlowObject}\}.

\[\text{ele} \in \{\text{ele : Element | FlowObject}\}
\]

\[\Leftrightarrow \text{ele} \in \{\text{ele : Element | Event} \lor \text{FullTask} \lor \text{FullSub} \lor \text{Gate}\} & \text{[def of FlowObject]} \\
\Leftrightarrow \text{(ele} \in \{\text{ele : Element | Event}\} \lor \\
\text{(ele} \in \{\text{ele : FullTask}\} \lor \\
\text{(ele} \in \{\text{ele : FullSub}\} \lor \\
\text{(ele} \in \{\text{ele : Gate}\}
\]

We now consider the first disjunct \(\text{ele} \in \{\text{ele : Element | Event}\}.

\[\text{ele} \in \{\text{ele : Element | Event}\} \land \\
\]
APPENDIX B. PRECONDITIONS

\[ele \not\in \{ \text{Start} \circledast \text{ele} \} \land \\
\text{to?} \not\in \text{getSeqflows}\{\text{ele}\} \land \\
\text{from?} \in (\text{atom ele}).in \]

\[\Leftrightarrow ((\text{ele} \in \text{ran atomic} \land \\
\#(\text{atom ele}).exit) + \\
\#(\text{atom ele}).send + \#(\text{atom ele}).receive = 0 \land \\
\text{first}(\text{atom ele}).range = 0 \land \\
\text{second}(\text{atom ele}).range = 0) \land \\
((\text{atomic}~ \text{ele}).\text{type} \in \text{ran itime} \cup \text{ran imessage} \cup \text{ran ierror} \cup \text{ran irule} \land \\
\#(\text{atom ele}).\text{in} = 1 \land \#(\text{atom ele}).\text{out} = 1) \lor \\
((\text{atom ele}).\text{type} \in \{ \text{end, abort} \} \cup \text{ran emessage} \cup \text{ran eerror} \land \\
\#(\text{atom ele}).\text{in} = 1 \land \#(\text{atom ele}).\text{out} = 0)) \land \\
\text{ele} \not\in \{ \text{Start} \circledast \text{ele} \} \land \\
\text{to?} \not\in \text{getSeqflows}\{\text{ele}\} \land \\
\text{from?} \in (\text{atom ele}).in \]

\[\Rightarrow (\text{ege(\text{ele}, from?, to?)} \in \text{ran atomic} \land \\
\#(\text{atom ege(\text{ele}, from?, to?)}).exit) + \\
\#(\text{atom ege(\text{ele}, from?, to?)}).send + \#(\text{atom ege(\text{ele}, from?, to?)}).receive = 0 \land \\
\text{first}(\text{atom ege(\text{ele}, from?, to?)}).range = 0 \land \\
\text{second}(\text{atom ege(\text{ele}, from?, to?)}).range = 0) \land \\
((\text{atomic}~ \text{ege(\text{ele}, from?, to?)}).\text{type} \in \text{ran itime} \cup \text{ran imessage} \cup \text{ran ierror} \cup \text{ran irule} \land \\
\#(\text{atom ege(\text{ele}, from?, to?)}).\text{in} = 1 \land \#(\text{atom ege(\text{ele}, from?, to?)}).\text{out} = 1) \lor \\
((\text{atom ege(\text{ele}, from?, to?)}).\text{type} \in \{ \text{end, abort} \} \cup \text{ran emessage} \cup \text{ran eerror} \land \\
\#(\text{atom ege(\text{ele}, from?, to?)}).\text{in} = 1 \land \#(\text{atom ege(\text{ele}, from?, to?)}).\text{out} = 0)) \land \\
\Rightarrow \text{ege(\text{ele}, from?, to?)} \in \{ \text{ele} : \text{Element} \mid \text{Event} \} \land \\
[\text{def of ege and set-compre}]
\]

\[\Rightarrow \text{ege(\text{ele}, from?, to?)} \in \{ \text{ele} : \text{Element} \mid \text{FlowObject} \} \land \\
[\text{def of FlowObject}]
\]

We now consider the second disjunct \(\text{ele} \in \{ \text{ele} : \text{Element} \mid \text{FullTask} \}.\)

\[\text{ele} \in \{ \text{ele} : \text{Element} \mid \text{FullTask} \} \land \\
\text{ele} \not\in \{ \text{Start} \circledast \text{ele} \} \land \\
\text{to?} \not\in \text{getSeqflows}\{\text{ele}\} \land \\
\text{from?} \in (\text{atom ele}).in \]

\[\Leftrightarrow \text{ele} \in \text{ran atomic} \land \\
[\text{def of FullTask}]
\]

\[(\text{atom ele}).\text{type} \in \text{ran task} \cup \text{ran miseq} \cup \text{ran mipar} \land \\
\text{first}((\text{atom ele}).\text{range}) \leq \text{second}((\text{atom ele}).\text{range}) \land \\
\#(\text{atom ele}).\text{in} = 1 \land \#(\text{atom ele}).\text{out} = 1 \land \\
(\forall t : \text{Type} \circledast t \in (\text{ran(\text{atom ele}).exit}) \cup \text{ran ierror} \Rightarrow (\text{ierror}~ t) = \text{anyexception}) \land \\
(\forall t : \text{Type} \circledast t \in (\text{ran(\text{atom ele}).exit}) \Rightarrow t \in \text{inters}) \land \\
\text{ele} \not\in \{ \text{Start} \circledast \text{ele} \} \land \\
\text{to?} \not\in \text{getSeqflows}\{\text{ele}\} \land \\
\text{from?} \in (\text{atom ele}).in \]
$\Rightarrow ((\text{cge}(\text{ele}, \text{from}?, \text{to}?) \in \text{ran atomic} \land (\text{atom cge(\text{ele}, \text{from}?, \text{to}?)}.\text{type} \in \text{ran task} \cup \text{ran miseq} \cup \text{ran mipar} \land \text{first}((\text{atom cge(\text{ele}, \text{from}?, \text{to}?)}.\text{range}) \leq \text{second}((\text{atom cge(\text{ele}, \text{from}?, \text{to}?)}.\text{range}) \land \#(\text{atom cge(\text{ele}, \text{from}?, \text{to}?)}.\text{in}) = 1 \land \#(\text{atom cge(\text{ele}, \text{from}?, \text{to}?)}.\text{out}) = 1 \land (\forall t : \text{Type} \bullet t \in (\text{ran}(\text{atom cge(\text{ele}, \text{from}?, \text{to}?)}.\text{exit}) \cap \text{ran eerror}) \Rightarrow (\text{eerror}^\sim t = \text{anynexception}) \land (\forall t : \text{Type} \bullet t \in \text{ran}(\text{atom cge(\text{ele}, \text{from}?, \text{to}?)}.\text{exit}) \Rightarrow t \in \text{inters}) \land (\text{to}? \notin (\text{atom cge(\text{ele}, \text{from}?, \text{to}?)}.\text{in}) \land \text{to}? \notin (\text{atom cge(\text{ele}, \text{from}?, \text{to}?)}.\text{out}) \land \text{to}? \notin \text{dom}(\text{atom cge(\text{ele}, \text{from}?, \text{to}?)}.\text{exit}) \land \text{from}? \in (\text{atom cge(\text{ele}, \text{from}?, \text{to}?)}.\text{in})$)}

$\Leftrightarrow \text{cge(\text{ele}, \text{from}?, \text{to}?)} \in \{ \text{ele} : \text{Element | FullTask} \}$

$\Rightarrow \text{cge(\text{ele}, \text{from}?, \text{to}?)} \in \{ \text{ele} : \text{Element | FlowObject} \}$

We now consider the third disjunct $\text{ele} \in \{ \text{ele} : \text{Element | FullSub} \}$.

$\Rightarrow ((\text{ele} \in \text{ran compound} \land (\#(\text{atom \text{ele}}).\text{send} + \#(\text{atom \text{ele}}).\text{receive} = 0 \land (\text{atom \text{ele}}).\text{type} \in \text{ran subprocess} \cup \text{ran mipars} \cup \text{ran miseqs} \land \text{content(\text{ele})} \neq \emptyset \land \text{content(\text{ele})} \in \{ \text{WFProcess} \bullet \text{proc} \} \land \#(\text{atom \text{ele}}).\text{in} = 1 \land \#(\text{atom \text{ele}}).\text{out} = 0) \land ((\forall e, f : \text{content(\text{ele})} \bullet \{ e, f \} \subseteq \{ \text{End} | (\text{atom \text{ele}}).\text{type} \in (\text{ran eerror} \cap \text{errortypes}) \bullet \text{ele} \} \land \text{errortype}((\text{atom \text{ele}}).\text{type}) = \text{errortype}((\text{atom f}).\text{type}) \Rightarrow f = e) \land (\forall e : \text{content(\text{ele})} \bullet (\text{atom e}).\text{type} \in (\text{ran eerror} \cap \text{errortypes}) \Rightarrow (\exists t : \text{ran}((\text{atom \text{ele}}).\text{exit}) \bullet t \in (\text{ran eerror} \cap \text{errortypes}) \land \text{errortype}((\text{atom \text{ele}}).\text{type}) = \text{errortype}(t))) \land (\forall t : \text{ran}((\text{atom \text{ele}}).\text{exit}) \bullet (t \in (\text{ran eerror} \cap \text{errortypes}) \Rightarrow (\exists e : \text{content(\text{ele})} \bullet (\text{atom e}).\text{type} \in (\text{ran eerror} \cap \text{errortypes}) \land \text{errortype}((\text{atom \text{ele}}).\text{type}) = \text{errortype}(t))) \land (\forall t : \text{Type} \bullet t \in \text{ran}((\text{atom \text{ele}}).\text{exit}) \Rightarrow t \in \text{inters}) \land \text{ele} \notin \{ \text{Start} \bullet \text{ele} \} \land \text{to}? \notin \text{getSegflows}\{ \text{ele} \} \land \text{from}? \in (\text{atom \text{ele}}).\text{in})}$

$\Rightarrow ((\text{cge(\text{ele}, \text{from}?, \text{to}?)}) \in \text{ran compound} \land (\#(\text{atom cge(\text{ele}, \text{from}?, \text{to}?)}.\text{send} + \#(\text{atom cge(\text{ele}, \text{from}?, \text{to}?)}.\text{receive} = 0 \land (\text{atom cge(\text{ele}, \text{from}?, \text{to}?)}.\text{type} \in \text{ran subprocess} \cup \text{ran mipars} \cup \text{ran miseqs} \land \text{content(\text{cge(\text{ele}, \text{from}?, \text{to}?)})} \neq \emptyset \land \text{content(\text{cge(\text{ele}, \text{from}?, \text{to}?)})} \in \{ \text{FlowObject} \} \land \text{def of FlowObject})}$
APPENDIX B. PRECONDITIONS

content(ege(ele, from?, to?)) ∈ \{ WFProcess • proc \} ∧
\#(atom cge(ele, from?, to?)).in = 1 ∧ \#(atom cge(ele, from?, to?)).out = 1) ∧
((∀ e, f : content(cge(ele, from?, to?))) •
\{ e, f \} ⊆ \{ End | (atom cge(ele, from?, to?)).type ∈ (ran error ∩ errorCodeTypes) • ele \} ∧
errorCode((atom e).type) = errorCode((atom f).type) ⇒ f = e) ∧
(∀ e : content(cge(ele, from?, to?))) •
(atom e).type ∈ (ran error ∩ errorCodeTypes) ⇒
(∃ t : Type •
t ∈ ran((atom cge(ele, from?, to?)).exit) ∧
t ∈ (ran ierror ∩ errorCodeTypes) ∧
errorCode((atom e).type) = errorCode(t)) ∧
(∃ t : Type • t ∈ ran((atom cge(ele, from?, to?)).exit) •
(atom e).type ∈ (ran error ∩ errorCodeTypes) ∧
(∀ t : Type • t ∈ ran((atom cge(ele, from?, to?)).exit) ⇒ t ∈ inters))
⇔ cge(ele, from?, to?) ∈ \{ ele : Element | FullSub \} \{ \text{def of FullSub} \} ∧
cge(ele, from?, to?) ∈ \{ ele : Element | FlowObject \} \{ \text{def of FlowObject} \}

deofFullSub = \text{compre}

We now consider the fourth disjunct ele ∈ \{ ele : Element | Gate \}.

ele ∈ \{ ele : Element | Gate \} ∧
ele /∈ \{ Start • ele \} ∧
to? /∈ \text{getSegflows} \{ ele \} ∧
from? ∈ (atom ele).in
⇔ ((atom ele).type ∈ \{ agate, xgate, exgate \} ∧
\#(atom ele).in = 1 ∨ \#(atom ele).out = 1 ∧
\#(atom ele).in = 1 ⇒ \#(atom ele).out > 1) ∧
ele /∈ \{ Start • ele \} ∧
to? /∈ \text{getSegflows} \{ ele \} ∧
from? ∈ (atom ele).in
⇒ ((atom cge(ele, from?, to?).type ∈ \{ agate, xgate, exgate \} ∧
\#(atom cge(ele, from?, to?).in = 1 ∨ \#(atom cge(ele, from?, to?).out = 1 ∧
\#(atom cge(ele, from?, to?).in = 1 ⇒ \#(atom cge(ele, from?, to?).out = 1) ∧
⇔ cge(ele, from?, to?) ∈ \{ ele : Element | Gate \} \{ \text{def of Gate and set-compre} \}
⇒ cge(ele, from?, to?) ∈ \{ ele : Element | FlowObject \} \{ \text{def of FlowObject} \}

The above deductions result in the following simplified precondition schema, labelled PreChangeFlow.

```
PreChangeFlow

FlowObject
from?, to? : Seqflow

ele /∈ \{ Start • ele \}
to? /∈ \text{getSegflows} \{ ele \}
from? ∈ (atom ele).in
```
B.3 Precondition of \textit{AddNoRelatedErrorExceptionSub}

\begin{verbatim}
pre AddNoRelatedErrorExceptionSub
⇔ ∃ Activity' • AddNoRelatedErrorExceptionSub
⇔ ∃ Activity' •
 \[\Delta Activity; etype? : Type; eflow? : Seqflow |
 etype? ∈ nomsgerrors ∧
 eflow? \notin getSeqflows\{ele\} ∧
 ele' = ce(ele, (eflow?, etype?), \emptyset, \emptyset)]
⇔ [Activity; etype? : Type; eflow? : Seqflow | [schema quantification and one-point]
let ch == ce(ele, (eflow?, etype?), \emptyset, \emptyset) •
 etype? ∈ nomsgerrors ∧
 eflow? \notin getSeqflows\{ele\} ∧
 ch ∈ \{ele : Element | Activity\}]
\end{verbatim}

Now to show \(ch \in \{ele : Element | Activity\}\) follows from constraints on the before state \(Pool\) and the input components, we first consider if \(ed \in \{ele : Element | FullTask\}\).

\(ed \in \{ele : Element | FullTask\} \land\)
\(etype? \in nomsgerrors \land\)
\(eflow? \notin getSeqflows proc\)
\(⇒ ed \in ran \text{atomic} \land\) [def of \(FullTask\)]
\((atom ed).type \in ran \text{task} \cup ran \text{sloop} \cup ran \text{miseq} \cup ran \text{mipar} \land\)
\(first((atom ed).range) ≤ second((atom ed).range) \land\)
\(#(atom ed).in = 1 \land #(atom ed).out = 1 \land\)
\((\forall t : Type \bullet t \in (ran((atom ed).exit) \cap ran ierror) ⇒ (ierror\text{~}t) = anyexception) \land\)
\((\forall t : Type \bullet t \in ran((atom ed).exit) ⇒ t \in \text{inters}) \land\)
\(etype? \in nomsgerrors \land\)
\(etype? \notin ran((atom ele).exit) \land\)
\(eflow? \notin getSeqflows proc\)
\(⇒ ch \in ran \text{atomic} \land\) [def of \(ce\) and \(etype?\)]
\((atom ch).type \in ran \text{task} \cup ran \text{sloop} \cup ran \text{miseq} \cup ran \text{mipar} \land\)
\(first((atom ch).range) ≤ second((atom ch).range) \land\)
\(#(atom ch).in = 1 \land #(atom ch).out = 1 \land\)
\((\forall t : Type \bullet t \in (ran((atom ch).exit) \cap ran ierror) ⇒ (ierror\text{~}t) = anyexception) \land\)
\((\forall t : Type \bullet t \in ran((atom ch).exit) ⇒ t \in \text{inters}) \land\)
\(⇒ ch \in \{ele : Element | FullTask\}\) [def of \(FullTask\)]
\(⇒ ch \in \{ele : Element | Activity\}\) [def of \(Activity\)]

We now consider if \(ed \in \{ele : Element | FullSub\}\).

\(ed \in \{ele : Element | FullSub\} \land\)
\(etype? \in nomsgerrors \land\)
\(eflow? \notin getSeqflows proc\)
\(⇒ ed \in ran \text{compound} \land\) [def of \(FullSub\)]
\(#(atom ed).send + #(atom ed).receive = 0 \land\)
\((atom ed).type \in ran \text{subprocess} \cup ran \text{mipars} \cup ran \text{miseqs} \land\)
content(ed) ∈ \{WFProcess ⋠ proc\} ∧
#(atom ed).in = 1 ∧ #(atom ed).out = 1 ∧
(∀ e, f : content(ed) •
 \{e, f\} ⊆ \{End | (atom ele).type ∈ (ran error ∩ errorCodeTypes) • ele\} ∧
 errorCode((atom e).type) = errorCode((atom f).type) ⇒ f = e\} ∧
(∀ e : content(ed) •
 (atom e).type ∈ (ran error ∩ errorCodeTypes) ⇒
 (∃ t : ran((atom ed).exit) •
 t ∈ (ran error ∩ errorCodeTypes) ∧
 errorCode((atom e).type) = errorCode(t))\} ∧
(∀ t : Type • t ∈ ran((atom ed).exit) ⇒ t ∈ inters) ∧
etype? ∈ nomserrors ∧
etype? \notin ran((atom ele).exit) ∧
eflow? \notin getSeqflows proc
⇒ ch ∈ ran compound ∧ [def of ce, etype? \notin ran((atom ele).exit) ∪ (ran error ∩ errorCodeTypes)]
#(atom ch).send + #(atom ch).receive = 0 ∧
(atom ch).type ∈ ran subprocess ∪ ran mipars ∪ ran miseqs ∧
content(ch) ∈ \{WFProcess ⋠ proc\} ∧
#(atom ch).in = 1 ∧ #(atom ch).out = 1 ∧
(∀ e, f : content(ch) •
 \{e, f\} ⊆ \{End | (atom ele).type ∈ (ran error ∩ errorCodeTypes) • ele\} ∧
 errorCode((atom e).type) = errorCode((atom f).type) ⇒ f = e\} ∧
(∀ e : content(ch) •
 (atom e).type ∈ (ran error ∩ errorCodeTypes) ⇒
 (∃ t : ran((atom ch).exit) •
 t ∈ (ran error ∩ errorCodeTypes) ∧
 errorCode((atom e).type) = errorCode(t))\} ∧
(∀ t : Type • t ∈ ran((atom ch).exit) ⇒ t ∈ \{inters • (atom ele).type\})
⇔ ch ∈ \{ele : Element | FullSub\} \quad [\text{def of FullSub}]
⇒ ch ∈ \{ele : Element | Activity\} \quad [\text{def of Activity}]

We therefore obtain the following simplified precondition schema, labelled \textit{PreAddNoRelatedErrorExceptionSub}.
APPENDIX B. PRECONDITIONS

208

APPENDIX B. PRECONDITIONS

PreAddNoRelatedErrorExceptionSub

Activity
etype? : Type
eflow? : Seqflow

etype? ∈ nomsgerrors
eflow? \notin \text{getSeqflows}(\text{ele})

B.4 Precondition of \text{ChangeEndType}

pre \text{ChangeEndType}
⇔ [End; type? : Type |
 type? ∈ \text{ran} \text{error} \cap \text{errorCodeTypes} \land
 (\text{atom ele}).\text{type} = \text{end} \land
 ct(\text{ele}, \text{type}?) \in \{\text{ele} : \text{Element} | \text{End}\}]

We now consider the membership ct(\text{ele}, \text{type}?) \in \{\text{ele} : \text{Element} | \text{End}\}.

\text{ele} \in \{\text{ele} : \text{Element} | \text{End}\} \land
(\text{atom ele}).\text{type} = \text{end} \land
\text{type}? \in \text{ran} \text{error} \cap \text{errorCodeTypes}
⇔ \text{ele} \in \text{ran} \text{atomic} \land
 [\text{def of End and subset inclusion}]
 \#(\text{atom ele}).\text{exit} + \#(\text{atom ele}).\text{send} + \#(\text{atom ele}).\text{receive} = 0 \land
 \text{first}(\text{atom ele}).\text{range} = 0 \land
 \text{second}(\text{atom ele}).\text{range} = 0 \land
 (\text{atom ele}).\text{type} = \text{end} \land
 \#(\text{atom ele}).\text{in} = 1 \land \#(\text{atom ele}).\text{out} = 0 \land
 \text{type}? \in \text{ran} \text{error} \cap \text{errorCodeTypes}
\Rightarrow ct(\text{ele}, \text{type}?) \in \text{ran} \text{atomic} \land
 [\text{def of ct}]
 \#(\text{atom ct(\text{ele}, \text{type}?)}).\text{exit} + \#(\text{atom ct(\text{ele}, \text{type}?)}).\text{send} + \#(\text{atom ct(\text{ele}, \text{type}?)}).\text{receive} = 0 \land
 \text{first}(\text{atom ct(\text{ele}, \text{type}?)}).\text{range} = 0 \land
 \text{second}(\text{atom ct(\text{ele}, \text{type}?)}).\text{range} = 0 \land
 (\text{atom ct(\text{ele}, \text{type}?)}).\text{type} = \text{type}? \land
 \#(\text{atom ct(\text{ele}, \text{type}?)}).\text{in} = 1 \land \#(\text{atom ct(\text{ele}, \text{type}?)}).\text{out} = 0 \land
 \text{type}? \in \text{ran} \text{error} \cap \text{errorCodeTypes}
\Rightarrow ct(\text{ele}, \text{type}?) \in \{\text{ele} : \text{Element} | \text{End}\}
 [\text{type}? \in \text{ran} \text{error}]

We therefore obtain the following simplified precondition schema, labelled \text{PreChangeEndType}.

PreChangeEndType

End
\text{type}? : Type

\text{type}? \in \text{ran} \text{error} \cap \text{errorCodeTypes}
(\text{atom ele}).\text{type} = \text{end}
B.5 Precondition of \textit{AddMgeEvent}

pre AddMgeEvent
\[\Leftrightarrow [\text{Start; } \text{msg}\, ? : \text{Mgeflow} \mid \text{def of AddMgeEvent, schema quantification and one-point rule } x\, 3] \]
\[
\begin{align*}
\text{let } \text{ce} &\equiv \text{ct}(\text{ele}, \text{smessage}(\text{message}(\text{msg}\, ?))) \cdot \\
(\text{atom ele}).\text{type} &\equiv \text{smessage}(\text{nomessage}) \land \\
\text{ce} &\in \{ \text{ele : Element } \mid \text{Start}\} \lor \\
\text{[Inter; } \text{msg}\, ? : \text{Mgeflow} \mid &
\begin{align*}
\text{let } \text{ce} &\equiv \text{ct}(\text{ele}, \text{imessage}(\text{message}(\text{msg}\, ?))) \cdot \\
(\text{atom ele}).\text{type} &\equiv \text{imessage}(\text{nomessage}) \land \\
\text{ce} &\in \{ \text{ele : Element } \mid \text{Inter}\} \lor \\
\text{[End}; \text{msg}\, ? : \text{Mgeflow} \mid &
\begin{align*}
\text{let } \text{ce} &\equiv \text{ct}(\text{ele}, \text{emessage}(\text{message}(\text{msg}\, ?))) \cdot \\
(\text{atom ele}).\text{type} &\equiv \text{emessage}(\text{nomessage}) \land \\
\text{ce} &\in \{ \text{ele : Element } \mid \text{End}\}
\end{align*}
\end{align*}
\end{align*}
\]
We consider the first schema disjunct and the constraint \(\text{ce} \in \{ \text{ele : Element } \mid \text{Start}\} \) by first expanding the before state \textit{Start}.

\begin{align*}
\text{ele} &\in \text{ran atomic} \\
\#(\text{atom ele}).\text{exit} + \#(\text{atom ele}).\text{send} + \#(\text{atom ele}).\text{receive} = 0 \land \\
\text{first}(\text{atom ele}).\text{range} = 0 \land \\
\text{second}(\text{atom ele}).\text{range} = 0 \land \\
(\text{atom ele}).\text{type} &\in \{ \text{start} \cup \text{ran stime} \cup \text{ran smessage} \cup \text{ran slink} \land \\
\#(\text{atom ele}).\text{in} = 0 \land \#(\text{atom ele}).\text{out} = 1 \land \\
(\text{atom ele}).\text{type} &\equiv \text{smessage}(\text{nomessage}) \\
\Rightarrow \quad \text{ce} &\in \text{ran atomic} \land \\
\#(\text{atom ce}).\text{exit} + \#(\text{atom ce}).\text{send} + \#(\text{atom ce}).\text{receive} = 0 \land \\
\text{first}(\text{atom ce}).\text{range} = 0 \land \\
\text{second}(\text{atom ce}).\text{range} = 0 \land \\
(\text{atom ce}).\text{type} &\in \{ \text{start} \cup \text{ran stime} \cup \text{ran smessage} \cup \text{ran slink} \land \\
\#(\text{atom ce}).\text{in} = 0 \land \#(\text{atom ele}).\text{out} = 1 \\
\text{ce} &\in \{ \text{ele : Element } \mid \text{Start}\} & \text{[def of Start]} \end{align*}
\]
We have shown \(\text{ce} \in \{ \text{ele : Element } \mid \text{Start}\} \) follows from the constraints on the before state of the first schema disjunct. We therefore obtain a simplified precondition schema pre AddSMgeEvent, labelled PreAddSMgeEvent.

\begin{align*}
\text{PreAddSMgeEvent} &\equiv [\text{Start; } \text{msg}\, ? : \text{Mgeflow} \mid (\text{atom ele}).\text{type} = \text{smessage}(\text{nomessage})] \\
\end{align*}

We now consider the second schema disjunct and the constraint \(\text{ce} \in \{ \text{ele : Element } \mid \text{Inter}\} \) by first expanding the before state \textit{Inter}.

\begin{align*}
\text{ele} &\in \text{ran atomic} \\
\#(\text{atom ele}).\text{exit} + \#(\text{atom ele}).\text{send} + \#(\text{atom ele}).\text{receive} = 0 \land \\
\text{first}(\text{atom ele}).\text{range} = 0 \land \\
\text{second}(\text{atom ele}).\text{range} = 0 \land \\
(\text{atom ele}).\text{type} &\in \text{ran itime} \cup \text{ran imessage} \cup \text{ran ierror} \cup \text{ran irule} \land
\end{align*}
APPENDIX B. PRECONDITIONS

#(atom ele).in = 1 ∧ #(atom ele).out = 1 ∧
(atom ele).type = imessage(nomessage)
⇒ [ct only modifies type component and imessage(message(msg?)) ∈ ran imessage]
 ce ∈ ran atomic ∧
 #(atom ce).exit + #(atom ce).send + #(atom ce).receive = 0 ∧
 first(atom ce).range = 0 ∧
 second(atom ce).range = 0 ∧
 (atom ce).type ∈ ran itime ∪ ran imessage ∪ ran ierror ∪ ran irule ∧
 #(atom ce).in = 1 ∧ #(atom ce).out = 1
 ⇒ ce ∈ { ele : Element | Inter } [def of Inter]

We have shown ce ∈ { ele : Element | Inter } follows from the constraints on the before state of the second
schema disjunct. We therefore obtain a simplified precondition schema pre AddIMgeEvent, labelled PreAddIMgeEvent.

PreAddIMgeEvent ≡ [Inter; msg? : Mgeflow | (atom ele).type = imessage(nomessage)]

We now consider the third schema disjunct and the constraint ce ∈ { ele : Element | End } by first
expanding the before state End.

ele ∈ ran atomic
 #(atom ele).exit + #(atom ele).send + #(atom ele).receive = 0 ∧
 first(atom ele).range = 0 ∧
 second(atom ele).range = 0 ∧
 (atom ele).type ∈ { end, abort } ∪ ran emessage ∪ ran eerror ∧
 #(atom ele).in = 1 ∧ #(atom ele).out = 0 ∧
 (atom ele).type = emessage(nomessage)
⇒ [ct only modifies type component and emessage(message(msg?)) ∈ ran emessage]
 ce ∈ ran atomic ∧
 #(atom ce).exit + #(atom ce).send + #(atom ce).receive = 0 ∧
 first(atom ce).range = 0 ∧
 second(atom ce).range = 0 ∧
 (atom ce).type ∈ { end, abort } ∪ ran emessage ∪ ran eerror ∧
 #(atom ce).in = 1 ∧ #(atom ce).out = 0
 ⇔ ce ∈ { ele : Element | End } [def of End]

We have shown ce ∈ { ele : Element | End } follows from the constraints on the before state of the third
schema disjunct. We therefore obtain a simplified precondition schema pre AddEMgeEvent, labelled PreAddEMgeEvent.

PreAddEMgeEvent ≡ [End; msg? : Mgeflow | (atom ele).type = emessage(nomessage)]

We therefore obtain the final simplified precondition schema pre AddMgeEvent, labelled PreAddMgeEvent.

PreAddMgeEvent ≡ PreAddSMgeEvent ∨ PreAddIMgeEvent ∨ PreAddEMgeEvent

B.6 Precondition of AddSendMgeFlowTask

pre AddSendMgeFlowTask
We consider the constraint

\[\exists FullTask' \cdot \]

\[[\Delta FullTask; \ \text{msg}? : \text{Mgeflow} | \]

\[\text{msg}? \notin \text{getMsg}(\text{atom ele}) \land \]

\[\text{ele}' = \text{cm}(\text{ele}, \{ \text{msg}? \}, \emptyset, (\text{atom ele}).\text{exit})] \]

\[\Rightarrow [FullTask; \ \text{msg}? : \text{Mgeflow} | \]

\[\text{let } ce = \text{cm}(\text{ele}, \{ \text{msg}? \}, \emptyset, (\text{atom ele}).\text{exit}) \cdot \]

\[\text{msg}? \notin \text{getMsg}(\text{atom ele}) \land \]

\[ce \in \{ \text{ele} : \text{Element} \mid FullTask\}] \]

We have shown \(ce \in \{ \text{ele} : \text{Element} \mid FullTask\} \) by first expanding the constraint of the before state \(FullTask \)

\[\text{ele} \in \text{ran} \text{atomic} \land \]

\[(\text{atom ele}).\text{type} \in \text{ran} \text{task} \cup \text{ran} \text{mseq} \cup \text{ran} \text{mipar} \land \]

\[\text{first}((\text{atom ele}).\text{range}) \leq \text{second}((\text{atom ele}).\text{range}) \land \]

\[(\forall t : \text{Type} \cdot t \in (\text{ran}((\text{atom ele}).\text{exit}) \cap \text{ran} \text{ierror}) \Rightarrow (\text{ierror} \cdot t) = \text{anyexception}) \land \]

\[(\forall t : \text{Type} \cdot t \in \text{ran}((\text{atom ele}).\text{exit}) \Rightarrow t \in \text{inters}) \land \]

\[ce = \text{cm}(\text{ele}, \{ \text{msg}? \}, \emptyset, (\text{atom ele}).\text{exit}) \]

\[\Rightarrow ce \in \text{ran} \text{atomic} \land \]

\[(\text{atom ce}).\text{type} \in \text{ran} \text{task} \cup \text{ran} \text{mseq} \cup \text{ran} \text{mipar} \land \]

\[\text{first}((\text{atom ce}).\text{range}) \leq \text{second}((\text{atom ce}).\text{range}) \land \]

\[(\forall t : \text{Type} \cdot t \in (\text{ran}((\text{atom ce}).\text{exit}) \cap \text{ran} \text{ierror}) \Rightarrow (\text{ierror} \cdot t) = \text{anyexception}) \land \]

\[(\forall t : \text{Type} \cdot t \in \text{ran}((\text{atom ce}).\text{exit}) \Rightarrow t \in \text{inters}) \]

\[\Rightarrow ce \in \{ \text{ele} : \text{Element} \mid FullTask\} \]

[def of FullTask]

We have shown \(ce \in \{ \text{ele} : \text{Element} \mid FullTask\} \) follows from the constraints on the before state of the precondition schema. We therefore obtain the final simplified precondition schema \(\text{pre AddSendMgeFlowTask} \), labelled \(\text{PreAddSendMgeFlowTask} \).

\[\text{PreAddSendMgeFlowTask} \equiv [FullTask; \ \text{msg}? : \text{Mgeflow} | \ \text{msg}? \notin \text{getMsg}(\text{atom ele})] \]

\(\Box \)

B.7 Precondition of AddReceiveMgeFlowTask

\(\text{pre AddReceiveMgeFlowTask} \)

\[\exists FullTask' \cdot \]

\[[\Delta FullTask; \ \text{msg}? : \text{Mgeflow} | \]

\[\text{msg}? \notin \text{getMsg}(\text{atom ele}) \land \]

\[\text{ele}' = \text{cm}(\text{ele}, \emptyset, \{ \text{msg}? \}, (\text{atom ele}).\text{exit})] \]

\[\Rightarrow [FullTask; \ \text{msg}? : \text{Mgeflow} | \]

\[\text{let } ce = \text{cm}(\text{ele}, \emptyset, \{ \text{msg}? \}, (\text{atom ele}).\text{exit}) \cdot \]

\[\text{msg}? \notin \text{getMsg}(\text{atom ele}) \land \]

\[ce \in \{ \text{ele} : \text{Element} \mid FullTask\}] \]

[schema quantification and one-point rule]

We consider the constraint \(ce \in \{ \text{ele} : \text{Element} \mid FullTask\} \) by expanding the constraint of the before state \(FullTask \)

\[\text{ele} \in \text{ran} \text{atomic} \land \]
B.8.2 Simplification

Proof.

We first show that replacing a unique maplet in a finite partial function guarantees a finite partial function.

B.8.1 Preliminaries

We therefore obtain the final simplified precondition schema pre AddReceiveMgeFlowTask, labelled PreAddReceiveMgeFlowTask.

PreAddReceiveMgeFlowTask ≜ [FullTask; msg? : Mgefow | msg? ≼ getMsg(atom ele)]

□

B.8 Precondition of AddExceptionMgeFlow

B.8.1 Preliminaries

We first show that replacing a unique maplet in a finite partial function guarantees a finite partial function.

Lemma B.4. ∀ m, n : Y; f : X ⇒ Y • #(f ▷ {m}) = 1 ⇒ rrange(f, m, n) ∈ X ⇒ Y

Proof.

Let

atom ele).type ∈ ran task ∪ ran miseq ∪ ran mipar ∧
first((atom ele).range) ≤ second((atom ele).range) ∧
(∀ t : Type • t ∈ (ran((atom ele).exit) ∩ ran ierror) ⇒ (ierror ~ t) = anyexception) ∧
(∀ t : Type • t ∈ ran((atom ele).exit) ⇒ t ∈ inters) ∧
ce = cm(ele, {msg?}, ∅, (atom ele).exit)
⇒ [only component receive of ele is modified and (atom ce).exit = (atom ele).exit]
⇒ ce ∈ ran atomic ∧
(atom ce).type ∈ ran task ∪ ran miseq ∪ ran mipar ∧
first((atom ce).range) ≤ second((atom ce).range) ∧
(∀ t : Type • t ∈ (ran((atom ce).exit) ∩ ran ierror) ⇒ (ierror ~ t) = anyexception) ∧
(∀ t : Type • t ∈ ran((atom ce).exit) ⇒ t ∈ inters)
⇔ ce ∈ {ele : Element | FullTask} [def of FullTask]

We have shown ce ∈ {ele : Element | FullTask} follows from the constraints on the before state of the precondition schema. We therefore obtain the final simplified precondition schema pre AddReceiveMgeFlowTask, labelled PreAddReceiveMgeFlowTask.

