Automata learning: a categorical perspective A tribute to Prakash Panangaden

Alexandra Silva

Radboud University Nijmegen and Centrum Wiskunde & Informatica

Prakash fest, 24 May 2014

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

1/18

terrified student

not so terrified student

co-author

sous-chef

co-explorer (of port wine!)

co-organizer

SIGLOG

<ロト < 部 ト < 臣 > < 臣 > 三 の Q (~ 2/18

SIGLOG

SIGLOG Executive Committee

Prakash Panangaden: Chair Luke Ong: Vice-chair Natarajan Shankar: Treasurer Alexandra Silva: Secretary

Thanks for the friendship and inspiration!

> 2011 : Frits Vaandrager.

Printed Angluin's paper Learning Regular Sets from Queries and Counterexamples.

2011 : Frits Vaandrager.

Printed Angluin's paper Learning Regular Sets from Queries and Counterexamples.

2012: One night in Dagstuhl

I have this feeling that category theory has something to say about automata learning. (Prakash)

2011 : Frits Vaandrager.

Printed Angluin's paper Learning Regular Sets from Queries and Counterexamples.

2012: One night in Dagstuhl

I have this feeling that category theory has something to say about automata learning. (Prakash)

Printed Angluin's paper Learning Regular Sets from Queries and Counterexamples.

2013: Prakash's volume

2013: Prakash's volume

Printed Angluin's paper Learning Regular Sets from Queries and Counterexamples...

 ...and read it with categorical glasses. Joint work with Bart Jacobs.

The *L*^{*} algorithm: ingredients

• Master language $\mathcal{L} \colon A^* \to 2$ (regular language).

The *L*^{*} algorithm: ingredients

- Master language $\mathcal{L} \colon A^* \to 2$ (regular language).
- ► The teacher, omniscient, answers 2 types of queries
 - $w \in \mathcal{L}$?
 - Guess correct? If no, counter-example.

The *L*^{*} algorithm: ingredients

- Master language $\mathcal{L} \colon A^* \to 2$ (regular language).
- The teacher, omniscient, answers 2 types of queries
 - $w \in \mathcal{L}$?
 - Guess correct? If no, counter-example.
- L*-algorithm (Angluin 87)
 - Incrementally builds an observation table.
 - Table closed & consistent = finite automaton accepting L

The L* algorithm: ingredients

- Master language $\mathcal{L} \colon A^* \to 2$ (regular language).
- ► The teacher, omniscient, answers 2 types of queries
 - $w \in \mathcal{L}$?
 - Guess correct? If no, counter-example.
- L*-algorithm (Angluin 87)
 - Incrementally builds an observation table.
 - Table closed & consistent = finite automaton accepting L and minimal!

The L^* algorithm: the observation table

An observation table is a triple (S, E, row), where

row: $(S \cup S \cdot A) \rightarrow 2^E$

with $S, E \subseteq 2^{A^*}$.

The L^* algorithm: the observation table

An observation table is a triple (S, E, row), where

row: $(S \cup S \cdot A) \rightarrow 2^E$

with $S, E \subseteq 2^{A^*}$.

Closed and Consistent Table

(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).

The L^* algorithm: the observation table

An observation table is a triple (S, E, row), where

row: $(S \cup S \cdot A) \rightarrow 2^E$

with $S, E \subseteq 2^{A^*}$.

Closed and Consistent Table

(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).

(S, E, row) is *consistent* if whenever $s_1, s_2 \in S$ are such that $row(s_1) = row(s_2)$, for all $a \in A$, $row(s_1a) = row(s_2a)$.

(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).

closed

(S, E, row) is *closed* if for all $t \in S \cdot A$ there exists an $s \in S$ such that row(t) = row(s).

closed

(S, E, row) is *consistent* if whenever $s_1, s_2 \in S$ are such that $row(s_1) = row(s_2)$, for all $a \in A$, $row(s_1a) = row(s_2a)$.

(S, E, row) is *consistent* if whenever $s_1, s_2 \in S$ are such that $row(s_1) = row(s_2)$, for all $a \in A$, $row(s_1a) = row(s_2a)$.

closed

consistent

□ ▶ ◀ @ ▶ ◀ 필 ▶ ◀ 필 ▶ ④ Q (~ 6/18

Closed and consistent table (S, E) to DFA (Q, q_0, δ, F) :

• *Q* is a finite set of states: $Q = \{row(s) \mid s \in S\}$.

