Layout Randomization and Nondeterminism

Martin Abadi Jérémy Planul Gordon Plotkin

PrakashFest, Oxford, May 2014

Hoping to work with Prakash: Choquet capacities

Josée, Vineet, Radha, and Prakash, CONCUR ’02:
Weak Bisimulation is Sound and Complete for pCTL* .

@ Superadditive Choquet capacity:
u(AUB) <u(A)+u(B) (A BCL,disjoint)
@ Given measures u;, their lower envelope:
1(A) =ger min 1;(A)

is a superadditive Choquet capacity.

@ Can we do ordinary + probabilistic nondeterminism this way?

Hoping to work with Prakash: Choquet capacities

Josée, Vineet, Radha, and Prakash, CONCUR ’02:
Weak Bisimulation is Sound and Complete for pCTL* .

@ Superadditive Choquet capacity:
u(AUB) <u(A)+u(B) (A BCE,disjoint)
@ Given measures U;, their lower envelope:
U(A) =ger miin ui(A)

is a superadditive Choquet capacity.
@ Can we do ordinary + probabilistic nondeterminism this way?
@ Sadly, this map is many-to-one from convex sets of measures
to capacities, even when || = 3.

Barycentric coordinates

Cartesian coordinates Barycentric coordinates

Layout Randomization and Nondeterminism —

Counterexamples in plenty (Cozman)

Trying to work with Prakash: quantum computation

A Language and Type Theory for Quantum Computing

(=]
Prakash Panangaden”® Gordon D. Plotkin®
School of Computer Science Department of Computer Science
MeGill University University of Edinburgh
Montreal, Quebee, Canada Edinburgh, Scotland, U. K.

February 28, 2003

Abstract

The abstract is very uncertain.
1 Introduction
Outline the nature of quantum comp as a web of interactions Our philosophy: evolution is fundamental,

density ops, intervention operators are fundamental, no relativistic effects, entanglement, expressing
unitaries; cite Peres and NC

Computation is dynamics. One prepares a dynamical system in some ini
explicitly containing the “input” - and lets i i

al state - implicitly or
contained in the final state.
quantum jon must, at its lowest level, involve understanding quantum

evolve. The “answer”

evolution.
Normally in quantum mechanics unde

anding quantum evolution means understanding the
generator of time evolution, i.c. the Hamiltonian operator. If H is the Hamiltonian operator for a
§) 'm then the evolution of st

s is governed by the unitary operator e, Typically this is cast
as a differential equation, the Schrodinger equation. In typical text books one spends a significant
amount of time solving the Schrodinger equation for a variety of Hamiltonians.

In quantum computation textbooks [NCO0] one takes
collections two-state systems (qubits) as given. These two-state systems, or qubits, are conceived
of as separate carriers of information, just like classical bits. Physically they are generally re:
as spin-states of spin & particles or as polarization states of photons. What is very different about
qubits versus bits is that (i) a qubit may exist in a superposed state; i.e. in a linear combination of
its two basic states and (ii) states of different qubits may be entangled i.e. correlated in nontrivial
way

ious unita

y operations on states of

lized

Algorithms are developed by combining the primitive unitary operators and occasionally by

making measurements. However, the primitive unitaries do not all just a

on one qubit at a time.

Somewhat working with Prakash: Markov processes

Approximating Markov Processes By Averaging

PHILIPPE CHAPUT
McGill University
VINCENT DANOS
University of Edinburgh
PRAKASH PANANGADEN
McGill University
GORDON PLOTKIN
University of Edinburgh

October 14, 2013

Abstract

Normally, one thinks of probabilistic transition systems as taking
an initial probability distribution over the state space into a new prob-
ability distribution representing the system after a transition. We,
however, take a dual view of Markov processes as transformers of
bounded measurable functions. This is very much in the same spirit as
a “predicate-transformer” view, which is dual to the state-transformer
view of transition systems.