PreAddReceiveMgeFlowTask ≜ [FullTask; msg? : Mgefow | msg? ≼ getMsg(atomic ele)]

□

B.8.2 Simplification

pre AddExceptionMgeFlow

⇔ ∃ Activity' • [def of pre and AddReceiveMgeFlowTask]

[ΔActivity; msg? : Mgefow | msg? ≼ getMsg(atomic ele) ∧
#((atom ele).exit ▷ {imessage(nomessage)}) = 1 ∧
ele' = cm(ele, ∅, ∅, rrange((atom ele).exit, imessage(nomessage), imessage(message(msg?))))]
⇔ [Activity; msg? : Mgefow | [schema quantification and one-point rule]
let ce = cm(ele, ∅, ∅, rrange((atom ele).exit, imessage(nomessage), imessage(message(msg?))))] •
We now consider if the before state satisfies

We consider the constraint \(ce \in \{ ele : Element \mid Activity \} \). Since \(Activity \equiv FullTask \lor FullSub \) we first consider if the before state satisfies \(FullTask \).

\[
\begin{align*}
\text{ele} & \in \text{ran atomic} \land \\
(\text{atom ele}).type & \in \text{ran task} \cup \text{ran miseq} \cup \text{ran mipar} \land \\
\text{first}((\text{atom ele}).range) & \leq \text{second}((\text{atom ele}).range) \land \\
\#(\text{atom ele}).in & = 1 \land \#(\text{atom ele}).out = 1 \land \\
(\forall t : Type \mid t \in (\text{ran}((\text{atom ele}).exit) \cap \text{ran error}) \Rightarrow (\text{error} \sim t) = \text{anyexception}) \land \\
(\forall t : Type \mid t \in (\text{ran}((\text{atom ele}).exit) \Rightarrow t \in \text{inters}) \land \text{msg} \notin \text{getMsg}(\text{atom ele}) \land \\
\#((\text{atom ele}).exit) & \Rightarrow \{ \text{imessage}(\text{nomessage}) \}) = 1 \land \\
\Rightarrow\ & \quad [\text{def of cm, imessage(message(msg))} \in \text{inters} \text{ and Lemma B.4}]
\end{align*}
\]

We now consider if the before state satisfies \(FullSub \).

\[
\begin{align*}
\text{ele} & \in \text{ran compound} \land \\
\#(\text{atom ele}).send & = \#(\text{atom change}).receive = 0 \land \\
(\text{atom ele}).type & \in \text{ran subprocess} \cup \text{ran mipars} \cup \text{ran miseqs} \land \\
\text{content(ele)} & \neq \emptyset \land \\
\text{content}(\text{ele}) & \in \{ WFProcess \bullet proc \} \land \\
\#(\text{atom ele}).in & = 1 \land \#(\text{atom ele}).out = 0 \land \\
((\forall e, f : \text{content}(\text{ele}) \mid \\
\{ e, f \} & \subseteq \{ \text{End} \mid (\text{atom ele}).type \in (\text{ran error} \cap \text{errorCodeTypes}) \bullet \text{ele} \} \land \\
\text{errorCode}((\text{atom e}).type) & = \text{errorCode}((\text{atom f}).type) \Rightarrow f = e) \land \\
(\forall e : \text{content}(\text{ele}) \bullet \\
(\text{atom e}).type & \in (\text{ran error} \cap \text{errorCodeTypes}) \Rightarrow \\
(\exists t : Type \mid \\
t & \in (\text{ran}((\text{atom ele}).exit) \land \\
\text{errorCode}((\text{atom e}).type) & = \text{errorCode}(t))}) \land \\
(\forall t : Type \mid t \in (\text{ran}((\text{atom ele}).exit) \Rightarrow t \in \text{inters}) \land \text{msg} \notin \text{getMsg}(\text{atom ele}) \land \\
\#((\text{atom ele}).exit) & \Rightarrow \{ \text{imessage}(\text{nomessage}) \}) = 1 \land \\
\Rightarrow\ & \quad [\text{def of cm, imessage(message(msg))} \in \text{inters} \text{ and Lemma B.4}]
\end{align*}
\]
content(ce) \neq 0 \land \\
content(ce) \in \{WFProcess \bullet \ proc\} \land \\
\#(atom ce).in = 1 \land \#(atom ce).out = 0 \land \\
(\forall e,f : content(ce) \bullet \\
\{e,f\} \subseteq \{End | (atom ce).type \in (\text{ran error} \cap \text{errorCodeTypes}) \bullet ele\} \land \\
\text{errorCode}((atom e).type) = \text{errorCode}((atom f).type) \Rightarrow f = e\} \land \\
(\forall e : content(ce) \bullet \\
(atom e).type \in (\text{ran error} \cap \text{errorCodeTypes}) \Rightarrow \\
(\exists t : Type \bullet \\
t \in \text{ran}(atom ele).exit) \land \\
t \in (\text{ran error} \cap \text{errorCodeTypes}) \land \\
\text{errorCode}((atom e).type) = \text{errorCode}(t)\} \land \\
(\forall t : Type \bullet t \in \text{ran}(atom ce).exit \Rightarrow t \in \text{inters})) \\
\Leftrightarrow ce \in \{ele : Element \mid \text{FullSub}\} \quad [\text{def of FullSub}] \\
\Rightarrow ce \in \{ele : Element \mid \text{Activity}\} \quad [\text{def of Activity}]

We have shown $ce \in \{ele : Element \mid \text{Activity}\}$ follows from the constraints on the before state of the precondition schema. We therefore obtain the final simplified precondition schema pre $AddExceptionMgeFlow$, labelled $PreAddExceptionMgeFlow$.

\[
\begin{array}{c}
\text{PreAddExceptionMgeFlow} \\
\text{Activity: msg? : Mgeflow} \\
\text{msg?} \notin \text{getMsg}(atom ele) \\
\#((((atom ele).exit) \triangleright \{imessage(nomessage)\})) = 1
\end{array}
\]

\[
\hfill \square \hfill
\]

B.9 Precondition of SeqComp

We expand pre $SeqComp$ and apply the one-point rule to arrive at the following schema.

\[
\begin{array}{c}
\text{[Pool; new?, end? : Element; from? : Seqflow |} \\
\text{let ed == (ends proc) from? \bullet} \\
\text{let md == modify(proc, \{new?, end?\}, \{ed\}) \bullet} \\
\text{(outs new? \cup (getSeqflows(\{content new?\}))) \cap getSeqflows proc = \emptyset \land} \\
\text{from? \in (atom new?), in \land} \\
\text{(atom new?).in \subseteq \text{dom}(ends proc) \land} \\
\text{new? \in \{ele : Element \mid \text{OneInOutObject}\} \land} \\
\text{end? \in \{ele : Element \mid \text{InitialEnd}\} \land} \\
\text{(atom end?).in = (atom new?).out \land} \\
\text{md \in \{proc : Process \mid Pool\}}
\end{array}
\]

We consider the conjunct $md \in \{proc : Process \mid Pool\}$. We show this follows directly from constraints on the before state Pool and the input components by induction on proc. We first expand the definition of $md = \text{modify}(proc, \{new?, end?\}, \{ed\})$:

\[
md = \begin{cases}
(\{\text{proc} \cup \{new?, end?\}\} \setminus \{ed\}) & \text{if } ed \in \text{proc} \\
(\{\text{proc} \setminus \text{cont}(\text{proc}, \{ed\})\} \cup \\
\{s : \text{cont}(\text{proc}, \{ed\}) \bullet \text{rep}(s, \text{modify}(\text{content}(s), \{new?, end?\}, \{ed\}))\}) & \text{otherwise}
\end{cases}
\]

For the case $ed \in \text{proc}$, we show $md \in \{proc : Process \mid Pool\}$ follows directly from constraints on the before state Pool and the input components, where $md == ((\text{proc} \cup \{new?, end?\}) \setminus \{ed\})$. We expand
APPENDIX B. PRECONDITIONS

215

We consider the fifth conjunct.

\[(\exists e, f : \text{md} \bullet e \in \{\text{Start} \bullet \text{ele}\} \land f \in \{\text{End} \bullet \text{ele}\}) \land \]

\[\neg (\exists e : \text{md} \bullet e \in \{\text{Inter} | (\text{atom ele}.\text{type} \in \text{ran ierror} \bullet \text{ele}\})\} \land \]

\[(\forall e : \{g : \text{Element} | g \in \text{p md}\} \bullet e \in \{\text{FlowObject} \bullet \text{ele}\}) \land \]

\[md \in \text{processSet} \land \]

\[md \in \text{noOverLap} \land \]

\[(\forall f : \{g : \text{Element} | g \in \text{p md}\} \bullet f \in \text{eventgate} \Rightarrow \]

\[(\forall e : \text{Element} \bullet (f, e) \in \text{edge}(\text{direct}(md, e)) \Rightarrow e \in \text{sendelement})\]

We consider the first and second conjuncts.

\[\text{new} \notin \{\text{Inter} | (\text{atom ele}.\text{type} \in \text{ran ierror} \bullet \text{ele}\} \land \]

\[\{\text{ed}, \text{end}\} \subseteq \{\text{End} \bullet \text{ele}\} \land \]

\[\Rightarrow (\exists e, f : \text{md} \bullet e \in \{\text{Start} \bullet \text{ele}\} \land f \in \{\text{End} \bullet \text{ele}\}) \land \]

\[\neg (\exists e : \text{md} \bullet e \in \{\text{Inter} | (\text{atom ele}.\text{type} \in \text{ran ierror} \bullet \text{ele}\})\})\]

We now consider the third conjunct.

\[\text{end} \notin \{\text{ele} : \text{Element} \land \text{FlowObject}\} \land \]

\[\text{new} \notin \{\text{ele} : \text{Element} \land \text{FlowObject}\} \land \]

\[\Rightarrow (\forall e : \{g : \text{Element} | g \in \text{p md}\} \bullet e \in \{\text{FlowObject} \bullet \text{ele}\})\]

We now consider the fourth conjunct.

\[(\text{atom new}).\text{in} = \{\text{from}\} \land \]

\[(\text{atom new}).\text{out} = (\text{atom end}).\text{in} \land \]

\[(\text{atom ed}).\text{exit} = (\text{atom new}).\text{exit} = \emptyset \land \]

\[(\text{outs(new)}\cup(\text{getSeqflows(content(new)})\} \cap \text{getSeqflows(proc)} = \emptyset \land \]

\[\text{getMsgs}\{\text{end}, \text{end}\} = \emptyset \land \]

\[\Rightarrow (\forall e : \{g : \text{Element} | g \in \text{p md}\} \bullet \]

\[\cup\{k : \text{md} \bullet (\text{atom k}).\text{in} \cup \text{outs}(k)\} \cup \{k : \text{content e} \bullet (\text{atom k}).\text{in} \cup \text{outs}(k)\} = \emptyset \land \]

\[\{\forall f : \{g : \text{Element} | g \in \text{p md}\} \bullet e \neq f \Rightarrow \]

\[(\text{atom e}).\text{in} \cap (\text{atom f}).\text{in} = \emptyset \land \]

\[\text{outs}(e) \cap \text{outs}(f) = \emptyset \land \]

\[\cup\{k : \text{content e} \bullet (\text{atom k}).\text{in} \cup \text{outs}(k)\} \cap \]

\[\cup\{k : \text{content f} \bullet (\text{atom k}).\text{in} \cup \text{outs}(k)\} = \emptyset \land \]

\[\text{getMsg}(\text{atom e}) \cap \text{getMsg}(\text{atom f}) = \emptyset\}

\[\Leftarrow \text{md} \in \text{noOverLap}\]

We now consider the fifth conjunct.

\[\text{def of new, end and #(atom new)}\}

\[(\text{atom new}).\text{in} = \{\text{from}\} \land \]

\[(\text{atom new}).\text{out} = (\text{atom end}).\text{in} \land \]

\[(\text{atom end}).\text{exit} = (\text{atom new}).\text{exit} = \emptyset \land \]

\[(\text{new}, \text{end}) \in (\text{edge md}) \land \]

\[\text{ed} \in \{\text{End} \bullet \text{ele}\} \land \]

this membership.

\[(\exists e, f : \text{md} \bullet e \in \{\text{Start} \bullet \text{ele}\} \land f \in \{\text{End} \bullet \text{ele}\}) \land \]

\[\neg (\exists e : \text{md} \bullet e \in \{\text{Inter} | (\text{atom ele}.\text{type} \in \text{ran ierror} \bullet \text{ele}\})\} \land \]

\[(\forall e : \{g : \text{Element} | g \in \text{p md}\} \bullet e \in \{\text{FlowObject} \bullet \text{ele}\}) \land \]

\[md \in \text{processSet} \land \]

\[md \in \text{noOverLap} \land \]

\[(\forall f : \{g : \text{Element} | g \in \text{p md}\} \bullet f \in \text{eventgate} \Rightarrow \]

\[(\forall e : \text{Element} \bullet (f, e) \in \text{edge}(\text{direct}(md, e)) \Rightarrow e \in \text{sendelement})\]
APPENDIX B. PRECONDITIONS

We now consider the sixth conjunct.

\[
\begin{align*}
\text{dom}((\text{edge proc}) \triangleright \{\text{new?}\}) &= \text{dom}((\text{edge md}) \triangleright \{\text{ed}\}) \\
\Rightarrow (\forall e : \text{md} \bullet & \quad [\text{proc} \in \text{processSet}] \\
(e \notin \{\text{End} \bullet \text{ele}\} \Rightarrow (\exists f : \text{md} \bullet f \in \{\text{End} \bullet \text{ele}\} \land (e, f) \in (\text{edge md}^+) \}) \land \\
(e \notin \{\text{Start} \bullet \text{ele}\} \Rightarrow (\exists f : \text{md} \bullet f \in \{\text{Start} \bullet \text{ele}\} \land (f, e) \in (\text{edge md}^+) \}) \land \\
(\forall e : \text{md} \bullet & \\
(\forall s : \text{outs}(e) \bullet \exists f : \text{md} \bullet s \in (\text{atom f}, \text{in}) \land \\
(\forall s : (\text{atom e}), \text{in} \bullet \exists f : \text{md} \bullet s \in \text{outs}(f)) \land \\
\Rightarrow \text{md} \in \text{processSet} & \quad \text{[def of processSet]}
\end{align*}
\]

We therefore conclude that \(\text{md} \in \{\text{proc} : \text{Process} \mid \text{Pool}\}\) follows directly from constraints on the before state \(\text{Pool}\) and the input components.

For case \(\text{ed} \notin \text{proc}\), we consider the following inductive hypothesis

\[
\begin{align*}
(\text{edge md})(\{\text{new?}\}) &= \{\text{end?}\} \land \\
(\text{dom}(\text{edge proc} \triangleright \{\text{ed}\}) \cup \{\text{new?}\}) \cap \text{eventgate} &= \emptyset \land \\
\Rightarrow (\forall f : \{g : \text{Element} \mid g \in_p \text{md}\} \bullet f \in \text{eventgate} & \quad [\text{proc} \in \{\text{proc} : \text{Process} \mid \text{hasExgates}\}] \\
(\forall e : \text{Element} \bullet (f, e) \in \text{edge}(\text{direct}(\text{md}, e)) \Rightarrow e \in \text{sendelement}) \\
\Rightarrow \text{md} \in \{\text{proc} : \text{Process} \mid \text{hasExgates}\} & \quad \text{[def of hasExgates]}
\end{align*}
\]

According to Lemma \(\text{B.2}\), it is sufficient to deduce the following set of facts (conjuncts) about the precondition schema.

\[
\begin{align*}
\text{cont}(\text{proc}, \{\text{ed}\}) \subseteq \text{ran compound} & \quad \text{(B.1)} \\
\#\text{cont}(\text{proc}, \{\text{ed}\}) &= 1 \quad \text{(B.2)} \\
\bigcup \{s : \text{cont}(\text{proc}, \{\text{ed}\}) \bullet \text{getSeqflows}(\text{modify}(\text{content}(s), \{\text{new?}, \text{end?}\}, \{\text{ed}\}))\} \cap & \quad \text{(B.3)} \\
\text{getSeqflows}(\text{proc} \setminus \{s, e : \text{Element} \mid s \in \text{cont}(\text{proc}, \{\text{ed}\}) \land e \in_{e} s \bullet e\}) &= \emptyset \\
\bigcup \{s : \text{cont}(\text{proc}, \{\text{ed}\}) \bullet \text{getMsgs}(\text{modify}(\text{content}(s), \{\text{new?}, \text{end?}\}, \{\text{ed}\}))\} \cap & \quad \text{(B.4)} \\
\text{getMsgs}(\text{proc} \setminus \{s, e : \text{Element} \mid s \in \text{cont}(\text{proc}, \{\text{ed}\}) \land e \in_{e} s \bullet e\}) &= \emptyset \\
\{s, e : \text{Element} \mid s \in \text{cont}(\text{proc}, \{\text{ed}\}) \land e \in \text{content}(s) \land (\text{atom e}).\text{type} \in \text{ran eerror} \bullet e\} &= \\
\{s, e : \text{Element} \mid s \in \text{cont}(\text{proc}, \{\text{ed}\}) \land e \in \text{content}(s) \land (\text{atom e}).\text{type} \in \text{ran eerror} \bullet e\} & \quad \text{(B.5)}
\end{align*}
\]

We consider each of the conjuncts individually: Conjecture \(\text{B.1}\) follows from the definition of \text{cont} and schema definition \text{FullSub}. Conjecture \(\text{B.2}\) follows from the membership \text{proc} \in \text{noOverLap}. Conjecture \(\text{B.3}\) follows from the following constraints:

\[
\begin{align*}
\text{getIns}(\{\text{ed}\}) &= \text{getIns}(\{\text{new?}\}) \\
\text{getOuts}(\{\text{new?}\}) &= \text{getIns}(\{\text{end?}\}) \\
\text{getSegflows}(\{\text{end?}\}) \cap \text{getSegflows proc} &= \emptyset \\
(\text{outs new?} \cup (\text{getSegflows(content new?)})) \cap \text{getSegflows proc} &= \emptyset \\
\text{proc} \in \text{noOverLap}
\end{align*}
\]

Conjecture \(\text{B.4}\) follows from \text{getMsgs(new?, end?)} = \emptyset and \text{proc} \in \text{noOverLap}, and Conjecture \(\text{B.5}\) follows from \(\{(\text{atom ed}).\text{type}, (\text{atom end?!}).\text{type}, (\text{atom new?!}).\text{type}\} \cap \text{ran eerror} = \emptyset\). We conclude that
We now consider the third conjunct.

We consider the first two conjuncts.

This membership.

Before state

For the case

We expand pre

B.10 Precondition of Split

We expand pre Split and apply the one-point rule to arrive at the following schema.

$$\begin{align*}
\text{PreSeqComp} \\
\text{Pool} \\
\text{CommonConstraints} \\
\text{end?} : \text{Element} \\
\text{new?} \in \{ \text{ele} : \text{Element} \mid \text{OneInOutObject} \} \\
\text{end?} \in \{ \text{ele} : \text{Element} \mid \text{InitialEnd} \} \\
(\text{atom end?}).\text{in} = (\text{atom new?}).\text{out}
\end{align*}$$

We consider the conjunct \(\text{md} \in \{ \text{proc} : \text{Process} \mid \text{Pool} \} \). We first expand the definition of \(\text{md} \):

\[
\text{md} = \begin{cases}
(\text{proc} \cup \{ \text{new?} \} \cup \{ \text{outs?} \} \setminus \{ \text{ed} \}) & \text{if } \text{ed} \in \text{proc} \\
\{ s : \text{cont}([\text{proc}, \{ \text{ed} \}]) \cdot \text{rep}(s, \text{modify}([\text{content}(s), \{ \text{new?} \} \cup \{ \text{outs?} \}, \{ \text{ed} \}]))) \} & \text{otherwise}
\end{cases}
\]

For the case \(\text{ed} \in \text{proc} \), we show \(\text{md} \in \{ \text{proc} : \text{Process} \mid \text{Pool} \} \) follows directly from constraints on the before state \(\text{Pool} \) and the input components, where \(\text{md} == (\text{proc} \cup \{ \text{new?} \} \cup \{ \text{outs?} \} \setminus \{ \text{ed} \}) \). We expand this membership.

\[
(\exists e, f : \text{md} \cdot e \in \{ \text{Start} \cdot \text{ele} \} \land f \in \{ \text{End} \cdot \text{ele} \}) \land \\
(\neg (\exists e : \text{md} \cdot e \in \{ \text{Inter} \mid (\text{atom ele}).\text{type} \in \text{ran ierror} \cdot \text{ele} \})) \land \\
(\forall e : \{ g : \text{Element} \mid g \in_p \text{md} \} \cdot e \in \{ \text{FlowObject} \cdot \text{ele} \}) \land \\
\text{md} \in \text{processSet} \land \\
\text{md} \in \text{noOveerLap} \land \\
(\forall f : \{ g : \text{Element} \mid g \in_p \text{md} \} \cdot f \in \text{eventgate} \Rightarrow \\
(\forall e : \text{Element} \cdot (f, e) \in \text{edge}(\text{direct}(\text{md}, e) \Rightarrow e \in \text{sendelement}))
\]

We consider the first two conjuncts.

\[
\text{new?} \in \{ \text{Gate} \cdot \text{ele} \} \land \\
\{ \text{ed} \} \cup \{ \text{outs?} \} \subseteq \{ \text{End} \cdot \text{ele} \} \Rightarrow \\
[(\text{atom new?}).\text{type} \in \{ \text{ Gate, agate } \} \land \{ o : \text{outs?} \cdot (\text{atom o}).\text{type} = \{ \text{end} \}]
\]

\[
(\exists e, f : \text{md} \cdot e \in \{ \text{Start} \cdot \text{ele} \} \land f \in \{ \text{End} \cdot \text{ele} \}) \land \\
(\neg (\exists e : \text{md} \cdot e \in \{ \text{Inter} \mid (\text{atom ele}).\text{type} \in \text{ran ierror} \cdot \text{ele} \}))
\]

We now consider the third conjunct.

\[
(\{ \text{new?} \} \cup \{ \text{outs?} \}) \subseteq \{ \text{ele} : \text{Element} \mid \text{FlowObject} \}
\]
We now consider the fourth conjunct.

\[
(g \in \text{FlowObject} \mid g \in p \text{ md}) \bullet e \in \{\text{FlowObject} \bullet \text{ele}\}
\]

We now consider the fifth conjunct.

\[
\forall e \in \{g : \text{Element} \mid g \in p \text{ md}\} \bullet e \in \{\text{FlowObject} \bullet \text{ele}\}
\]

We now consider the sixth conjunct.

\[
\forall s : \text{outs}(e) \bullet \exists f : \text{md} \bullet s \in (\text{atom } f).\text{in}\ \wedge
\forall s : (\text{atom } e).\text{in} \bullet \exists f : \text{md} \bullet s \in \text{outs}(f)
\]

\[
\Rightarrow \text{md} \in \text{processSet}
\]

We therefore conclude that \(\text{md} \in \{\text{proc} : \text{Process} \mid \text{GenProc} \wedge \text{hasExgates}\}\) follows directly from constraints on the before state \(\text{Pool}\) and the input components.

For case \(e \notin \text{proc}\), we consider the following inductive hypothesis

\[
\{s : \text{cont}(\text{proc}, \{\text{ed}\}) \bullet \text{modify}(\text{content}(s), \{\text{new}\} \cup \text{outs}? \cup \{\text{ed}\})\} \subseteq \{\text{proc} : \text{Process} \mid \text{Pool}\}
\]

\[
\Rightarrow (\{\text{proc} \setminus \text{cont}(\text{proc}, \{\text{ed}\})\} \cup \{s : \text{cont}(\text{proc}, \{\text{ed}\}) \bullet \text{rep}(s, \text{modify}(\text{content}(s), \{\text{new}\} \cup \text{outs}? \cup \{\text{ed}\}))\}) \in \{\text{proc} : \text{Process} \mid \text{Pool}\}
\]

According to Lemma [B.2], it is sufficient to deduce the following set of facts (conjuncts) about the
We consider each of the conjuncts individually: Conjunct B.6 follows from the definition of \(\text{cont} \) and schema definition FullSub. Conjunct B.7 follows from the membership \(\text{proc} \in \text{noOverLap} \). Conjunct B.8 follows from the following constraints:

\[
\{s : \text{cont}(\text{proc}, \{ed\}) \cup \text{getSeqflows}(\text{modify}(\text{content}(s), \{\text{new}\} \cup \text{outs}?)) \} \cap \text{getSeqflows}(\text{proc} \cap \{s \in \text{cont}(\text{proc}, \{ed\}) \land e \in_e s \cdot e) = \emptyset
\]

Conjunct B.9 follows from \(\text{getMsgs}(\{\text{new}\} \cup \text{outs}?)) = \emptyset \) and \(\text{proc} \in \text{noOverLap} \). Conjunct B.10 follows from \(\{(o: \text{outs}? \cdot (\text{atom o}).\text{type} \cup (\text{atom ed}).\text{type}, (\text{atom new}).\text{type}) \cap \text{ran error} \cdot e = \emptyset \) and \(\text{proc} \in \text{noOverLap} \). We conclude that \(\text{md} \in \{\text{proc} : \text{Process} \mid \text{Pool}\} \) follows directly from constraints on the before state Pool and the input components. We therefore obtain the final simplified precondition schema, labelled PreSplit.

\[
\begin{array}{c}
\text{PreSplit} \\
\text{Pool} \\
\text{CommonConstraints} \\
\text{outs}? : \mathbb{F}_1 \text{ Element} \\
\end{array}
\]

\[
\begin{array}{c}
\text{new}\? \in \{\text{NonEvSplit} \cdot \text{ele}\} \\
\text{outs}\? \in \text{uniqueEnds} \\
\text{getIns}(\text{outs}?) \cap \text{getSeqflows} \text{proc} = \emptyset \\
\text{getIns}(\text{outs}?) = (\text{atom new}\?).\text{out}
\end{array}
\]
We consider the conjunct $md \in \{ \text{proc} : \text{Process} | \text{Pool} \}$. We first expand the definition of md:

$$md = \begin{cases}
\left(\{ \text{proc} \cup \{ \text{new}\} \cup \text{events} \cup \text{ends} \} \setminus \{ \text{ed} \} \right) & \text{if } \text{ed} \in \text{proc} \\
\left(\{ \text{proc} \setminus \text{cont}({\text{proc}}, \{ \text{ed} \}) \} \cup \{ s : \text{cont}({\text{proc}}, \{ \text{ed} \}) \} \cdot \text{rep}(s, \text{modify}({\text{content}(s)}, \{ \text{new}\} \cup \text{events} \cup \text{ends}, \{ \text{ed} \})) \} \right) & \text{otherwise}
\end{cases}$$

For the case $\text{ed} \in \text{proc}$, we show $md \in \{ \text{proc} : \text{Process} | \text{Pool} \}$ follows directly from constraints on the before state Pool and the input components, where $\text{md} \equiv (\{ \text{proc} \cup \{ \text{new}\} \cup \text{events} \cup \text{ends} \} \setminus \{ \text{ed} \})$. We expand this membership.

We consider the first and second conjuncts.

$$\exists e, f : md \cdot e \in \{ \text{Start} \cdot \text{ele} \} \land f \in \{ \text{End} \cdot \text{ele} \}$$

$$\lnot (\exists e : md \cdot e \in \{ \text{Inter} | (\text{atom ele}).\text{type} \in \text{ran ierror} \cdot \text{ele} \})$$

$$\forall e : \{ g : \text{Element} | g \in_p md \} \cdot e \in \{ \text{FlowObject} \cdot \text{ele} \}$$

and

$$md \in \text{processSet}$$

$$md \in \text{noOverlap}$$

$$\forall f : \{ g : \text{Element} | g \in_p md \} \cdot f \in \text{eventGate} \Rightarrow$$

$$\forall e : \{ \text{Element} \cdot (f, e) \in \text{edge}({\text{direct}(md, e)}) \Rightarrow e \in \text{sendElement} \})$$

We consider the third conjunct.

$$\{ \text{new} \} \cup \{ \text{events} \cup \text{ends} \} \subseteq \{ \text{ele} : \text{Element} | \text{FlowObject} \} \quad \text{[def of new?, ends? and events?]}$$

$$\Rightarrow (\forall e : \{ g : \text{Element} | g \in_p md \} \cdot e \in \{ \text{FlowObject} \cdot \text{ele} \}) \quad \text{[def of GenProc, Lemma B.1]}$$

We now consider the fourth conjunct.

$$(\text{atom new}).\text{in} = \{ \text{from} \} \quad \text{[def of new?, ends?, events?, uniqueIns]}$$
(atom new?).out = U{e : events? • (atom e).in} ∧
U{e : ends? • (atom e).out} = ∅ ∧
U{e : ends? U events? U {new}? • (atom e).exit} = ∅ ∧
getMsgs({new}? U ends? U events?) = ∅ ∧
getSeqflows(ends? U events?) \ getSeqflows proc = ∅
⇒ (∀ e : {g : Element | g ∈p md} • [proc ∈ noOverlap]
 ∪\{k : md • (atom k).in U outs(k)} \ U\{k : content e • (atom k).in U outs(k)} = ∅ ∧
 (∀ f : {g : Element | g ∈p md} • e ≠ f ⇒
 (atom e).in \ (atom f).in = ∅ ∧
 outs(e) \ outs(f) = ∅ ∧
 U\{k : content e • (atom k).in U outs(k)} \ U\{k : content f • (atom k).in U outs(k)} = ∅ ∧
 getMsg(atomic e) \ getMsg(atomic f) = ∅) ⇒ md ∈ noOverlap)
[def of noOverlap]

We now consider the fifth conjunct.

{ed} \ ends? ⊆ {ele : Element | End} ∧
 [def of new?, ends?, events?, md]
events? ⊆ {ele : Element | Inter} ∧
{e : events? • {new?, e}} ⊆ (edge md) ∧
 [def of new?, ends?, events?, md]
(edge md){ events? } = ends? ∧
 dom((edge proc) D {ed}) = dom((edge md) D {new?})
⇒ (∀ e : md • [proc ∈ processSet]
 (e ∉ End • ele) ⇒ (∃ f : md • f ∈ \{End • ele} ∧ (e, f) ∈ (edge md)+)) ∧
 (e ∉ Start • ele) ⇒ (∃ f : md • f ∈ \{Start • ele} ∧ (f, e) ∈ (edge md)+))
 \{edge md}{ events? } = ends? ∧
 dom((edge proc) D {ed}) = dom((edge md) D {new?}) ∧
 [def of processSet]

We now consider the sixth conjunct.

((dom((edge proc) D {ed})) \ ends? U events?) \ getevent = ∅ ∧
 [def of new?, ends?, events?, and new?]
dom((edge proc) D {ed}) = dom((edge md) D {new?}) ∧
 [def of new?, ends?, events?, and new?]
new? ∈ getevent ∧
 events? ⊆ sendelement ∧
 [def of sendelement]
⇒ (∀ f : {g : Element | g ∈p md} • f ∈ getevent ⇒
 [proc ∈ \{proc : Process | hasExgates\}]
 (∀ e : Element • (f, e) ∈ edge(direct(md, e) ⇒ e ∈ sendelement))
 [def of hasExgates]
⇒ md ∈ \{proc : Process | hasExgates\}
 [def of hasExgates]

We therefore conclude that md ∈ \{proc : Process | Pool\} follows directly from constraints on the before state Pool and the input components.

For case ed ∉ proc, we consider the following inductive hypothesis.

{ s : cont(proc, {ed}) •
 modify(content(s), {new?} U events? U ends?, {ed}) ⊆ \{proc : Process | Pool\} ⇒
 ((proc \ cont(proc, {ed})) \ U { s : cont(proc, {ed}) •
 [def of hasExgates]}

APPENDIX B. PRECONDITIONS
APPENDIX B. PRECONDITIONS

\[\text{rep(s, modify(content(s), \{new\} \cup events? \cup ends?, \{ed\}))} \in \{\text{proc : Process | Pool}\} \]

According to Lemma B.2, it is sufficient to deduce the following set of facts (conjuncts) about the precondition schema.

\[
\begin{align*}
\text{cont(proc, \{ed\})} & \subseteq \text{ran compound} \quad (B.11) \\
\#\text{cont(proc, \{ed\})} & = 1 \quad (B.12) \\
\bigcup\{s : \text{cont(proc, \{ed\})} \bullet \text{getSeqflows(modify(content(s), \{new\} \cup outs?, \{ed\}))}\} & \cap \quad (B.13) \\
\text{getSeqflows(proc \{s, e : Element | s \in \text{cont(proc, \{ed\})} \land e \in e \bullet e\})} & = \emptyset \\
\bigcup\{s : \text{cont(proc, \{ed\})} \bullet \text{getMsgs(modify(content(s), \{new\} \cup outs?, \{ed\}))}\} & \cap \quad (B.14) \\
\text{getMsgs(proc \{s, e : Element | s \in \text{cont(proc, \{ed\})} \land e \in e \bullet e\})} & = \emptyset \\
\{s, e : \text{Element} | s \in \text{cont(proc, \{ed\})} \land e \in \text{content(s)} \land (\text{atom e}.\text{type} \in \text{ran error} \bullet e\} = \emptyset \quad (B.15) \\
\{s, e : \text{Element} | s \in \text{cont(proc, \{ed\})} \land e \in \text{content(s)} \land (\text{atom e}.\text{type} \in \text{ran error} \bullet e\} = \emptyset \\
\text{getIns\{ed\}} & = \text{getIns\{new\}} \\
\text{getOuts\{new\}} & = \text{getIns\{ends\}} \\
\text{getOuts\{events\}} & = \text{getIns\{ends\}} \\
\text{getSeqflows\{events? \cup ends?\}} & \cap \text{getSeqflows proc =} \emptyset \\
\text{(outs new? \cup (getSeqflows\{content new?\}))} & \cap \text{getSeqflows proc =} \emptyset \\
\text{proc \in} & \text{noOverLap} \\
\end{align*}
\]

We consider each of the conjuncts individually: Conjunct B.11 follows from the definition of \(\text{cont}\) and schema definition \(\text{FullSub}\). Conjunct B.12 follows from the membership \(\text{proc \in noOverLap}\). Conjunct B.13 follows from the following constraints:

\[
\begin{align*}
\text{getIns\{ed\}} & = \text{getIns\{new\}} \\
\text{getOuts\{new\}} & = \text{getIns\{ends\}} \\
\text{getOuts\{events\}} & = \text{getIns\{ends\}} \\
\text{getSeqflows\{events? \cup ends?\}} & \cap \text{getSeqflows proc =} \emptyset \\
\text{(outs new? \cup (getSeqflows\{content new?\}))} & \cap \text{getSeqflows proc =} \emptyset \\
\text{proc \in} & \text{noOverLap} \\
\end{align*}
\]

Conjunct B.14 follows from \(\text{getMsgs\{(new? \cup events? \cup ends?)} = \emptyset \) and \(\text{proc \in noOverLap}\). Conjunct B.15 follows from \(\{(o : events? \cup ends? \bullet (\text{atom o}.\text{type}) \cup \{(\text{atom ed}.\text{type}, (\text{atom new?}).\text{type})\}) \cap \text{ran error} = \emptyset\).

We conclude that \(\text{md} \in \{\text{proc : Process | Pool}\}\) follows directly from constraints on the before state \(\text{Pool}\) and the input components. We therefore obtain the final simplified precondition schema, labelled \text{PreEventSplitOp}.

<table>
<thead>
<tr>
<th>PreEventSplitOp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pool</td>
</tr>
<tr>
<td>CommonConstraints</td>
</tr>
<tr>
<td>EventSplitAux</td>
</tr>
<tr>
<td>new? (\in) {EventSplit \bullet cle}</td>
</tr>
<tr>
<td>getIns{events} = (\text{atom new?}).out</td>
</tr>
<tr>
<td>getSeqflows{events? \cup ends?} \cap getSeqflows proc = \emptyset</td>
</tr>
<tr>
<td>getOuts{events?} = getIns{ends?}</td>
</tr>
</tbody>
</table>

\(\square\)
B.12 Precondition of JoinOp

We expand the definitions of pre JoinOp, apply schema quantification, the one point rule and properties of \subseteq to arrive at the following precondition schema.

$$\text{Pool; gate?}, \text{end?} : \text{Element} |$$

$$\text{let es} \equiv (\text{ends proc}) \{ (\text{atom gate?}), \text{in} \} \bullet$$

$$\text{let md} \equiv \text{modify}(\text{proc}, \{ \text{gate?}, \text{end?} \}, \text{es}) \bullet$$

$$\text{gate?} \in \{ \text{NonEvJoin} \bullet \text{ele} \} \land$$

$$\text{end?} \in \{ \text{InitialEnd} \bullet \text{ele} \} \land$$

$$(\text{atom gate?}).\text{in} \subseteq \text{dom}(\text{ends proc}) \land$$

$$(\text{proc, es}) \in \text{together} \land$$

$$(\text{atom gate?}).\text{out} = (\text{atom end?}).\text{in} \land$$

$$(\text{atom end?}).\text{in} \cap \text{getSeqflows} \text{proc} = \emptyset \land$$

$$\text{md} \in \{ \text{proc : Process | Pool} \}$$

We consider conjunct $\text{md} \in \{ \text{proc : Process | Pool} \}$. We first expand the definition of md:

$$\text{md} = \begin{cases}
((\text{proc} \cup \{ \text{gate?}, \text{end?} \}) \setminus \text{es}) & \text{if } \text{es} \subseteq \text{proc} \\
((\text{proc} \setminus \text{cont}(\text{proc}, \{ \text{md} \}) \cup \{ s : \text{cont}(\text{proc}, \{ \text{md} \}) \bullet \text{rep}(s, \text{modify(content}(s), \{ \text{gate?}, \text{end?} \}, \text{es}))) & \text{otherwise}
\end{cases}$$

For the case $\text{es} \subseteq \text{proc}$, we show $\text{md} \in \{ \text{proc : Process | Pool} \}$ follows directly from constraints on the before state Pool and the input components, where $\text{md} \equiv ((\text{proc} \cup \{ \text{gate?}, \text{end?} \}) \setminus \text{es})$. We expand this membership.

$$\exists e, f : \text{md} \bullet e \in \{ \text{Start} \bullet \text{ele} \} \land f \in \{ \text{End} \bullet \text{ele} \} \land$$

$$\neg (\exists e : \text{md} \bullet e \in \{ \text{Inter} \mid (\text{atom ele}).\text{type} \in \text{ran}\text{error} \bullet \text{ele} \}) \land$$

$$(\forall e : \{ g : \text{Element} \mid g \in_p \text{md} \} \bullet e \in \{ \text{FlowObject} \bullet \text{ele} \}) \land$$

$$\text{md} \in \text{processSet} \land$$

$$\text{md} \in \text{noOverlap} \land$$

$$(\forall f : \{ g : \text{Element} \mid g \in_p \text{md} \} \bullet f \in \text{eventgate} \Rightarrow$$

$$(\forall e : \{ g : \text{Element} \bullet (f, e) \in \text{edge}(\text{direct}(\text{md}, e)) \Rightarrow e \in \text{sendelement}) \land$$

We consider the first and second conjuncts.

$$(\text{atom gate?}).\text{type} \in \{xgate, agate\} \land$$

$$\{ o : \text{es} \cup \{ \text{end?} \} \bullet (\text{atom o}).\text{type} = \{ \text{end} \} \}$$

$$\Rightarrow (\exists e, f : \text{md} \bullet e \in \{ \text{Start} \bullet \text{ele} \} \land f \in \{ \text{End} \bullet \text{ele} \}) \land$$

$$\neg (\exists e : \text{md} \bullet e \in \{ \text{Inter} \mid (\text{atom ele}).\text{type} \in \text{ran}\text{error} \bullet \text{ele} \})$$

We now consider the third conjunct.

$$\text{gate?} \in \{ \text{ele : Element | FlowObject} \} \land$$

$$\text{end?} \in \{ \text{ele : Element | FlowObject} \}$$

$$\Rightarrow$$

$$\text{def of NonEvJoin } \Rightarrow (\text{Gate } \Rightarrow \text{FlowObject})$$

$$\text{def of GenPool, Lemma \[B.1\]}$$

We now consider the fourth conjunct.

$$(\text{atom gate?}).\text{in} = \bigcup \{ o : \text{es} \bullet (\text{atom o}).\text{in} \} \land$$

$$\{ o : \text{es} \bullet (\text{atom o}).\text{type} \subseteq \{ \text{ele : Element | End} \} \land$$

$$(\text{atom gate?}).\text{out} = (\text{atom end?}).\text{in} \land$$

$$\text{getMsgs}(\text{gate?}, \text{end?}) = \emptyset$$

$$\text{def of es, gate? and end?}$$
APPENDIX B. PRECONDITIONS

\[\forall e : \{ g : \text{Element} \mid g \in_p \text{md} \} \bullet \]
\[\bigcup \{ k : \text{md} \bullet (\text{atom } k).\text{in} \cup \text{outs}(k) \} \cap \bigcup \{ k : \text{content } e \bullet (\text{atom } k).\text{in} \cup \text{outs}(k) \} = \emptyset \land \]
\[\forall f : \{ g : \text{Element} \mid g \in_p \text{md} \} \bullet e \neq f \Rightarrow \]
\[(\text{atom } e).\text{in} \cap (\text{atom } f).\text{in} = \emptyset \land \]
\[\text{outs}(e) \cap \text{outs}(f) = \emptyset \land \]
\[\bigcup \{ k : \text{content } e \bullet (\text{atom } k).\text{in} \cup \text{outs}(k) \} \cap \]
\[\bigcup \{ k : \text{content } f \bullet (\text{atom } k).\text{in} \cup \text{outs}(k) \} = \emptyset \land \]
\[\text{getMsg}(\text{atom } e) \cap \text{getMsg}(\text{atom } f) = \emptyset \} \]
\[\iff \text{md} \in \text{noOverLap} \]
[def of \text{noOverLap}]

We now consider the fifth conjunct.

\[(\text{atom gate?}).\text{in} = \bigcup \{ o : \text{es} \bullet (\text{atom } o).\text{in} \} \land \]
[def of \text{es}, \text{gate?} and \text{end?}]

\[\{ o : \text{es} \bullet (\text{atom } o).\text{type} \subseteq \{ \text{ele} : \text{Element} \mid \text{End} \} \land \]
\[(\text{atom gate?}).\text{out} = (\text{atom end?}).\text{in} \land \]
\[(\text{atom gate?}).\text{exit} \cup (\text{atom end?}).\text{exit} = \emptyset \]
\[\Rightarrow (\forall e : \text{md} \bullet \) \]
\[\{ \text{proc} \in \text{processSet and} \text{md} \cap (\text{ends proc}) \{ (\text{atom gate?}).\text{in} \} = \emptyset \]
[def of \text{processSet}]

We now consider the sixth conjunct.

\[(\text{atom gate?}).\text{in} = \bigcup \{ o : \text{es} \bullet (\text{atom } o).\text{in} \} \land \]
[def of \text{es}, \text{gate?} and \text{end?}]

\[\{ o : \text{es} \bullet (\text{atom } o).\text{type} \subseteq \{ \text{ele} : \text{Element} \mid \text{End} \} \land \]
\[\{ \text{gate?}, \text{end?} \} \notin \text{eventgate} \]
\[\Rightarrow (\forall f : \{ g : \text{Element} \mid g \in_p \text{md} \} \bullet f \in \text{eventgate} \Rightarrow \) \]
\[\{ \text{proc} \in \{ \text{proc} : \text{Process} \mid \text{hasExgates} \} \]
[def of \text{hasExgates}]

We therefore conclude that \text{md} \in \{ \text{proc} : \text{Process} \mid \text{Pool} \} follows directly from constraints on the before state \text{Pool} and the input components.

