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A tribute to Prakash Panangaden

Thanks for the friendship and inspiration!
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Automata learning: encounters

I 2011 : Frits Vaandrager.

Printed Angluin’s paper Learning Regular Sets from Queries and
Counterexamples.

I 2012: One night in Dagstuhl

I have this feeling that category theory has something to
say about automata learning. (Prakash)

Printed Angluin’s paper Learning Regular Sets from Queries and
Counterexamples.
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Automata learning: encounters

I 2013: Prakash’s volume
Printed Angluin’s paper Learning Regular Sets from Queries and

Counterexamples. . .

I . . . and read it with categorical glasses. Joint work with
Bart Jacobs.
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The L∗ algorithm: ingredients

I Master language L : A∗ → 2 (regular language).

I The teacher, omniscient, answers 2 types of queries
I w ∈ L?
I Guess correct? If no, counter-example.

I L∗-algorithm (Angluin 87)
I Incrementally builds an observation table.
I Table closed & consistent = finite automaton accepting L

and minimal!

4/18



The L∗ algorithm: ingredients

I Master language L : A∗ → 2 (regular language).
I The teacher, omniscient, answers 2 types of queries

I w ∈ L?
I Guess correct? If no, counter-example.

I L∗-algorithm (Angluin 87)
I Incrementally builds an observation table.
I Table closed & consistent = finite automaton accepting L

and minimal!

4/18



The L∗ algorithm: ingredients

I Master language L : A∗ → 2 (regular language).
I The teacher, omniscient, answers 2 types of queries

I w ∈ L?
I Guess correct? If no, counter-example.

I L∗-algorithm (Angluin 87)
I Incrementally builds an observation table.
I Table closed & consistent = finite automaton accepting L

and minimal!

4/18



The L∗ algorithm: ingredients

I Master language L : A∗ → 2 (regular language).
I The teacher, omniscient, answers 2 types of queries

I w ∈ L?
I Guess correct? If no, counter-example.

I L∗-algorithm (Angluin 87)
I Incrementally builds an observation table.
I Table closed & consistent = finite automaton accepting L

and minimal!

4/18



The L∗ algorithm: the observation table

An observation table is a triple (S,E , row), where

row : (S ∪ S · A)→ 2E

with S,E ⊆ 2A∗
.

Closed and Consistent Table

(S,E , row) is closed if for all t ∈ S · A there exists an s ∈ S
such that row(t) = row(s).

(S,E , row) is consistent if whenever s1, s2 ∈ S are such that
row(s1) = row(s2), for all a ∈ A, row(s1a) = row(s2a).

5/18



The L∗ algorithm: the observation table

An observation table is a triple (S,E , row), where

row : (S ∪ S · A)→ 2E

with S,E ⊆ 2A∗
.

Closed and Consistent Table

(S,E , row) is closed if for all t ∈ S · A there exists an s ∈ S
such that row(t) = row(s).

(S,E , row) is consistent if whenever s1, s2 ∈ S are such that
row(s1) = row(s2), for all a ∈ A, row(s1a) = row(s2a).

5/18



The L∗ algorithm: the observation table

An observation table is a triple (S,E , row), where

row : (S ∪ S · A)→ 2E

with S,E ⊆ 2A∗
.

Closed and Consistent Table

(S,E , row) is closed if for all t ∈ S · A there exists an s ∈ S
such that row(t) = row(s).

(S,E , row) is consistent if whenever s1, s2 ∈ S are such that
row(s1) = row(s2), for all a ∈ A, row(s1a) = row(s2a).

5/18
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The L∗ algorithm: from table to automaton

Closed and consistent table (S,E) to DFA (Q,q0, δ,F ):

I Q is a finite set of states: Q = {row(s) | s ∈ S}.

I F ⊆ Q is a set of final states:
F = {row(s) | s ∈ S, row(s)(λ) = 1}.

I q0 ∈ Q is the initial state: q0 = row(λ).
I δ : Q × A→ Q is the transition function:
δ(row(s),a) = row(sa).

Note: well-definedness of automaton uses closed & consistent.
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The L∗ algorithm: from table to automaton
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ϕ
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where
{
ϕ = Λ(i ◦ eA)
ψ = mΛ ◦ j .
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Another butterfly!
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Theorem
The automaton associated with a closed and consistent
observation table is minimal.
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Proof of minimality: the usual butterfly!
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The L∗ algorithm: learning the table

1: function LEARNER
2: S ← {λ} ; E ← {λ}.
3: repeat
4: while (S,E) is not closed or not consistent do
5: if (S,E) is not consistent then
6: find s1, s2 ∈ S, a ∈ A, and e ∈ E such that
7: row(s1) = row(s2) and L(s1ae) 6= L(s2ae)
8: E ← E ∪ {ae}.
9: end if

10: if (S,E) is not closed then
11: find s1 ∈ S, a ∈ A such that
12: row(s1a) 6= row(s), for all s ∈ S
13: S ← S ∪ {s1a}.
14: end if
15: end while
16: Make the conjecture M(S,E).
17: if the Teacher replies no to the conjecture, with a counter-example t then
18: S ← S∪ ↓t .
19: end if
20: until the Teacher replies yes to the conjecture M(S,E).
21: return M(S,E).
22: end function
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The L∗ algorithm: example

L = {u ∈ {a,b}∗ | the number of a’s in u is divisible by 3}.

λ
S
{
λ 1

S · A
{

a 0
b 1

(S,E) consistent? X
(S,E) closed? No.

1: if (S,E) is not closed then
2: find s1 ∈ S, a ∈ A such that
3: row(s1a) 6= row(s), for all s ∈ S
4: S ← S ∪ {s1a}.
5: end if
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The L∗ algorithm: example

λ
λ 1
a 0
b 1
aa 0
ab 0

(S,E) consistent? X
(S,E) closed? X

Guess

q0
a //

b
��

q1

a,b
�� q0 = row(λ)

q1 = row(a)

Teacher replies with counter-example aaa.

1: Make the conjecture M(S,E).
2: if the Teacher replies no to the conjecture, with a counter-example t

then
3: S ← S∪ ↓t .
4: end if
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The L∗ algorithm: example
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4: E ← E ∪ {ae}.
5: end if
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The L∗ algorithm: example

λ a
λ 1 0
a 0 0

aa 0 1
aaa 1 0
b 1 0
ab 0 0

aab 0 1
aaaa 0 0
aaab 1 0

(S,E) consistent? X
(S,E) closed? X

Second guess:

q0
a //

b
��

q1

b
��

a
��

q2

a

__

b
��

The teacher replies yes.
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The generalizations

I Table, automaton, proof of minimality: independent of
output set.

L : A∗ → 2 L : A∗ → B

I Change in functor: Moore and Mealy machines.

I Category with factorization structure.
I Change in category: linear weighted automata.

Examples in the paper.
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Conclusions

I Trivial but yet insightful (at least for Bart and me ;-))
categorical understanding of Angluin’s algorithm.

I Mealy example: several papers justifying it.
I Applications of learning are vast, rich playground and

source of examples.
I Future work: learning from incomplete information,

heuristics, . . .

I Category Theory does have something to say about
learning!
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Happy birthday!
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