Closed and consistent table (S, E) to DFA (Q, q_0, δ, F) :

- *Q* is a finite set of states: $Q = \{row(s) \mid s \in S\}$.
- *F* ⊆ *Q* is a set of final states:
 F = {*row*(*s*) | *s* ∈ *S*, *row*(*s*)(λ) = 1}.

Closed and consistent table (S, E) to DFA (Q, q_0, δ, F) :

- *Q* is a finite set of states: $Q = \{row(s) \mid s \in S\}$.
- *F* ⊆ *Q* is a set of final states:
 F = {*row*(*s*) | *s* ∈ *S*, *row*(*s*)(λ) = 1}.
- $q_0 \in Q$ is the initial state: $q_0 = row(\lambda)$.

Closed and consistent table (S, E) to DFA (Q, q_0, δ, F) :

• *Q* is a finite set of states: $Q = \{row(s) \mid s \in S\}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

7/18

- ► $F \subseteq Q$ is a set of final states: $F = \{row(s) \mid s \in S, row(s)(\lambda) = 1\}.$
- $q_0 \in Q$ is the initial state: $q_0 = row(\lambda)$.
- ► $\delta: Q \times A \rightarrow Q$ is the transition function: $\delta(row(s), a) = row(sa).$

The L^* algorithm: from table to automaton

Closed and consistent table (S, E) to DFA (Q, q_0, δ, F) :

- *Q* is a finite set of states: $Q = \{row(s) \mid s \in S\}$.
- ► $F \subseteq Q$ is a set of final states: $F = \{row(s) \mid s \in S, row(s)(\lambda) = 1\}.$
- $q_0 \in Q$ is the initial state: $q_0 = row(\lambda)$.
- ► $\delta: Q \times A \rightarrow Q$ is the transition function: $\delta(row(s), a) = row(sa).$

Note: well-definedness of automaton uses closed & consistent.

The L^* algorithm: from table to automaton

Another butterfly!

Another butterfly!

Theorem

The automaton associated with a closed and consistent observation table is minimal.

Proof of minimality: the usual butterfly!

□ > < @ > < 필 > < 필 > < 필 > 10/18

The L* algorithm: learning the table

```
1: function LEARNER
 2:
          S \leftarrow \{\lambda\}; E \leftarrow \{\lambda\}.
 3:
          repeat
 4:
             while (S, E) is not closed or not consistent do
 5:
                  if (S, E) is not consistent then
 6:
                      find s_1, s_2 \in S, a \in A, and e \in E such that
 7:
                        row(s_1) = row(s_2) and \mathcal{L}(s_1 ae) \neq \mathcal{L}(s_2 ae)
 8:
                      E \leftarrow E \cup \{ae\}.
 9:
                 end if
10:
                 if (S, E) is not closed then
11:
                      find s_1 \in S, a \in A such that
12:
                        row(s_1a) \neq row(s), for all s \in S
13:
                      S \leftarrow S \cup \{s_1 a\}.
14:
                 end if
15:
             end while
16:
              Make the conjecture M(S, E).
17:
              if the Teacher replies no to the conjecture, with a counter-example t then
18:
                  S \leftarrow S \cup \downarrow t.
19:
             end if
20:
          until the Teacher replies yes to the conjecture M(S, E).
21:
          return M(S, E).
22: end function
```

 $\mathcal{L} = \{u \in \{a, b\}^* \mid \text{the number of } a$'s in u is divisible by 3 $\}$.

 $\mathcal{L} = \{u \in \{a, b\}^* \mid \text{the number of } a$'s in u is divisible by 3 $\}$.

 $\mathcal{L} = \{u \in \{a, b\}^* \mid \text{the number of } a$'s in u is divisible by 3 $\}$.

 $\mathcal{L} = \{u \in \{a, b\}^* \mid \text{the number of } a \text{'s in } u \text{ is divisible by 3} \}.$

1: if (S, E) is not closed then 2: find $s_1 \in S$, $a \in A$ such that 3: $row(s_1a) \neq row(s)$, for all $s \in S$ 4: $S \leftarrow S \cup \{s_1a\}$. 5: end if

 $\mathcal{L} = \{u \in \{a, b\}^* \mid \text{the number of } a$'s in u is divisible by 3 $\}$.