For case \text{es} \cap \text{proc} = \emptyset, we consider the following inductive hypothesis

\[\{ s : \text{cont}(\text{proc}, \text{es}) \bullet \text{modify}(\text{content}(s), \{ \text{gate?}, \text{end?} \}, \text{es}) \} \subseteq \{ \text{proc} : \text{Process} \mid \text{Pool} \} \Rightarrow \]
\[((\text{proc} \setminus \text{cont}(\text{proc}, \text{es})) \cup \]
\[\{ s : \text{cont}(\text{proc}, \text{es}) \bullet \text{rep}(s, \text{modify}(\text{content}(s), \{ \text{gate?}, \text{end?} \}, \text{es})) \}) \} \subseteq \{ \text{proc} : \text{Process} \mid \text{Pool} \} \]

According to Lemma \textbf{B.2} it is sufficient to deduce the following set of facts (conjuncts) about the
precondition schema.

\[
\text{cont}(\text{proc, es}) \subseteq \text{ran compound}
\]

(B.16)

\[
\#\text{cont}(\text{proc, es}) = 1
\]

(B.17)

\[
\bigcup \{ s : \text{cont}(\text{proc, es}) \bullet \text{getSeqflows}(\text{modify}(\text{content}(s), \{\text{gate?}, \text{end}\?\}, \text{es})) \} \cap
\]

(B.18)

\[
\text{getSeqflows}(\text{proc} \setminus \{ s, e : \text{Element} | s \in \text{cont}(\text{proc, es}) \land e \in \text{es} \bullet e \}) = \emptyset
\]

\[
\bigcup \{ s : \text{cont}(\text{proc, es}) \bullet \text{getMsgs}(\text{modify}(\text{content}(s), \{\text{gate?}, \text{end}\?\}, \text{es})) \} \cap
\]

(B.19)

\[
\{ s, e : \text{Element} | s \in \text{cont}(\text{proc, es}) \land e \in \text{es} \bullet e \}
\]

(B.20)

\[
\{ s, e : \text{Element} | s \in \text{cont}(\text{proc, es}) \land e \in \text{modify}(\text{content}(s), \{\text{gate?}, \text{end}\?\}, \text{es}) \land (\text{atom } e).\text{type} \in \text{ran error} \bullet e \} =
\]

We consider each of the conjuncts individually: Conjunct B.16 follows from the definition of cont and schema definition FullSub. Conjunct B.17 follows from the membership proc \in noOverLap and the property (proc, es) \in together. Conjunct B.18 follows from the following constraints:

\[
\text{getIns}(\text{es}) = \text{getIns}\{\text{gate}\?\}
\]

\[
\text{getOuts}\{\text{gate}\?\} = \text{getIns}\{\text{end}\?\}
\]

\[
\text{getSeqflows}\{\text{gate?}, \text{end}\?\} \cap \text{getSeqflows proc} = \emptyset
\]

\[
\text{proc} \in \text{noOverLap}
\]

Conjunct B.19 follows from getMsgs\{gate?, end\?\} = \emptyset and proc \in noOverLap, and Conjunct B.20 follows from \{ o : \text{es} \bullet (\text{atom } o).\text{type} \} \cup \{(\text{atom gate}?).\text{type}, (\text{atom end}?).\text{type}\} \cap \text{ran error} = \emptyset. We conclude that md \in \{ \text{proc} : \text{Process} \mid \text{Pool} \} follows directly from constraints on the before state Pool and the input components. We therefore obtain the final simplified precondition schema, labelled PreJoinOp.

\[
\text{PreJoinOp}
\]

\[
\text{Pool}
\]

\[
\text{gate?}, \text{end}? : \text{Element}
\]

\[
\text{gate?} \in \{ \text{NonEvJoin} \bullet \text{ele} \}
\]

\[
\text{end}? \in \{ \text{InitialEnd} \bullet \text{ele} \}
\]

\[
(\text{atom gate}?).\text{in} \subseteq \text{dom}(\text{ends proc})
\]

\[
\#(\text{cont}(\text{proc, ends proc}) \setminus (\text{atom gate}?).\text{in}) = 1
\]

\[
(\text{atom gate}?).\text{out} = (\text{atom end}?).\text{in}
\]

\[
(\text{atom end}?).\text{in} \cap \text{getSeqflows proc} = \emptyset
\]
B.13 Precondition of Loop

We expand pre Loop and apply the one-point rule to arrive at the following schema.

\[
\begin{align*}
[\text{Pool}; \text{from}? , \text{connect}? , f2? , t2? : \text{Seqflow}; \text{split}? , \text{join}? , \text{end}? : \text{Element} | \\
\text{let } ed1 == (\text{ends proc} \text{ from}?) ; \\
\text{ed2 == (nonsends proc} f2? \bullet \\
\text{let ch2 == cge (ed2, f2?, t2?) \bullet} \\
\text{(outs split}? \cup (\text{getSeqflows (content split}?)) \cap \text{getSeqflows proc} = 0 \land} \\
\text{from}? \in (\text{atom split}?) , \text{in} \land \\
\text{end}? \in \{\text{ele : Element | InitialEnd}\} \land \\
\text{connect}? \notin (\text{atom end}?) , \text{in} \land \\
\text{outs join}? \in (\text{connect}?) \cup (\text{atom end}?) , \text{in} \land \\
\text{t2}? \notin \text{getSeqflows} \{\text{ed2}\} \land \\
f2? \in (\text{atom ed2}) , \text{in} \land \\
\{\text{ed2, ch2}\} \subseteq \{\text{ele : Element | FlowObject}\} \land \\
\text{join}? \in \{\text{NonEndJoin \bullet ele}\} \land \\
\text{connect}? \neq t2? \land \\
\text{outs join}? = \{t2?\} \land \\
\text{from}? \neq f2? \land \\
t2? \notin \text{getSeqflows proc} \cup (\text{atom end}?) , \text{in} \land \\
\text{proc}, \{\text{ed1, ed2}\} \in \text{together} \land \\
(\text{ed2, ed1}) \in (\text{edge (direct (proc, ed2))}) \land \\
md \in \{\text{proc : Process | Pool}\}
\end{align*}
\]

Following pre ChangeFlow, we can see that the conjunction ch2 \in \{\text{ele : Element | FlowObject}\} follows directly from constraints on the before state Pool and the input components. We now consider the conjunction md \in \{\text{proc : Process | Pool}\}. We first expand the definition of md:

\[
md = \left\{\begin{array}{ll}
\{\text{proc} \cup \{\text{split}? , \text{join}? , \text{end}? , \text{ch2}\} \setminus \{\text{ed1, ed2}\} & \text{if } \{\text{ed1, ed2}\} \subseteq \text{proc} \\
(\text{proc} \setminus \text{cont} (\text{proc}, \{\text{ed1}\})) \cup (s : \text{cont} (\text{proc}, \{\text{ed1}\}) \bullet \text{rep} (s, \text{modify} (\text{content} (s), \{\text{split}? , \text{join}? , \text{end}? , \text{ch2}\}, \{\text{ed1, ed2}\}))) & \text{otherwise}
\end{array}\right.
\]

For the case \{\text{ed1, ed2}\} \subseteq \text{proc}, we show md \in \{\text{proc : Process | Pool}\} follows directly from constraints on the before state Pool and the input components, where md == \{(\text{proc} \cup \{\text{split}? , \text{join}? , \text{end}? , \text{ch2}\}) \setminus \{\text{ed1, ed2}\}\}. We expand this membership.

\[
\begin{align*}
(\exists e,f : \text{md} \bullet e \in \{\text{Start} \bullet \text{ele}\} \land f \in \{\text{End} \bullet \text{ele}\} & \land \\
(\neg (\exists e : \text{md} \bullet e \in \{\text{Inter} \mid (\text{atom ele}).\text{type} \in \text{ran ierror} \bullet \text{ele}\})) \land \\
(\forall e : \{g : \text{Element} | g \in_p \text{md} \bullet e \in \{\text{FlowObject} \bullet \text{ele}\}\} \land \\
\text{md} \in \text{processSet} & \land \\
\text{md} \in \text{noOverLap} & \land \\
(\forall f : \{g : \text{Element} | g \in_p \text{md} \bullet f \in \text{eventgate} \Rightarrow \\
(\forall e : \text{Element} \bullet (f, e) \in \text{edge (direct (md, e)}) \Rightarrow e \in \text{sendelement})\}
\end{align*}
\]

We consider the first and second conjuncts.

\[
\begin{align*}
\{\text{ed1, end}?\} \subseteq \{\text{End} \bullet \text{ele}\} & \land \\
(\text{atom ch2}).\text{type} = (\text{atom ed2}).\text{type} & \land \\
\{\text{split}? , \text{join}?\} \subseteq \{\text{Gate} \bullet \text{ele}\} & \land \text{def of vge, ed, end?, split and join?}
\end{align*}
\]
We now consider the fifth conjunct.

\[\Rightarrow (\exists e, f : md \bullet e \in \{\text{Start} \bullet \text{ele}\} \land f \in \{\text{End} \bullet \text{ele}\}) \land (\neg (\exists e : md \bullet e \in \{\text{Inter} | (\text{atom ele}).\text{type} \in \text{ran \text{error} \bullet \text{ele}}\})) \]

[proc \in \{\text{GenProc} \bullet \text{proc}\}]

We now consider the fourth conjunct.

\[\{\text{split?}, \text{join?}, \text{end?}, \text{ch2}\} \subseteq \{\text{ele} : \text{Element} \in \text{FlowObject}\} \quad \text{[def ch2, end?, split? and join?]}
\]

\[\Rightarrow \quad \text{[def of GenPool, Lemma B.1 and (NonEvJoin \lor NonEvSplit) \Rightarrow (Gate \Rightarrow \text{FlowObject})]}
\]

\[(\forall e : \{g : \text{Element} | g \in_p \text{md}\} \bullet e \in \{\text{FlowObject} \bullet \text{ele}\}) \]

We now consider the third conjunct.

\[\Rightarrow (\exists e. f : md \bullet e \in \{\text{Start} \bullet \text{ele}\} \land f \in \{\text{End} \bullet \text{ele}\}) \land (\neg (\exists e : md \bullet e \in \{\text{Inter} | (\text{atom ele}).\text{type} \in \text{ran \text{error} \bullet \text{ele}}\})) \]

\[\Rightarrow (\exists e, f : md \bullet e \in \{\text{Start} \bullet \text{ele}\} \land f \in \{\text{End} \bullet \text{ele}\} \land (e, f) \in (\text{edge md})^+)) \land (\exists e : md \bullet e \in \{\text{Start} \bullet \text{ele}\} \land (e, f) \in (\text{edge md})^+)) \land (\forall e : md \bullet \]

[proc \in \text{processSet}]
We now consider the sixth conjunct.

\[
\forall s : \text{outs}(e) \therefore \exists f : \text{md} \bullet s \in (\text{atom } f).\text{in} \wedge
\forall s : (\text{atom } e).\text{in} \bullet \exists f : \text{md} \bullet s \in \text{outs}(f))
\]

\[\Rightarrow \text{md} \in \text{processSet} \quad \text{[def of processSet]}\]

We therefore conclude that \(\text{md} \in \{\text{proc} : \text{Process} \mid \text{Pool}\}\) follows directly from constraints on the before state Pool and the input components.

For case \(\{\text{ed}1, \text{ed}2\} \cap \text{proc} = \emptyset\), we consider the following inductive hypothesis

\[
\{s : \text{cont}(\text{proc}, \{\text{ed}1, \text{ed}2\})\} \bullet
\text{modify(content}(s), \{\text{split?}, \text{join?}, \text{end?}, \text{ch}2\}, \{\text{ed}1, \text{ed}2\})) \subseteq \{\text{proc} : \text{Process} \mid \text{Pool}\}) \Rightarrow
\]

\[
((\text{proc} \setminus \text{cont}(\text{proc}, \{\text{ed}1, \text{ed}2\})) \cup \{s : \text{cont}(\text{proc}, \{\text{ed}1, \text{ed}2\})\} \bullet
\text{rep}(s, \text{modify(content}(s), \{\text{split?}, \text{join?}, \text{end?}, \text{ch}2\}, \{\text{ed}1, \text{ed}2\}))\}) \in \{\text{proc} : \text{Process} \mid \text{Pool}\})
\]

According to Lemma \textbf{B.2}, it is sufficient to deduce the following set of facts (conjuncts) about the precondition schema.

\[
\text{cont(\text{proc}, \{\text{ed}1, \text{ed}2\})} \subseteq \text{ran \ compound} \quad \text{(B.21)}
\]

\[
\#\text{cont(\text{proc}, \{\text{ed}1, \text{ed}2\})} = 1 \quad \text{(B.22)}
\]

\[
\bigcup \{s : \text{cont(\text{proc}, \{\text{ed}1, \text{ed}2\})} \bullet
\text{getSeqflows}(\text{modify(content}(s), \{\text{split?}, \text{join?}, \text{end?}, \text{ch}2\}, \{\text{ed}1, \text{ed}2\})) \cap
\text{getSeqflows(\text{proc} \setminus \{s, e : \text{Element} \mid s \in \text{cont(\text{proc}, \{\text{ed}1, \text{ed}2\})} \wedge e \in e \bullet s \bullet e\})} = \emptyset
\}
\]

\[
\bigcup \{s : \text{cont(\text{proc}, \{\text{ed}1, \text{ed}2\})} \bullet
\text{getMsgs}(\text{modify(content}(s), \{\text{split?}, \text{join?}, \text{end?}, \text{ch}2\}, \{\text{ed}1, \text{ed}2\})) \cap
\text{getMsgs(\text{proc} \setminus \{s, e : \text{Element} \mid s \in \text{cont(\text{proc}, \{\text{ed}1, \text{ed}2\})} \wedge e \in e \bullet s \bullet e\})} = \emptyset
\}
\]

\[
\{s, e : \text{Element} \mid s \in \text{cont(\text{proc}, \{\text{ed}1, \text{ed}2\})} \wedge
\text{e} \in \text{modify(content}(s), \{\text{split?}, \text{join?}, \text{end?}, \text{ch}2\}, \{\text{ed}1, \text{ed}2\}) \wedge (\text{atom } e).\text{type} \in \text{ran \ error} \bullet e = \}
\]

\[
\{s, e : \text{Element} \mid s \in \text{cont(\text{proc}, \{\text{ed}1, \text{ed}2\})} \wedge e \in \text{content}(s) \wedge (\text{atom } e).\text{type} \in \text{ran \ error} \bullet e = \}
\]

We consider each of the conjuncts individually: Conjecture \textbf{B.21} follows from the definition of \text{cont} and schema definition \text{FullSub}. Conjecture \textbf{B.22} follows from the memberships \text{proc} \in \text{noOverLap} and \(\{\text{proc}, \{\text{ed}1, \text{ed}2\}\}\) \in \text{together}. Conjecture \textbf{B.23} follows from the following constraints:

\[
\text{getIns(\text{ed}1)} = \text{getIns(\text{split?})}
\]

\[
\text{getOuts(\text{split?})} = (\text{getIns(\text{end?})}) \cup \{\text{connect?}\}
\]

\[
\text{getIns(\text{join?})} = \{\text{connect?}\} \cup \text{getIns(\text{ed}2)}
\]

\[
\text{getOuts(\text{join?})} = \text{getIns(\text{ch}2)}
\]

\[
\text{getOuts(\text{ch}2)} = \text{getOuts(\text{ed}2)}
\]

\[
(\text{outs split?}) \cap \text{getSeqflows proc} = \emptyset
\]

\[
(\text{outs split?}) \cup \{t2\} \cap \text{getSeqflows proc} = \emptyset
\]

\[
\text{proc} \in \text{noOverLap}
\]
Conjunct B.24 follows from $\text{getMsgs}\{\text{split?}, \text{join?}, \text{end}\?\} = \emptyset$, $\text{getMsgs}\{ed2\} = \text{getMsgs}\{ch2\}$ and $\text{proc} \in \text{noOverLap}$. Conjunct B.25 follows from $\{e : \{ed1, ed2, end?, \text{split?}, \text{join?}, ch2\} \bullet \{\text{atom } e\}.\text{type}\} \cap \text{ran } \text{error} = \emptyset$.

We conclude that $\text{md} \in \{\text{proc} : \text{Process} | \text{Pool}\}$ follows directly from constraints on the before state Pool and the input components. We apply set theory to obtain the final simplified precondition schema, labelled PreLoop.

\[
\text{PreLoop} \\
\text{CommonConstraints}\left[\text{split?}/\text{new}\right] \\
\text{ConnectJoin0} \\
\text{end?} : \text{Element} \\
\text{atom split?}.\text{out} = \{\text{connect?}\} \cup (\text{atom end?}).\text{in} \\
\text{from?} \neq f2? \\
f2? \in \text{dom}(\text{nonsends proc}) \\
t2? \notin \text{getSeqflows proc} \cup (\text{atom end?}).\text{in} \\
(\text{proc}, (\text{ends proc}) \text{from?}, (\text{nonsends proc} f2?)) \in \text{together} \\
((\text{nonsends proc} f2?, (\text{ends proc}) \text{from?}) \in (\text{edge}(\text{direct}(\text{proc}, (\text{nonsends proc} f2?)�}))^+$
\]
B.14 Precondition of EventLoop

We expand pre EventLoop and apply the one-point rule to arrive at the following schema.

\[
\begin{align*}
\text{let } & \text{ed1} == (\text{ends proc}) \text{from} \text{;} \text{ed2} == (\text{nonsends proc} f2) \text{; } \ast \\
\text{let } & \text{ch2} == \text{cye}(\text{ed2}, f2, t2) \text{; } \ast \\
\text{let } & \text{md} == \text{modify}(\text{proc}, \{ \text{split?}, \text{join?}, \text{ch2}, \text{end?} \} \cup \text{events}?, \{ \text{ed1}, \text{ed2} \}) \text{; } \ast \\
\end{align*}
\]

\[
\begin{align*}
\text{(outs split? } \cup \text{ (getSegflows (content split?))) } \cap \text{ getSegflows proc } & = \emptyset \land \\
\text{from? } & \in (\text{atom split?}).in \land \\
\text{(atom split?)}.in & \subseteq \text{dom(ends proc) } \land \\
\text{events? } & \subseteq \{ \text{ele : Element } \text{ | OneInOutAtom} \} \land \\
\text{events? } & \in \text{uniqueIns } \land \\
\# \text{events? } & = 2 \land \\
\text{split? } & \in \{ \text{EventSplit } \cup \text{ ele} \} \land \\
\text{end? } & \in \{ \text{ele : Element } \text{ | InitialEnd} \} \land \\
\text{getIns(events?)} & = (\text{atom split?}).out \land \\
\text{getSegflows events? } \cap \text{ getSegflows proc } & = \emptyset \land \\
\{ \text{connect? } \cup \text{ (atom end?)}.in \} \cap \text{ getIns events? } & = \emptyset \land \\
\text{connect? } & \notin (\text{atom end?)}.in \land \\
\text{getOuts events? } & = \{ \text{connect? } \} \cup (\text{atom end?)}.in \land \\
\text{ed2} & \notin \{ \text{Start } \cup \text{ ele} \} \land \\
\text{t2? } & \notin \text{getSeqflows(ed2)} \land \\
\text{f2? } & \in (\text{atom ed2}).in \land \\
\{ \text{ed2}, \text{ch2} \} & \subseteq \{ \text{ele : Element } \text{ | FlowObject} \} \land \\
\text{join? } & \in \{ \text{NonEvJoin } \cup \text{ ele} \} \land \\
\text{connect? } & \neq t2? \land \\
(\text{atom join?).in) & = \{ f2?, \text{connect? } \} \land \\
\text{outs join? } & = \{ t2? \} \land \\
\text{t2? } & \notin \text{getSeqflows proc } \land \\
\text{from? } & \neq f2? \land \\
\text{t2? } & \notin \text{getSeqflows(events?) } \land \\
\{ \text{proc, } \{ \text{ed1}, \text{ed2} \} \} & \text{in together } \land \\
(\text{ed2}, \text{ed1}) & \in (\text{edge(direct(proc, ed2))) }^+ \land \\
\text{md} & \in \{ \text{proc : Process } \cup \text{ Pool} \} \\
\end{align*}
\]

Following pre ChangeFlow, we see that the conjunct \(\text{ch2} \in \{ \text{ele : Element } \text{ | FlowObject} \} \) follows directly from constraints on the before state Pool and the input components. We now consider the conjunct \(\text{md} \in \{ \text{proc : Process } \cup \text{ Pool} \} \). We first expand the definition of \(\text{md} \):

\[
\text{md} = \begin{cases}
\{ \text{proc } \cup \{ \text{split?, join?, end?, ch2} \} \cup \text{events?} \setminus \{ \text{ed1}, \text{ed2} \} \} & \text{if } \{ \text{ed1}, \text{ed2} \} \subseteq \text{proc} \\
\{ \text{reps, modify(content(s))}, \\
\{ \text{split?, join?, end?, ch2} \} \cup \text{events?}, \{ \text{ed1}, \text{ed2} \} \} \} & \text{otherwise}
\end{cases}
\]

For the case \(\{ \text{ed1}, \text{ed2} \} \subseteq \text{proc} \), we show \(\text{md} \in \{ \text{proc : Process } \cup \text{ Pool} \} \) follows directly from constraints on the before state Pool and the input components, where \(\text{md} == \{ \text{proc } \cup \{ \text{split?, join?, end?, ch2} \} \cup \text{events?} \} \setminus \{ \text{ed1}, \text{ed2} \} \). We expand this membership.

\[
\begin{align*}
\exists e,f : & \text{md } \cup \{ \text{Start } \cup \text{ ele} \} \land \text{f } \in \{ \text{End } \cup \text{ ele} \} \land \\
(\neg \exists e : & \text{md } \cup \{ \text{ele } \text{ | (atom ele).type } \in \text{ ran ierror } \cup \text{ ele} \}) \land \\
(\forall e : & \{ \text{g : Element } \text{ | g } \in_p \text{ md} \} \cup \{ \text{FlowObject } \cup \text{ ele} \} \land \\
\text{md} & \in \text{processSet } \land \\
\text{md} & \in \text{noOverLap } \land \\
(\forall f : & \{ \text{g : Element } \text{ | g } \in_p \text{ md} \} \cup \text{f } \in \text{eventgate } \Rightarrow \\\n\end{align*}
\]
APPENDIX B. PRECONDITIONS

(∀ e : Element • (f, e) ∈ edge(direct(md, e)) ⇒ e ∈ sendelement)

We consider the first and second conjuncts.

\{ end?, ed1 \} ⊆ \{ End • ele \} ∧
[def of ege, split?, join?, end? and events?]

\{(ch2, ed2) ∪ events? \} ∩ \{Inter | (atom ele).type ∈ ran ierror • ele \} = ∅ ∧

\{split?, join? \} ⊆ \{ Gate • ele \} ∧
⇒ (∃ e, f : md • e ∈ \{Start • ele \} ∧ f ∈ \{End • ele \}) ∧
[proc ∈ \{GenProc • proc\}]

We now consider the third conjunct.

\{events? ∪ \{split?, join?, end?, ch2\} \} ⊆ \{ele : Element | FlowObject\}
⇒ defGenPool, FlowObject and Lemma B.1

(∀ e : \{g : Element | g ∈ₚ md\} • e ∈ \{FlowObject • ele\}

We now consider the fourth conjunct.

\{(t2?, connect?) ∪ getIns\{end?\} ∪ events?\} ∩ getSeqflows proc = ∅ ∧
from? ≠ f2? ∧
\{from? \} = (atom ed1).in ∧

f2? ∈ (atom ed2).in ∧

(atom split?).in = \{from? \} ∧

(atom split?).out = getIns(events?) ∧

getOuts events? = \{connect?\} ∪ (atom end?).in ∧

(atom join?).in = \{f2?, connect?\} ∧

(atom join?).out = \{t2?\} ∧

getMsgs(\{split?, join?, end?\} ∪ events?) = ∅

(atom ch2).in = ((atom ed2).in \{f2?\} ∪ \{t2?\}) ∧

(outs ch2) = (outs ed2) ∧

getMsgs\{ch2\} = getMsgs\{ed2\}
⇒ (∀ e : \{g : Element | g ∈ₚ md\} •
[proc ∈ noOverLap]

\bigcup\{k : md • (atom k).in ∪ outs(k)\} \bigcup \{k : content e • (atom k).in ∪ outs(k)\} = ∅ ∧

\forall f : \{g : Element | g ∈ₚ md\} • e ≠ f ⇒

(atom e).in ∪ (atom f).in = ∅ ∧

outs(e).out = outs(f) = ∅ ∧

\bigcup\{k : content e • (atom k).in ∪ outs(k)\} ∩

\bigcup\{k : content f • (atom k).in ∪ outs(k)\} = ∅ ∧

getMsg (atom e) ∩ getMsg (atom f) = ∅)

⇔ md ∈ noOverLap
[def of noOverLap]

We now consider the fifth conjunct.

\{(t2?, connect?) ∪ getIns\{end?\} ∪ events?\} ∩ getSeqflows proc = ∅ ∧
from? = (atom ed1).in ∧

f2? ∈ (atom ed2).in ∧

(atom split?).in = \{from? \} ∧

(atom split?).out = getIns(events?) ∧

getOuts events? = \{connect?\} \∪ (atom end?).in ∧
(atom join?).in = \{f2?, connect?\} \land \\
(atom join?).out = \{t2?\} \land \\
(atom ch2).in = ((atom ed2).in \setminus \{f2?\}) \cup \{t2?\} \land \\
(outs ch2) = (outs ed2) \land \\
dom((edge proc) \triangleright \{ed1\}) = \text{dom}((edge md) \triangleright \{split?\}) \land \\
dom((edge proc) \triangleright \{ed2\}) = (\text{dom}((edge md) \triangleright \{join?, ch2\})) \setminus \text{events}? \land \\
((edge proc)\{ ed2 \}) = ((edge md)\{ ch2 \}) \\
\Rightarrow (\forall e : md \bullet [\text{proc} \in \text{processSet} \text{ and transitivity}] \\
\quad (e \notin \{ End \bullet ele \}) \Rightarrow (\exists f : md \bullet f \in \{ End \bullet ele \} \land (e, f) \in (\text{edge md}^+)) \land \\
\quad (e \notin \{ Start \bullet ele \}) \Rightarrow (\exists f : md \bullet f \in \{ Start \bullet ele \} \land (f, e) \in (\text{edge md}^+)) \land \\
(\forall e : md \bullet \\
\quad (\forall s : \text{outs}(e)) \exists f : md \bullet s \in (\text{atom f}.in) \land \\
\quad (\forall s : (\text{atom e}).in \bullet \exists f : md \bullet s \in \text{outs}(f)) \\
\Leftrightarrow md \in \text{processSet} \quad [\text{def of processSet}] \\
\)

We now consider the sixth conjunct.

\{end?, ed1\} \subseteq \{End \bullet ele\} \land \\
\quad [\text{def of end?, ed2, events?, split? and join?}] \\
ed2 \in \text{ran} \text{nonsends proc} \land \\
\{join?\} \cap \text{eventgate} = \emptyset \\
\quad \text{split?} \in \text{eventgate} \land \\
\quad \text{events?} \subseteq \text{sendelement} \land \\
\quad (\text{atomic splits}?).out = \text{getIns}(\text{events}?) \\
\Rightarrow (\forall f : \{ g : \text{Element} \mid g \in_p \text{md}\} \bullet f \in \text{eventgate} \Rightarrow \\
\quad [\text{proc} \in \{\text{proc} : \text{Process} \mid \text{hasExgates}\}] \\
\quad (\forall e : \text{Element} \bullet (f, e) \in \text{edge}(\text{direct}(\text{md}, e)) \Rightarrow e \in \text{sendelement})) \\
\Rightarrow md \in \{\text{proc} : \text{Process} \mid \text{hasExgates}\} \quad [\text{def of hasExgates}] \\
\)

We therefore conclude that \(md \in \{\text{proc} : \text{Process} \mid \text{Pool}\} \) follows directly from constraints on the before state Pool and the input components.

For case \(\{ed1, ed2\} \cap \text{proc} = \emptyset \), we consider the following inductive hypothesis

\{s : \text{cont}(\text{proc}, \{ed1, ed2\}) \bullet \\
\quad \text{modify}[^\text{content}(s), \{\text{split?, join?, end?, ch2}\} \cup \text{events}?, \{ed1, ed2\}] \} \subseteq \{\text{proc} : \text{Process} \mid \text{Pool}\} \Rightarrow \\
\quad ((\text{proc} \setminus \text{cont}(\text{proc}, \{ed1, ed2\})) \cup \{s : \text{cont}(\text{proc}, \{ed1, ed2\}) \bullet \\
\quad \text{rep}(s, \text{modify}[^\text{content}(s), \{\text{split?, join?, end?, ch2\} \cup \text{events}?, \{ed1, ed2\}])) \}) \in \{\text{proc} : \text{Process} \mid \text{Pool}\} \\
\)

According to Lemma \[B.2\] it is sufficient to deduce the following set of facts (conjuncts) about the
APPENDIX B. PRECONDITIONS

precondition schema.

\[
\begin{align*}
\text{cont}(\text{proc}, \{\text{ed}1, \text{ed}2\}) & \subseteq \text{ran compound} \quad \text{(B.26)} \\
\#\text{cont}(\text{proc}, \{\text{ed}1, \text{ed}2\}) & = 1 \quad \text{(B.27)} \\
\bigcup \{s : \text{cont}(\text{proc}, \{\text{ed}1, \text{ed}2\}) \} & \\
\text{getSegflows}(\text{modify}(\text{content}(s), \{\text{split?}, \text{join?}, \text{end?}, \text{ch}2\} \cup \text{events}?; \{\text{ed}1, \text{ed}2\})) \cap \\
\text{getSegflows}(\text{proc} \setminus \{s, e : \text{Element} \mid s \in \text{cont}(\text{proc}, \{\text{ed}1, \text{ed}2\}) \land e \in s \cdot e\}) & = \emptyset \\
\bigcup \{s : \text{cont}(\text{proc}, \{\text{ed}1, \text{ed}2\}) \} & \\
\text{getMsgs}(\text{modify}(\text{content}(s), \{\text{split?}, \text{join?}, \text{end?}, \text{ch}2\} \cup \text{events}?; \{\text{ed}1, \text{ed}2\})) \cap \\
\text{getMsgs}(\text{proc} \setminus \{s, e : \text{Element} \mid s \in \text{cont}(\text{proc}, \{\text{ed}1, \text{ed}2\}) \land e \in s \cdot e\}) & = \emptyset \\
\{s, e : \text{Element} \mid s \in \text{cont}(\text{proc}, \{\text{ed}1, \text{ed}2\}) \land \\
e \in \text{modify}(\text{content}(s), \{\text{split?}, \text{join?}, \text{end?}, \text{ch}2\} \cup \text{events}?; \{\text{ed}1, \text{ed}2\}) \land (\text{atom } e).\text{type} \in \text{ran error} \cdot e\} & = \\
\{s, e : \text{Element} \mid s \in \text{cont}(\text{proc}, \{\text{ed}1, \text{ed}2\}) \land e \in \text{content}(s) \land (\text{atom } e).\text{type} \in \text{ran error} \cdot e\}
\end{align*}
\]

We consider each of the conjuncts individually: Conjecture B.26 follows from the definition of cont and schema definition FullSub. Conjecture B.27 follows from the memberships proc \in noOverLap and (proc, \{ed1, ed2\}) \in together. Conjecture B.28 follows from the following constraints:

\[
\begin{align*}
\text{getIns}\{\text{ed}1\} & = \text{getIns}\{\text{split}\} \\
\text{getOuts}\{\text{split}\} & = \text{getIns}(\text{events}) \\
\text{getOuts}(\text{events}?) & = \text{getIns}\{\text{end}\}) \cup \{\text{connect}\} \\
\text{getIns}\{\text{join}\} & = \{\text{connect}\} \cup \text{getIns}\{\text{ed}2\} \\
\text{getOuts}\{\text{join}\} & = \text{getIns}\{\text{ch}2\} \\
\text{getOuts}\{\text{ch}2\} & = \text{getOuts}\{\text{ed}2\} \\
\text{getSegflows}\{\text{end}\} \cap \text{getSegflows}\text{proc} & = \emptyset \\
((\text{outs split}\} \cup \text{getOuts}(\text{events}?)) \cup \{\text{t}2?\}) \cap \text{getSegflows}\text{proc} & = \emptyset \\
\text{proc} & \in \text{noOverLap}
\end{align*}
\]

Conjecture B.29 follows from getMsgs(\{\text{split?}, \text{join?}, \text{end?}\} \cup \text{events}?) = \emptyset, (\text{getMsgs}\{\text{ed}2\} = \text{getMsgs}\{\text{ch}2\} and proc \in noOverLap. Conjecture B.30 follows from \{e : (\{\text{ed}1, \text{ed}2, \text{end?}, \text{split?}, \text{join?}, \text{ch}2\} \cup \text{events}?) \cdot (\text{atom } e).\text{type} \cap \text{ran error} = \emptyset We therefore conclude that md \in \{\text{proc : Process | Pool}\} follows directly from constraints on the before state Pool and the input components. We apply set theory to obtain the final simplified precondition schema, labelled PreEventLoop.
APPENDIX B. PRECONDITIONS

B.15 Precondition of AddException

\[
\text{pre } \text{AddException} \iff \begin{align*}
\text{pre } (\text{AddNoRelatedErrorException } \setminus (\text{change}, \text{change'})) \lor \\
\text{pre } (\text{AddRelatedErrorException } \setminus (\text{change}, \text{change'}))
\end{align*}
\]

We consider the simplification of each precondition individually.

B.15.1 Precondition of AddNoRelatedErrorException

We first consider the precondition schema pre \((\text{AddNoRelatedErrorException } \setminus (\text{change}, \text{change'}))\). We expand the definitions, apply schema quantification, and one-point rule to arrive at the following precondition schema.

\[
\begin{align*}
\text{Pool; eflow?, loc?: Seqflow; end?: Element |} \\
\let ed == (activities \text{proc}) \text{loc} \cdot \\
\let ch == \text{ce}(ed, (eflow?, eflow), \emptyset, \emptyset) \cdot \\
\let md == \text{modify}(\text{proc}, \{\text{end}, ch\}, \{ed\}) \cdot \\
\{ed, ch\} \subseteq \{\text{ele: Element | Activity}\} \land \\
\text{etype?} \in \text{nomsgerrors} \land \\
\text{eflow?} \in \text{getSeqflows proc} \land \\
\text{end?} \in \{\text{InitialEnd}, \text{ele}\} \land \\
(\text{atom end?}).\text{in} = \{\text{eflow?}\} \land \\
\text{ed} \in \text{Element} \land \\
\text{md} \in \{\text{proc: Process | Pool}\}
\end{align*}
\]

By pre \(\text{AddNoRelatedErrorExceptionSub}\) calculated in Section B.3 we can see \(ch \in \{\text{ele: Element | Activity}\}\) follows from constraints on the before state Pool and the input components. We now consider the conjunct \(md \in \{\text{proc: Process | Pool}\}\). We first expand the definition of \(md\):

\[
\begin{align*}
\text{md} = \begin{cases}
\{ \text{proc} \cup \{\text{end}, ch\}\} \setminus \{ed\} & \text{if } ed \in \text{proc} \\
\{s : \text{cont}(\text{proc}, \{ed\})\} \cup \{s : \text{modify}(\text{content}(s), \{\text{end}, ch\}, \{ed\})\} & \text{otherwise}
\end{cases}
\end{align*}
\]
APPENDIX B. PRECONDITIONS

We now consider the fourth conjunct.