We redevelop the theory of labelled Markov processes from this

view point, in particular we explore approximation theory. We obtain
three main results:
(i) It is possible to define bisimulation on general measure spac
show that it is an equivalence relation. The logical characterization
of bisimulation can be done straightforwardly and generally. (ii) A
new and flexible approach to approximation based on averaging can
be given. This vastly generalizes and streamlines the idea of using
conditional expectations to compute approximations. (iii) We show
that there is a minimal process bisimulation-cquivalent to a given pro-
cess, and this minimal process is obtained as the limit of the finite
approximants.

es and

Low-Level Attacks and Protection

Many defenses:

Stack canaries

e Safe exception handling
o Exception overwrites o NX (No eXecute) data
o return-to-libc e Layout randomization
@ jump-to-libc
o use-after-free attacks

@ Many attack techniques:

o Buffer overflows

Useful mitigations

But not necessarily perfect

@ Often with knowledge and ,)
in a precise sense

control of the heap
@ Nor all well understood

Layout randomization

Runtime attacks often depend on addresses (e.g. jumpto 1ibc).
@ Let us randomize the addresses!
e Considered for data at least since the rise of large virtual
address spaces (e.g., [Druschel & Peterson, 1992] on fbufs).
e Now present in Linux (PaX), Windows, Mac OS X, iOS,
Android (4.0).

Jump0x4
v

[AN AN RN RN
Xy z

v

| SEEEEE SNSSENENEEEEEEENENEEEEEEEEEEEEEE |

A theory of layout randomization

@ Abadi and Plotkin did a first formalization, using operational
methods.

@ Further work [Jagadeesan et al., Abadi et al.] concerned
memories containing functions and arrays.

@ Here we consider commands that make nondeterministic
choices (as a first step towards parallelism).

@ We use denotational methods rather than operational ones
(for interest, but not only).

@ We use random variables for probability rather than
distributions, as events are not independent.

Layout Randomization and Nondeterminism

Probabilities and nondeterminism

Probabilities:

0.6 O Not red with e
/ >0.9
0.3 o

./\ . probability

Nondeterminism:
O .

/ Never red

o -0

Probabilistic cryptographic
schemes

Differential privacy

Low-level software
protection (Layout
randomization)

Network communications

@ Nondeterministic scheduling

@ User interaction

Probabilities «<— Nondeterminism: Game theory

@ Player 1 chooses a bit (b;) by flipping a coin
@ Player 2 chooses a bit (b,) nondeterministically
@ Player 1 wins if he guesses right:

b1 - b2
@ The program:

b1 :0+%1,(b2:0 OR b2121)

Probabilities «<— Nondeterminism: Game theory
bi:=0+11;(b2:=0 OR by:=1)

What should its semantics be?

@ a set of distributions on o a distribution on sets of

outcomes _ __ __ , outcomes
. O
O,
0.5

s g
05 T @

@ Player | always wins with
probability 1/2. @ Player | can win or lose.

Probabilities «<— Nondeterminism: Game theory

bi:=0+11;(b2:=0 OR by :=1)

The obvious semantics for sets of distributions on outcomes does
not compose as expected:

b,:=0 OR by :=1 "“55"é':

Probabilities «— Nondeterminism: Algebra

@ Resolving probabilistic choice first:
- Distribute nondeterministic choice over probabilistic choice:

xU(y+pz)=(xUy)+p(xU2)

- One can prove that for all p, g: x +py = x 44y so the +,
become a second semilattice, distributing over the first one.

- Free Algebra over a set X: Non-empty finite U-closed sets of
non-empty finite subsets of X.

@ Resolving nondeterministic choice first:
- Distribute probabilistic choice over nondeterministic choice:

x+p(yUz)=(x+py)U(x+p,2)

- Free Algebra over a set X: Non-empty finitely generated
convex sets of distributions over X.
e But gives the "wrong" semantics to our program.

@ Define high-level and low-level languages, each with access
to (the same) private and public locations.
= View the implementations as compilations.

@ View attackers as (high- or low-level) “public” contexts: those
with no access to private locations.
= Relate commands depending on their public behaviour in
public contexts.

@ Characterize the contextual relations using semantical
simulations (a kind of logical relation)
= prove that high-level contextual relations correspond to
low-level contextual relations (full abstraction):

[[c]]i[[c’]] < Vhigh-level public C[].[[C[c]]| <. [CI¢]]]
[=[c'] < Viow-level public C[].[C[c!] <. [C[cM]

Layout F ization and M

High-level language

e = k|lhoc|le+e|exe
b e<e|-b|true|false|bVb|bAb
¢ = hosc:=e|ifbthencelsec|skip|c;c]|

c+c|lwhilebdoc

@ Finitely many locations.
@ They are divided into private (high) and public (low).
@ store s: locations — values

@ Semantics [[c]|: stores — #(stores))

High-level language

e = k|lho.|let+e|lexe
b e<e|-b|true|false|bVb|bAb
¢ = hos.:=e|ifbthencelsec]|skip|c;c]|

c+c|lwhilebdoc

@ Finitely many locations.
@ They are divided into private (high) and public (low).
@ store s: locations — values

@ Semantics [[c]|: stores — #(stores))

Refinement relation (high-level)

@ For X, Y € (stores,), X refines Y if the public part of any
store in X is the public part of a store in Y.