1: if (S, E) is not closed **then** 2: find $s_1 \in S$, $a \in A$ such that 3: $row(s_1a) \neq row(s)$, for all $s \in S$ 4: $S \leftarrow S \cup \{s_1a\}$. 5: end if

(S, E) consistent? \checkmark (S, E) closed? \checkmark

(S, E) consistent? \checkmark (S, E) closed? \checkmark

Guess

 $q_0 = row(\lambda)$ $q_1 = row(a)$

<ロト

(ロト

(日)

<td

(S, E) consistent? \checkmark (S, E) closed? \checkmark

Guess

 $q_0 = row(\lambda)$ $q_1 = row(a)$

Teacher replies with counter-example aaa.

(S, E) closed? \checkmark λ Guess λ a, b а 0 b $q_0 = row(\lambda)$ $q_1 = row(a)$ а q_0 a_1 0 aa ab 0

(S, E) consistent? \checkmark

Teacher replies with counter-example aaa.

- 1: Make the conjecture M(S, E).
- 2: if the Teacher replies **no** to the conjecture, with a counter-example *t* **then**
- 3: $S \leftarrow S \cup \downarrow t$.
- 4: end if

(S, E) closed? \checkmark λ Guess λ a, b а 0 b $q_0 = row(\lambda)$ $q_1 = row(a)$ а q_0 a_1 0 aa ab 0

(S, E) consistent? \checkmark

Teacher replies with counter-example *aaa*. $S \leftarrow S \cup \{a, aa, aaa\}$.

- 1: Make the conjecture M(S, E).
- 2: if the Teacher replies **no** to the conjecture, with a counter-example *t* **then**
- 3: $S \leftarrow S \cup \downarrow t$.
- 4: end if

(S, E) consistent?

(S, E) consistent? No, row(a) = row(aa) but $row(aa) \neq row(aaa)$.


```
1: if (S, E) is not consistent then

2: find s_1, s_2 \in S, a \in A, and e \in E such that

3: row(s_1) = row(s_2) and \mathcal{L}(s_1 a e) \neq \mathcal{L}(s_2 a e)

4: E \leftarrow E \cup \{ae\}.

5: end if
```



```
1: if (S, E) is not consistent then

2: find s_1, s_2 \in S, a \in A, and e \in E such that

3: row(s_1) = row(s_2) and \mathcal{L}(s_1ae) \neq \mathcal{L}(s_2ae)

4: E \leftarrow E \cup \{ae\}.

5: end if
```

	λ	а
λ	1	0
а	0	0
aa	0	1
aaa	1	0
b	1	0
ab	0	0
aab	0	1
aaaa	0	0
aaab	1	0

(S, E) consistent? \checkmark (S, E) closed? \checkmark

・ロト・日本・モー・モー うへの

15/18

	λ	а
λ	1	0
а	0	0
aa	0	1
aaa	1	0
b	1	0
ab	0	0
aab	0	1
aaaa	0	0
aaab	1	0

(S, E) consistent? \checkmark (S, E) closed? \checkmark Second guess: b

The teacher replies yes.

<ロト

<ロト</td>

15/18

The generalizations

 Table, automaton, proof of minimality: independent of output set.

$$\mathcal{L} \colon \mathcal{A}^* \to 2 \qquad \qquad \mathcal{L} \colon \mathcal{A}^* \to \mathcal{B}$$

Change in functor: Moore and Mealy machines.

The generalizations

 Table, automaton, proof of minimality: independent of output set.

$$\mathcal{L} \colon A^* \to 2$$
 $\mathcal{L} \colon A^* \to B$

- Change in functor: Moore and Mealy machines.
- Category with factorization structure.
- Change in category: linear weighted automata.

Examples in the paper.

Conclusions

- Trivial but yet insightful (at least for Bart and me ;-)) categorical understanding of Angluin's algorithm.
- Mealy example: several papers justifying it.
- Applications of learning are vast, rich playground and source of examples.
- Future work: learning from incomplete information, heuristics, ...

Conclusions

- Trivial but yet insightful (at least for Bart and me ;-)) categorical understanding of Angluin's algorithm.
- Mealy example: several papers justifying it.
- Applications of learning are vast, rich playground and source of examples.
- Future work: learning from incomplete information, heuristics, ...
- Category Theory does have something to say about learning!

Conclusions

- Trivial but yet insightful (at least for Bart and me ;-)) categorical understanding of Angluin's algorithm.
- Mealy example: several papers justifying it.
- Applications of learning are vast, rich playground and source of examples.
- Future work: learning from incomplete information, heuristics, ...
- Category Theory does have something to say about learning!

Happy birthday!