We now consider the third conjunct.

We consider the first two conjuncts.

We now consider the fifth conjunct.

For the case \(\text{ed} \in \text{proc} \), we show \(\text{md} \in \{ \text{proc} : \text{Process} \mid \text{Pool} \} \) follows directly from constraints on the before state \(\text{Pool} \) and the input components, where \(\text{md} = (\text{proc} \cup \{ \text{end}?, \text{ch} \}) \setminus \{ \text{ed} \} \). We expand this membership.

\[
\begin{align*}
(\exists e, f : \text{md} \bullet e \in \{ \text{Start} \bullet \text{ele} \} \land f \in \{ \text{End} \bullet \text{ele} \}) \land \\
(\neg (\exists e : \text{md} \bullet e \in \{ \text{Inter} \mid (\text{atom} \ \text{ele}) \text{.type} \in \text{ran} \ \text{error} \bullet \text{ele} \})) \land \\
(\forall e : \{ g : \text{Element} \mid g \in_p \text{md} \} \bullet e \in \{ \text{FlowObject} \bullet \text{ele} \}) \land \\
\text{md} \in \text{processSet} \land \\
\text{md} \in \text{noOverLap} \land \\
(\forall f : \{ g : \text{Element} \mid g \in_p \text{md} \} \bullet f \in \text{eventgate} \Rightarrow \\
(\forall e : \text{Element} \bullet (f, e) \in \text{edge(} \text{direct(} \text{md}, e) \text{)} \Rightarrow e \in \text{sendelement}))
\end{align*}
\]

We consider the third conjunct.

\[
\begin{align*}
(\exists e, f : \text{md} \bullet e \in \{ \text{Start} \bullet \text{ele} \} \land f \in \{ \text{End} \bullet \text{ele} \}) \land \\
(\neg (\exists e : \text{md} \bullet e \in \{ \text{Inter} \mid (\text{atom} \ \text{ele}) \text{.type} \in \text{ran} \ \text{error} \bullet \text{ele} \}))
\end{align*}
\]

We consider the first two conjuncts.

\[
\begin{align*}
(\text{atom} \ \text{ch}) \text{.type} = (\text{atom} \ \text{ed}) \text{.type} \land \\
\text{ed} \notin \{ \text{Activity} \bullet \text{ele} \} \land \\
\text{ed}? \in \{ \text{End} \bullet \text{ele} \} \\
\Rightarrow (\exists e, f : \text{md} \bullet e \in \{ \text{Start} \bullet \text{ele} \} \land f \in \{ \text{End} \bullet \text{ele} \}) \land \\
(\forall e : \{ g : \text{Element} \mid g \in_p \text{md} \} \bullet e \in \{ \text{FlowObject} \bullet \text{ele} \})
\end{align*}
\]

We now consider the fourth conjunct.

\[
\begin{align*}
(\text{atom} \ \text{end}? \text{.} \text{in} = \{ \text{eflow}? \}) \land \\
\text{outs} \text{(ch)} = \{ \text{eflow}? \} \cup \text{outs} \text{(ed)} \land \\
(\text{atom} \ \text{ch}) \text{.} \text{out} = (\text{atom} \ \text{ed}) \text{.} \text{out} \land \\
(\text{atom} \ \text{ch}) \text{.} \text{in} = (\text{atom} \ \text{ed}) \text{.} \text{in} \land \\
\text{getMsgs} \text{(end)?} = \emptyset \land \\
\text{getMsgs} \text{(ch)} = \text{getMsgs} \text{(ed)} \land \\
\text{getSeqflows} \text{(content(ch))} = \text{getSeqflows} \text{(content(ed))} \land \\
\text{eflow}? \notin \text{getSeqflows} \text{proc} \land \\
\Rightarrow (\forall e : \{ \text{g : Element} \mid \text{g} \in_p \text{md} \} \bullet \\
\{ \text{k : md} \bullet (\text{atom k}) \text{.} \text{in} \cup \text{outs(k)} \} \cap \{ \text{k : content e} \bullet (\text{atom k}) \text{.} \text{in} \cup \text{outs(k)} \} = \emptyset \land \\
(\forall f : \{ g : \text{Element} \mid g \in_p \text{md} \} \bullet e \neq f \Rightarrow \\
(\text{atom e}) \text{.} \text{in} \cap (\text{atom f}) \text{.} \text{in} = \emptyset \land \\
\text{outs(e)} \cap \text{outs(f)} = \emptyset \land \\
\{ \text{k : content e} \bullet (\text{atom k}) \text{.} \text{in} \cup \text{outs(k)} \} \cap \\
\{ \text{k : content f} \bullet (\text{atom k}) \text{.} \text{in} \cup \text{outs(k)} \} = \emptyset \land \\
\text{getMsg} (\text{atom e}) \cap \text{getMsg} (\text{atom f}) = \emptyset)
\end{align*}
\]

We now consider the fifth conjunct.

\[
\begin{align*}
\text{end}? \in \{ \text{End} \bullet \text{ele} \} \land \\
\Rightarrow \text{md} \in \text{noOverLap}
\end{align*}
\]

We now consider the fifth conjunct.

\[
\begin{align*}
\text{end}? \in \{ \text{End} \bullet \text{ele} \} \land \\
\Rightarrow \text{md} \in \text{noOverLap}
\end{align*}
\]

\[
\begin{align*}
\text{def of end}, \text{ch}, \text{end}?]
\end{align*}
\]
We now consider the sixth conjunct.

\[(\forall s : \text{outs}(e) \cdot \exists f : p \cdot s \in (\text{atom} f).\text{in}) \land (\forall s : (\text{atom} e).\text{in} \cdot \exists f : p \cdot s \in \text{outs}(f)) \]

\(\Leftrightarrow m_d \in \text{processSet}\) \[\text{[def of processSet]}\]

We therefore conclude that \(m_d \in \{\text{proc} : \text{Process} \mid \text{Pool}\}\) follows directly from constraints on the before state Pool and the input components.

For case \(e \notin \text{proc}\), we consider the following inductive hypothesis

\[\{s : \text{cont}(\text{proc}, \{ed\}) \cdot \text{modify}(<\text{content}(s), \{\text{end?}, \text{ch}\}, \{ed\})>\} \subseteq \{\text{proc} : \text{Process} \mid \text{Pool}\}\]

\[(((\text{edge} \text{proc}) \cup \{ed\}) \cup \{ed?\}) \cap \text{eventgate} = \emptyset \land \]

\(\Rightarrow (\forall f : \{\text{ed} \cdot f \in \text{eventgate} \Rightarrow (\exists \text{proc} \in \{\text{proc} : \text{Process} \mid \text{hasExgates}\})\]) \land \]

\[(\forall e : \text{Element} \cdot (f, e) \in \text{edge}(\text{direct}(md, e)) \Rightarrow e \in \text{sendelement})\]

\(\Rightarrow m_d \in \{\text{proc} : \text{Process} \mid \text{hasExgates}\}\) \[\text{[def of hasExgates]}\]

According to Lemma B.2, it is sufficient to deduce the following set of facts (conjuncts) about the preconditions schema.

\[\text{cont}(\text{proc}, \{ed\}) \subseteq \text{ran compound}\] \[\#\text{cont}(\text{proc}, \{ed\}) = 1\] \[\text{B.31}\]

\[\text{B.32}\]

\[\text{B.33}\]

\[\text{B.34}\]

\[\text{B.35}\]

Conjunct B.31 follows from the definition of \text{cont} and schema definition \text{FullSub}. Conjunct B.32 follows from the membership \text{proc} \in \text{noOverLap}. Conjunct B.33 follows from the following constraints.

\[\text{B.33}\]

\[\text{B.34}\]

Conjunct B.34 follows from \text{getMsgs} \(\{ed\} = \text{getMsgs} \{ch\}\) and \text{proc} \in \text{noOverLap}, and Conjunct B.35 follows from \((\text{atom} \text{end?}).\text{type}, (\text{atom} \text{ch}).\text{type}) \cap \text{ran eerror} = \emptyset\). We conclude that \(m_d \in \{\text{proc} : \text{Process} \mid\)
PreAddNoRelatedErrorException

Pool
etype? : Type
eflow?, loc? : Segflow
der? : Element

loc? ∈ dom(activities proc)
etype? ∈ nomsgserrors
eflow? ∉ getSeqflows proc
der? ∈ {InitialEnd • ele}
(atom end?).in = {eflow?}

B.15.2 Precondition of AddRelatedErrorException

We now consider the precondition schema pre (AddRelatedErrorException \ (change, change')). We expand the definitions, apply schema quantification, and one-point rule to arrive at the following precondition schema.

 let en0 = (ends (content ed)) sflow? •
 let en1 = ct(en0, type?) •
 let ch = ce(ed, (eflow?, etype?), {en0}, {en1}) •
 let md = modify(proc, {end?, ch}, {ed}) •
{ch, ed} ⊆ {ele : Element | FullSub} ∧
{en0, en1} ⊆ {ele : Element | End} ∧
md ∈ {proc : Process | Pool} ∧
eflow? ∉ getSeqflows proc ∧
der? ∈ {InitialEnd • ele} ∧
(atom end!).in = {eflow!} ∧
{en0, en1, ed, ch} ⊆ Element ∧
type? ∈ ran error ∩ errorCodeTypes ∧
(atom ed0).type = end ∧
etype? ∈ (ran error ∩ errorCodeTypes) \ (ran((atom ed).exit)) ∧
errorCode etype? = errorCode type? ∧
en0 ∈ (content ed)}

By Lemma [B.1] we can see that the membership ed ∈ {ele : Element | FullSub} follows directly from constraints on the before state Pool and the input components. Similarly using Lemma [B.1] the constraint ed ∈ {ele : Element | FullSub} and definition of ends, we can also see that the membership en0 ∈ {ele : Element | End} follows directly from constraints on the before state Pool and the input components. By pre ChangeEndType calculated in Section [B.4] we conclude that the membership en1 ∈ {ele : Element | End} follows directly from constraints on the before state Pool and the input components. We now consider the membership ch ∈ {ele : Element | FullSub}. We first expand the constraint on the membership.

ch ∈ ran compound ∧
#(atom ch).send + #(atom ch).receive = 0 ∧
((atom ch).type ∈ ran subprocess ∪ ran mips ∪ ran mises) ∧
(∀ e, f : {g : Element | g ∈ p content(ch)} • e ≠ f ⇒
 (atom e).in ∩ (atom f).in = 0 ∧
outs(e) ∩ outs(f) = 0 ∧

We now consider the fourth conjunct.

\[\bigcup \{ k : \text{content } e \bullet (\text{atom } k).in \cup \text{outs}(k) \} \cap \bigcup \{ k : \text{content } f \bullet (\text{atom } k).in \cup \text{outs}(k) \} = \emptyset \land \]
\[\text{getMsg}(\text{atom } e) \cap \text{getMsg}(\text{atom } f) = \emptyset \land \]

\((\forall e : \text{content}(ch) \bullet \)

\((e \notin \{ \text{End} \bullet \text{ele} \} \Rightarrow (\exists f : \text{content}(ch) \bullet f \in \{ \text{End} \bullet \text{ele} \} \land (e, f) \in (\text{edge content}(ch))^+) \) \land

\((e \notin \{ \text{Start} \bullet \text{ele} \} \Rightarrow (\exists f : \text{content}(ch) \bullet f \in \{ \text{Start} \bullet \text{ele} \} \land (f, e) \in (\text{edge content}(ch))^+) \) \land

\((\forall e : \text{content}(ch) \bullet \)

\((\forall s : \text{outs}(e) \bullet \exists f : \text{content}(ch) \bullet s \in ((\text{atom } f).in) \land \)

\((\forall s : ((\text{atom } e).in \bullet \exists f : \text{content}(ch) \bullet s \in \text{outs}(f)) \land \)

\((\exists e, f : \text{content}(ch) \bullet e \in \{ \text{Start} \bullet \text{ele} \} \land f \in \{ \text{End} \bullet \text{ele} \} \land \)

\((\neg (\exists e : \text{content}(ch) \bullet e \in (\text{Inter} \mid (\text{atom } \text{ele}).\text{type} \in \text{ran ierror} \bullet \text{ele})) \land \)

\#(\text{atom } ch).in = 1 \land \#(\text{atom } ch).out = 1 \land

\((\forall e, f : \text{content}(ch) \bullet \)

\((\text{atom } e).\text{type} \in (\text{ran ierror} \cap \text{errorCodeTypes}) \Rightarrow \)

\((\exists t : \text{ran}((\text{atom } ch).\text{exit}) \bullet \)

\(t \in (\text{ran ierror} \cap \text{errorCodeTypes}) \land \)

\(\text{errorCode}((\text{atom } e).\text{type}) = \text{errorCode}((\text{atom } f).\text{type}) \Rightarrow f = e \) \land

\((\forall e : \text{content}(ch) \bullet \)

\((\text{atom } e).\text{type} \in (\text{ran ierror} \cap \text{errorCodeTypes}) \Rightarrow \)

\((\exists t : \text{ran}((\text{atom } ch).\text{exit}) \bullet \)

\((t \in (\text{ran ierror} \cap \text{errorCodeTypes}) \Rightarrow \)

\((\exists e : \text{content}(ch) \bullet \)

\((\text{atom } e).\text{type} \in (\text{ran ierror} \cap \text{errorCodeTypes}) \land \)

\(\text{errorCode}((\text{atom } e).\text{type}) = \text{errorCode}(t)) \) \land

\((\forall t : \text{Type} \bullet t \in \text{ran}((\text{atom } ch).\text{exit}) \Rightarrow t \in \text{inters}) \)

We first consider the first three conjuncts.

\(ed \in \{ \text{ele} : \text{Element} \mid \text{FullSub} \} \)

\[\Rightarrow \text{ed} \in \text{ran compound} \land \quad \text{[def of FullSub]} \]

\(\#(\text{atom ed}).\text{send} + \#(\text{atom ed}).\text{receive} = 0 \land \)

\((\text{atom ed}).\text{type} \in \text{ran subprocess} \cup \text{ran mipars} \cup \text{ran mispeqs} \cup \text{ran sloops} \)

\[\Rightarrow \text{ch} \in \text{ran compound} \land \quad \text{[def of ce (only (atom ed).exit and content(ed) are modified)]} \]

\(\#(\text{atom ch}).\text{send} + \#(\text{atom ch}).\text{receive} = 0 \land \)

\((\text{atom ch}).\text{type} \in \text{ran subprocess} \cup \text{ran mipars} \cup \text{ran mispeqs} \cup \text{ran sloops} \)

We now consider the fourth conjunct.

\(ed \in \{ \text{ele} : \text{Element} \mid \text{FullSub} \} \)

\[\Rightarrow (\forall e, f : \{ g : \text{Element} \mid g \in_p \text{content(ed)} \} \bullet e \neq f \Rightarrow \quad \text{[def of FullSub]} \]

\((\text{atom } e).in \cap (\text{atom } f).in = 0 \land \)

\(\text{outs}(e) \cap \text{outs}(f) = 0 \land \)

\[\bigcup \{ k : \text{content } e \bullet (\text{atom } k).in \cup \text{outs}(k) \} \cap \bigcup \{ k : \text{content } f \bullet (\text{atom } k).in \cup \text{outs}(k) \} = \emptyset \land \]

\[\text{getMsg}(\text{atom } e) \cap \text{getMsg}(\text{atom } f) = \emptyset \) \land

\[\Rightarrow \quad \text{[def of ct (only type component of en0 is changed)]} \]

\((\forall e, f : \{ g : \text{Element} \mid g \in_p \text{content(ch)} \} \bullet e \neq f \Rightarrow \)

\((\text{atom } e).in \cap (\text{atom } f).in = 0 \land \)
We now consider the tenth conjunct.

\[
outs(e) \cap outs(f) = \emptyset \land \\
\bigcup \{k : content e \cdot (atom k).in \cup outs(k)\} \cap \bigcup \{k : content f \cdot (atom k).in \cup outs(k)\} = \emptyset \land \\
getMsg (atom e) \cap getMsg (atom f) = \emptyset
\]

We now consider the fifth conjunct.

\[
ed \in \{ele : Element \mid FullSub\} \implies \forall e : content(ed) \cdot \\
\exists f : content(ed) \cdot f \in \{End \cdot ele\} \land (e, f) \in (edge content(ed))^+
\]

We now consider the sixth conjunct.

\[
ed \in \{ele : Element \mid FullSub\} \implies \forall e : content(ed) \cdot \\
\exists f : content(ed) \cdot f \leq (atom e).in \land \\
\exists f : content(ed) \cdot f \in outs(f)
\]

We now consider seventh, eighth and ninth conjuncts.

\[
ed \in \{ele : Element \mid FullSub\} \implies \exists e, f : content(ed) \cdot e \in \{Start \cdot ele\} \land \\
\exists f : content(ed) \cdot f \in \{End \cdot ele\} \land \\
\exists e, f : content(ed) \cdot e \in \{Start \cdot ele\} \land f \in \{End \cdot ele\} \land \\
\exists e, f : content(ed) \cdot e \in \{Inter \mid (atom ele).type \in ran errore\} \\
\exists f : content(ed) \cdot f \in \{End \cdot ele\} \land \\
\exists e, f : content(ed) \cdot e \in \{Inter \mid (atom ele).type \in ran errore\} \land \\
\exists f : content(ed) \cdot f \in \{End \cdot ele\}
\]

We now consider the tenth conjunct.

\[
ed \in \{ele : Element \mid FullSub\} \implies \#(atom ed).in = 1 \land \\
\#(atom ed).out = 1 \land \\
\#(atom ch).in = 1 \land \\
\#(atom ch).out = 1
\]

We now consider eleventh and twelveth conjuncts.

\[
ed \in \{ele : Element \mid FullSub\} \implies \forall e, f : content(ed) \cdot \\
\{e, f\} \subseteq \{End \mid (atom ele).type \in ran errore \cap errorType\} \land \\
errorCode((atom e).type) = errorCode((atom f).type) \implies f = e
\]
We now consider thirteenth and fourteenth conjuncts.

\[\text{ed} \in \{\text{ele} : \text{Element} \mid \text{FullSub}\}\]

\[\Rightarrow (\forall e : \text{content}(ed) \bullet (\exists t : \text{ran}((\text{atom } ed).\text{exit}) \bullet t \in (\text{ran erro}\text{r} \cap \text{errorCodeTypes}) \land \text{errorCode}((\text{atom } e).\text{type}) = \text{errorCode}(t)) \land (\forall t : \text{ran}((\text{atom } ed).\text{exit}) \bullet (t \in (\text{ran erro}\text{r} \cap \text{errorCodeTypes}) \land \text{errorCode}((\text{atom } e).\text{type}) = \text{errorCode}(t)))\]

\[\Rightarrow [\text{def of ce } (\text{errorCode}((\text{atom } e1).\text{type}) = \text{errorCode}(\text{etype}?)) \land [\text{etype}? \in ((\text{ran erro}\text{r} \cap \text{errorCodeTypes}) \setminus (\text{ran}((\text{atom } ed).\text{exit})))]]\]

\[\Rightarrow (\forall e : \text{content}(ch) \bullet (\text{atom } e).\text{type} \in (\text{ran erro}\text{r} \cap \text{errorCodeTypes}) \Rightarrow (\exists t : \text{ran}((\text{atom } ch).\text{exit}) \bullet t \in (\text{ran erro}\text{r} \cap \text{errorCodeTypes}) \land \text{errorCode}((\text{atom } e).\text{type}) = \text{errorCode}(t)) \land (\forall t : \text{ran}((\text{atom } ch).\text{exit}) \bullet (t \in (\text{ran erro}\text{r} \cap \text{errorCodeTypes}) \Rightarrow (\exists e : \text{content}(ch) \bullet (\text{atom } e).\text{type} \in (\text{ran erro}\text{r} \cap \text{errorCodeTypes}) \land \text{errorCode}((\text{atom } e).\text{type}) = \text{errorCode}(t)))\]

We now consider fifteenth conjunct.

\[\text{ed} \in \{\text{ele} : \text{Element} \mid \text{FullSub}\}\]

\[\Rightarrow (\forall t : \text{Type} \bullet t \in \text{ran}((\text{atom } ed).\text{exit}) \Rightarrow t \in \text{inters})\]

\[\Rightarrow (\forall t : \text{Type} \bullet t \in \text{ran}((\text{atom } ch).\text{exit}) \Rightarrow t \in \text{inters}) \quad [\text{etype}? \in (\text{ran erro}\text{r} \cap \text{errorCodeTypes})]\]

We therefore conclude that the membership \(ch \in \{\text{ele} : \text{Element} \mid \text{FullSub}\}\) follows directly from constraints on the before state \(\text{Pool}\) and the input components. We now consider the conjunct \(md \in \{\text{proc} : \text{Process} \mid \text{Pool}\}\). We first expand the definition of \(md\):

\[md = \begin{cases}
\{(\text{proc} \cup \{\text{end}, \text{ch}\}) \setminus \{\text{ed}\} \cup ((\text{proc} \setminus \text{cont}(\text{proc}, \{\text{ed}\})) \cup \{s : \text{cont}(\text{proc}, \{\text{ed}\}) \bullet \text{rep}(s, \text{modify(content}(s), \{\text{end}, \text{ch}\}, \{\text{ed}\}))\}) & \text{if } \text{ed} \in \text{proc} \\
\text{otherwise}
\end{cases}\]

For the case \(ed \in \text{proc}\), we show \(md \in \{\text{proc} : \text{Process} \mid \text{Pool}\}\) follows directly from constraints on the before state \(\text{Pool}\) and the input components, where \(md \equiv (\text{proc} \cup \{\text{end}, \text{ch}\}) \setminus \{\text{ed}\}\). We expand this membership.

\[\exists e, f : md \bullet e \in \{\text{Start} \bullet \text{ele}\} \land f \in \{\text{End} \bullet \text{ele}\} \land \neg (\exists e : md \bullet e \in \{\text{Inter} \mid (\text{atom } \text{ele}.\text{type} \in \text{ran erro}\text{r} \bullet \text{ele}))\}) \land \forall e : g : \text{Element} \mid g \in_p md \bullet e \in \{\text{FlowObject} \bullet \text{ele}\} \land md \in \text{processSet} \land md \in \text{noOverLap} \land \]
(∀ f : {g : Element | g ∈ p md} • f ∈ eventgate ⇒
(∀ e : Element • (f, e) ∈ edge(leaf(md, e)) ⇒ e ∈ sendelement))

We consider the first two conjuncts.

(∀ e : {End • ele} • e ∈ {End • ele}) ∧
(∀ e : {Start • ele} • e ∈ {Inter | (atom ele).type ∈ ran ele})

We now consider the third conjunct.

(∀ e : {End • ele}) • e ∈ {End • ele}) ∧
(∀ e : {Start • ele} • e ∈ {Start • ele}) ∧
(∀ e : {Inter | (atom ele).type ∈ ran ele})

We now consider the fourth conjunct.

(∀ e : {g : Element | g ∈ p md} • e ∈ {FlowObject • ele})

We now consider the fifth conjunct.

(∀ f : {g : Element | g ∈ p md} • f ∈ p md)

We now consider the sixth conjunct.

(∀ e : {End • ele} • e ∈ {End • ele}) ∧
(∀ e : {Start • ele} • e ∈ {Start • ele}) ∧
(∀ e : {Inter | (atom ele).type ∈ ran ele})
Conjunct B.39 follows from precondition schema.

According to Lemma B.2, it is sufficient to deduce the following set of facts (conjuncts) about the before state Pool.

We therefore conclude that md ∈ \{proc : Process | Pool\} follows directly from constraints on the before state Pool and the input components.

For case ed ∉ proc, we consider the following inductive hypothesis

\[
\{s : cont(proc, \{ed\}) \cdot modify(content(s), \{end?, ch\}, \{ed\})\} \subseteq \{proc : Process | Pool\} \Rightarrow
\]

\[
((cont \setminus cont(proc, \{ed\})) \cup \{s : cont(proc, \{ed\}) \cdot rep(s, modify(content(s), \{end?, ch\}, \{ed\}))\}) \in \{proc : Process | Pool\}
\]

According to Lemma B.2, it is sufficient to deduce the following set of facts (conjuncts) about the precondition schema.

\[
cont(proc, \{ed\}) \subseteq ran\ compound
\]

\[
\#cont(proc, \{ed\}) = 1
\]

\[
\bigcup\{s : cont(proc, \{ed\}) \cdot getSegflows(modify(content(s), \{end?, ch\}, \{ed\}))\} \cap \bigcup\{s : cont(proc, \{ed\}) \cdot getMsgs(modify(content(s), \{end?, ch\}, \{ed\}))\} \cap
\]

\[
\{s, e : Element \mid s \in cont(proc, \{ed\}) \land e \in e \cdot e\} = \emptyset
\]

We consider each of the conjuncts individually: Conjunct [B.36] follows from the definition of cont and schema definition FullSub. Conjunct [B.37] follows from the membership proc ∈ noOverlap. Conjunct [B.38] follows from the following constraints.

\[
\text{getIns}(\{ed\}) = \text{getIns}(ch)
\]

\[
\text{outs}(ch) = \text{outs}(\{ed\}) \cup \text{eflow}?
\]

\[
\text{getIns}(\{end?\}) = \{eflow?\}
\]

\[
\text{eflow}? \notin \text{getSegflows proc} = \emptyset
\]

(proc ∈ noOverlap)

Conjunct [B.39] follows from getMsgs{ed} = getMsgs{ch} and proc ∈ noOverlap, and Conjunct [B.40] follows from \{(atom end?).type, (atom ch).type\} ∩ ran error = \emptyset. We conclude that md ∈ \{proc : Process | Pool\} follows directly from constraints on the before state Pool and the input components. We therefore obtain the final simplified precondition schema, labelled PreAddRelatedErrorException.
APPENDIX B. PRECONDITIONS

The precondition of AddException, labelled PreAddException, is defined as follows.

\[PreAddException \equiv PreAddNoRelatedErrorException \lor PreAddRelatedErrorException \]

\[B.16 \quad \text{Precondition of ConnectMgeFlowDiagram} \]

We expand the definitions of pre ConnectMgeFlowDiagram and apply the one-point rule to arrive at the following schema.

\[\exists \text{Diagram'} \; \bullet \; [\Delta \text{Diagram:} \; id1?, \; id2? : \text{PoolId}; \; msg? : \text{Mgeflow}; \; tos?, \; tor? : \text{Seqflow} | \]

\[\begin{align*}
\text{(let pc1} \; \text{=} \; \{\text{pool id1}\} \cdot \text{proc} \text{)} \\
\quad \text{pool id1}? \; = \; \{\text{proc} \rightarrow \text{pc1}\} \quad \land \\
\quad \text{pc1} \; \in \; \{\text{proc} : \text{Process} \mid \text{Pool}\} \quad \land \\
\quad \text{(pool' id1}? \; = \; \{\text{proc} \rightarrow \text{pc2Def}(\text{pc1}, \text{tos}?, \text{msg})\}\} \quad \lor \\
\quad \text{pool' id1}? \; = \; \{\text{proc} \rightarrow \text{pc3Def}(\text{pc1}, \text{tos}?, \text{msg})\}\} \quad \lor \\
\quad \text{pool' id1}? \; = \; \{\text{proc} \rightarrow \text{pc8Def}(\text{pc5}, \text{tor}?, \text{msg})\}\} \quad \lor \\
\quad \text{pool' id1}? \; = \; \{\text{proc} \rightarrow \text{pc9Def}(\text{pc5}, \text{tor}?, \text{msg})\}\} \quad \lor \\
\text{id1}? \; \neq \; \text{id2}? \; \land \\
\text{msg?} \; \notin \; \text{getMsgs}(\{p : \text{ran pool} \cdot p \cdot \text{proc}\}) \quad \land \\
\{id1?, \; id2?\} \; \subseteq \; \text{dom pool} \land \\
\{id1?, \; id2?\} \; \in \; \text{pool} = \{id1?, \; id2?\} \in \text{pool'} \]
\]
functions pc6Def, pc7Def, pc8Def and pc9Def define the value of component proc of the after state pool' id2. function pc6Def adds an incoming message flow to a start event contained in (pool id2).proc. function pc7Def adds an incoming message flow to an intermediate event contained in (pool id2).proc. function pc8Def adds an incoming message flow to an intermediate message event attached to either a task or a subprocess contained in (pool id2).proc. function pc9Def adds an incoming message flow to a task contained in (pool id2).proc.

pc6Def : (Process × Seqflow × Mgeflow) → Process

∀ pc6 : Process; tor : Seqflow; msg : Mgeflow •
(let chr1 == (msgrecs pc6) tor •
let chr2 == ct(chr1, smessage(message(msg))) •
let pc6 == modify(pc6, {chr2}, {chr1}) •
({chr1, chr2} ⊆ {ele : Element | Start} ∧
(atom chr1).type = smessage(nomessage) ∧
pc6 ∈ {proc : Process | Pool}) ⇒ pc6Def(pc6, tor, msg) = pc6)

pc7Def : (Process × Seqflow × Mgeflow) → Process

∀ pc7 : Process; tor : Seqflow; msg : Mgeflow •
(let chr3 == (msgrecs pc7) tor •
let chr4 == ct(chr3, imessage(message(msg))) •
let pc7 == modify(pc7, {chr4}, {chr3}) •
({chr3, chr4} ⊆ {ele : Element | Inter} ∧
(atom chr3).type = imessage(nomessage) ∧
pc7 ∈ {proc : Process | Pool}) ⇒ pc7Def(pc7, tor, msg) = pc7)

pc8Def : (Process × Seqflow × Mgeflow) → Process

∀ pc8 : Process; tor : Seqflow; msg : Mgeflow •
(let chr5 == (activities pc8) tor •
let rr1 == rrange((atom chr5).exit, imessage(nomessage), imessage(message(msg))) •
let chr6 == cm(chr5, 0, 0, rr1) •
let pc8 == modify(pc8, {chr6}, {chr5}) •
({chr5, chr6} ⊆ {ele : Element | Activity} ∧
#{((atom chr5).exit) > {imessage(nomessage)})} = 1 ∧
pc8 ∈ {proc : Process | Pool}) ⇒ pc8Def(pc8, tor, msg) = pc8)

pc9Def : (Process × Seqflow × Mgeflow) → Process

∀ pc9 : Process; tor : Seqflow; msg : Mgeflow •
(let chr7 == (tasks pc9) tor •
let chr8 == cm(chr7, 0, {msg}, (atom chr7).exit) •
let pc9 == modify(pc9, {chr8}, {chr7}) •
({chr7, chr8} ⊆ {ele : Element | FullTask} ∧
pc9 ∈ {proc : Process | Pool}) ⇒ pc9Def(pc9, tor, msg) = pc9)
We first consider the constraint \(\{ch3, chs2\} \subseteq \{ele : Element \mid End\} \) specified in the definition \(pc2\text{Def} \).

\[
ch3 = (\text{msgrecs} \text{pc} 5) \text{tos}? \land \\
\text{(atom ch3).type} = \text{smessage}(\text{nomessage}) \\
\Rightarrow ch3 \in \{ele : Element \mid \text{SMgeEvent}\} \land \\
\text{(atom ch3).type} = \text{smessage}(\text{nomessage}) \\
\Rightarrow ch3 \in \{ele : Element \mid \text{End}\} \land \\
\text{(atom ch3).type} = \text{smessage}(\text{nomessage}) \\
\Rightarrow \{ch3, chs2\} \subseteq \{ele : Element \mid \text{End}\} \\
\text{[pre AddMgeEvent]}
\]

We can see \(\{ch3, chs2\} \subseteq \{ele : Element \mid \text{End}\} \) follows directly from constraints on \((\text{pool id1})\text{.proc} \) and \(chs1 \).

We now consider the constraint \(\{ch3, chs4\} \subseteq \{ele : Element \mid \text{FullTask}\} \) specified in the definition \(pc3\text{Def} \). We notice the following.

\[
ch3 = (\text{tasks} \text{pc} 1) \text{tos}? \land \\
\text{msg}? \notin \text{Msgs} (\bigcup \{p : \text{ran pool} \cdot p\text{.proc}\}) \\
\Rightarrow ch3 \in \{ele : Element \mid \text{FullTask}\} \land \\
\text{msg}? \notin \text{Msg} (\text{atom chs3}) \\
\Rightarrow \{ch3, chs4\} \subseteq \{ele : Element \mid \text{FullTask}\} \\
\text{[pre AddSendMgeFlowTask]}
\]

We can see \(\{ch3, chs4\} \subseteq \{ele : Element \mid \text{FullTask}\} \) follows directly from constraints on \((\text{pool id1})\text{.proc} \) and \(chs3 \).

We now consider the constraint \(\{chr1, chr2\} \subseteq \{ele : Element \mid \text{Start}\} \) specified in the definition \(pc6\text{Def} \).

\[
chr1 = (\text{msgrecs} \text{pc} 5) \text{tor}? \land \\
\text{(atom chr1).type} = \text{smessage}(\text{nomessage}) \\
\Rightarrow chr1 \in \{ele : Element \mid \text{SMgeEvent}\} \land \\
\text{(atom chr1).type} = \text{smessage}(\text{nomessage}) \\
\Rightarrow chr1 \in \{ele : Element \mid \text{Start}\} \land \\
\text{(atom chr1).type} = \text{smessage}(\text{nomessage}) \\
\Rightarrow \{chr1, chr2\} \subseteq \{ele : Element \mid \text{Start}\} \\
\text{[pre AddMgeEvent]}
\]

We can see \(\{chr1, chr2\} \subseteq \{ele : Element \mid \text{Start}\} \) follows directly from constraints on \((\text{pool id2})\text{.proc} \) and \(chr1 \).

We now consider the constraint \(\{chr3, chr4\} \subseteq \{ele : Element \mid \text{Inter}\} \) specified in the definition \(pc7\text{Def} \).

\[
chr3 = (\text{msgrecs} \text{pc} 5) \text{tor}? \land \\
\text{(atom chr3).type} = \text{imessage}(\text{nomessage}) \\
\Rightarrow chr3 \in \{ele : Element \mid \text{IMgeEvent}\} \land \\
\text{(atom chr3).type} = \text{imessage}(\text{nomessage}) \\
\Rightarrow chr3 \in \{ele : Element \mid \text{Inter}\} \land \\
\text{(atom chr3).type} = \text{imessage}(\text{nomessage}) \\
\Rightarrow \{chr3, chr4\} \subseteq \{ele : Element \mid \text{Inter}\} \\
\text{[pre AddMgeEvent]}
\]

We can see \(\{chr3, chr4\} \subseteq \{ele : Element \mid \text{Inter}\} \) follows directly from constraints on \((\text{pool id2})\text{.proc} \) and \(chr3 \).
APPENDIX B. PRECONDITIONS

We now consider the constraint \{chr5, chr6\} \subseteq \{ele : Element | Activity\} specified in the definition pc8Def.

\begin{align*}
\text{chr5} &= (\text{activities } pc5) \text{ tor? } \land \\
\#((\text{atom } chr5).\text{exit}) \triangleright \{\text{imessage(} \text{nomessage})\} = 1 \land \\
\text{msg?} \notin \text{getMsgs}(\bigcup\{p : \text{ran pool } \bullet p.\text{proc}\}) \\
\Rightarrow \text{ chr5} \in \{\text{ele : Element } | \text{ Activity}\} \land \\
\#((\text{atom } chr5).\text{exit}) \triangleright \{\text{imessage(} \text{nomessage})\} = 1 \land \\
\text{msg?} \notin \text{getMsgs}(\bigcup\{p : \text{ran pool } \bullet p.\text{proc}\}) \\
\Rightarrow \text{ chr5} \in \{\text{ele : Element } | \text{ Activity}\} \\
\Rightarrow \{\text{chr5, chr6}\} \subseteq \{\text{ele : Element } | \text{ Activity}\} & \quad \text{[def of activities]} \\
\text{msg?} \notin \text{getMsgs}(\text{atom chr5}) \\
\Rightarrow \{\text{chr5, chr6}\} \subseteq \{\text{ele : Element } | \text{ Activity}\} \\
\end{align*}

We can see \{chr5, chr6\} \subseteq \{ele : Element | Activity\} follows directly from constraints on (pool id2?).proc and chr5.

We now consider the constraint \{chr7, chr8\} \subseteq \{ele : Element | FullTask\} specified in the definition pc9Def.

\begin{align*}
\text{chr7} &= (\text{tasks } pc5) \text{ tor? } \land \\
\text{msg?} \notin \text{getMsgs}(\bigcup\{p : \text{ran pool } \bullet p.\text{proc}\}) \\
\Rightarrow \text{ chr7} \in \{\text{ele : Element } | \text{ FullTask}\} \land \\
\text{msg?} \notin \text{getMsgs}(\bigcup\{p : \text{ran pool } \bullet p.\text{proc}\}) \\
\Rightarrow \text{ chr7} \in \{\text{ele : Element } | \text{ FullTask}\} \land \\
\Rightarrow \{\text{chr7, chr8}\} \subseteq \{\text{ele : Element } | \text{ FullTask}\} & \quad \text{[def of tasks and \triangleright]} \\
\end{align*}

We can see \{chr7, chr8\} \subseteq \{ele : Element | FullTask\} follows directly from constraints on (pool id2?).proc and chr7.