0 o

o O =L o O

N

X<, Y=Vsecstores.s;eX=>5s, €Y

S

Formally:

@ For commands, c refines ¢/, written ¢ <, ¢/ when, for every
input, the outputs of ¢ refine those of ¢’:

Vsestores. [[c]|(s) <. [[c](s)

Simulation (high-level)

@ Simulation relation < on commands such that

For all high-level commands c, ¢/, we have:

[l =T © V high-level public C[].[[Clc]]] <. [C[c]]]

@ Simple without nondeterminism or nontermination:

[[c]
@& R & ® 5 QRQ
':'—<‘[[]] >

Simulation (details)

fel .
e — e Ry
aa R as @ &) o = U
v - w @ &) N R
o— 6 v -
[cT

@ So begin with R C . (private-stores |)?, subject to conditions
@ Then construct R+ C #(stores,)? from R
@ Then

[cl 2] Zoer VX, Y €#(stores)). XRTY = [[c](X)RT[[CT(Y)

Low-level memory model

@ Memories (m & Mem) are partial mappings from the set of
memory addresses Add = {1, ..., r} to values.

@ Memory layouts (w € Lay) are injective mappings from
locations to the addresses Add.

= stores map to memories via layouts.

/1'—). I1'—>7

S |hb— O w |bL— 28
/3'—)D I3'—>14
W(S):;;::;.::;::;;::;;:::

Layout randomization

@ We fix a public layout w,.
@ We randomize the private layout (using a distribution d)

@ We rely on one value in our theorems, the minimum
probability for a guessed private address to be unallocated:

6 = min{P(i¢ran(w))|icAdd\ran(w,)}
= 1 —|PriLoc|/|Add \ ran(w,)| (d uniform)

/1'—>. /1'—>7

s |b— 1 W3 I — 28

I3'_>D I3'—>14
W
%4(3)}H!\i.HHHHHHHHHHHHHHH!H{

Layout Randomization and Nondeterminism

Low-level language

e == klhatl|lelet+e|lexe
b = e<e|-b|true|false|bVb|bAb
¢c = e:=e|lifbthencelsec]|skip|c;c]|

c+c|whilebdoc

@ We can compute over hat, €X: (X + hat) i=nat (X +7_.).

Low-level language

e = klhal|lelet+el|lexe
b = e<e|-b|true|false|bVb|bAb
¢c = e:=e|lifbthencelsec]|skip|c;c]|

c+c|whilebdoc

@ We can compute over hat, €X: (X + hat) i=nat (X +7_.).

Low-level semantics

@ The final memory depends on the initial one and the layout,
@ We cannot prove security using a semantics of the form:

Mem x Lay — 5 (Mem; |)

@ for consider the command:

Low-level semantics

@ So we need to resolve probabilities after nondeterminism:

@ However
Mem — (¥ (Mem;,|))

does not work as our events are not independent.

@ For example, suppose there is just one private location /;, and
1,2 are not public addresses. Then:
- 1:=1; 2:=1 should always give an error.
- 1:=1;1:=2 should give an error or overwrite /;

Layout F ization and M

Low-level semantics

@ Solution idea: replace distributions
de ¥ (Mem; |)
by random variables
{:Lay — Mem; |
with layouts as the sample space, obtaining:
Mem — #(Lay — Mem; |)

which compose, using Kleisli structure on €.

Low-level semantics

@ Solution idea: replace distributions
de v (Mem;)
by random variables
{:Lay —Mem; |
with layouts as the sample space, obtaining:
Mem — #(Lay — Mem; |)
@ Sadly, these do not compose (cf intro) and we instead use:
(Lay — Mem,;) — #(Lay —» Mem; |)

which compose, using Kleisli structure on 2.

Low level semantics

@ Example:

@ So, as desired, always get an error with high probability.

