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Probabilistic Automaton
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A probabilistic automaton contains nondeterministic and
probabilistic choices.
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Probabilistic Bisimilarity
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Probabilistic bisimilarity captures which states of the automaton
behave the same.
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Robero Segala

Roberto Segala, in collaboration with Nancy Lynch, introduced
probabilistic bisimilarity for probabilistic automata.
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Probabilistic Bisimilarity is not Robust
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States 1 and 2 are not bisimilar for all ε > 0.
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Scott Smolka

Scott Smolka, in collaboration with Alessandro Giacalone and
Chi-chang Jou, first suggested to use pseudometrics instead of
equivalence relations.
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From Equivalence Relations to Pseudometrics

An equivalence relation on a set S can be viewed as function in

S × S → B

A (1-bounded) pseudometric on a set S is a function in

S × S → [0,1]

Equivalence is captured by distance zero.
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A Metric for Nondeterministic Choices

Nondeterministic choices can be modelled as subsets of a set.

The distance of the subsets A and B is defined by

d(A,B) = max
{

max
a∈A

min
b∈B

d(a,b),max
b∈B

min
a∈A

d(b,a)

}

This can be seen as a quantitative generalization of

∧ (∀a∈A∃b∈B . . . ,∀b∈B∃a∈A . . .)

which should remind you of bisimilarity.
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Felix Hausdorff

Felix Hausdorff introduced the metric on subsets. This metric is
known as the Hausdorff metric.
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A Metric for Probabilistic Choices

Probabilistic choices can be modelled as probability
distributions on a set.

The distance of the probability distributions µ and ν is defined
by

d(µ, ν) = max

{∑
x∈X

f (x)(µ(x)− ν(x))

∣∣∣∣∣ f ∈ (X ,d) ------< [0,1]

}
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Leonid Kantorovich

Leonid Kantorovich introduced the metric on probability
distributions. This metric is known as the Kantorovich metric.
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Probabilistic Bisimilarity
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States s and t are probabilistic bisimilar if and only if

∃π is a permutation∀1≤i≤n si and tπ(i) are probabilistic bisimilar

This is generalized by

d(s, t) = min

{
n∑

i=1

1
n
· d(si , tπ(i))

∣∣∣∣∣ π is a permutation

}
.
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Catuscia Palamidessi

Catuscia Palamidessi, in collaboration with Yuxin Deng, Tom
Chothia and Jun Pang, combined the Hausdorff metric and the
Kantorovich metric to obtain a pseudometric on the state space
of a probabilistic automaton and showed

States s and t are probabilistic bisimilar if and only if d(s, t) = 0.
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Our Main Result

Theorem
The problem of computing the bisimilarity pseudometric
introduced by Palamidessi et al. is in PPAD.

Computing Nash equilibria of two player games is
PPAD-complete.
Computing values of simple stochastic games is in PPAD.
Computing fixed points of discretized Brouwer functions is
in PPAD.
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Characterizations of Bisimilarity

Bisimilarity for labelled transition systems has been
characterized in terms of

a logic (Hennessy and Milner, 1980),
a fixed point (Milner, 1980), and
a game (Stirling, 1993).
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Characterizations of Probabilistic Bisimilarity

Probabilistic bisimilarity for probabilistic automata has been
characterized in terms of

a logic (Parma and Segala, 2007), and
a fixed point (Segala, 1995).
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Characterizations of Bisimilarity Pseudometric

The bisimilarity pseudometric for probabilistic automata has
been characterized in terms of

a logic (De Alfaro et al, 2007),
a fixed point (Deng et al, 2005).
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Another Result

Theorem
The bisimilarity distance of two states is the value of a simple
stochastic game.

This provides a game theoretic characterization of the
bisimilarity pseudometric and also of probabilistic bisimilarity.
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Simple Stochastic Game
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minminavg

maxmax

19 / 22 Franck van Breugel Bisimilarity Pseudometric on Probabilistic Automata



A Characterization of the Bisimilarity Pseudometric

d(s, t) = max
{

max
s→µ

min
t→ν

d(µ, ν),max
t→ν

min
s→µ

d(ν, µ)

}
where

d(µ, ν)

= max

{∑
s∈S

f (s)(µ(s)− ν(s))

∣∣∣∣∣ f ∈ (S,d) ------< [0,1]

}

= min

 ∑
u,v∈S

ω(u, v)d(u, v)

∣∣∣∣∣ ω ∈ Ωµ,ν


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Couplings

The set Ωµ,ν consists of the couplings of µ and ν.

A probability distribution ω on S × S is a coupling of µ and ν if
for all u, v ∈ S,∑

v∈S

ω(u, v) = µ(u) and
∑
u∈S

ω(u, v) = ν(v)

The set Ωµ,ν is a convex polytope. We denote its set of vertices
by V (Ωµ,ν).
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A Characterization of the Bisimilarity Pseudometric

d(s, t) = max
{

max
s→µ

min
t→ν

d(µ, ν),max
t→ν

min
s→µ

d(ν, µ)

}
where

d(µ, ν)

= max

{∑
s∈S

f (s)(µ(s)− ν(s))

∣∣∣∣∣ f ∈ (S,d) ------< [0,1]

}

= min

 ∑
u,v∈S

ω(u, v)d(u, v)

∣∣∣∣∣ ω ∈ Ωµ,ν


= min

 ∑
u,v∈S

ω(u, v)d(u, v)

∣∣∣∣∣ ω ∈ V (Ωµ,ν)


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