We now consider the constraint \text{pc2} \in \{\text{proc : Process } | \text{ Pool}\} specified in the definition pc2Def. Note that by definition of the before state schema \text{Diagram}, we have the following implication.

\begin{align*}
\text{pc1} &= (\text{pool id1}).\text{proc} \Rightarrow \text{pc1} \in \{\text{proc : Process } | \text{ Pool}\} & \quad \text{[pool } \in \text{ PoolId } \rightarrow \text{ Pool]} \\
\end{align*}

We now expand the definition of pc2:

\begin{align*}
\text{pc2} &= \left\{ \begin{array}{ll}
\{p1 \cup \{chs2\} \setminus \{chs1\} & \text{if } chs1 \in pc1 \\
(p1 \setminus \text{cont}(\text{proc}, \{chs1\})) \cup & \text{otherwise} \\
\{s : \text{cont}(p1, \{chs1\}) \bullet \text{rep}(s, \text{modify(content(s), } \{chs2\}, \{chs1\}))\} & \\
\end{array} \right. \\
\end{align*}

For the case \text{chs1} \in \text{pc1}, we show \text{pc2} \in \{\text{proc : Process } | \text{ Pool}\} follows directly from constraints on the before state \text{Pool} and the input components, where \text{pc2} = (\text{pc1} \cup \{chs2\}) \setminus \{chs1\}.

\begin{align*}
\text{pc1} \in \{\text{proc : Process } | \text{ Pool}\} \land \\
\{chs1, chs2\} \subseteq \{\text{End } \bullet (\text{atom } ele).\text{type } \in \text{ran emessage}\} & \quad \text{[def of pc1, chs1 and chs2]} \\
\Rightarrow & \quad \text{[set-compre, def of GenProc, hasExgates and rearrange]} \\
& \quad (\exists e, f : \text{pc1 } \bullet e \in \{\text{Start } \bullet ele\} \land f \in \{\text{End } \bullet ele\}) \land \\
& \quad (\neg (\exists e : \text{pc1 } \bullet e \in \{\text{Inter } | (\text{atom } ele).\text{type } \in \text{ran ierror } \bullet ele\})) \land \\
& \quad (\forall e : \{g : \text{Element } | g \in \text{p pc1} \bullet e \in \{\text{FlowObject } \bullet ele\}\}) \land \\
& \quad \text{pc1} \in \text{processSet} \land \\
& \quad \text{pc1} \in \text{noOverLap} \land \\
\end{align*}
\[\forall f : \{ g : \text{Element} \mid g \in_p pc1 \} \cdot f \in \text{eventgate} \Rightarrow \]
\[(\forall e : \text{Element} \cdot (f, e) \in \text{edge} (\text{direct} (pc1, e)) \Rightarrow e \in \text{sendelement}) \]
\[\Rightarrow \]
\[\{ \exists e, f : pc2 \cdot e \in \{ \text{Start} \cdot e \} \land \] \[f \in \{ \text{End} \cdot e \} \land \]
\[\neg (\exists e : pc2 \cdot e \in \{ \text{Inter} \mid (\text{atom} e).\text{type} \in \text{ran} \text{error} \cdot e \}) \} \land \]
\[(\forall e : \{ g : \text{Element} \mid g \in_p pc2 \} \cdot e \in \{ \text{FlowObject} \cdot e \}) \] \[\land \]
\[pc2 \in \text{processSet} \land \]
\[pc2 \in \text{noOverlap} \land \]
\[(\forall f : \{ g : \text{Element} \mid g \in_p pc2 \} \cdot f \in \text{eventgate} \Rightarrow \]
\[(\forall e : \text{Element} \cdot (f, e) \in \text{edge} (\text{direct} (pc2, e)) \Rightarrow e \in \text{sendelement}) \]

We therefore conclude that \(pc2 \in \{ \text{proc} : \text{Process} \mid \text{Pool} \} \) follows directly from constraints on \(pc1 \) and the input components.

For case \(chs1 \notin pc1 \), we consider the following inductive hypothesis

\[\{ s : \text{cont} (pc1, \{ chs1 \}) \cdot \text{modify} (\text{content} (s), \{ chs2 \}, \{ chs1 \}) \} \subseteq \{ \text{proc} : \text{Process} \mid \text{Pool} \} \]
\[((\text{proc} \setminus \text{cont} (pc1, \{ chs1 \})) \cup \]
\[\{ s : \text{cont} (pc1, \{ chs1 \}) \cdot \text{rep} (s, \text{modify} (\text{content} (s), \{ chs2 \}, \{ chs1 \})) \} \} \subseteq \{ \text{proc} : \text{Process} \mid \text{Pool} \} \]

According to Lemma \[B.2 \], it is sufficient to deduce the following set of facts (conjuncts) about the precondition schema.

\[\text{cont}(pc1, \{ chs1 \}) \subseteq \text{ran compound} \] \hspace{1cm} (B.41)
\[\#\text{cont}(pc1, \{ chs1 \}) = 1 \] \hspace{1cm} (B.42)
\[\bigcup \{ s : \text{cont} (pc1, \{ chs1 \}) \cdot \text{getSeqflows} (\text{modify} (\text{content} (s), \{ chs2 \}, \{ chs1 \})) \} \cap \]
\[\text{getSeqflows} (pc1 \setminus \{ s, e : \text{Element} \mid s \in \text{cont} (pc1, \{ chs1 \}) \land e \in_e s \cdot e \}) = \emptyset \] \hspace{1cm} (B.43)
\[\bigcup \{ s : \text{cont} (pc1, \{ chs1 \}) \cdot \text{getMsgs} (\text{modify} (\text{content} (s), \{ chs2 \}, \{ chs1 \})) \} \cap \]
\[\text{getMsgs} (pc1 \setminus \{ s, e : \text{Element} \mid s \in \text{cont} (pc1, \{ chs1 \}) \land e \in_e s \cdot e \}) = \emptyset \] \hspace{1cm} (B.44)
\[\{ s, e : \text{Element} \mid s \in \text{cont} (pc1, \{ chs1 \}) \land \]
\[e \in \text{modify} (\text{content} (s), \{ chs2 \}, \{ chs1 \}) \} \land (\text{atom} e).\text{type} \in \text{ran} \text{error} \cdot e \} = \]
\[\{ s, e : \text{Element} \mid s \in \text{cont} (pc1, \{ chs1 \}) \land e \in \text{content} (s) \land (\text{atom} e).\text{type} \in \text{ran} \text{error} \cdot e \} \] \hspace{1cm} (B.45)

We consider each of the conjuncts individually: Conjecture \[B.41 \] follows from the definition of \(\text{cont} \) and schema definition \text{FullSub}. Conjecture \[B.42 \] follows from the membership \(pc1 \notin \text{noOverlap} \). Conjecture \[B.43 \] follows from the following constraints \(\text{getIns} \{ chs1 \} = \text{getIns} \{ chs2 \}, \text{outs} \{ chs1 \} = \text{outs} \{ chs2 \} \) and \(pc1 \in \text{noOverlap} \). Conjecture \[B.44 \] follows from \(\text{getMsgs} \{ chs2 \} = \{ \text{msg} \}, \text{msg} \notin \text{getMsgs} \{ pc1 \} \) and \(pc1 \in \text{noOverlap} \). Conjecture \[B.45 \] follows from \(\{ (\text{atom} chs1 \cdot \text{type}, (\text{atom} _2 \cdot \text{type}) \} \cap \text{ran error} = \emptyset \).

We can conclude that \(pc2 \in \{ \text{proc} : \text{Process} \mid \text{Pool} \} \) follows directly from constraints on the before state and the input components. Note that since we have the following implication,

\[pc5 = (\text{pool id2}), \text{proc} \Rightarrow pc5 \in \{ \text{proc} : \text{Process} \mid \text{Pool} \} \quad \text{[pool} \in \text{PoolId} \Rightarrow \text{Pool}] \]

we may apply to same reasoning for the following constraints.

\[pc7 \in \{ \text{proc} : \text{Process} \mid \text{Pool} \} \]
\[pc6 \in \{ \text{proc} : \text{Process} \mid \text{Pool} \} \]

where \(pc6 = \text{modify} (pc5, \{ \text{chr2} \}, \{ \text{chr1} \}) \) specified in the definition \(\text{pc6Def} \) and \(pc7 = \text{modify} (pc5, \{ \text{chr4} \}, \{ \text{chr3} \}) \) specified in the definition \(\text{pc7Def} \). Here the \text{type} component is the only modification between \text{chr1} and \text{chr2}, and \text{chr3} and \text{chr4}. Moreover, their \text{type} components are members of ran \text{smessage} \cup \text{ran imessage}.

We now consider the constraint $pc3 \in \{\text{proc} : \text{Process} \mid \text{Pool}\}$ specified in the definition $pc3\text{Def}$. We show this follows directly from constraints on $pc1$ and the input components by induction over the containment in $pc3$. We first expand the definition of $pc3$:

$$pc3 = \begin{cases}
(pc1 \cup \{chs4\}) \setminus \{chs3\} & \text{if } chs3 \in pc1 \\
((pc1 \setminus \text{cont}(proc, \{chs3\})) \cup \\
\{s : \text{cont}(pc1, \{chs3\}) \bullet \text{rep}(s, \text{modify(content}(s), \{chs4\}, \{chs3\}))) & \text{otherwise}
\end{cases}$$

For the case $chs3 \in pc1$, we show $pc3 \in \{\text{proc} : \text{Process} \mid \text{Pool}\}$ follows directly from constraints on the before state $Pool$ and the input components, where $pc3 = ((pc1 \cup \emptyset) \setminus \{chs3\}) \cup \{chs4\}$.

$$pc1 \in \{\text{proc} : \text{Process} \mid \text{Pool}\} \wedge \{chs3, chs4\} \subseteq \{\text{ele} : \text{Element} \mid \text{FullTask}\} \Rightarrow \quad \text{[def of pc1, chs3 and chs4]}$$

$$\exists e, f : pc1 \bullet e \in \{\text{Start} \bullet \text{ele}\} \wedge f \in \{\text{End} \bullet \text{ele}\} \wedge \quad \text{[set-compare, def of GenProc, hasExgates and rearrange]}$$

$$\exists e, f : pc1 \bullet e \in \{\text{Inter} \mid (\text{atom ele})\text{.type} \in \text{ran error} \bullet \text{ele}\} \wedge \quad \text{[set-compare, def of GenProc, hasExgates and rearrange]}$$

$$\{\text{chs3, chs4}\} \subseteq \{\text{ele} : \text{Element} \mid \text{FullTask}\} \Rightarrow \quad \text{[set-compare, def of GenProc, hasExgates and rearrange]}$$

We therefore conclude that $pc3 \in \{\text{proc} : \text{Process} \mid \text{Pool}\}$ follows directly from constraints on the before state $Pool$ and the input components.

For case $chs3 \notin pc1$, we consider the following inductive hypothesis

$$\{s : \text{cont}(pc1, \{chs3\}) \bullet \text{modify(content}(s), \{chs4\}, \{chs3\})) \subseteq \{\text{proc} : \text{Process} \mid \text{Pool}\} \Rightarrow \quad \text{[set-compare, def of GenProc, hasExgates and rearrange]}$$

$$((pc \setminus \text{cont}(proc, \{chs3\})) \cup \{s : \text{cont}(pc1, \{chs3\}) \bullet \text{rep}(s, \text{modify(content}(s), \{chs4\}, \{chs3\}))) \in \{\text{proc} : \text{Process} \mid \text{Pool}\}$$

According to Lemma [B.2], it is sufficient to deduce the following set of facts (conjuncts) about the precondition schema.

$$\text{cont}(pc1, \{chs3\}) \subseteq \text{ran compound} \quad \text{(B.46)}$$

$$\#\text{cont}(pc1, \{chs3\}) = 1 \quad \text{(B.47)}$$

$$\text{getSegflows(pc1 \setminus \{s, e : \text{Element} \mid s \in \text{cont}(pc1, \{chs3\}) \wedge e \in e_s \bullet e\}) = \emptyset} \quad \text{(B.48)}$$

$$\text{getMsgs(pc1 \setminus \{s, e : \text{Element} \mid s \in \text{cont}(pc1, \{chs3\}) \wedge e \in e_s \bullet e\}) = \emptyset} \quad \text{(B.49)}$$

$$\{s, e : \text{Element} \mid s \in \text{cont}(pc1, \{chs3\}) \wedge e \in \text{content}(s) \wedge (\text{atom e).type} \in \text{ran error} \bullet e\} = \{s, e : \text{Element} \mid s \in \text{cont}(pc1, \{chs3\}) \wedge e \in \text{content}(s) \wedge (\text{atom e).type} \in \text{ran error} \bullet e\} \quad \text{(B.50)}$$
We consider each of the conjuncts individually: Conjecture B.46 follows from the definition of \(\text{cont} \) and schema definition \(\text{FullSub} \). Conjecture B.47 follows from the membership \(pc1 \in \text{noOverLap} \). Conjecture B.48 follows from the following constraints \(\text{getIns}(\text{chs}3) = \text{getIns}(\text{chs}4), \text{outs}(\text{chs}3) = \text{outs}(\text{chs}4) \) and \(pc1 \in \text{noOverLap} \). Conjecture B.49 follows from \(\text{getMsgs}(\text{chs}4) = \text{getMsgs}(\text{chs}3) \cup \{ \text{msg?} \}, \text{msg?} \notin \text{getMsgs}(pc1) \) and \(pc1 \in \text{noOverLap} \), and Conjecture B.50 follows from \(\{ (\text{atom} \text{chs}3).\text{type}, (\text{atom} \text{chs}4).\text{type} \} \cap \text{ran} \text{error} = \emptyset \).

We therefore conclude that \(pc3 \in \{ \text{proc : Process | Pool} \} \) follows directly from constraints on the before state and \(pc1 \). Note that we may again apply to same reasoning for the following constraints.

\[
\text{pc9} \in \{ \text{proc : Process | Pool} \}
\]

where \(\text{pc9} = \text{modify}(\text{pc5}, \{ \text{chr}8 \}, \{ \text{chr}7 \}) \) specified in the definition \(\text{pc9Def} \). Here the receive component is the only modification between \(\text{chr}7 \) and \(\text{chr}8 \) such that \(\text{getMsgs}(\text{chr}7) \cup \{ \text{msg?} \} = \text{getMsgs}(\text{chr}8) \) and \(\text{msg?} \notin \text{getMsgs}(\text{pc1}) \).

We now consider the constraint \(\text{pc8} \in \{ \text{proc : Process | Pool} \} \) specified in the definition \(\text{pc8Def} \). We show this follows directly from constraints on the before state \(\text{pc5} \) and the input components by induction over the containment in \(\text{pc8} \). We first expand the definition of \(\text{pc8} \):

\[
\text{pc8} = \begin{cases}
(\text{pc5} \cup \{ \text{chr}6 \}) \setminus \{ \text{chr}5 \} & \text{if } \text{chr}5 \in \text{pc5} \\
((\text{pc5} \setminus \text{cont} \text{proc}, \{ \text{chr}5 \})) \cup \\
\{ s : \text{cont} \text{pc5}, \{ \text{chr}5 \} \} \cdot \text{rep}(s, \text{modify(content(s), \{ \text{chr}6 \}, \{ \text{chr}5 \}))) & \text{otherwise}
\end{cases}
\]

For the case \(\text{chr}5 \in \text{pc5} \), we show \(\text{pc8} \in \{ \text{proc : Process | Pool} \} \) follows directly from constraints on the before state \(\text{Pool} \) and the input components, where \(\text{pc8} \equiv (\text{pc5} \cup \{ \text{chr}6 \}) \setminus \{ \text{chr}5 \} \).

\[
\text{pc5} \in \{ \text{proc : Process | GenProc \& hasExgates} \} \land \\
\{ \text{chr}5, \text{chr}6 \} \subseteq \{ \text{ele : Element | FullSub} \} \land \\
\text{getSeqflows} \text{chr}6 = \text{getSeqflows} \text{chr}5 \\
\Leftrightarrow \\
\set\text{comp}, \text{def of GenProc, hasExgates and rearrange}
\]

\[
(\exists e, f : \text{pc5} \cdot e \in \{ \text{Start} \cdot \text{ele} \} \land f \in \{ \text{End} \cdot \text{ele} \}) \\
(\neg (\exists e : \text{pc5} \cdot e \in \{ \text{Inter} \cdot (\text{atom ele}).\text{type} \in \text{ran error} \cdot \text{ele} \})) \\
(\forall e : \{ g : \text{Element} \cdot g \in \text{pc5} \} \cdot e \in \{ \text{FlowObject} \cdot \text{ele} \}) \\
\text{pc5} \in \text{processSet} \\
\text{pc5} \in \text{noOverLap} \\
(\forall f : \{ g : \text{Element} \cdot g \in \text{pc5} \} \cdot f \in \text{eventgate} \Rightarrow \\
(\forall e : \{ \text{Element} \cdot (f, e) \in \text{edge} \text{direct} \text{pc5}, e \}) \Rightarrow e \in \text{sendelement})) \\
\text{pc5} \in \text{processSet} \\
\text{pc5} \in \text{noOverLap} \\
(\forall f : \{ g : \text{Element} \cdot g \in \text{pc5} \} \cdot f \in \text{eventgate} \Rightarrow \\
(\forall e : \{ \text{Element} \cdot (f, e) \in \text{edge} \text{direct} \text{pc5}, e \}) \Rightarrow e \in \text{sendelement}))
\]

We therefore conclude that \(\text{pc8} \in \{ \text{proc : Process | Pool} \} \) follows directly from constraints on \(\text{pc5} \) and the input components

For case \(\text{chr}5 \notin \text{pc5} \), we consider the following inductive hypothesis

\[
\{ s : \text{cont} \text{pc5}, \{ \text{chr}5 \} \} \cdot \text{modify} \text{content(s), \{ \text{chr}6 \}, \{ \text{chr}5 \}} \subseteq \{ \text{proc : Process | Pool} \} \Rightarrow \\
((\text{proc} \setminus \text{cont} \text{proc}, \{ \text{chr}5 \})) \cup
\]
APPENDIX B. PRECONDITIONS

\{s : \text{cont}(\text{pc}, \{\text{chr}\}) \bullet \text{rep}(s, \text{modify}(\text{content}(s), \{\text{chr}\}))\} \in \{\text{proc} : \text{Process} | \text{Pool}\}

According to Lemma \ref{lem:B.2}, it is sufficient to deduce the following set of facts (conjuncts) about the precondition schema.

\begin{equation}
\text{cont}(\text{pc}, \{\text{chr}\}) \subseteq \text{ran compound} \quad (B.51)
\end{equation}

\begin{equation}
\#\text{cont}(\text{pc}, \{\text{chr}\}) = 1 \quad (B.52)
\end{equation}

\begin{equation}
\bigcup\{s : \text{cont}(\text{pc}, \{\text{chr}\}) \bullet \text{getSeqflows}(\text{modify}(\text{content}(s), \{\text{chr}\}))\} \cap \bigcup\{s : \text{cont}(\text{pc}, \{\text{chr}\}) \bullet \text{getMsgs}(\text{modify}(\text{content}(s), \{\text{chr}\}))\} \cap \bigcup\{s, e : \text{Element} \in \text{cont}(\text{pc}, \{\text{chr}\}) \wedge e = e \bullet e\} = \emptyset \quad (B.53, B.54)
\end{equation}

\begin{equation}
\{s, e : \text{Element} \in \text{cont}(\text{pc}, \{\text{chr}\}) \wedge e = e \bullet e\} = \emptyset \quad (B.55)
\end{equation}

We consider each of the conjuncts individually: Conjunct \ref{eq:B.51} follows from the definition of \text{cont} and schema definition \text{FullSub}. Conjunct \ref{eq:B.52} follows from the membership \text{pc} \in \text{noOverLap}. Conjunct \ref{eq:B.53} follows from the following constraints: \text{getIns}\{\text{chr}\} = \text{getIns}\{\text{chr}\}, \text{outs}(\text{chr}) = \text{outs}(\text{chr})\) and \text{pc} \in \text{noOverLap}. Conjunct \ref{eq:B.54} follows from \text{getMsgs}\{\text{chr}\} = \text{getMsgs}\{\text{chr}\} \cup \{\text{msg}\}, \text{msg} \notin \text{getMsgs}(\text{pc})\) and \text{pc} \in \text{noOverLap}. Conjunct \ref{eq:B.55} follows from \{(\text{atom} e).\text{type} \in \text{ran error} \bullet e\}

We conclude that \text{pc} \in \text{\{proc} : \text{Process} | \text{Pool}\} follows directly from constraints on the before state \text{Pool} and the input components.

We now consider eliminating the existential quantifier over the after state \text{Diagram}'. This requires investigation into all possible combinations of assigning values for \text{pool}' \text{id}1? and \text{pool}' \text{id}2? of the after state. By applying schema quantification and one-point rule to the \text{pool}' component of the after state, we consider the constraint \text{pool}' \in \text{\{pool} : \text{PoolId} \mapsto \text{Pool} | \text{Diagram}\} where \text{pool}' takes one of the following 8 values.

\begin{equation}
\text{pool}' = \text{pool} \oplus \{\text{id}1? \mapsto \{\text{proc} \sim \text{pc}\}, \text{id}2? \mapsto \{\text{proc} \sim \text{pc}\}\} \quad (B.56)
\end{equation}

\begin{equation}
\text{pool}' = \text{pool} \oplus \{\text{id}1? \mapsto \{\text{proc} \sim \text{pc}\}, \text{id}2? \mapsto \{\text{proc} \sim \text{pc}\}\} \quad (B.57)
\end{equation}

\begin{equation}
\text{pool}' = \text{pool} \oplus \{\text{id}1? \mapsto \{\text{proc} \sim \text{pc}\}, \text{id}2? \mapsto \{\text{proc} \sim \text{pc}\}\} \quad (B.58)
\end{equation}

\begin{equation}
\text{pool}' = \text{pool} \oplus \{\text{id}1? \mapsto \{\text{proc} \sim \text{pc}\}, \text{id}2? \mapsto \{\text{proc} \sim \text{pc}\}\} \quad (B.59)
\end{equation}

\begin{equation}
\text{pool}' = \text{pool} \oplus \{\text{id}1? \mapsto \{\text{proc} \sim \text{pc}\}, \text{id}2? \mapsto \{\text{proc} \sim \text{pc}\}\} \quad (B.60)
\end{equation}

\begin{equation}
\text{pool}' = \text{pool} \oplus \{\text{id}1? \mapsto \{\text{proc} \sim \text{pc}\}, \text{id}2? \mapsto \{\text{proc} \sim \text{pc}\}\} \quad (B.61)
\end{equation}

\begin{equation}
\text{pool}' = \text{pool} \oplus \{\text{id}1? \mapsto \{\text{proc} \sim \text{pc}\}, \text{id}2? \mapsto \{\text{proc} \sim \text{pc}\}\} \quad (B.62)
\end{equation}

\begin{equation}
\text{pool}' = \text{pool} \oplus \{\text{id}1? \mapsto \{\text{proc} \sim \text{pc}\}, \text{id}2? \mapsto \{\text{proc} \sim \text{pc}\}\} \quad (B.63)
\end{equation}

We select Combination \ref{eq:B.56} expand the constraint \text{pool}' \in \text{\{pool} : \text{PoolId} \mapsto \text{Pool} | \text{Diagram}\} and consider each conjunct individually.

\begin{equation}
[[\{\text{proc} \sim \text{pc}\}, \{\text{proc} \sim \text{pc}\}\} \cap \text{ran pool} = \emptyset]
\end{equation}

\begin{equation}
[\text{pool} \neq \emptyset]
\end{equation}

\begin{equation}
 \forall p, q : \text{ran pool}' \bullet p \neq q \Rightarrow \text{getSeqflows} p.\text{proc} \cap \text{getSeqflows} q.\text{proc} = \emptyset
\end{equation}
We therefore conclude that pool’ ∈ {pool : PoolId ↔ Pool | Diagram} with Combination [B.56] follows directly from constraints on the before state Diagram and the input components. Note that we could apply the same reasoning for the other possible combinations [B.57] to [B.63]. We therefore obtain the final simplified preconditions schema, labelled PreConnectMgeFlowDiagram.

<table>
<thead>
<tr>
<th>PreConnectMgeFlowDiagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagram</td>
</tr>
<tr>
<td>id1?, id2? : PoolId</td>
</tr>
<tr>
<td>msg? : Myeflow</td>
</tr>
<tr>
<td>tos?, tor? : Seqflow</td>
</tr>
</tbody>
</table>

{id1? ≠ id2? ∧
{id1?, id2?} ⊆ dom pool ∧
msg? ∈ getMsgs(∪{p : ran pool • p.proc}) ∧
(((atom ((msgsend ((pool id1?),proc)) tos?),type = emessage(nomessage) ∨
tos? ∈ dom(tasks ((pool id1?).proc)))
∧
((atom ((msgrecs ((pool id2?),proc)) tor?),type = smessage(nomessage) ∨
atom ((msgrecs ((pool id2?),proc)) tor?),type = imessage(nomessage) ∨
tor? ∈ dom(tasks ((pool id2?).proc)) ∨
(tor? ∈ dom(activities ((pool id2?).proc)) ∧
#(((atom ((activities ((pool id2?).proc)) tor?).exit) ∨ {imessage(nomessage)})) = 1))}
Appendix C

Proofs

C.1 Proofs for Section 5.8

In this section we write $D_p[P]$ to denote the semantics of some BPMN process P, and let X and Y be two BPMN processes such that their behaviours are given by the following CSP processes,

$$D_p[X] = \{ i : I \cdot \alpha P(i) \circ P(i) \}$$
$$D_p[Y] = \{ j : J \cdot \alpha P(j) \circ P(j) \}$$

where process X directly contains the set of elements I and Y directly contains the set of elements J. Similarly, we write $D[D]$ to denote the semantics of some BPMN diagram D and let M and N be two BPMN diagrams such that their behaviours are given by the following CSP processes,

$$D[M] = \{ i : \text{dom } M.pools \cdot \alpha Pl(M, i) \circ Pl(M, i) \}$$
$$D[N] = \{ j : \text{dom } N.pools \cdot \alpha Pl(N, j) \circ Pl(N, j) \}$$

where $Pl(M, i) = D_p[M.pools(i).proc]$.

Lemma C.1. Let X and Y be BPMN processes satisfying Condition 4 on Page 92 and that $D_p[X] \sqsubseteq \sqcap \sqcup D_p[Y]$. Given some element $g \in I \cap J$, such that CSP processes XP and YP are defined as follows,

$$XP = \{ i : I \setminus \{ g \} \cdot \alpha P(i) \circ P(i) \}$$
$$YP = \{ j : J \setminus \{ g \} \cdot \alpha P(j) \circ P(j) \}$$

then $XP \sqsubseteq \sqcap \sqrt{\sqcup} YP$ holds.

Proof. Due to Condition 4, we can partition the set of elements $I \setminus J$ into two sets (A, B) partition $(I \setminus J)$: Each element $e \in A$ is either an data-based XOR split gateway, a subprocess, a nondeterministic sequential multiple instance activity or a nondeterministic parallel multiple instance activity such that there exists an element $e' \in J \setminus I$ where $P(e) \sqsubseteq \sqcap \sqrt{\sqcup} P(e')$. For each element $f \in B$, $(e, f) \in \text{edge}(X)^+$ for some data-based XOR split gateway $e \in A$. Again due to Condition 4, we further partition that $J \setminus I$ into two sets (M, N) partition $J \setminus I$: For each $e' \in M$, there exists exactly one element $e \in A$ such that $P(e) \sqsubseteq \sqcap \sqrt{\sqcup} P(e')$, and each element $e \in N$ is a XOR join gateway such that there exists a XOR join gateway $f \in B$ with the same outgoing sequence flow and whose set of incoming sequence flows is a superset of e’s. Let $K \subseteq B$ be the set of elements such that there is no XOR join gateway $f \in B$ with the same outgoing sequence flow. We observe that YP does not offer any events performed by elements in K, therefore YP can be expressed as follows,

$$YP = \{ j : (J \cup B) \setminus (N \cup \{ g \}) \cdot \alpha P(j) \circ P(j) \}$$

where processes modelling behaviour of elements in K are composed in parallel with those of elements in J such that processes modelling behaviour of element in N can safely be replaced by those of element in $B \setminus K$. This is possible since CSP events, which model those incoming sequence flows of elements in $B \setminus K$ and do not belong to elements in N, have to be synchronised with elements in K, whose only events we know can be performed are those for cooperating with completion. Furthermore, by the following argument:

$$(J \cup B) \setminus (N \cup \{ g \}) \equiv (J \cup ((I \setminus J) \setminus A)) \setminus (N \cup \{ g \})$$

$$(A, B \text{ partition } (I \setminus J))$$

252
APPENDIX C. PROOFS

\(\equiv (J \cup (I \setminus A)) \setminus (N \cup \{g\}) \)
\(\equiv (M \cup (I \setminus A)) \setminus \{g\} \)

\([M, N] \) partition \(J \setminus I \)

YP can be expressed as follows:

\[YP = \{j : ((I \setminus A) \cup M) \setminus \{g\} \land (\alpha P(j) \circ P(i)) \}
\]

Since \(g \notin M \cup A \), let \(I' = I \setminus ((g) \cup A) \) and both XP and YP can be expressed as follows:

\[XP = \{i : I' \cup A \land (\alpha P(i) \circ P(i)) \}
\]
\[YP = \{j : J' \cup M \land (\alpha P(j) \circ P(i)) \}
\]

By Lemma C.1, we have \(XP \sqsubseteq F \) and \(YP \sqsubseteq F \), by monotonicity of \(\sqsubseteq \) with respect to \(F \), we conclude \(XP \sqsubseteq YP \).

Lemma C.2. Let \(X \) and \(Y \) be BPMN processes satisfy Condition \(\square \) on Page 92 and that \(D_p \| X \sqsubseteq F \) \(D_p \| Y \). Given some set of end events \(E \subseteq I \cap J \), such that CSP processes \(XP \) and \(YP \) are defined as follow,

\[XP = \{i : I \setminus F \land (\alpha P(i) \circ \{ f : F \circ c.f \}) \land P(i) \}
\]
\[YP = \{j : J \setminus F \land (\alpha P(j) \circ \{ f : F \circ c.f \}) \land P(j) \}
\]

then \(XP \sqsubseteq YP \) holds.

Proof. We let \(XP' \) and \(YP' \) defined as follows:

\[XP' = \{i : I \setminus F \land (\alpha P(i) \circ P(i)) \}
\]
\[YP' = \{j : J \setminus F \land (\alpha P(j) \circ P(j)) \}
\]

By Lemma C.1 we have \(XP' \sqsubseteq YP' \). We now consider processes \(XP \) and \(YP \), which can be equivalently expressed as \(XP' \| \{ f : F \circ c.f \} \| \text{Skip} \) and \(YP' \| \{ f : F \circ c.f \} \| \text{Skip} \) respectively. By monotonicity of \(\sqsubseteq \) with respect to \(F \), we conclude \(XP \sqsubseteq YP \).

Lemma C.3. Let \(X \) and \(Y \) be BPMN processes satisfy Condition \(\square \) on Page 92 and that \(D_p \| X \sqsubseteq F \) \(D_p \| Y \). Given two sets of end events \(E \subseteq I \cap J \) and \(F \cap (I \cup J) = \emptyset \), such that CSP processes \(XQ \) and \(YQ \) are defined as follow,

\[XQ = \{i : I \setminus E \land (\alpha P(i) \circ \{ f : F \circ c.f \} \circ ES \circ addends((P(i), F))) \}
\]
\[YQ = \{j : J \setminus E \land (\alpha P(j) \circ \{ f : F \circ c.f \} \circ ES \circ addends((P(j), F))) \}
\]

where \(ES = \{ e : E \circ c.e \} \) and \(FS = \{ f : F \circ c.f \} \), and \(XP \sqsubseteq YP \) holds.

Proof. We let \(XP = \{i : I \setminus E \land (\alpha P(i) \circ ES \circ P(i)) \) and \(YP = \{j : J \setminus E \land (\alpha P(j) \circ ES \circ P(j)) \) Due to Lemma C.2 we know \(XP \sqsubseteq YP \). We observe that \(XQ \) may perform an event \(c.f \) where \(f \in F \) if and only if for all \(i \in I \), \(addends(P(i), F) \) offers to perform \(c.f \). This also holds for \(YQ \). Moreover, after performing \(c.f \), both \(XQ \) and \(YQ \) become \(\text{Skip} \) as a result \(XQ \) and \(YQ \) can be expressed as follows,

\[XQ \equiv \(((XP \| \{ f : F \circ c.f \} \| \text{Skip}) \| \{ f : F \circ c.f \}) \| \text{Skip}) \| \{ f : F \circ c.f \}) \| \text{Skip}) \] (C.1)
\[YQ \equiv \(((YP \| \{ f : F \circ c.f \} \| \text{Skip}) \| \{ f : F \circ c.f \}) \| \text{Skip}) \| \{ f : F \circ c.f \}) \] (C.2)

where for all \(\oplus \in \{\|, \oplus, \odot, \|\} \), \(dp(P) \) is defined as follows.

\[dp(\text{Skip}) = \text{Skip} \]
\[dp(\text{Stop}) = \text{Stop} \]
\[dp(P \setminus A) = dp(P) \setminus A \]
\[dp(P \sqcap Q) = dp(P) \sqcap dp(Q) \]
\[dp(P \sqcup Q) = dp(P) \sqcup dp(Q) \]

Specifically, \(dp(P) \) replaces all occurrences of \(\sqcap \) with \(\sqcup \), while \(EP \) is defined as follows.

\[EP = \{\Box i : \Sigma \setminus \{ e : G \cup H \circ c.i \} \circ i \to EP \} \]
\[\Box e : G \cup H \circ c.e \to \text{Skip} \]
\[\Box i : F \circ c.i \to k \to \text{Skip} \]
APPENDIX C. PROOFS

The process defined by Expression C.1 behaves as XP until one of c.f where f ∈ F is performed, and in which case the process may only perform a hidden event k and terminate; the process defined by Expression C.2 behaves similarly for YP. Since all standard CSP operators are monotonic with respect to F, we therefore conclude XQ ⊆F YQ.

Lemma C.4. Let X and Y be BPMN processes satisfy Condition a on Page 92 and that Dp[X] ⊆F Dp[Y]. Given the following:

- An end event end? ∉ I ∪ J;
- A BPMN element m ∈ I ∩ J with an incoming sequence flow x such that for all event based XOR split gateways n ∈ I ∪ J we have (n, m) ∉ edge(direct(X, m)) ∪ edge(direct(Y, m)).
- A XOR join gateway j with incoming sequence flows x, y and outgoing sequence flow z, where x is also an incoming sequence flow of m, and no element contained in X and Y has sequence flows y and z.
- A BPMN element m' such that P(m') = P(m)[s.x ← s.z].

and define CSP processes XU and YU as follow:

\[
XU = \| i : (I \setminus \{m\}) \cup \{m', j\} \bullet \alpha P(i) \cup \{c.end?\} \circ \text{addend}(P(i), \{end?\}) \\
YU = \| j : (J \setminus \{m\}) \cup \{m', j\} \bullet \alpha P(j) \cup \{c.end?\} \circ \text{addend}(P(j), \{end?\})
\]

then XU ⊆F YU holds.

Proof. Let XP and YP be the following processes:

\[
XP = \| i : I \setminus \{m\} \bullet \alpha P(i) \circ P(i) \\
YP = \| j : J \setminus \{m\} \bullet \alpha P(j) \circ P(j)
\]

By Lemma C.1 we have XP ⊆F YP. Let XP' and YP' be the following processes:

\[
XP' = \| i : (I \setminus \{m\}) \cup \{m', j\} \bullet \alpha P(i) \circ P(i) \\
YP' = \| j : (J \setminus \{m\}) \cup \{m', j\} \bullet \alpha P(j) \circ P(j)
\]

Again, by monotonicity of \| with respect to F, we conclude XP' ⊆F YP'. Furthermore, by Lemma C.3 we can conclude XU ⊆F YU.

Lemma C.5. Let X and Y be BPMN processes satisfy Condition a on Page 92 and that Dp[X] ⊆F Dp[Y]. Given the following:

- An end event end? ∉ I ∪ J;
- An activity BPMN element m ∈ I ∩ J;
- An activity BPMN element m' obtained by adding exception flow (f, t) to m, where no element contained in X and Y has sequence flow f.

and define CSP processes XT and YT as follow:

\[
XT = \| i : (I \setminus \{m\}) \cup \{m', j\} \bullet \alpha P(i) \cup \{c.end?\} \circ \text{addend}(P(i), \{end?\}) \\
YT = \| j : (J \setminus \{m\}) \cup \{m', j\} \bullet \alpha P(j) \cup \{c.end?\} \circ \text{addend}(P(j), \{end?\})
\]

then XT ⊆F YT holds.
Proof. Let \(XP\) and \(YP\) be the following processes:
\[
XP = \{ i : I \setminus \{ m \} \bullet \alpha P(i) \circ P(i) \}
\]
\[
YP = \{ j : J \setminus \{ m \} \bullet \alpha P(j) \circ P(j) \}
\]
By Lemma C.1 we have \(XP \subseteq F YP\). Let \(XP'\) and \(YP'\) be the following processes:
\[
XP' = \{ i : (I \setminus \{ m \}) \cup \{ m' \} \bullet \alpha P(i) \circ P(i) \}
\]
\[
YP' = \{ j : (J \setminus \{ m \}) \cup \{ m' \} \bullet \alpha P(j) \circ P(j) \}
\]
Again, by monotonicity of \(\subseteq\) with respect to \(F\), we conclude \(XP' \subseteq F YP'\). Furthermore, by Lemma C.3 we can conclude \(XT \subseteq F YT\).

Lemma C.6. Given \(M\) and \(N\) be BPMN diagrams satisfy Condition b on Page 92 and that \(D[M] \subseteq F D[N]\), let CSP processes \(M'\) and \(N'\) defined as follow,
\[
M' = \{ i : \text{dom} M.pools \setminus \{ id1?, id2? \} \bullet \alpha Pl(M, i) \circ Pl(M, i) \}
\]
\[
N' = \{ i : \text{dom} N.pools \setminus \{ id1?, id2? \} \bullet \alpha Pl(N, i) \circ Pl(N, i) \}
\]
where \(\{ id1?, id2? \} \subseteq \text{dom} M.pools \cap \text{dom} N.pools\), then \(M' \subseteq F N'\).