Low-level semantics

[c] : (Lay = Mem; |) — 7 (Lay — Mem)
Most cases are straightforward:

e+ cT(¢) [el(O)ulel(Z)
[e:cll [T ollcl
[[skip]] n

nOw. el — [T,

(if [[e]]g"(w) €dom(m))
n(Aw.¢&) (otherwise)
[ifbthencelsec] = Cond([[b],[c],[cT)

[whilebdoc]] = wp6.Cond([[b],0%[c],n)

[e:=¢€T(¢)

Example conditional semantics

(5)= (R)= Een(R)=

w; — false oy W= mey
w, — true P Wo = Mg W
ws — false i 7 /. | [(Ws — Me'3

W

ey,

[[ifbthencelsec’]](o) -

w3 — m3
Wi — Mgy Wi — Mgy
Wo — Meo Wo — mgz
W3 — M3 W3 — M3

Refinement relation (low-level)

@ Input We are interested in the distinguishing capacities of the
adversary on inputs that directly correspond to stores.

These are called store projections and are random variables
(Lay — Mem,) of the form w— w(s) for some store s (but
also allow L and &).

@ Output For X, Y € #(Lay —» Mem,), X <, Y iff (roughly)
the public parts of the random variables in X are less than
those of Y with probability greater than 6. More precisely, for
all { € X, there exists {’ € Y such that:

o { < or
o P(Z(w)ef, L})=06and P({'(w)=¢&)>06.

@ Command refinement c refines ¢’, written ¢ <, ¢/, when:

Vsestores. [[c]](w— w(s)) <, [¢(w— w(s))

Simulation relation

@ We mostly consider public contexts containing safe
commands.
@ Safe commands transform store projections into store
projection sets, which are (downsets of) sets of
e store projections, or
e random variables with high probability of error (> 0).
@ We project those semantics and define a simulation relation
similar to the high-level one.

For all safe low-level commands c, ¢/, we have:

[el 2] © V low-level public C[].[[Clc]]l <. [CI<]]]

Simulation relation - more detail

@ Begin with R C .7 (private-stores), subject to conditions
@ Then construct R+ C #(stores, -)? from R, much as before
@ Then construct R* C #(Lay — Mem; |)? from R by:

XR*Y =4 Xand Y are store projection sets
A x(X)R* 2 (Y)

(where y extracts the stores, bottom, and, possibly, error from
a store projection set).

@ Then

[l 2 [T =aer VX, Y. XR*Y =[] (X)R*[T(Y)

Compilation

High-level commands ¢ are compiled to low-level commands ¢! by:

(!/lOC)l = lhat
(Iloc = e)l = lat = el

For all high-level commands ¢, ¢ we have: ¢ X ¢’ iff ¢! < ¢/t

Theorem 4
For all high-level commands c, ¢/,

Y high-level public C[].[[C[c]]] <. [C[<]]

holds iff
Viow-level public C[].[C[c']] <. [C[¢]]

does

Planul, Gordon Plotkif Layout Randomization and Nondeterminism m

Naturality of the semantics

Parameterising over sets of layouts:
W/ [[C]] W/ W/
Mem@_ _— (Meng_)
Memyg | H(Memyg |

M W// o 7_[Me W//
elme,) [l (mu)

Suggests working with presheaves.

Summary of this work

@ A semantic approach to layout randomization

[[C]]?I [¢l < Vopublic C[].[Clc]ll <. [C[e1]
[c'T=[c*]l <V public C[].[Clc] <. [Clc*]]

@ Nondeterminism (and its interaction with probabilities).

@ Concurrency would be an interesting next step (or
higher-order)

Layout F ization and M

Summary of this work

@ A semantic approach to layout randomization

[[C]]?I [¢l < Vopublic C[].[Clc]l <. [C[¢]]
[cT=[c*]l < ¥ public C[].[Clc] <. [Cle*]]

@ Nondeterminism (and its interaction with probabilities).

@ Concurrency would be an interesting next step (or
higher-order)

@ But there is still something to understand.

émy Planul, Gordon Plotkir Layout F ization and

What is the corresponding operational semantics?

@ To make sense of our semantics, we want
operational/denotational consistency, akin to:

gellel) & Yw.wi= (e, d(w)) =" ¢ (w)

@ Once again, the nondeterminism is chosen after the layout.

@ We set the nondeterminism with an oracle, then the
operational semantics is deterministic:

'elc(Q) © InvVw.wi|=(c,{(w),m) ="' (w)