Proof. Due to Condition b we know dom \(M.pools \setminus \{ id1?, id2? \} = \text{dom} N.pools \setminus \{ id1?, id2? \}\) and that \(\forall i \in \text{dom} M.pools \bullet \text{Pl}(M, i) \subseteq F \text{Pl}(N, i)\), by monotonicity of \(\subseteq\) with respect to \(F\), we conclude \(M' \subseteq F N'\).

Lemma C.7. Given Condition b on Page 92 the operations \(\text{SeqComp}, \text{Split}, \text{EventSplitOp}, \text{JoinOp}\) are monotonic with respect to failures refinement.

Proof. We consider operation \(\text{SeqComp}(\text{proc}, \text{new?}, \text{from?}, \text{end?})\) defined in Section 5.7.1 on Page 79 where \(\text{proc}\) is one of two BPMN processes \(X\) and \(Y\). Specifically, we show that if \(D_p[X] \subseteq F D_p[Y]\) then \(D_p[\text{SeqComp}(X, \text{new?}, \text{from?}, \text{end?})] \subseteq F D_p[\text{SeqComp}(Y, \text{new?}, \text{from?}, \text{end?})]\) where \(e, m, \text{end?}\) and \(\text{new?}\) are as defined in Section 5.7.1.

\[
D_p[X] \subseteq F D_p[Y]
\]
\[
\iff \{ i : I \bullet \alpha P(i) \circ P(i) \subseteq F \} J \bullet \alpha P(j) \circ P(j) \}
\]
\[
\iff \{ i : I \setminus \{ e \} \bullet \alpha P(i) \setminus \{ e \} \circ P(i) \subseteq F \} J \setminus \{ e \} \bullet \alpha P(j) \setminus \{ e \} \circ P(j) \}
\]
\[
\iff \{ i : I \setminus \{ e \} \bullet (\alpha P(i) \setminus \{ e \}) \cup \{ e, \text{end?} \} \circ addend(P(i), \{ e, \text{end?} \}) \subseteq F \}
\]
\[
\iff \{ j : J \setminus \{ e \} \bullet (\alpha P(j) \setminus \{ e \}) \cup \{ e, \text{end?} \} \circ addend(P(j), \{ e, \text{end?} \}) \subseteq F \}
\]
\[
\iff (\{ i : I \setminus \{ e \} \bullet (\alpha P(i) \setminus \{ e \}) \cup \{ e, \text{end?} \} \circ addend(P(i), \{ e, \text{end?} \})) \subseteq F \}
\]
\[
\iff (\{ j : J \setminus \{ e \} \bullet (\alpha P(j) \setminus \{ e \}) \cup \{ e, \text{end?} \} \circ addend(P(j), \{ e, \text{end?} \})) \subseteq F \}
\]
\[
\iff D_p[\text{SeqComp}(X, \text{new?}, \text{from?}, \text{end?})] \subseteq F \]
\[
D_p[\text{SeqComp}(Y, \text{new?}, \text{from?}, \text{end?})]
\]
Operations \(\text{Split}, \text{EventSplitOp}\) and \(\text{JoinOp}\) can be shown to be monotonic similarly.

Lemma C.8. Given Condition b on Page 92 the operation \(\text{AddException}\) is monotonic with respect to failures refinement.
APPENDIX C. PROOFS

Proof. We consider operation \texttt{AddNoRelatedErrorException}(proc, end?, etype?, eflow?, loc?) defined in Section 5.7.4 on Page 85, where proc is one of two BPMN processes X and Y, and loc? is the incoming sequence flow of some activity element A to which the exception flow (eflow?, etype?) is added. Here we specifically show that \(D_p \ll[X \subset \mathcal{F} \supset P_p \ll Y \] then \(D_p \ll[AddNoRelatedErrorException(X, end?, etype?, eflow?, loc?) \subset \mathcal{F} \ supset P_p \ll[AddNoRelatedErrorException(Y, end?, etype?, eflow?, loc?)]] \), where \(m, m' \) and \(end? \) are as defined in Section 5.7.5.

\[
D_p \ll[X \subset \mathcal{F} \ supset P_p \ll Y \] \equiv \| i : I \bullet \alpha P(i) \circ P(i) \subset \mathcal{F} \| j : J \bullet \alpha P(j) \circ P(j) \] [Def of X and Y] \Rightarrow (| i : I \\{ \{ e, m \} \bullet (\alpha P(i) \cup \{ c.end? \}) \circ addend(P(i), \{ end? \})) [Lemma C.9] \ll[\alpha P(i) \cup \{ c.end? \} | \alpha P(m') \ll P(m') \subset \mathcal{F} \] \ll[j : J \\{ \{ e, m \} \bullet (\alpha P(j) \cup \{ c.end? \}) \circ addend(P(j), \{ end? \})) \ll[\alpha P(j) \cup \{ c.end? \} | \alpha P(m') \ll P(m') \subset \mathcal{F} \] \Rightarrow (| i : I \\{ \{ e, m \} \bullet (\alpha P(i) \cup \{ c.end? \}) \circ addend(P(i), \{ end? \})) [Property of ||] \ll[\alpha P(i) \cup \{ c.end? \} | \alpha P(m') \ll P(m') \] \ll[P(m') \ll [\alpha P(m') \cup \alpha P(end?) \ll P(end?) \subset \mathcal{F} \] \ll[j : J \\{ \{ e, m \} \bullet (\alpha P(j) \cup \{ c.end? \}) \circ addend(P(j), \{ end? \})) \ll[\alpha P(j) \cup \{ c.end? \} | \alpha P(m') \ll P(m') \subset \mathcal{F} \] \ll[P(m') \ll [\alpha P(m') \cup \alpha P(end?) \ll P(end?) \subset \mathcal{F} \] \quad [Def of AddNoRelatedErrorException] \quad D_p \ll[AddNoRelatedErrorException(X, end?, etype?, eflow?, loc?) \subset \mathcal{F} \] \quad \supset P_p \ll[AddNoRelatedErrorException(Y, end?, etype?, eflow?, loc?)]] \quad \medskip Operation \texttt{AddRelatedErrorException} can be shown to be monotonic similarly. \hfill \Box

Lemma C.9. Given Condition \(\alpha \) on Page 92, the operations \texttt{Loop} and \texttt{EventLoop} are monotonic with respect to failures refinement.

Proof. We consider the semantics of operation \texttt{Loop}(proc, split?, join?, end?, connect?, from?, f2?, t2?) defined in Section 5.7.4 on Page 85, where proc is one of two BPMN processes X and Y. Specifically, we show that if \(D_p \ll[X \subset \mathcal{F} \ supset P_p \ll Y \] then \(D_p \ll[Loop(X, split?, join?, end?, connect?, from?, f2?, t2?) \subset \mathcal{F} \ supset P_p \ll[Loop(Y, split?, join?, end?, connect?, from?, f2?, t2?)]] \), where \(e, m, m', \) \(\texttt{split?}, \texttt{join?}, \texttt{end?} \) are as defined in Section 5.7.3.

\[
D_p \ll[X \subset \mathcal{F} \ supset P_p \ll Y \] \equiv \| i : I \bullet \alpha P(i) \circ P(i) \subset \mathcal{F} \| j : J \bullet \alpha P(j) \circ P(j) \] [Def of X and Y] \Rightarrow (| i : I \\{ \{ e, m \} \bullet ((\alpha P(i) \cup \{ c.e \}) \cup \{ c.end? \}) \circ addend(P(i), \{ end? \})) [Lemmas C.2 C.3] \ll[\alpha P(i) \cup \{ c.e \} \cup \{ c.end? \} | \alpha P(m') \cup \alpha P(join?) \ll (P(m') \ll [\alpha P(m') \cup \alpha P(join?) \ll P(join?) \subset \mathcal{F} \] \ll[j : J \\{ \{ e, m \} \bullet ((\alpha P(j) \cup \{ c.e \}) \cup \{ c.end? \}) \circ addend(P(j), \{ end? \})) \ll[\alpha P(j) \cup \{ c.e \} \cup \{ c.end? \} | \alpha P(m') \cup \alpha P(join?) \ll (P(m') \ll [\alpha P(m') \cup \alpha P(join?) \ll P(join?) \subset \mathcal{F} \] \Rightarrow (| i : I \\{ \{ e, m \} \bullet ((\alpha P(i) \cup \{ c.e \}) \cup \{ c.end? \}) \circ addend(P(i), \{ end? \})) [Property of ||] \ll[\alpha P(i) \cup \{ c.e \} \cup \{ c.end? \} | \alpha P(m') \cup \alpha P(split?) \ll (P(split?) \ll [\alpha P(split?) \cup \alpha P(join?) \ll P(join?) \ll [\alpha P(join?) \cup \alpha P(end?) \ll P(end?) \subset \mathcal{F} \] \ll[j : J \\{ \{ e, m \} \bullet ((\alpha P(j) \cup \{ c.e \}) \cup \{ c.end? \}) \circ addend(P(j), \{ end? \})) \ll[\alpha P(j) \cup \{ c.e \} \cup \{ c.end? \} | \alpha P(m') \cup \alpha P(split?) \ll (P(split?) \ll [\alpha P(split?) \cup \alpha P(join?) \ll P(join?) \ll [\alpha P(join?) \cup \alpha P(end?) \ll P(end?) \subset \mathcal{F} \] \quad [Def of AddNoRelatedErrorException] \quad D_p \ll[AddNoRelatedErrorException(X, end?, etype?, eflow?, loc?) \subset \mathcal{F} \] \quad \supset P_p \ll[AddNoRelatedErrorException(Y, end?, etype?, eflow?, loc?)]] \quad \medskip Operation \texttt{AddRelatedErrorException} can be shown to be monotonic similarly. \hfill \Box
APPENDIX C. PROOFS

Let \(\alpha \) be any operation whose behaviour is modelled by CSP process \(C(S) \), where \(S \) is the CSP process that models elements directly contained in \(s \) and \(C[.] \) is a CSP process context that models s’s sequence, message and exception flows. Let \(t \) be any subprocess whose behaviour is modelled by CSP process \(C(T) \) and \(T \) is the CSP process that models elements directly contained in \(t \). If we have both \(S \subseteq T \) and \(C[S] \subseteq C[T] \), then we have \(C[S'] \subseteq C[T'] \) where \(S' \) and \(T' \) are the results of applying any one of the operations SeqComp, Split, EventSplitOp, JoinOp, Loop, EventLoop, AddException and \(C[.] \) does not change after any one of the operations. Since \(C[.] \) is defined using standard CSP operators, monotonicity is preserved.
C.2 Proofs for Section 5.9

Theorem (5.14). For any BPMN processes P and Q, if compatible(P, Q) then their collaboration is deadlock-free, that is, compatible(P, Q) ⇒ DF ⊆ (Dp[p] ∥ αDp[p] ∥ αDp[p] || Dp[p] || Dp[p])

Theorem (5.15). For any BPMN processes P and Q, if compatible(P, Q) for all Dp[p] ⊆ P and Dp[p] ⊆ Q, compatible(P', Q')

Proof. We know compatible(P, Q) implies both P and Q are deadlock-free and hence all of their refinements are also deadlock free. Due to Theorem 5.10, we also know RespondsTo is refinement-closed, therefore this shows compatible is also refinement-closed.

Theorem (5.16). Given a collaboration of business participants (BPMN processes) B = {i : I • B(i)}, indexed by I, where the semantics of each business participant is denoted by process P(i) = Dp[p]B(i) for i ∈ I and the collaboration C = i : I • αP(i) ⊆ P(i) is deadlock-free. Suppose there is a new business participant R, denoted by Q = Dp[p]B(i) such that αQ ∩ (αP(i) ∩ αP(j)) = ∅ for i, j : I and i ≠ j (an appropriated assumption as by definition each message flow connects exactly two participants). Then if

∃ i : I • αQ ∩ αP(i) ≠ ∅ ∧ ∀ i : I • αQ ∩ αP(i) ≠ ∅ ⇒ compatible(R, B(i))

then E = C \{∪(i : I • αP(i)) | αQ \ Q is also deadlock-free.

Proof. Due to Theorem 5.12, this theorem holds for Q RespondsTo P. We now show this theorem also holds for P RespondsTo Q by contradiction.

Let’s assume E could deadlock, that is, there exists (σ, Σ') ∈ failures(E). This means there exists (t, X) ∈ failures(C) and (u, Y) ∈ failures(Q) such that both X and Y are maximal refusal sets where t = s | αC, u = s | αQ and (X ∪ Y) = (αC ∪ αQ)' assuming (reasonably) X ⊆ αC and Y ⊆ αQ. Since C is deadlock-free, X \ Σ' by definition, therefore one of the following two cases can happen:

1. C can only terminate, that is, X = Σ and for (s_i, X_i) ∈ failures(P(i)) where s_i = s | αP(i), i \ X_i.
2. C can only perform events in the alphabet of Q, that is, αC \ X = ∅ and there exists i such that αP(i) \ X_i \ αQ = ∅.

Case 1 We know there exists some i such that P(i) RespondsTo Q (this also implies P(i) RespondsToLive Q by Theorem 5.10 where αP(i) ∩ αQ ≠ ∅, and both P(i) and Q are deadlock-free. If Y contains i, we have (s_i, X_i') ∈ failures(P(i) || Q) but since Q is deadlock-free, therefore (u, X_i') ∉ failures(Q), contradicting the assumption that P(i) RespondsTo Q.

Case 2 We know i ∈ X_i. αP(i) ∩ αP(j) ∩ αQ = ∅ for i ≠ j by definition, therefore αP(i) \ X_i ⊆ Y (Q refusing everything in the joint alphabet that P(i) does not). But we know Q is deadlock-free therefore Y ≠ Σ'. Since P(i) RespondsTo Q, there must exist some e ∈ (αP(i) ∩ αQ) such that e ∈ initials(P/s_i) and e ∈ αP(i) \ X_i and e \ Y, which contradicts the assumption that P(i) RespondsTo Q.

C.3 Proofs for Section 6.6

Lemma (6.15). Given two consecutive time stable states X and Y, such that X ⇒ Y, we have pg(X, Y).

APPENDIX C. PROOFS

258
APPENDIX C. PROOFS

Proof. We let \(Z \) denote the subsequent timed state of \(X \) such that \(X \rightarrow^\tau Z \). By Rule A-E, \(\text{dar}(X) = \text{minimum}\{\{e : Os \cup \text{Fr} \cup \text{min}(e)\} \cup \{e : \text{De}(X) \cup \text{max}(e)\}\} \), where \(\text{Fr} = \{m : M_f(X) \bullet \text{second}(\text{sp}(m))\} \), where
\[
\begin{align*}
\text{Os} &= \text{Pp}(X) \setminus (M_n(X) \cup M_p(X) \cup M_d(X)), \\
\text{Fr} &= (\text{Fl}(X) \cup (\bigcup \{e : \text{Fr}(X) \bullet \text{exp}(\text{assoc}(e))\} \setminus \text{Pp}(X))) \cup \{m : M_f(X) \cup M_n(X) \bullet \text{second}(\text{sp}(m))\}.
\end{align*}
\]
If \(\text{dar}(X) = \text{minimum}\{e : \text{OS} \bullet \text{min}(e)\} \), then \(\text{OS} \) is not empty and at least one postponed element \(e \in \text{Pp}(X) \) becomes enactable at state \(Z \), therefore \(\text{Pp}(X) \not\subseteq \text{Pp}(Y) \), satisfying Condition 1 of time progression.

If \(\text{dar}(X) = \text{minimum}\{e : \text{De}(X) \bullet \text{max}(e)\} \), then \(\text{De}(X) \) is not empty, at least one delayed element \(e \in D(X) \) becomes enactable and can no longer be delayed at state \(Z \), therefore \(\text{De}(X) \not\subseteq \text{De}(Y) \), satisfying Condition 2 of time progression.

If \(\text{dur}(X) = \text{minimum}\{e : \text{Fl} \bullet \text{min}(e)\} \), then either \(e \in \text{Fl}(X) \) becomes enactable at state \(Z \), therefore \(\text{Fl}(X) \not\subseteq \text{Fl}(Y) \), satisfying Condition 3 of time progression, or \(e \in \{m : M_n(X) \bullet \text{second}(\text{sp}(m))\} \) becomes enactable at state \(Z \), and we have \(\text{Pp}(X) \not\subseteq \text{Pp}(Y) \), satisfying Condition 1 of time progression, or \(e \in \{m : M_f(X) \bullet \text{second}(\text{sp}(m))\} \) becomes enactable at state \(Z \), therefore \(M_f(X) \not\subseteq \text{Pp}(Y) \), satisfying Condition 2 of time progression.

To prove Theorem 6.16, we use the following abbreviations from Section 5.7 on Page 77. We write \(P(s) \) to denote the CSP process modelling BPMN element \(s \)'s untimed behaviour; we define \(\text{alphas}(es) = \bigcup\{i : es \bullet \alpha P(i)\} \) to be the alphabet of the process semantics of elements in \(es \), \(\text{procs}(es) = \bigcup\{i : es \bullet \alpha P(i) \circ P(i)\} \) to be the parallel composition of processes, each modelling the behaviour of an element in \(es \). We write \(\text{init}(P) = \{a : a \circ P \ | \ (a) \in \text{traces}(P)\} \) for the set of \(P \)'s initial events, \(s \downarrow u = \#(s \upharpoonright \{u\}) \) for the number of occurrences of \(u \) in sequence \(s \), \(\text{bal}(s, es) \Leftrightarrow \forall e, f \in es \bullet s \downarrow e = s \downarrow f \) if there is an equal number of occurrences between events of \(es \) in sequence \(s \), and define \(\text{sub}(s, es) \) as follows:

\[
\text{sub}(s, es) = \begin{cases}
\emptyset & s = \emptyset \lor \text{last}(s) \in es \\
\text{sub}(\text{front}(s), es) \cup \{\text{last}(s)\} & \text{otherwise}
\end{cases}
\]

Specifically, \(\text{sub}(s, es) \) returns either sequence \(s \) or the shortest suffix of \(s \) not containing events in \(es \). We provide the following abbreviations.

\[
\begin{align*}
\text{misesqs}^l(e) \Leftrightarrow (\text{atom } e).\text{type} \in \text{ran} \text{misesqs} & \quad \text{misesq}^l(e) \Leftrightarrow (\text{atom } e).\text{type} \in \text{ran} \text{misesq} \\
\text{itime}^l(e) \Leftrightarrow (\text{atom } e).\text{type} \in \text{ran} \text{itime} & \quad \text{task}^l(e) \Leftrightarrow (\text{atom } e).\text{type} \in \text{ran} \text{task} \\
\text{sf}(es) = \{f : es \bullet s.f\} &
\end{align*}
\]

We now provide the following characterisation relating a state in the relative timed coordination of some BPMN pool \(p \) to \(p \)'s enactment process.

Definition C.11. Let \(Z \) be the initial state, and \(X \) be a state of some BPMN pool \(p \)'s relative timed coordination such that \(Z \rightarrow^{\tau} X \) where \(s \in \text{traces}(\text{pl}(p)) \) is a trace of \(p \)'s enactment process, if \(\text{init}(\text{pl}(p)/s) \neq \emptyset \) then either for all CSP events \(e \in \text{init}(\text{pl}(p)/s) \) such that \((s, \{e\}) \in \text{failures}(\text{pl}(p)) \) and \(X \) satisfies one of the following Conditions 1 and 2 or there exists some CSP event \(e \in \text{init}(\text{pl}(p)/s) \) such that \((s, \{e\}) \notin \text{failures}(\text{pl}(p)) \) and \(X \) satisfies one of the following Conditions 1 and 2.

1. \(X \rightarrow^{\tau^*}, \) or
2. there exists \(Y \) such that \(X \rightarrow^{\tau^*} Y \) and \(Y \rightarrow^{\tau^*}, \) where \(\tau^* \) denotes a finite sequence of \(\tau \) events.
In addition, state \(X \) satisfies one of the following Conditions 1 and 2.

(a) If \(X = (S, M, E, W, T) \) is an untimed state, then Equation 5.3 holds.
(b) If $X = (S, M, E, W, P, C, O)$ is a timed state, then Equation [C.4] holds

$$\text{init}(PL(p)/s) = \bigcup \{ t : T \models \neg \text{task}'(c) \land \neg \text{miseq}'(c) \bullet \text{out}(c) \} \cup$$
$$\{ t : T \models E \cup W \bullet sf(\text{dom assoc}(t)) \} \cup$$
$$\{ t : T \models \text{miseq}'(t) \lor \text{task}'(t) \bullet \text{work}(t) \} \cup \text{exit}\{ \text{dom } M \} \cup$$
$$\{ o : E ; t : \text{Start} | \text{miseqs}'(o) \land M(o) = 0 \bullet \text{out}(o) \} \cup$$
$$\{ o : E ; t : \text{Start} | \text{miseqs}'(o) \land M(o) > 0 \land t.ele \in \text{content}(o) \bullet \text{out}(t.ele) \}$$

(C.3)

$$\text{init}(PL(p)/s) = \bigcup \{ \text{out}(E \cup O) \cup \text{exit}\{ \text{dom } M \} \cup \{ c : C \cup P | \neg \text{task}'(c) \land \neg \text{miseq}'(c) \bullet \text{out}(c) \} \cup \{ o : E \cup W \bullet sf(\text{dom assoc}(o)) \} \}$$

(C.4)

Lemma C.12. For all states X, Y of some BPMN pool p’s relative timed coordination such that $X \overset{\tau}{\rightarrow} Y$ is a transition defined by Rule A-E. X satisfies Equation [C.3] if and only if Y satisfies Equation [C.4].

Proof.

$$\text{init}(PL(p)/s) = \bigcup \{ \text{out}(E \cup O) \cup \text{exit}\{ \text{dom } M \} \cup \{ c : C \cup P \models \text{miseq}'(c) \bullet \text{work}(c) \} \cup \{ c : C \cup P \models \neg \text{miseq}'(c) \bullet \text{out}(c) \} \cup \{ o : E \cup W \bullet sf(\text{dom assoc}(o)) \} \}$$

[Equation C.4]

$$= \bigcup \{ \text{exit}\{ \text{dom } M \} \cup \{ c : As \cup Ac \cupMp(X) \cup M_d(X) \cup Mn(X) \cup Mf(X) \models \text{task}'(c) \lor \text{miseq}'(c) \bullet \text{work}(c) \} \cup \{ c : As \cup Ac \cupMp(X) \cup M_d(X) \models \neg \text{task}'(c) \land \neg \text{miseq}'(c) \bullet \text{out}(c) \} \cup \{ o : W \bullet sf(\text{dom assoc}(o)) \} \}$$

[Def of AC ⊆ AS]

$$= \bigcup \{ \text{exit}\{ \text{dom } M \} \cup \{ c : As \cup Mp(X) \cup M_d(X) \cup Mn(X) \cup Mf(X) \models \text{task}'(c) \land \text{miseq}'(c) \bullet \text{work}(c) \} \cup \{ c : As \cup Mp(X) \cup M_d(X) \models \neg \text{task}'(c) \land \neg \text{miseq}'(c) \bullet \text{out}(c) \} \cup \{ o : W \bullet sf(\text{dom assoc}(o)) \} \}$$

[Def of AS]

$$= \bigcup \{ \text{exit}\{ \text{dom } M \} \cup \{ c : Os \cup Er \cup De(X) \cup Mp(X) \cup M_d(X) \cup Mn(X) \cup Mf(X) \models \text{task}'(c) \land \text{miseq}'(c) \bullet \text{work}(c) \} \cup \{ c : Os \cup Er \cup De(X) \cup Mp(X) \cup M_d(X) \models \neg \text{task}'(c) \land \neg \text{miseq}'(c) \bullet \text{out}(c) \} \cup \{ o : W \bullet sf(\text{dom assoc}(o)) \} \}$$

[Def of OS and Mp(X) \cup M_d(X) \cup Mn(X) \subseteq Pp(X)]

$$= \bigcup \{ \text{exit}\{ \text{dom } M \} \cup \{ c : Pp(X) \cup Er \cup De(X) \cup Mf(X) \models \text{task}'(c) \lor \text{miseq}'(c) \bullet \text{work}(c) \} \cup \{ c : Pp(X) \cup Er \cup De(X) \models \neg \text{task}'(c) \land \neg \text{miseq}'(c) \bullet \text{out}(c) \} \cup \{ o : W \bullet sf(\text{dom assoc}(o)) \} \}$$

[Def of Er and Mn(X) \subseteq Pp(X)]

$$= \bigcup \{ \text{exit}\{ \text{dom } M \} \cup \{ c : Pp(X) \cup (\text{Nr} \cup \{ m : Mf(X) \models \text{second}(\text{splitsq}(m)) \}) \cup De(X) \cup Mf(X) \models \text{task}'(c) \land \text{miseq}'(c) \bullet \text{work}(c) \} \cup \{ c : Pp(X) \cup (\text{Nr} \setminus Mf(X)) \cup \{ m : Mf(X) \models \text{second}(\text{splitsq}(m)) \} \cup De(X) \models \neg \text{task}'(c) \land \neg \text{miseq}'(c) \bullet \text{out}(c) \} \cup \{ o : W \bullet sf(\text{dom assoc}(o)) \} \}$$

[Def of Nr, \{ c : Fr(X) \bullet \text{exp}(\text{assoc}(e)) \} \bullet \text{work}(e) = \emptyset]

$$= \text{exit}\{ \text{dom } M \} \cup$$
\{ e : Pp(X) \cup (Fr(X) \cup \{ m : M_f(X) \bullet second(splitsq(m))\}) \cup De(X) \cup M_f(X) | \\
\quad task'(c) \lor miseq'(c) \bullet work(c) \} \cup \\
\{ e : Pp(X) \cup ((Fr(X) \cup \{ e : Fr(X) \bullet exp(assoc(e))\}) \setminus M_f(X)) \cup \\
\quad \{ m : M_f(X) \bullet second(splitsq(m))\}) \cup De(X) | \neg task'(c) \land \neg miseq'(c) \bullet out(c) \} \cup \\
\{ o : W \bullet sf(dom(assoc(o))) \}
\}

\begin{align*}
\bigcup (exit\{ dom M \}) \cup & \{ e : Fr(X) \cup Fr(X) \cup De(X) | task'(c) \lor miseq'(c) \bullet work(c) \} \cup \\
\{ e : Pp(X) \cup ((Fr(X) \cup \{ e : Fr(X) \bullet exp(assoc(e))\}) \setminus M_f(X)) \cup De(X) | \\
\quad \neg task'(c) \land \neg miseq'(c) \bullet out(c) \} \cup \\
\{ o : W \bullet sf(dom(assoc(o))) \}
\}
\end{align*}

\begin{align*}
\bigcup (exit\{ dom M \}) \cup & \{ t : T \bullet miseq'(t) \lor task'(t) \bullet work(t) \} \cup \{ t : T \cup W \bullet sf(dom(assoc(t))) \cup \\
\quad \{ t : T \mid \neg task'(c) \land \neg miseq'(c) \bullet out(c) \}
\}
\end{align*}

\begin{equation}
\text{init}(PL(p))/s \quad \text{[Equation C.3]}
\end{equation}

Theorem (6.16). Deadlock Freedom Given any BPMN pool \(p \), such that if process \(PL(p) \), modelling \(p \)'s untimed behaviour, is deadlock free, then process \(PL(p) \parallel [\Sigma] CP(p) \) is also deadlock free.

Proof. We prove by showing all reachable states in the relative timed coordination satisfy Definition C.11. This is achieved by induction on the sequence of states in the relative timed coordination.

Base case We consider the initial state of the relative timed coordination. According to the syntactic assumptions defined in Section 6.2.2 on Page 103, only one start event is directly contained in \(p \). According to the untimed semantics, \(\text{init}(PL(p)) \) is defined as follows:

\begin{equation}
\text{init}(PL(p)) = \bigcup \{ s : S \mid s \in \{ \text{Start} \bullet ele \} \bullet out(s) \} \quad \text{(C.5)}
\end{equation}

Let \(v \) be that start event, and \(\text{initials}(PL(p)) = \{ e \} \) is a singleton, where \(e \in out(v) \). Let \(R \) be the initial state of the relative timed coordination. By definition of untimed states on Page 104, \(R = \{ S, \emptyset, I, \emptyset, J \} \) where \(I = S \cap \{ \text{Start} \bullet ele \} \) and \(J = S \cap \{ \text{Start} \mid (\text{atom ele}.type \in \text{ran stime} \bullet ele) \}. By definition of the untimed semantics (Equation C.5) we know \(I \cup J \neq \emptyset \).

1. If \(I \neq \emptyset \), then by definition of transition rules shown on Figure 6.4 on Page 106, \(R \not\xrightarrow{\varepsilon} \), satisfying Condition 1. Condition 2 is satisfied due to Equation C.5
2. If \(I = \emptyset, J = \{ v \} \), \(R = (S, \emptyset, \emptyset, \emptyset, \{ v \}) \) is a time stable state. By Rule A-E, \(R \xrightarrow{\tau} R' \), where \(R' = (S, \emptyset, \emptyset, \emptyset, \{ v' \}, \emptyset) \) is a timed state, and \(v' = d\min(v, \min(v)) \). By definition of transition rules shown on Figure 6.17 on Page 117, \(R' \xrightarrow{\tau} \), satisfying Condition 2. Again, Condition 1 is satisfied due to Equation C.5.

Inductive case Given initial state \(R \), and some state \(X \) satisfying Definition C.11 and such that \(R \xrightarrow{s} X \) where \(s \in \text{traces}(PL(p)) \), we show either if \(X \xrightarrow{\tau} Y \) or \(X \xrightarrow{\tau} Y \) where \(f \in \text{init}(PL(p)/s) \), \(Y \) satisfies Definition C.11. According to the restriction of the relative timed coordination (Page 103), we consider the following cases:

(a) If \(f \in \text{out}(w) \), such that \(w \) is either an AND split gateway where \(\text{bal}(\text{sub}(s \cap \langle f \rangle, \text{dom assoc}(w)), \text{out}(w)) \), that is all of \(w \)’s outgoing sequence flows have been triggered, or a XOR split gateway, or a join gateway, or a start event, then by definition of transition rules shown in Figure 6.4 on Page 106, \(X = (S, M, E, W, T) \) is an untimed state and \(w \in E \). We consider the types of element \(u \) can be such that \(f \in \text{in}(u) \).

(i) If \(u \) is an untimed atomic element, such that if \(u \) is an AND join gateway, we have \(\text{bal}(\text{sub}(s \cap \langle f \rangle, \text{dom assoc}(u)), \text{in}(u)) \), that is all of \(u \)’s incoming sequence flows have been triggered, then by Rule U-U, \(Y = (S, M, (E \setminus \{ w \}) \cup \{ u \}, W \setminus \{ u \}, T) \) and by induction \(Y \) satisfies Conditions 1 and 2.

(ii) If \(u \) is a subprocess containing a start event \(t \), by Rule U-U, \(Y = (S, M, (E \setminus \{ w \}) \cup \{ t \}, W \setminus \{ t \}) \), and by induction \(Y \) satisfies Conditions 1 and 2.

(iii) If \(u \) is an AND join gateway and \(\neg \text{bal}(\text{sub}(s \cap \langle f \rangle, \text{dom assoc}(u)), \text{in}(u)) \), that is not all of \(u \)’s incoming sequence flows have been triggered, then \(\text{out}(u) \notin \text{init}(PL(p)/s \cap \langle f \rangle) \). By Rule U-J, \(Y = (S, M, (E \setminus \{ w \}) \cup \{ u \}) \cup \{ \text{rm}(u, f) \}, T) \). By induction \(Y \) satisfies Condition 3.

 i. If \(E = \{ w \} \) then \(Y \) is a time stable state. By Rule A-E and Lemma 6.15 at least one \(t \in T \) such that \(b \in \text{out}(t) \cup \text{work}(t) \cup \text{exit}(t) \) and \(Y \xrightarrow{\tau} Y \), which satisfies Condition 2.

 ii. If \(\{ w \} \subset E \) then by induction, \(Y \) satisfies Condition 1.

(iv) If \(u \) is a task or multiple instance task element, by Rule U-T, \(Y = (S, M, E \setminus \{ w \}, W, T \cup \{ u \}) \). By induction \(Y \) satisfies Condition 3. Follow from a(iii) and a(iii)ii above, \(Y \) satisfies one of Conditions 1 and 2.

(v) If \(u \) is a subprocess containing a start timer event \(t \), by Rule U-T, \(Y = (S, M, E \setminus \{ w \}, W, T \cup \{ t \}) \). By induction \(Y \) satisfies Condition 3. Follow from a(iii) and a(iii)ii above, \(Y \) satisfies one of Conditions 1 and 2.

(vi) If \(u \) is a multiple instance subprocess directly containing some start event \(t \) and specifies \(l \) instances, then by Rule U-M, \(Y = (S, M \cup \{ \{ u, l - 1 \} \}, (E \setminus \{ w \}) \cup \{ t \}, W, T) \). By induction \(Y \) satisfies Conditions 1 and 2.

(vii) If \(u \) is a multiple instance subprocess directly containing some start timer event \(t \) and specifies \(l \) instances, then by Rule U-M’, \(Y = (S, M \cup \{ \{ u, l - 1 \} \}, E \setminus \{ w \}, W, T \cup \{ t \}) \). By induction \(Y \) satisfies Condition 3. Follow from a(iii) and a(iii)ii above, \(Y \) satisfies one of Conditions 1 and 2.

(b) If \(f \in \text{out}(w) \) for some AND split gateway \(w \) such that \(\neg \text{bal}(\text{sub}(s \cap \langle f \rangle, \text{dom assoc}(w)), \text{out}(w)) \), then by definition of transition rules shown in Figure 6.3 on Page 105, \(X = (S, M, E, W, T) \) is an untimed state and \(w \in E \). We consider the types of element \(u \) can be such that \(f \in \text{in}(u) \).

(i) If \(u \) is an untimed atomic element, such that if \(u \) is an AND join gateway, we have \(\text{bal}(\text{sub}(s \cap \langle f \rangle, \text{dom assoc}(u)), \text{in}(u)) \), then by Rule S-U, \(Y = (S, M, (E \setminus \{ w \}) \cup \{ \text{rm}(f, w) \}, W \setminus \{ u \}, T) \) and by induction \(Y \) satisfies Conditions 1 and 2.

(ii) If \(u \) is a subprocess containing a start event \(t \), by Rule S-U, \(Y = (S, M, (E \setminus \{ w \}) \cup \{ \text{rm}(f, w) \}, W \setminus \{ t \}, T) \), and by induction \(Y \) satisfies Conditions 1 and 2.

(iii) If \(u \) is an AND join gateway and \(\neg \text{bal}(\text{sub}(s \cap \langle f \rangle, \text{dom assoc}(u)), \text{in}(u)) \), then \(\text{out}(u) \notin \text{init}(PL(p)/s \cap \langle f \rangle) \). By Rule S-J, \(Y = (S, M, (E \setminus \{ w \}) \cup \{ \text{rm}(f, w) \}, (W \setminus \{ u \}) \cup \{ \text{rm}(u, f) \}, T) \). By induction \(Y \) satisfies Conditions 1 and 2.
(iv) If u is a task or multiple instance task element, by Rule S-T, $Y = (S, M, (E \setminus \{w\}) \cup \{rm(f, w)\}, W, T \cup \{u\})$. By induction Y satisfies Conditions 1 and 3.

(v) If u is a multiple instance subprocess directly containing some start event t and specifies l instances, then by Rule S-M, $Y = (S, M \cup \{(u, l-1)\}, (E \setminus \{w\}) \cup \{rm(f, w), t\}, W, T)$. By induction Y satisfies Conditions 1 and 3.

(vi) If u is a multiple instance subprocess directly containing some start timer event t and specifies l instances, then by Rule S-M', $Y = (S, M \cup \{(u, l-1)\}, (E \setminus \{w\}) \cup \{rm(f, w)\}, W, T \cup \{t\})$. By induction Y satisfies Conditions 1 and 3.

(c) If $f \in out(w)$ for some compound element w, then by definition of transition rules shown in Figure 6.7 on Page 108, $X = (S, M, E, W, T)$ is an untimed state, $w \in E$. If w is a multiple instance subprocess that directly contains some start event x and specifies l instances, then by induction we have $(sub(s \bowtie y), \text{dom assoc}(w) \downarrow y) \mod l = 0$, where $y \in out(x)$ (all instances have been executed). We consider the types of element u can be such that $f \in in(u)$.

(i) If u is an untimed atomic element, such that we have $bal(sub(s \bowtie f), \text{dom assoc}(u), \text{in}(u))$ if u is an AND join gateway, then by Rule U-U, $Y = (S, M \setminus \{(w, 0)\}, (E \setminus \{w\}) \cup \{u\}, W \setminus \{u\}, T)$ and by induction Y satisfies Conditions 1 and 3.

(ii) If u is a subprocess containing a start event t, by Rule U-U, $Y = (S, M \setminus \{(w, 0)\}, (E \setminus \{w\}) \cup \{t\}, W \setminus \{t\}, T)$, and by induction Y satisfies Conditions 1 and 3.

(iii) If u is an AND join gateway and $\neg bal(sub(s \bowtie f), \text{dom assoc}(u), \text{in}(u))$, then $out(u) \notin init(PL/p)/s \bowtie f))$. By Rule U-J, $Y = (S, M \setminus \{(w, 0)\}, E \setminus \{w\}, (W \setminus \{u\}) \cup \{rm(u, f)\}, T)$. By induction Y satisfies Condition 1. Follow from $a(iii)$ and $a(iii)$ above, Y satisfies one of Conditions 1 and 2.

(iv) If u is a task or multiple instance task element, by Rule U-T, $Y = (S, M \setminus \{(w, 0)\}, E \setminus \{w\}, W, T \cup \{u\})$. By induction Y satisfies Condition 1. Follow from $a(iii)$ and $a(iii)$ above, Y satisfies one of Conditions 1 and 2.

(v) If u is a multiple instance subprocess directly containing some start event t and specifies l instances, then by Rule U-M, $Y = (S, M \setminus \{(w, 0)\}) \cup \{(u, l-1)\}, (E \setminus \{w\}) \cup \{t\}, W, T)$. By induction Y satisfies Conditions 1 and 3.

(vi) If u is a multiple instance subprocess directly containing some start timer event t and specifies l instances, then by Rule U-M', $Y = (S, M \setminus \{(w, 0)\}) \cup \{(u, l-1)\}, (E \setminus \{w\}, W, T \cup \{t\})$. By induction Y satisfies Condition 1. Follow from $a(iii)$ and $a(iii)$ above, Y satisfies one of Conditions 1 and 2.

(d) If f is a completion of some end event e, then by definition of transition rules shown in Figure 6.5 on Page 107, $X = (S, M, E, W, T)$ is an untimed state and $w \in E$. There are two cases in which f can be performed: 1) w is directly contained in some compound element c, that is contained in p, or 2) w is directly contained in p. For case 1, by Rule E-M, $Y = (S, M, (E \setminus \{c\}) \cup \{c\}, W, T)$ and by induction Y satisfies Conditions 1 and 3. For case 2, by Rule E-E, $X = (S, \emptyset, \emptyset, \emptyset, \emptyset)$ and $Y = (S, \emptyset, \emptyset, \emptyset, \emptyset)$. By induction, $init(PL(p)/s) = \{f\}$ and, by the untimed semantics of p, for all elements i in p, $P(i)$ must be willing to perform f and that after performing f, $P(i)$ becomes Skip. Hence Y satisfies Conditions 1 and 3.

(e) If $f \in out(w)$ for some timer event w, then by definition of transition rules shown in Figure 6.17 on Page 117, $X = (S, M, E, W, P, C, O)$ is a timed state, $w \in C$. We consider the types of element u can be such that $f \in in(u)$.

(i) If u is an untimed atomic element, such that if u is an AND join gateway, then we have $bal(sub(s \bowtie f), \text{dom assoc}(u), \text{in}(u))$, then by Rule V-U, $Y = (S, M, E \cup \{u\}, W \setminus \{u\}, P, C \setminus \{w\}, O)$, and by induction Y satisfies Condition 1.

i. If $C = \{w\}$ and $O = \emptyset$, then by Rule T-C, the only transition is $Y \xrightarrow{e} Y'$, where $Y' = (S, M, E \cup \{u\}, W \setminus \{u\}, P)$ is an untimed state. By induction $Y' \xrightarrow{e} \text{ where } e \in out(e)$, satisfying Condition 2.
ii. If \(\{ w \} \subset C \cup O \) then by induction, \(Y \) satisfies Condition (1)

(ii) If \(u \) is a subprocess containing a start event \(t \), by Rule V-U, \(Y = (S, M, E \cup \{ t \}, W, P, C \setminus \{ w \}, O) \). By induction \(Y \) satisfies Condition (1) and follow from \(e(i)i \) and \(e(i)ii \). Y satisfies one of Conditions (1) and (2).

(iii) If \(u \) is an AND join gateway and \(\neg \text{bal}(\text{sub}(s \cap \{ f \}, \text{dom}(\text{assoc}(u)), \text{in}(u))) \), then \(\text{out}(u) \notin \text{init}(\text{PL}(p)/s \cap \{ f \}) \). By Rule V-J, \(Y = (S, M, E, W \setminus \{ u \}) \cup \{ rm(u, f) \}, P, C \setminus \{ w \}, O \), and by induction \(Y \) satisfies Condition (1)

i. If \(E \neq \emptyset \), then follow from \(e(i)i \) and \(e(i)ii \). Y satisfies one of Conditions (1) and (2).

ii. If \(C = \{ w \} \) and \(O \cup E = \emptyset \) then by induction \(\text{init}(\text{PL}(p)/s \cap \{ f \}) \neq \emptyset \Rightarrow P \neq \emptyset \) and by Rule T-C, there is only one transition \(Y \xrightarrow{} Y' \) such that \(Y' \) is a stable state. By Rule A-E and Lemma 6.15 at least one \(t \in P \) such that \(b \in \text{out}(t) \cup \text{work}(t) \cup \text{exit}(t) \) and we have \(Y' \xrightarrow{b} Y'' \), therefore \(Y \) satisfies Condition (2).

(iv) If \(u \) is a task or a multiple instance task element, by Rule V-T, \(Y = (S, M, E, W, P \cup \{ u \}, C \setminus \{ w \}, O) \). By induction \(Y \) satisfies Condition (1) and follow from \(e(i)i \) and \(e(i)ii \). Y satisfies one of Conditions (1) and (2).

(v) If \(u \) is a subprocess containing a start timer event \(t \), by Rule V-T, \(Y = (S, M, E, W, P \cup \{ t \}, C \setminus \{ w \}, O) \). By induction \(Y \) satisfies Condition (1) and follow from \(e(i)i \) and \(e(i)ii \). Y satisfies one of Conditions (1) and (2).

(vi) If \(u \) is a multiple instance subprocess directly containing some start event \(t \) and specifies \(l \) instances, then by Rule V-M, \(Y = (S, M, E \cup \{ (u, l - 1) \}, E \cup \{ t \}, W, P, C \setminus \{ w \}, O) \). By induction \(Y \) satisfies Condition (1) and follow from \(e(i)i \) and \(e(i)ii \). Y satisfies one of Conditions (1) and (2).

(vii) If \(u \) is a multiple instance subprocess directly containing some start timer event \(t \) and specifies \(l \) instances, then by Rule V-M', \(Y = (S, M \cup \{ (u, l - 1) \}, E, W, P \cup \{ t \}, C \setminus \{ w \}, O) \). By induction \(Y \) satisfies Condition (1) and follow from \(e(i)i \) and \(e(i)ii \). Y satisfies one of Conditions (1) and (2).

(f) If \(f \in \text{work}(w) \), where \(w \) is either a task or a multiple instance task, then by definition of transition rules shown in Figure 6.18 on Page 118, \(X = (S, M, E, W, P, C, O) \) is a timed state. 1) If \(w \) is a task, then by Rule T-E \(w \in C \) and \(Y = (S, M, E, W, P, C \setminus \{ w \}, O \cup \{ w \}), \) and \(Y \) satisfies Conditions (1) and (2). 2) If \(w \) is a multiple instance task, then by Rules T-M and T-M', \(w \in P \) and \(t \in C \), where \(t \) is a task instance of \(w \). We let \(l \) to denote the number of instances defined by \(w \) and consider the following two cases:

(i) If \((\text{sub}(s \cap \{ f \}, \text{dom}(\text{assoc}(w))) \downarrow f) \mod l = 0 \), then \(\text{out}(w) \in \text{init}(\text{PL}(p)/s \cap \{ f \}) \). By induction and Rule T-M, \(Y = (S, M, E, W, P \setminus \{ w \}, C \setminus \{ t \}, O \cup \{ w \}) \), satisfying Conditions (1) and (2).

(ii) If \((\text{sub}(s \cap \{ f \}, \text{dom}(\text{assoc}(w))) \downarrow f) \mod l \neq 0 \), then \(w \) has remaining instances and \(\text{out}(w) \notin \text{initial}(\text{PL}(p)/s \cap \{ f \}) \). By induction and Rule T-M', \(Y = (S, M, E, W, P \setminus \{ w \}, C \setminus \{ t \}, O) \), satisfying Conditions (1) and (2).

(g) If \(f \in \text{out}(w) \), where \(w \) is either a task or a multiple instance task, then by definition of transition rules shown in Figure 6.19 on Page 120, \(X = (S, M, E, W, P, C, O) \) is a timed state, such that \(w \in O \). We consider the type of element \(u \) can be such that \(f \in \text{in}(u) \).

(i) If \(u \) is an untimed atomic element, such that we have \(\text{bal}(\text{sub}(s \cap \{ f \}, \text{dom}(\text{assoc}(w))), \text{in}(u)) \) if \(u \) is an AND join gateway, then by Rule T-U, \(Y = (S, M, E \cup \{ u \}, W \setminus \{ u \}, P \setminus \text{ex}(w, P), C \setminus \text{ex}(w, C), O \cup \{ w \}) \). By induction \(Y \) satisfies Condition (1) and follow from \(e(i)i \) and \(e(i)ii \). Y satisfies one of Conditions (1) and (2).

(ii) If \(u \) is a subprocess containing a start event \(t \), by Rule T-U, \(Y = (S, M, E \cup \{ t \}, W, P \setminus \text{ex}(w, P), C \setminus \text{ex}(w, C), O \setminus \{ w \}) \), and by induction \(Y \) satisfies Condition (1) and follow from \(e(i)i \) and \(e(i)ii \). Y satisfies one of Conditions (1) and (2).
(iii) If \(u \) is an AND join gateway and \(\neg bal(sub(s \cap \{ f \}, dom \ assoc(u)), in(u)) \), then \(out(u) \not\in init(PL(p) \cap \{ f \}) \). By Rule T-J, \(Y = (S, M, E, (W \setminus \{ u \}) \cup \{ \text{rm}(u, f) \}, P \setminus ex(w, P), C \setminus ex(w, C), O \setminus \{ w \}) \). By induction \(Y \) satisfies Condition 1 and follow from e(iii) and e(iii)ii \(Y \) satisfies one of Conditions 1 and 2.

(iv) If \(u \) is a task or multiple instance task element, by Rule T-T, \(Y = (S, M, E, W, (P \setminus ex(w, P)) \cup \{ u \}, C \setminus ex(w, C), O \setminus \{ w \}) \). By induction \(Y \) satisfies Condition 1 and follow from e(iii) and e(iii)ii \(Y \) satisfies one of Conditions 1 and 2.

(v) If \(u \) is a subprocess containing a start timer event, by Rule T-T, \(Y = (S, M, E, W, (P \setminus ex(w, P)) \cup \{ t \}, C \setminus ex(w, C), O \setminus \{ w \}) \). By induction \(Y \) satisfies Condition 1 and follow from e(iii) and e(iii)ii \(Y \) satisfies one of Conditions 1 and 2.

(vi) If \(u \) is a multiple instance subprocess directly containing some start event \(t \) and specifies \(l \) instances, then by Rule T-M, \(Y = (S, M \cup \{ (u, l-1) \}, E \cup \{ t \}, W, P \setminus ex(w, P), C \setminus ex(w, C), O \setminus \{ w \}) \). By induction \(Y \) satisfies Condition 1 and follow from e(iii) and e(iii)ii \(Y \) satisfies one of Conditions 1 and 2.

(vii) If \(u \) is a multiple instance subprocess directly containing some start event \(t \) and specifies \(l \) instances, then by Rule T-M, \(Y = (S, M \cup \{ (u, l-1) \}, E \cup \{ t \}, W, P \setminus ex(w, P), C \setminus ex(w, C), O \setminus \{ w \}) \). By induction \(Y \) satisfies Condition 1 and follow from e(iii) and e(iii)ii \(Y \) satisfies one of Conditions 1 and 2.

(h) If \(f \) is a timed exception flow, then by definition of transition rules shown in Figure 1.10 on Page 121, \(X = (S, M, E, W, P, C, O) \) is a timed state and there exists an intermediate timer event \(w \in C \) such that \(f \in out(w) \). We let \(A, U \) and \(V \) be abbreviations for sets \(assocs(f, t), multis(f, t) \) and timers(f, t), and consider the types of element \(u \) can be such that \(f \in in(u) \).

(i) If \(u \) is an untimed atomic element, such that we have \(bal(sub(s \cap \{ f \}, dom \ assoc(u)), in(u)) \) if \(u \) is an AND join gateway, then by Rule X-U, \(Y = (S, M \setminus \{ u \}, E \setminus A) \cup \{ u \}, W \setminus \{ (u \cup A), P \setminus (A \cup V), C \setminus (A \cup V), O \setminus A \} \). By induction \(Y \) satisfies Condition 1 and follow from e(i) and e(iii)ii \(Y \) satisfies one of Conditions 1 and 2.

(ii) If \(u \) is a subprocess containing a start event \(t \), by Rule X-U, \(Y = (S, M \setminus \{ u \}, E \setminus A) \cup \{ t \}, W \setminus A, P \setminus (A \cup V), C \setminus (A \cup V), O \setminus A \) \). By induction \(Y \) satisfies Condition 1 and follow from e(i) and e(iii)ii \(Y \) satisfies one of Conditions 1 and 2.

(iii) If \(u \) is an AND join gateway and \(\neg bal(sub(s \cap \{ f \}, dom \ assoc(u)), in(u)) \), then \(out(u) \not\in init(PL(p) \setminus \{ f \}) \). By Rule X-J, \(Y = (S, M \setminus \{ u \}, E \setminus A) \cup \{ (u \cup A) \cup rm(u, f) \}, P \setminus (A \cup V), C \setminus (A \cup V), O \setminus A \) \). By induction \(Y \) satisfies Condition 1 and follow from e(iii) and e(iii)ii \(Y \) satisfies one of Conditions 1 and 2.

(iv) If \(u \) is a task or multiple instance task element, by Rule X-T, \(Y = (S, M \setminus U, E \setminus A, W \setminus A, P \setminus (A \cup V)) \cup \{ u \}, C \setminus (A \cup V), O \setminus A \) \). By induction \(Y \) satisfies Condition 1 and follow from e(i) and e(iii)ii \(Y \) satisfies one of Conditions 1 and 2.

(v) If \(u \) is a subprocess containing a start timer event \(t \), by Rule X-T, \(Y = (S, M \setminus U, E \setminus A, W \setminus A, P \setminus (A \cup V)) \cup \{ t \}, C \setminus (A \cup V), O \setminus A \) \). By induction \(Y \) satisfies Condition 1 and follow from e(i) and e(iii)ii \(Y \) satisfies one of Conditions 1 and 2.

(vi) If \(u \) is a multiple instance subprocess directly containing some start event \(t \) and specifies \(l \) instances, then by Rule X-M, \(Y = (S, M \setminus U) \cup \{ (u, l-1) \}, E \setminus A, W \setminus A, P \setminus (A \cup V), C \setminus (A \cup V), O \setminus A \) \). By induction \(Y \) satisfies Condition 1 and follow from e(i) and e(iii)ii \(Y \) satisfies one of Conditions 1 and 2.

(vii) If \(u \) is a multiple instance subprocess directly containing some start event \(t \) and specifies \(l \) instances, then by Rule X-M, \(Y = (S, M \setminus U) \cup \{ (u, l-1) \}, E \setminus A, W \setminus A, P \setminus (A \cup V)) \cup \{ t \}, C \setminus (A \cup V), O \setminus A \) \). By induction \(Y \) satisfies Condition 1 and follow from e(i) and e(iii)ii \(Y \) satisfies one of Conditions 1 and 2.

(i) The transition \(X \rightarrow Y \) can be triggered by one of Rules L-U, L-T, A-E, T-D and T-C. We consider them individually.
APPENDIX C. PROOFS

(i) By Rules L-U and L-T shown in Figure 6.8 on Page 108, \(X = (S, M, E, W, T) \) is an untimed state and the rules specify \(\tau \)-transitions triggered by some multiple task instance \(w \), which directly contains some start event \(u \), and specifies \(l \) instances, such that \((\text{sub}(s \cap (e), \text{dom assoc}(w))) \downarrow e \) \mod \(l \neq 0 \), where \(e \in \text{out}(u) \). By induction \(w \in E \) and \(e \in \text{init}(PL(p)/s) \).

i. If \(u \) is a start event, then by Rule L-U, \(Y = (S, M \oplus \{ w \mapsto M(w) - 1 \}, (E \setminus \{ w \}) \cup \{ u \}, W, T) \), satisfying Conditions 2 and a.

ii. If \(u \) is a start timer event, then by Rule L-T, \(Y = (S, M \oplus \{ w \mapsto M(w) - 1 \}, E \setminus \{ w \}, W, T \cup \{ u \}) \), satisfying Condition a. Moreover, follow from a(iii)i and a(iii)ii above, \(Y \) satisfies one of Conditions 1 and 2.

(ii) By Rule A-E shown in Figure 6.14 on Page 114, \(X = (S, M, \emptyset, W, T) \) is a time stable state and \(Y = (S, M, \emptyset, W, P, C, \emptyset) \) is a timed state. By Lemma C.12 and induction, \(Y \) satisfies Condition b. Follow from e(i)i and e(i)ii above, \(Y \) satisfies one of Conditions 1 and 2.

(iii) By Rule T-D shown in Figure 6.18 on Page 118, \(X = (S, M, E, W, P, C, O) \) is timed state and the rule specifies \(\tau \)-transitions triggered by \(w \in C \), where \(w \) is either a multiple task instance or a task. By Rule T-D, \(Y = (S, M, E, W, P \cup \{ w \}, C \setminus \{ w \}, O) \). By induction, \(Y \) satisfies Condition b and follow from e(i)i and e(i)ii above, \(Y \) satisfies one of Conditions 1 and 2.

(iv) By Rule T-C shown in Definition 6.12 on Page 116, \(X = (S, M, E, W, P, \emptyset, \emptyset) \) is a timed state and \(Y = (S, M, E, W, T) \) is a untimed state such that \(P = T \). By induction, \(Y \) satisfies Condition a and one of Conditions 1 and 2.
Appendix D

Process Semantics

This chapter defines functions that are partially defined in Chapter 5 for modelling the untimed behaviour of BPMN.

D.1 Alphabet

This section defines functions that are partially defined in Section 5.2 on Page 58 for generating the alphabet of a CSP process of a BPMN element.

```haskell
> istask, iserror, hasmessage, ismessage :: Type -> Bool
> istask (Task _ _) = True
> istask _ = False
> iserror (Eerror _) = True
> iserror (Ierror _) = True
> iserror _ = False
> ismessage (Smessage _) = True
> ismessage (Imessage _) = True
> ismessage (Emessage _) = True
> ismessage _ = False
> hasmessage (Smessage (Just m)) = True
> hasmessage (Imessage (Just m)) = True
> hasmessage (Emessage (Just m)) = True
> hasmessage _ = False
> taskname :: Type -> TaskName
> taskname (Miseq t y l f) = t
> taskname (Mipar t y l f) = t
> taskname (Task t y) = t
> errorcode :: Type -> ErrorCode
> errorcode (Eerror (Exception e)) = e
> errorcode (Ierror (Exception e)) = e
```

D.2 Atomic Elements

This section defines functions that are partially defined in Section 5.3 on Page 60 for modelling the behaviour of atomic elements.

```haskell
> getvalue :: Maybe a -> [a]
> getvalue = (maybe [] single) where single m = [m]
> internal :: String -> Event
> internal s = "internal." ++ s
> isOne :: FlowType -> Bool
> isOne One = True
> isOne _ = False
> ndetseq :: Int -> FlowType -> [Seqflow] -> Process -> ([Local], Process)
> ndetseq lp ft fs p
```
APPENDIX D. PROCESS SEMANTICS

> | l p = = 1 = sact os p
> | l p > 1 && isOne ft =
> ([ap],(Hide (SeqComp (SeqComp p (seqext os))
> (Parinter (Interrupt (seqcomps ((replicate (lp-1) np)++[ap])) cp)
> ce (ProcId "Mon"))) ce))
> | l p > 1 && (not.isOne) ft =
> ([ap],(Hide (SeqComp p
> (SeqComp (Parinter (Interrupt (seqcomps ((replicate (lp-1) np)++[ap])) cp)
> ce (ProcId "Mon"))) (seqext os))) ce))
> where np = Intern p ap
> cp = Prefix (internal "a") Skip
> ce = List Set (map internal ["a","b"])
> mp = LP ("Mon",[],(Prefix (internal "a") (Prefix (internal "b") Skip)))

>parinters :: [Process] -> Events -> Process
>parinters [p] es = p
>parinters (p:ps) es = Parinter p es (parinters ps es)

>interleaves :: [Process] -> Process
>interleaves [p] = p
>interleaves (p:ps) = Inter p (interleaves ps)

>fixpar :: Int -> FlowType -> [Seqflow] -> Process -> ([Local],Process)
>fixpar lp ft os p
> | lp == 1 = sact os p
> | lp > 1 && isOne ft =
> ([],(Hide (Parinter (parinters (replicate lp np) le)
> se (SeqComp (seqext os) (Prefix (internal "a") Skip))) le))
> | lp > 1 && (not.isOne) ft =
> ([],(SeqComp (interleaves (replicate lp p)) (seqext os)))
> where np = SeqComp p (Extern (SeqComp (seqext os) (Prefix (internal "a") Skip))
> ep = E.exterp (seqext os)
> se = List Set (map seqflow os)**((internal "a")])
> le = List Set (map internal ["a","b"])

>ndetpar :: Int -> FlowType -> [Seqflow] -> Process -> ([Local],Process)
>ndetpar lp ft os p
> | lp == 1 = sact os p
> | lp > 1 && isOne ft =
> ([],(Hide (Parinter (interleaves (replicate lp np) se sp)
> (List Set (map internal ["a","b"])))))
> | lp > 1 && (not.isOne) ft =
> ([],(SeqComp (Hide (Parinter (interleaves (replicate lp np1) sel spl)
> (List Set (map internal ["a","b"])))
> (seqext os)))
> where np = Extern (SeqComp p (Extern (SeqComp (seqext os) (Prefix (internal "a") Skip))
> ep = E.exterp (seqext os)
> se = List Set (map seqflow os)**((map internal ["a","b"]))
> sp = SeqComp (seqext os) (interleaves (replicate lp ep))
> mp1 = Extern (SeqComp p (Prefix (internal "a") Skip))
> sp1 = Prefix (internal "a") (interleaves (replicate (lp-1) ep))
> sel = List Set (map internal ["a","b"])

>encap :: Atom -> [Event] -> ([Local],Process) -> ([Local],Process)
>encap a es (l,p)
> | length e == 0 = (l,p)
> | length e > 0 && (isatom . etype) a =
> (l,(Parinter (Interrupt p (exits e)) (List Set (outevents a))
> (Extern (exits e) (seqext o)))
> | length e > 0 && (incompsd . etype) a =
> (1++[LP ("C"++(eid a)),[],mon], LS ("A"++(eid a),(List Set es)),
> (Parinter (Interrupt p (catches e)))
D.3 Subprocesses

This section defines functions that are partially defined in Section 5.4 on Page 68 for modelling the behaviour of compound elements.

> end :: ElementId -> Event
> end id = "c."++ id

> element :: Element -> [ProcessDef]
APPENDIX D. PROCESS SEMANTICS

>element e =
> let am = atom e
> (l,p) = (element1 am (alpha' e))
> term = (pterm . eid) am
> in case e of
> (Atomic a) -> [(term, l, p)]
> (Compound a es) -> [(term, l, p)] ++ (embed (eid a) es)

>complete :: [Element] -> Atom -> ProcessDef -> ProcessDef
>complete es a (n,l,p)
> | (isstart . etype) a = (n, [], Extern (SeqComp p ep) ep)
> | (isend . etype) a = (n, [], Extern (SeqComp p (Prefix ((end . eid) a) Skip)) ep)
> | otherwise = (n, (ld: l), (ProcId "X"))
> where ep = externs [Prefix (end e) Skip | e <= ends es, not ((isend . etype) a && e == eid a)]
> mp = (if ((isexgate . etype) a && (length . outs) a > 1) then (msync es a) else p)
> ld = LP ("X", [], Extern (SeqComp mp (ProcId "X"))) ep

>msync :: [Element] -> Atom -> Process
>msync es a = SeqComp ((seqext . ins) a) (externs mp)
> where mp = [msgalpha b | b <= (map atom es), (not. null) (intersect (ins b) (outs a))]

>aterm :: String -> SetName
>aterm a = "A("++a++")"

>pterm, spterm :: String -> ProcVar
>pterm i = "P("++i++")"
>spterm i = "SP("++i++")"

>name :: Element -> String
>name (Atomic a) = eid a
>name (Compound a es) = eid a

>par :: (a -> b) -> (c -> d) -> (a,c) -> (b,d)
>par f g (x,y) = (f x, g y)

>split :: a -> (a,a)
>split x = (x,x)

>isend, isstart :: Type -> Bool
>isend End = True
>isend (Emessage _) = True
>isend (Eerror _) = True
>isend _ = False

>isstart Start = True
>isstart (Smessage _) = True
>isstart (Stime _) = True
>isstart (Srul e_) = True
>isstart _ = False

>isexgate :: Type -> Bool
>isexgate Exgate = True
>isexgate _ = False

>msgalpha :: Atom -> Process
>msgalpha a =
> let is = ins a
> im = receive a
> in case etype a of
> (Itime t) -> seqext is
> (Imessage (Nothing)) -> seqext is
> (Imessage (Just m)) -> Prefix (msgflow m) (seqext is)
> _ -> SeqComp (imext im) (seqext is)

>alternate :: [(Type,Seqflow)] -> Process
>alternate es = externs ((map exitp nes) ++
> (map (\(t,s) -> Prefix ((except . errorcode) t) (seqext [s]) ees))
> where nes = [e | e <= es, (iserror.fst) e && (hasexcept.fst) e]
> ees = [e | e <= es, (not.iserror.fst) e || ((iserror.fst) e && (not.hasexcept.fst) e)]
APPENDIX D. PROCESS SEMANTICS

>catches :: [(Type,Seqflow)] → Process
>catches es = externs ((map exitp nes) ++ [(seqext . snd . unzip) ees])
> where ees = [e | e <- es , (iserror . fst) e && (hasexcept . fst) e]
> nes = [e | e <- es , (not.iserror . fst) e || ((iserror . fst) e && (not.hasexcept . fst) e)]

D.3.1 Pools and Diagrams

This section defines functions that are partially defined in Section 5.5 on Page 72 for modelling the behaviour of BPMN pools and diagrams.

>pool :: (PoolId,[Element]) → Script
>pool (id,es) =
> let term = pterm id
> pros = (embed id es) ++ [(term,[],ProcId (spterm id))]
> index = (List Set (map (eid . atom) es))
> events = ((aterm id),(Comp Set [("i",index),("j",(SName (aterm "i")))] "j"))
> in Script (datas es) [] pros ((alphabet es es)++[events]) []
Appendix E

Modelling Relative Time

This chapter defines functions that are partially defined in Chapter 6 for modelling the relative timed behaviour of BPMN.

\[\text{pTot} :: \text{(PoolId, [Element])} \rightarrow \text{Script} \]
\[\text{pTot} (\text{id,es}) = \text{Script d c (p++[coord(id,es),(tpterm id,[]),tproc])} \text{ s++[(spec (tpterm id))]} \]
\[\text{where tproc = Parinter (ProcId (cterm id)) (SName "Events") (ProcId (pterm id))} \]
\[\text{(Script d c p s) = pool(id,es)} \]

\[\text{tpterm,cterm,cpterm :: PoolId \rightarrow ProcVar} \]
\[\text{tpterm s = "TP(++)"} \]
\[\text{cterm s = "CD(++)"} \]
\[\text{cpterm s = "CP(++)"} \]

\[\text{coord :: (PoolId, [Element]) \rightarrow ProcessDef} \]
\[\text{coord (id,ss) = ((cterm id),[],stable state)} \]
\[\text{where state = (ss,[],(filter (isstart.etype.atom) ss),[],(filter (isstime.etype.atom) ss))} \]

E.1 Preliminaries

E.1.1 Containment

Function container takes a list of elements es and an element s, and returns a where a, a member of es, is the subprocess that contains s. Function container1 takes a compound element cp and an element s, and returns either cp if cp directly contains s or an element in cp, which directly contains s; function isIn takes two elements cp and u, and checks if either cp has the same id as u or cp contains an element, which has the same id as u; function dcontained takes a compound element of the value Compound a b and returns b, that is, elements directly contained in a. and function subset takes two lists a and b and checks if b contains everything in a.

\[\text{container0 :: [Element] \rightarrow Element \rightarrow (Maybe Element)} \]
\[\text{container0 [] _ = Nothing} \]
\[\text{container0 es s =} \]
\[\text{let compounds = (filter (iscompound.etype.atom) es)} \]
\[\text{in if (or [s == u | u <- (es \ compounds)]) || (null compounds) then Nothing} \]
\[\text{else maybe (container0 (tail compounds) s) Just (container1 (head compounds) s)} \]

\[\text{container1 :: Element \rightarrow Element \rightarrow (Maybe Element)} \]
\[\text{container1 cp u =} \]
\[\text{if (not.(isIn cp)) u then Nothing} \]
\[\text{else if or [x == u | x <- (dcontained cp)] then Just cp} \]
\[\text{else container0 (filter (iscompound.etype.atom) (dcontained cp)) u} \]

\[\text{hascontainer :: [Element] \rightarrow Element \rightarrow Bool} \]
\[\text{hascontainer es s = (container0 es s) /= Nothing} \]

\[\text{isIn :: Element \rightarrow Element \rightarrow Bool} \]
\[\text{isIn cp u = u == cp || (iscompound.etype.atom) cp && or [(isIn e u) | e <- (dcontained cp)]} \]

\[\text{dcontained :: Element \rightarrow [Element]} \]
\[\text{dcontained (Compound e es) = es} \]

\[\text{flatten :: [Element] \rightarrow [Element]} \]
\[\text{flatten [] = []} \]
APPENDIX E. MODELLING RELATIVE TIME

\[\text{flatten } (e:es) =\]
\[\begin{cases} & \text{if } (\neg \text{iscompound.etype.atom}) e \text{ then } \[e] + \left(\text{flatten } es\right) \\ & \text{else } \left(\text{flatten . dcontained} \right) e + \left(\text{flatten } es\right) \end{cases}\]

\[\text{subset } :: (\text{Eq } a) \rightarrow [a] \rightarrow [a] \rightarrow \text{Bool}\]
\[\text{subset } xs \ ys = \text{all } (\text{elem } ys) \ xs\]

\[\text{findoriginal } :: \text{[Element]} \rightarrow \text{Element} \rightarrow \text{Element}\]
\[\text{findoriginal } es = \text{fromJust } \left(\text{findoriginalfrom } es\right)\]

\[\text{findoriginalfrom } :: \text{[Element]} \rightarrow \text{Element} \rightarrow (\text{Maybe Element})\]
\[\text{findoriginalfrom } es \ e =\]
\[\begin{cases} & \text{if } (\text{isetime.etype.atom}) e \land (\text{null.ins.atom}) e \\ & \text{then find } (\neg \text{null}.(\text{intersect } ((\text{outs.atom}) e)).\text{snd.unzip.exit.atom}) \left(\text{flatten } es\right) \\ & \text{else find } (\text{subset } ((\text{ins.atom}) e)).\text{ins.atom}) \left(\text{flatten } es\right) \end{cases}\]

E.2 Coordinating Untimed States

This section defines the functions for implementing Step 1 of the coordination procedure, described in Section 6.3.

E.2.1 Auxiliary Functions

\[\text{exts } :: [\text{Process}] \rightarrow \text{Process}\]
\[\text{exts } [p] = p\]
\[\text{exts } (p:ps) = (\text{Extern } p \ (\text{Styling } "\\n\\t" \ (\text{exts } ps) "\\))\]

\[\text{deciterations } :: [\text{[Element,Int]}] \rightarrow \text{Element} \rightarrow [\text{[Element,Int]}]\]
\[\text{deciterations } ms \ m = (\text{removems } ms \ m) + \left(\left(n, (\text{curiteration } ms \ m) - 1\right)\right)\]

\[\text{removems } :: [\text{[Element,Int]}] \rightarrow \text{Element} \rightarrow [\text{[Element,Int]}]\]
\[\text{removems } ms \ m = \text{filter } (/(= (\text{eid.atom}) m).\text{eid.atom.fst}) \ ms\]

\[\text{getStart } :: \text{Element} \rightarrow \text{Element}\]
\[\text{getStart } c = \text{head } [\ e | \ (dcontained \ c), (\text{isstart.etype.atom}) e \]\]

\[\text{rm } :: \text{Seqflow} \rightarrow \text{Element} \rightarrow \text{Element}\]
\[\text{rm } s (\text{Atomic } a) = (\text{Atomic } (\text{rm0 } a \ s))\]
\[\text{rm } s (\text{Compound } a \ b) = (\text{Compound } (\text{rm0 } a \ s) \ b)\]

\[\text{rm0 } :: \text{Atom} \rightarrow \text{Seqflow} \rightarrow \text{Atom}\]
\[\text{rm0 } (\text{Atom } d \ t \ i \ o \ e \ r \ n \ m) s = (\text{Atom } d \ t \ (\text{delete } s \ i) \ (\text{delete } s \ o) \ re \ r \ m \ n)\]
\[\text{where } re = \left([\ (t,f) | \ (t,f) <- e, f /= s \right)\]

\[\text{istimed } :: \text{Type} \rightarrow \text{Bool}\]
\[\text{istimed } t = \not (\text{disjs } [\text{iscompound, isend, isstart, isgate}] \ t)\]

\[\text{lookupm } :: \text{Element} \rightarrow [\text{[Element,Int]}] \rightarrow \text{Maybe Int}\]
\[\text{lookupm } _ {} [] = \text{Nothing}\]
\[\text{lookupm } e \ ((x,y):ys) =\]
\[\begin{cases} & (\text{eid.atom}) e = (\text{eid.atom}) x \Rightarrow \text{Just } y \\ & \text{otherwise } = \text{lookup } e \ ys \end{cases}\]

\[\text{curiteration } :: [\text{[Element,Int]}] \rightarrow \text{Element} \rightarrow \text{Int}\]
\[\text{curiteration } ms \ e = \text{maybe } ((\text{loop.getloop.etype.atom}) e) \text{id } \text{(lookupm } e \ ms)\]

\[\text{inms } :: [\text{[Element,Int]}] \rightarrow \text{Element} \rightarrow \text{Bool}\]
\[\text{inms } ms \ e = \text{isJust } \text{(lookupm } e \ ms)\]

\[\text{noinstance } :: [\text{[Element,Int]}] \rightarrow \text{Element} \rightarrow \text{Bool}\]
\[\text{noinstance } ms = (\Rightarrow 0).((\text{curiteration } ms))\]

\[\text{hassmoreinstances } :: [\text{[Element,Int]}] \rightarrow \text{Element} \rightarrow \text{Bool}\]
\[\text{hassmoreinstances } ms = (\Rightarrow 0).((\text{curiteration } ms))\]
APPENDIX E. MODELLING RELATIVE TIME

E.2.2 Main Functions

\(\text{findsucceed} :: \text{[Element]} \to \text{Seqflow} \to \text{Element} \)
\(\text{findsucceed es} = \text{fromJust} \circ \text{findsucceed0 es} \)
\(\text{findsucceed0 :: [Element] \to Seqflow \to (Maybe Element)} \)
\(\text{findsucceed0 es s} = \text{find} ((\text{elem s}).\text{ins}.\text{atom}) \circ \text{flatten es} \)

E.2.3 Coordinating Atomic Elements

\(\text{branchs :: UntimedState} \to \text{Element} \to \text{Seqflow} \to \text{Process} \)
\(\text{branchs (ss,ms,ue,ae,rn) r s} = \)
\(\text{Prefix (seqflow s)} \circ ((\text{stable} \circ \text{suffix s}) \circ (ss,ms,\text{union} \circ \text{delete} r \circ \text{ue}) \circ [c] \circ \text{ae} \circ \text{rn}) \)

E.2.4 Coordinating Compound Elements

\(\text{branchm models rules whose name are has prefix M, and branchl models rules whose name are has prefix L.} \)

\(\text{branchm :: UntimedState} \to \text{Element} \to \text{Seqflow} \to \text{Process} \)
\(\text{branchm (ss,ms,ue,ae,rn) m s} = \)
\(\text{Prefix (seqflow s)} \circ ((\text{stable} \circ \text{suffix s}) \circ (ss,ms,\text{delete} \circ \text{m} \circ \text{ue}) \circ [c] \circ \text{ae} \circ \text{rn}) \)
\(\text{where c} = \text{head} \circ [s] \circ (\text{flatten ss} \circ \text{iscomps} \circ \text{atom} \circ s) \circ \text{elem} \circ \text{decontinent s} \)

\(\text{branchl :: UntimedState} \to \text{Element} \to \text{Process} \)
\(\text{branchl (ss,ms,ue,ae,rn) m} = \)
\(\text{Prefix (end.atomic)} \circ (\text{stable} \circ (\text{decimations} \circ \text{ms} \circ \text{delete} \circ \text{m} \circ \text{ue}) \circ [e] \circ \text{ae} \circ \text{rn}) \)

> | (is timed.etype. atom) e = stable (ss, (deciterations ms m), delete m ue, ae, (e: rn))
> where e = getStart m

\texttt{utrans ss ae s} returns true if the element with incoming sequence flow \(s \) is either an untimed, atomic element such that if it is an AND gateway that it has only one incoming sequence flow \(s \), or a subprocess element.

\begin{verbatim}
> findnext :: [Element] \rightarrow [Element] \rightarrow Seqflow \rightarrow Element
> findnext ss ae s = let e = findsuccessed ss s \in if \text{elem} e ae \text{then} findsuccessed ae s \text{else} e

> utrans :: [Element] \rightarrow [Element] \rightarrow Seqflow \rightarrow Bool
> utrans ss ae s = disjs \[atome, comp e \] (findnext ss ae s)
> where atome = conj \[\neg.is timed.etype. atom, \neg.is compound.etype. atom, dtome \]
> dtome = disjs \[\neg.is agate.etype. atom, \neg.(=1).length.ins. atom \]
> comp e = conj \[\neg.is timed.etype. atom, \neg.(issub.etype. atom) \]

> jtrans :: [Element] \rightarrow [Element] \rightarrow Seqflow \rightarrow Bool
> jtrans ss ae s = conjs \[(isagate.etype. atom), (\neg.(=1).length.ins. atom)\] (findnext ss ae s)

> mtrans :: [Element] \rightarrow Seqflow \rightarrow Bool
> mtrans ss s = conjs \[(ismiseqs.etype. atom, is timed.etype. atom. getStart)\] c
> where c = findsuccessed ss s

> ntrans :: [Element] \rightarrow Seqflow \rightarrow Bool
> ntrans ss s = conjs \[(ismiseqs.etype. atom, is timed.etype. atom. getStart)\] c
> where c = findsuccessed ss s

> ttrans :: [Element] \rightarrow Seqflow \rightarrow Bool
> ttrans ss = is timed.etype. atom. (findsuccessed ss)
\end{verbatim}

Functions matching suffixes of the transition rules

\begin{verbatim}
> ustate :: Element \rightarrow UntimedState \rightarrow UntimedState
> ustate c (ss, ms, ue, ae, rn) = (ss, ms, (e:ue), delete e ae, rn)
> where e = if \text{is compound.etype. atom} \text{c then getStart c else} c

> jstate :: Element \rightarrow Seqflow \rightarrow UntimedState \rightarrow UntimedState
> jstate e s (ss, ms, ue, ae, rn) = (ss, ms, ue, union \text{delete e ae} \[\neg.(rn s e) \], rn)

> mstate :: Element \rightarrow UntimedState \rightarrow UntimedState
> mstate c (ss, ms, ue, ae, rn) = (ss, union ms \[(c, l-1), (e:ue), ae, rn \]
> where e = getStart c
> l = curiteneration ms c

> nstate :: Element \rightarrow UntimedState \rightarrow UntimedState
> nstate c (ss, ms, ue, ae, rn) = (ss, union ms \[(c, l-1), (e:ue), ae, (e:rn) \]
> where e = getStart c
> l = curiteneration ms c

> tstate :: Element \rightarrow UntimedState \rightarrow UntimedState
> tstate e (ss, ms, ue, ae, rn) = (ss, ms, ue, delete e ae, (e:rn))
\end{verbatim}

E.3 Calculating Time Progression

This section defines the functions for implementing Step 2 of the coordination procedure, described in Section 6.4.

E.3.1 Timed Exception Association

The functions \texttt{minrange} and \texttt{maxrange} take a timed BPMN element and either return minimum and maximum durations respectively if the element is a task element, or both return its duration if it is a timer event element.

\begin{verbatim}
> minrange, maxrange :: Element \rightarrow Time
\end{verbatim}
APPENDIX E. MODELLING RELATIVE TIME

>minrange e =
> case (etype.atom) e of
> (Stime t) -> t
> _ -> (fst.range.atom) e
>
>maxrange e =
> case (etype.atom) e of
> (Stime t) -> t
> _ -> (snd.range.atom) e
>
>cmpmin :: Element -> Element -> Ordering
>cmpmin x y | (minrange x) < (minrange y) = LT
> | (minrange x) > (minrange y) = GT
> | otherwise = EQ

The function getexceptions ss is defined such that getexceptions ss e returns e and its list of exception associations with respect to the list of BPMN elements ss; the function subexceptions ss e returns a list of intermediate timer event elements such that each element’s type t and outgoing sequence flow s forms a pair in assoc(e), satisfying the second condition of Definition 6.11, and the function fdexcept calculates three lists of elements: the first two lists are the sublists of delayed and postponed elements that are currently active, and the third list contains fresh timed elements and their exception associations.

>separate :: Element -> (Either (Element) (Element,Element))
>separate s =
> if (not.isact.etype.atom) s then Left s
> else case find (isitime.fst) ((exit.atom) s) of
> Just (t,f) -> Right (s,(Atomic (Atom (**"expect").eid.atom) s) t [] [] (zero,zero) [] []))
> Nothing -> Left s

>unsplit (a,b) = [a,b]

>getexceptions :: [Element] -> Element -> [Element]
>getexceptions ss = (uncurry union).(par sep (subexceptions ss)).split
> where sep = (either (\a -> [a]) unsplit).separate

>subexceptions :: [Element] -> Element -> [Element]
>subexceptions ss e = map (makeexception.snd) ps
> where ps = filter ((== e).fst) (concatMap incompound (filter (iscompound.etype.atom) ss))

>incompound :: Element -> [(Element,Element)]
>incompound e =
> if hastimeexcept e then [(t,e) | t <= (contained e)]
> else concatMap incompound (filter (iscompound.etype.atom) (dcontained e))

>contained :: Element -> [Element]
>contained = flatten.dcontained

>hastimeexcept :: Element -> Bool
>hastimeexcept e = or [isitime t | (t,y) <- (exit.atom) e]

>makeexception :: Element -> Element
>makeexception s =
> case find (isitime.fst) ((exit.atom) s) of
> Just (t,f) -> Atomic (Atom "" t [] [] (zero,zero) [] [])
> Nothing -> error "no exception flow"

>fdexcept :: [Element] -> [Element] -> ([Element],[Element],[Element])
>fdexcept ss rn =
> let (ps,ds) = (filter (postponed ss) rn, filter (delayed ss) rn)
> in (ds,ps,filter (\notElem ps) (concatMap (getexceptions ss) (rn \\ (union ps ds))))
E.3.2 Multiple Instance

This section defines the functions for gathering the instance of each timed active multiple instance element. This procedure is described in Section 6.4.3.

```
> instancennm :: String -> String
> instancennm = (++"instance")

> hasinstance :: Element -> Element -> Bool
> hasinstance = (== (instancennm.etype.atom))

> splitseq :: Element -> (Element,Element)
> splitseq (Atomic (Atom d (Miseq n t lp f) i o e r m s)) =
>   let lp = if (isfix1) then Fix (((loop 1) - 1) else Ndet ((loop 1) - 1))
>   in ((Atomic (Atom d (Miseq n t lp f) i o e r m s)),
>       (Atomic (Atomic (instancennm d) (Task n t) [] [] [] [])))

> parpost :: [Element] -> [Element] -> ([Element], [Element])
> parpost ss = partition (conjs [ismiseq.etype.atom, m -> not (any (hasinstance m) ss)])
```

E.3.3 Ordering the Timed Sequence

This section defines the main function timer that implements Step 2 of the coordination procedure, and also the function sorting for ordering the sequence of time active elements for enactment, described in Section 6.4.4.

```
> timer ss ms ae rn =
>   let (de,ps,fr) = fexcept ss rn
>       (nm,n) = par (with (map splitseq)) id (parpost (union ps de) ps)
>       (fm,fi) = (with (map splitseq) (filter (ismiseq.etype.atom)) fr)
>       (pm,as) = sorting op de (union (nm,fi),as)
>       (en,ac) = break ((> 0).minrange) as
>   in exe (ss,ms,[]),ae,(union [ac,pm,nm,fr],en,[])

> hasmiseq :: [Element] -> Element -> (Element,Element)
> hasmiseq xs m =
>   case find (hasinstance m) xs of
>      Just t -> (m,t)
>      Nothing -> error "cannot find instances"

> sorting :: [Element] -> [Element] -> [Element] -> ([Element],[Element])
> sorting op de fr =
>   let (ms,ce) = partition (ismiseq.etype.atom) op
>       mt = minimum (map minrange (union [os,fr])) ++ (map maxrange de)
>   in (ms,sortBy cmpmin (map (subtime mt) (union [os,de,fr])))
```

E.4 Coordinating Timed States

This section defines the functions for implementing Step 3 of the coordination procedure, described in Section 6.5.

```
> candelay = \e -> minrange e /= maxrange e
> work = (task.taskname.etype.atom)

> intersects :: (Eq a) => [a] -> [a] -> Bool
> intersects x y = (not.null) (intersect x y)

> attaches :: Element -> Element -> Bool
> attaches c e = intersects (snd.unzip.exit.atom) c (outs.atom e)
```

> findattach :: [Element] -> Element -> [Element]
APPENDIX E. MODELLING RELATIVE TIME

>findattach ss e = filter ('attaches' e) ss
>isexcept :: Element -> Bool
>isexcept = conj $ isinstancetype . atomnull . ins . atom
>msend :: Element -> Bool
>msend = (== 0) . loop . getloop . atom
>isinstance :: [Element] -> Element -> Bool
>isinstance ws w = find ('hasinstance' w) ws /= Nothing
>tot cs os (ss,ms,es,ae,ps) = (ss,ms,es,ae,ps,cs,os)
cancels :: [Element] -> [Element] -> Element -> [Element]
cancels ss ru e = unions [cs, ds, is]
 > where (Just a) = find (attaches e) ss
 > cs = if (not . iscompound . atom) a then [a]
 > else filter ('elem' (contained a)) ru
 > ds = filter (\x -> any (attaches x) cs) ru
 > is = filter (\t -> any ('hasinstance' t) cs) ru
>type TimedState = ([Element], [((Element, Int))], [Element], [Element], [Element], [Element], [Element])
exe :: TimedState -> Process
>exe (ss,ms,es,ae,ps,[],[]) = stable (ss,ms,es,ae,ps)
exe (ss,ms,es,ae,ps,cs,os) =
 > [exts [[csbranch (ss,ms,es,ae,ps,cs,os) e | e <- cs]]
 > [osbranch (ss,ms,es,ae,ps,cs,os) e | e <- os]]
csbranch :: TimedState -> Element -> Process
csbranch state e
 > | vrule e = exts [branchv state e s | s <- (outs . atom) e]
 > | isexcept e = exts [branchx state e s | s <- (outs . atom) e]
 > | drule e = Extern (csbranch1 state e) (Prefix "internal" ((exe . (dstate e)) state))
 > | otherwise = csbranch1 state e
 > where vrule = conj $ (not . isexcept) . insttimer . atom
 > drule = conj $ (instask . atom) . candelay
dstate :: Element -> TimedState -> TimedState
dstate e (ss,ms,es,ae,ps,cs,os) = (ss,ms,es,ae,ps,cs,os)
 > [osbranch (ss,ms,es,ae,ps,cs,os) e | e <- os])
>branchv :: TimedState -> Element -> Seqflow -> Process
>branchv (ss,ms,es,ae,ps,cs,os) r s =
 > Prefix (seqflow s) ((exe . (tot (delete r cs) os) . (suffix s)) (ss,ms,es,ae,ps))
>csbranch1 :: TimedState -> Element -> Process
csbranch1 (ss,ms,es,ae,ps) e
 > | erule e = Prefix (work e) (exe (ss,ms,es,ae,ps,delete e cs), (e:os))
 > | nrule e = Prefix (work e) (exe (ss,ms,es,ae,ps,delete m ps), (e:os))
 > | mrule e = Prefix (work e) (exe (ss,ms,es,ae,ps,delete e cs), (e:os))
 > where erule = conjS [(not . isinstance ps)] . instask . atom
 > nrule = conjS [(isinstance ps)] . instask . atom . msend
 > mrule = conjS [(isinstance ps)] . instask . atom . (not . msend)
 > m = (fromJust . (find ('hasinstance' e))) ps
>osbranch :: TimedState -> Element -> Process
>osbranch state e | true e = exts [brancht state e s | s <- (outs . atom) e]
 > where true = disjs [(instask . atom) . (ismiseq . atom)]
>brancht :: TimedState -> Element -> Seqflow -> Process
>brancht (ss,ms,es,ae,ps,cs,os) r s =
 > Prefix (seqflow s) ((exe . (tot (delete r os) cs) . (suffix s)) (ss,ms,es,ae,ps \ ex))
 > where ex = findattach (unions [ps, cs]) r
>branchx :: TimedState -> Element -> Seqflow -> Process
>branchx (ss,ms,es,ae,ps,cs,os) r s =
 > Prefix (seqflow s) (exe (ss,ms \ ns, es \ rs, ae \ rs, ps \ rs))
 > where s = findsucceed ss s
APPENDIX E. MODELLING RELATIVE TIME

rs = cancels ss (unions [ps,cs]) e
ns = foldr (\c n -> removems n c) ms (filter (iscompound.etype.atom) (e:cs))
texe = exe.(tot (cs \ (r:rs)) (os \ rs)).(suffix s)
Appendix F

From BPMN To Empiricol

The function `findtermin` finds the prerequisite activities to terminate this empirical workflow; the function `checktermin` checks for terminating dependent activities; the function `trans` that takes two copies of the same BPMN diagram (single BPMN pool) and returns an Empiricol workflow described by the diagram, and the function `ckele` takes list of elements and returns a list of sequence rules modelled by subprocess elements in that list.

> `bToe :: Diagram -> Empiricol`
> `bToe ds = [(startseq es)++(map (checktermin pa) (trans es es))++end]`
> `where es = snd.head ds`
> `pa = findtermin es (filter (isend.etype.atom) es)`
> `end = maybe [] (\p -> [NStop p]) pa`

> `trans :: [Element] -> [Element] -> Empiricol`
> `trans es = foldr (\e w -> (ckele es e)++w) []`

> `findtermin :: [Element] -> [Element] -> Maybe PreAct`
> `findtermin sp es = listToMaybe ep`
> `where ep = map (pre sp) (concatMap (ins.atom) es)`

> `checktermin :: Maybe PreAct -> EventSequencing -> EventSequencing`
> `checktermin pa es = (maybe es (\p -> cktermin p NSTOP es)) pa`

> `cktermin :: PreAct -> ActivityId -> EventSequencing -> EventSequencing`
> `cktermin pa id (Event n p de c1 c2 dc r w)`
> `| isInPre n pa = (Event n p de c1 c2 (insertD (da id) dc) r w)`
> `| otherwise = (Event n p de c1 c2 dc r w)`

> `isInPre :: ActivityId -> PreAct -> Bool`
> `isInPre nm (OneOf ps) = (any (isInPre nm) ps)`
> `isInPre nm (All ps) = (any (isInPre nm) ps)`
> `isInPre nm (Leaf p) = p == nm`

> `insertD :: DptAct -> DptAct -> DptAct`
> `insertD a NoFlow = (Seq [a])`
> `insertD a (Seq acts) = (Seq (acts++[a]))`

> `isterminal :: Element -> Bool`
> `isterminal = isend.etype.atom`

> `startseq :: [Element] -> EventSequencing`
> `startseq es = (Empiricol.Start (dpta es f))`
> `where f = (head.outs.atom.fromJust.(find (isstart.etype.atom))) es`

> `ckele :: [Element] -> Element -> [EventSequencing]`
> `ckele es e =`
> `| if (not.issub.etype) a then []`
> `| else [Event (ename e) (pre es (head.ins a)) d (scond e) (econd e) ((norm.dpt e) (reps e) ((norm.inv e)))]`
> `where a = atom e`
> `| d | (null.exitAtom) e = dpta es (head.outs a)`
> `| otherwise = OneOf [(dpta es (head.outs a))++(map (dpta es ((snd.unzip.exit a)))])`

> `isseqsub :: Element -> Bool`
> `isseqsub = (conj [issub,(== SeqB).subtype]).etype.atom`

The function `idsBname` takes a subprocess name and returns the id of the activity which the subprocess describes; the function `idsTname` takes a task name and returns the identifier of the activity which the task element describes; the function `tkTowk` takes a task name and returns an description of work...
procedure which the task element describes; the function \texttt{filtersub} takes a \texttt{SubProcessType} value and a list of compound elements and returns the list of the subsets which have been labelled with that that \texttt{SubprocessType} value, and the function \texttt{ename} takes a subprocess element, and returns the identifier of the activity, which that element describes.

\begin{verbatim}
> idsBname :: BName -> ActivityId
> idsBname = Id.(map toUpper)

> idsTname :: TaskName -> (ActivityId,ActType)
> idsTname t = ((Id.(map toUpper)) k, ap at)
> where (k, at) = ((par id tail).(splitAt i)) t
> i = ((maybe (length k) id).(findIndex (== '_')))) t

> ap :: String -> ActType
> ap "Auto" = Automatic
> ap _ = Manual

> tkTowk :: TaskName -> WorkId
> tkTowk n = n

> subTowk :: BName -> WorkId
> subTowk n = n

> filtersub :: SubProcessType -> [Element] -> [Element]
> filtersub s = filter ((conjs [iscompound,(== s).subtype]).etype.atom)

> findsub = \ s -> listToMaybe . (filtersub s)

> ename :: Element -> ActivityId
> ename = idsBname.subname.etype.atom

> subname :: Type -> BName
> subname (Miseqs b y l f) = b
> subname (Mipars b y l f) = b
> subname (SubProcess b y) = b
\end{verbatim}

\section*{F.1 Prerequisites and Dependences}

The function \texttt{dpta} takes a list of elements and an outgoing sequence flow of a subprocess and returns the dependence tree of the sequence rule modelled by that subprocess, and the function \texttt{pre} takes a list of elements and an incoming sequence flow of a subprocess and returns the prerequisite tree of the sequence rule modelled by that subprocess.

\begin{verbatim}
> dpta :: [Element] -> Seqflow -> DptEvent
> dpta = tree Dpts

> pre :: [Element] -> Seqflow -> PreAct
> pre = tree Pres

> tree :: TreeType -> [Element] -> Seqflow -> Tree
> tree t es s =
> ((\x -> g x es s).fromJust.(find f)) es
> where (f,g) | t == Pres = ((elem s).allouts,preap)
> | t == Dpts = ((elem s).ins.atom,dptap)

> preap :: Element -> [Element] -> Seqflow -> Tree
> preap e es s
> | (isstart.etype) a = Leaf START
> | isj] e = OneOf (map (tree Pres (es*[s])) (ins a))
> | isaj e = Empiricol.All (map (tree Pres (es*[s])) (ins a))
> | disjs [isxs,isas] e = tree Pres (es*[s]) ((head.ins) a)
> | (iscompound.etype) a = Leaf (ename e)
> where a = atom e
\end{verbatim}
Functions `isxs`, `isas`, `isxj` and `isaj` check if a given element is a XOR Split, AND Split, XOR Join and AND Join element. The function `cond` takes an element projects the condition of an intermediate rule element attached to that element, and the functions `scond` and `econd` take an element and project the start and terminate conditions of the sequence rule modelled by that element.

F.2 Observation and Work Groups

The function `dpt` takes a subprocess element representing a sequence rule and returns the rule’s observation group; the function `inv` takes a subprocess element representing a sequence rule and returns the rule’s work group (procedure workflow); the function `wbs` takes a list of elements embedded by a subprocess modelling a RWP and returns the workflow of procedures of the RWP; the function `dptact` takes a task element modelling an observation and returns that observation; the function `wb` takes a task element modelling a SNP and returns that SNP, and the function `wk` takes either a multiple instance task element and returns a SRP or a subprocess element and returns a RWP.
APPENDIX F. FROM BPMN TO EMPIRICOL

> swf w p e = ((maybe NoFlow ds).(findsub p).embedding) e
> where ds = \x \rightarrow swfs w x

> swfs :: WfType \rightarrow Element \rightarrow Swf
> swfs w e = maybe NoFlow ((gsuw w es).head.outs.atom) (find (isstart.etype.atom) es)
> where es = embedding e

> gswf :: WfType \rightarrow [Element] \rightarrow Seqflow \rightarrow Swf
> gswf w es s = maybe NoFlow ((gswf w es).head.outs.atom) (find (isstart.etype.atom) es)

> seqswf :: WfType \rightarrow [Element] \rightarrow Seqflow \rightarrow Swf
> seqswf w es s = maybe (NoFlow,Nothing) (pathswf w es s) (findsucceed0 es s)

> pathswf :: WfType \rightarrow [Element] \rightarrow Seqflow \rightarrow (Swf, Maybe Seqflow)
> pathswf w es s = maybe (NoFlow,Nothing) (pathswf w es s) (findsucceed0 es s)

> inb :: WfType \rightarrow (Element \rightarrow Bool)
> inb Dpt = isatom.etype.atom
> inb Wks = (disjs [ismiseq,ismiseqs]).etype.atom
> inb Wbs = istask.etype.atom

> single :: WfType \rightarrow Element \rightarrow Swf
> single Dpt e = Single (Dp (dptact e))
> single Wks e = Single (Wk (wk e))
> single Wbs e = Single (Wu (wb e))

> procedure :: TaskType \rightarrow Procedure
> procedure (InvT (Inv n q m)) = ProcedureA (Treatment n q m)
> procedure _ = DetailHidden

> dptact :: Element \rightarrow Observation
> dptact e =
> if (istask.etype.atom) e then (d,m,n,1,cond e,a)
> else (d,m,n,1,cond e,a)
> where (m,n) = par tTod tTod ((range.atom) e)
APPENDIX F. FROM BPMN TO EMPIRICOL

F.3 Repetition

The function \texttt{reps} takes a subprocess element modelling a sequence rule and returns a possibly empty list of repeat clauses.

\begin{verbatim}
> l = (loop.getloop.etype.atom) e
> (d,a) = dname e

> wb :: Element -> WorkSUnit
> wb e =
> let t = (etype.atom) e
> (m,n) = (range.atom) e
> in ((tkTowk.taskname) t,(procedure.tasktype) t,tTod m,tTod n)

> wk :: Element -> Work
> wk e =
> let t = (etype.atom) e
> r = (loop.getloop) t
> (m,n) = ((par tTod tTod).range.atom) e
> i = maybe zero maxrange (find (isitime.etype.atom) (embedding e))
> in if ismseq t
> then WkS (((tkTowk.taskname) t),((procedure.tasktype) t),m,n,r)
> else WkM (((subTowk.subname) t),((wb (embedding e))),(tTod i),r)

> dname :: Element -> (ActivityId,ActType)
> dname = idsTname.taskname.etype.atom

\end{verbatim}
Appendix G

From Empiricol To BPMN

The function eTob takes an empirical study and returns a BPMN pool that models it, and the function mksub maps a sequence rule to a subprocess element that models it;

> eTob :: Empiricol -> BPMN
> eTob w = ("Diagram",dependency w f g)
> where (f,g) = ((par id head).unzip.(foldl cst []) w)
> cst xs (Empiricol.Start _) = xs
> cst xs (NStop _) = xs
> cst [] e = [mksub e "Flow1"]
> cst (x:xs) e = ([mksub e (snd x)]:xs)

> mksub :: EventSequencing -> Seqflow -> (Element,Seqflow)
> mksub (Event id pre dpe cc ec dpt reps wk) s =
> (Compound (Atom ("SubProcess"**(si s)))
> (SubProcess (idToEn id) SeqB) [] [] et norange [] [] em,ns)
> where (em,ns) = bsub cc dpt reps wk n id
> (et,n) = case ec of
> NoCond -> ([],s)
> c -> ([(Irule c,s)],sflow s)

> bsub :: Condition -> DptAct -> [RepeatExp] -> Works -> Seqflow -> ActivityId -> ([Element],Seqflow)
> bsub cc dpt reps wk s id =
> case wk of
> NoFlow -> ([start,end,fst (sfsuc Dpt s (Left (dpt,id))))|**|sreps,es)
> _ -> ([start,end,aps,aj,dd,sw]**|**|sreps,es)
> where (start,si) = case cc of
> NoCond -> ele ("Start"**(si s)) BPMN.Start s []
> c -> ele ("Start"**(si s)) (Srue c) s []
> (sd,ds) = sfsuc Dpt (sflow s) (Left (dpt,id))
> (sreps,rs) = extreps ds sd id reps
> (sw,wa) = sfsuc Wns (sflow rs) (Left (wk,id))
> (end,es) = case wk of
> NoFlow -> ele ("End"**(si rs)) End rs []
> _ -> ele ("End"**(si bk js)) End (bk js) []
> (aps,s2) = node (Left [s]) (Left (map head.ins.atom) [sd,sw]) "" ("Gate"**(si s)) Agate
> (aj,js) = node (Left (map bk [rs,ws])) (Right 1) "" ("Gate"**(si ws)) Agate

G.1 Acyclic Structure Workflow

The function swfsuc takes the ASW of an observation workflow or a procedure workflow or a RWP and returns a BPMN subprocess element embedding that ASW; the function extswf takes an ASW, and returns a pair, where the first component is a list of BPMN elements modelling the ASW and the second component is a sequence flow fresh with respect to that list of BPMN elements; the function extswfm takes the type Agate or Xgate, a sequence flow and a list of ASWs and returns a pair of a list of BPMN elements and a fresh sequence flow, where the list of BPMN elements models the choice or the interleaving of the list of ASWs depending on the Type value; the function mkdpt takes a sequence flow and an observation, and returns a pair where the first component is either an atomic task element or a multiple instance task element, and the second component is a fresh sequence flow; the function mkwk takes either a SRP or a SNP, and a sequence flow (Seqflow) and returns a pair where the first component is either an atomic task element or a multiple instance task element, and the second component is a fresh sequence flow, and the function mkwb takes a RWP and a sequence flow and returns a subprocess element modelling the RWP and a fresh sequence flow.
>type Struct = Either (Swf,ActivityId) (String,Swf,Duration,Repeat)

>swfsub :: WfType -> Seqflow -> Struct -> (Element,Seqflow)
>swfsub w s d = (Compound a (start:end:sf), sflow e)
> where (tp,sp,wd) = either f1 f2 d
> a = Atom ("SubProcess"++(si e)) tp [s] [e] [] norange [] []
> (start,ss) = ele ("Start"++(si.sflow s)) sp (sflow s) []
> (sf,o) = extswf (sflow s) wd
> (end,e) = ele ("End"++(si o)) End (bk o) []
> f1 (u,v) = (swftype u (idToBn v) Nothing,BPMN.Start,u)
> f2 (m,n,o,p) = (swftype w m (Just p),Stime (dTot o),n)

>swftype :: WfType -> String -> (Maybe Repeat) -> Type
>swftype Dpt n _ = SubProcess (n++"Obv") DptB
>swftype Wks n _ = SubProcess (n++"Work") InvB
>swftype Wbs n (Just r) = Miseqs (wkToTk n) Embedded (Fix (rep r)) BPMN.All

>extswf :: Seqflow -> Swf -> ([Element],Seqflow)
>extswf s NoFlow = ([],s)
>extswf s (Choice ws) = extswfm Xgate s ws
>extswf s (Par ws) = extswfm Agate s ws
>extswf s (Seq ws) = ((par concat last).unzip.(swfm id s)) ws
>extswf s (Single g) = sg g s

>sg :: Seqflow -> Acts -> ([Element],Seqflow)
>sg s (Wk (WkM m)) = (par ([:]) id) (mkwb m s)
>sg s (Wk (WkS w)) = (par ([:]) id) (mkwk (Left w) s)
>sg s (Wu w) = (par ([:]) id) (mkwk (Right w) s)
>sg s (Dp (a,b,c,d,e,f)) =
> if elem s specialIds then ([],s)
> else (par ([:]) id) (mkdpt (a,b,c,d,e,f) s)

>extswfm :: Type -> Seqflow -> [Swf] -> ([Element],Seqflow)
>extswfm t s wf = ((g:j:(concat fe)),(head.outs.atom) j)
> where (g,_) = node (Left [s]) (Left (concatMap (ins.atom.head) fe)) ("Gate"++(si s) t)
> (fe,fs) = unzip (swfm sflow (sflow s) wf)
> (j,_) = node (Left fs) (Right 1) ("Gate"++((si.head) fs)) t

>swfm :: (Seqflow -> Seqflow) -> Seqflow -> [Swf] -> ([Element],Seqflow)
>swfm f _ [] = []
>swfm f s (d:ds) = (g,t):(swfm f (f t) ds) where (g,t) = extswf s d

>mkdpt :: Observation -> Seqflow -> (Element,Seqflow)
>mkdpt (id,min,max,rx,cond,atype) s =
> if rp == 1 then f ("Task"++(si s)) (Task (idToTn id atype) DptT)
> else f ("Loop"++(si s)) (Miseq (idToTn id atype) DptT (Fix rp) BPMN.All)
> where t = (dTot min,dTot max)
> (n,p) = (sflow s,sflow n)
> (ni,y) = (Atomic (Atom ni y [s] [a] ef t []) [], q)
> (ef,q) = case cond of
> NoCond -> ([],p)
> _ -> ([[Irule cond,p]],sflow p)

>mkwk :: Either WorkMUnit WorkSUnit -> Seqflow -> (Element,Seqflow)
>mkwk u s = if loop i == 0 then f ("Task"++(si s)) (Task (wkToTk w) (tm t))
> else f ("Loop"++(si s)) (Miseq (wkToTk w) (tm t) i BPMN.All)
> where (x,y) = (sflow s,sflow x)
> r = (dTot n,dTot m)
> (ni,p) = (Atomic (Atom ni p [s] [x] [] r []) [], y)
> (w,t,m,n,i) = either (\(a,b,c,d,e) -> (a,b,c,d,rep e e))
> \((a,b,c,d) -> (a,b,c,d,Fix 0)) u

>mkwb :: WorkMBlock -> Seqflow -> (Element,Seqflow)
>mkwb m s = swfsub Wbs s (Right m)

>tm :: Procedure -> TaskType
>tm DetailHidden = InvT NoDetail
>tm (ProcedureA (Treatment n q m)) = (InvT (Inv n q m))
APPENDIX G. FROM EMPIRICOL TO BPMN

G.2 Element and Sequence Flow Construction

This section defines the auxiliary functions for constructing individual BPMN elements and sequence flows. The function \texttt{ele} creates an event or a task element; the function \texttt{node} creates either a XOR gateway or an AND gateway element; the function \texttt{sflows} takes a sequence flow \(s \) and creates a list of fresh seqflows with respect to \(s \), and the function \texttt{sflow} takes a sequence flow \(s \) and creates a fresh seqflow with respect to input argument by incrementing the integer value that uniquely identifies \(s \).

\begin{verbatim}
>setflows :: Element -> [Seqflow] -> [Seqflow] -> Element
>setflows (Compound a es) i o = Compound (setflows1 a i o) es
>setflows (Atomic a) i o = Atomic (setflows1 a i o)

>setflows1 :: Atom -> [Seqflow] -> [Seqflow] -> Atom
>setflows1 (Atom i t ot e tr im om) is os = (Atom i t ni no e tr im om)
> where (ni, no) = (if null is then it else is, if null os then ot else os)

\end{verbatim}

\begin{verbatim}
>isinter :: Type -> Bool
>isinter (Irule _) = True
>isinter (Imessage _) = True
>isinter (Itime _) = True
>isinter (Ierror _) = True
>isinter _ = False

>ele :: ElementId -> Type -> Seqflow -> [Type] -> (Element,Seqflow)
>ele i t s ts =
> | disjs (isstart,isetime) t = (Atomic (Atom i t [] [s] [] norange [] []),sflow s)
> | isinter t = (Atomic (Atom i t [s] [n] [] norange [] []),sflow n)
> | istask t & & null ts = (Atomic (Atom i t [s] [n] [] norange [] []),sflow n)
> | istask t = (Atomic (Atom i t [s] [n] e norange [] []),sflow g)
> | isend t = (Atomic (Atom i t [s] [n] e norange [] []),n)
> where n = sflow s
>
> (e,g) = ((par (zip ts) newest).split) (sflows n (length ts))

>node :: Bflow -> Bflow -> Seqflow -> ElementId -> Type -> (Element,Seqflow)
>node (Left a) (Right b) _ i t = (node1 0 b i t a [])
>node (Right a) (Right b) s i t = (node1 a b i t s [])
>node (Right a) (Left b) _ i t = (node1 a 0 i t b [])
>node (Left a) (Left b) _ i t = (node1 0 0 i t a b)

>node1 :: Int -> Int -> ElementId -> Type -> [Seqflow] -> [Seqflow] -> (Element,Seqflow)
>node1 inc out i t s u =
> | (inc == 0 && out == 0) = (Atomic (Atom i t s u [] norange [] []),(sflow.nearest) u)
> | inc == 0 = (Atomic (Atom i t s o [] norange [] []),(sflow.nearest) o)
> | out == 0 = (Atomic (Atom i t is s [] norange [] []),(sflow.nearest) is)
> | otherwise = (Atomic (Atom i t is os [] norange [] []),(sflow.nearest) os)
> where is = sflows (nearest s) inc
> > os = sflows (nearest s) out
> > o = sflows (nearest s) out

newest :: [Seqflow] -> Seqflow
newest = maximumBy \((x y) -> cmp ((read.si) x :: Int) ((read.si) y :: Int))
> where cmp i j | i > j = GT
> > | i < j = LT
> > | otherwise = EQ

>sflows :: Seqflow -> Int -> [Seqflow]
sflows s n = inc:(sflows inc (n-1)) where inc = sflow s

>sflow :: Seqflow -> Seqflow
>sflow s = (fst cur)++(show ((read (snd cur) :: Int)+1))
> where cur = (splitAt 4) s
\end{verbatim}
APPENDIX G. FROM EMPIRICOL TO BPMN

>bk :: Seqflow -> Seqflow
>bk s = (fst cur)++(show ((read (snd cur) :: Int)-1))
> where cur = (splitAt 4) s
>
gt :: Seqflow -> Seqflow -> Bool
>gt s1 s2 = (read ((drop 4) s1) :: Int) > (read ((drop 4) s2) :: Int)
>
si :: Seqflow -> String
>si = snd.(splitAt 4)

G.3 Repeat Clauses

This section defines the functions for constructing BPMN elements modelling the repeat clauses of a sequence rule.

>extreps :: Seqflow -> Element -> ActivityId -> [RepeatExp] -> ([Element],Seqflow)
>extreps s e a [] = ([],s)
>extreps s e a r = ((par id last).unzip.(extreps2 s e a)) r

>extreps2 :: Seqflow -> Element -> ActivityId -> [RepeatExp] -> ([Element,Seqflow])
>extreps2 _ _ _ [] = []
>extreps2 s e a (r:rs) = (re,ns):(extreps2 ns e a rs) where (re,ns) = extrep s e a r

>extrep :: Seqflow -> Element -> ActivityId -> RepeatExp -> (Element,Seqflow)
>extrep s e a (m,n,ml,nl,c) =
> (Compound (Atom ("SubProcess"++(si s))) tp [s] [es] et no range [] [] [se,es,dp],ns)
> where tp = Hiseq ("Repeat"++(idToEn a)) RepB (reps nil nil) BPMN.All
> (md,ad) = (dTot n,dTot m)
> (se,ss) = ele ("Start"++(si.sflow s)) (Stime md) (sflow s) []
> dp = setflows e [sflow s] [ss]
> (e,es) = ele ("End"++(si ss)) End ss []
> (et,ns) = case c of
> NoCond ->([(Itime ad,es)],sflow es)
> _ ->([(Itime ad,es),(frule c,sflow es)],(sflow.sflow) es)

G.4 Connecting Sequence rules

This section defines the functions that connects the subprocess elements, each modelling a sequence rule into an empirical workflow using the prerequisite and dependence trees of the sequence rules. This is described in Section [3.3.1]. The function flow takes a list of subprocess elements, each modelling a sequence rule in the workflow, and a sequence flow fresh from the list of subprocesses, and returns a list of all elements, such that these elements are to be embedded in a BPMN pool and together model the control flow of the empirical workflow; the function dpts takes a list of sequence rules, a list of elements and a sequence flow, and connects each BPMN subprocess with its direct successors by evaluating the dependence tree of the sequence rule which the subprocess models, and the function pres takes a list of sequence rules, a list of elements and a sequence flow, and connects each BPMN subprocess with their direct predecessors by evaluating the prerequisite tree of the sequence rule which the subprocess models.
APPENDIX G. FROM EMPIRICOL TO BPMN 289

>notsq = not.(disjs [isbegin,isnstop])

>pres :: Empiricol -> [Element] -> Seqflow -> [Element]
>pres [] es s = es
>pres ((Empiricol.Start _):ws) es s = pres ws es s
>pres (w:ws) es s
> | (length.gtree.getPr) w == 1 = pres ws es s
> | otherwise = pres ws (update es (a:ms)) rs
> where (ms,rs) = btree Pres es ((head.ins.atom) a) ((normtree.getPr) w)
> a = setflows ((fromJust.(findele (Left w)))) es [s] []

>dpts :: Empiricol -> [Element] -> Seqflow -> ([Element],Seqflow)
>dpts [] es s = (es,s)
>dpts ((NStop _):ws) es s = dpts ws es s
>dpts (w:ws) es s = dpts ws (update es (a:nss)) ts
> where (nss,ts) = btree Dpts es b ((normtree.getDe) w)
> (a,b) = cg Dpts (Left w) es (Nothing,Just s)

>cg :: TreeType -> Ids -> [Element] -> Assmt -> (Element,Seqflow)
>cg y e es (i,o) =
> case e of
> (Left (Empiricol.Start _)) -> maybe (st,fromJust o) cg2 em
> (Left (NStop _)) -> maybe (en,fromJust i) cg2 em
> (Right START) -> maybe (st,fromJust o) cg2 em
> (Right NSTOP) -> maybe (en,fromJust i) cg2 em
> _ -> (cg2.fromJust) em
> where em = findele e es
> (st,xs) = ele ("Start"++(si.fromJust o)) BPMN.Start (fromJust o) []
> (en,ys) = ele ("End"++(si.fromJust i)) End (fromJust i) []
> cg2 x | y == Pres = (setflows x (maybeToList i) (maybeToList o) (fromJust o) id i)
> | y == Dpts = (setflows x (maybeToList i) (maybeToList o) (fromJust i) id o)

>btree :: TreeType -> [Element] -> Seqflow -> Tree -> ([Element],Seqflow)
>btree y es s t =
> if (length.gtree) t > 1 then (g:(concat fs),(sflow.newest) ks)
> else (par [[]]) sflo (cg y (Right (treeid t)) es (sf y (treeid t) s))
> where (fs,ks) = unzip (btree y es es sflo s (gtree t))
> g | y == Pres = fst (gate y t s (concatMap (outs.atom.head) fs))
> | y == Dpts = fst (gate y t s (concatMap (ins.atom.head) fs))

>btree2 :: TreeType -> [Element] -> Seqflow -> [Tree] -> [[[Element],Seqflow]]
>btree2 _ [] [] [] = []
>btree2 y es s (t:ts) =
> if (length.gtree) t > 1 || y == Dpts then ((n,u):btree2 y (update es n) u ts)
> else (((fromJust.(findele (Right (treeid t)))) es),s):btree2 y es s ts)
> where (n,u) = btree y es s t

>findele :: Ids -> [Element] -> (Maybe Element)
>findele (Left (Empiricol.Start d)) = find (istart.etype.atom)
>findele (Left (NStop d)) = find (isend.etype.atom)
>findele (Right START) = find (istart.etype.atom)
>findele (Right NSTOP) = find (isend.etype.atom)
>findele a = find (chknme ((either vname id) a))

>sf :: TreeType -> ActivityId -> Seqflow -> Assmt
>sf y START s = (Nothing,Just s)
>sf y NSTOP s = (Just s,Nothing)
>sf Pres a s = (Just (sflow s),Just s)
>sf Dpts a s = (Just s,Just (sflow s))

>gate :: TreeType -> Tree -> Seqflow -> [Seqflow] -> (Element,Seqflow)
>gate y t s ts = node i o "" ("Gate"++(si s)) (gy t) where (i,o) = gtype y s ts
>gy (OneOf ts) = Xgate
>gy (Empiricol.All ts) = Agate
>gtype Dpts s ts = (Left ts,Left [s])
gtype Dpts s ts = (Left [s],Left ts)
Bibliography

[ACT] ActiveBPEL. www.activebpehl.org

[PRO] Protocure - Integrating formal methods in the development process of medical guidelines and protocols. www.protocure.org

