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Hoping to work with Prakash: Choquet capacities

Josée, Vineet, Radha, and Prakash, CONCUR ’02:
Weak Bisimulation is Sound and Complete for pCTL* .

Superadditive Choquet capacity:

µ(A∪B)≤µ(A) +µ(B) (A,B ⊆Σ, disjoint)

Given measures µi , their lower envelope:

µ(A) =def min
i
µi(A)

is a superadditive Choquet capacity.

Can we do ordinary + probabilistic nondeterminism this way?

Martín Abadi, Jérémy Planul, Gordon Plotkin Layout Randomization and Nondeterminism 2/36



Hoping to work with Prakash: Choquet capacities

Josée, Vineet, Radha, and Prakash, CONCUR ’02:
Weak Bisimulation is Sound and Complete for pCTL* .

Superadditive Choquet capacity:

µ(A∪B)≤µ(A) +µ(B) (A,B ⊆Σ, disjoint)

Given measures µi , their lower envelope:

µ(A) =def min
i
µi(A)

is a superadditive Choquet capacity.

Can we do ordinary + probabilistic nondeterminism this way?

Sadly, this map is many-to-one from convex sets of measures
to capacities, even when |Σ|= 3.
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Counterexamples in plenty (Cozman)
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Trying to work with Prakash: quantum computation
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Somewhat working with Prakash: Markov processes

Approximating Markov Processes By Averaging
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October 14, 2013

Abstract

Normally, one thinks of probabilistic transition systems as taking
an initial probability distribution over the state space into a new prob-
ability distribution representing the system after a transition. We,
however, take a dual view of Markov processes as transformers of
bounded measurable functions. This is very much in the same spirit as
a “predicate-transformer” view, which is dual to the state-transformer
view of transition systems.

We redevelop the theory of labelled Markov processes from this
view point, in particular we explore approximation theory. We obtain
three main results:
(i) It is possible to define bisimulation on general measure spaces and
show that it is an equivalence relation. The logical characterization
of bisimulation can be done straightforwardly and generally. (ii) A
new and flexible approach to approximation based on averaging can
be given. This vastly generalizes and streamlines the idea of using
conditional expectations to compute approximations. (iii) We show
that there is a minimal process bisimulation-equivalent to a given pro-
cess, and this minimal process is obtained as the limit of the finite
approximants.
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Low-Level Attacks and Protection

Many attack techniques:
Buffer overflows
Exception overwrites
return-to-libc
jump-to-libc
use-after-free attacks

Often with knowledge and
control of the heap

Many defenses:
Stack canaries
Safe exception handling
NX (No eXecute) data
Layout randomization

Useful mitigations

But not necessarily perfect
in a precise sense

Nor all well understood
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Layout randomization

Runtime attacks often depend on addresses (e.g. jump to libc).

Let us randomize the addresses!
Considered for data at least since the rise of large virtual
address spaces (e.g., [Druschel & Peterson, 1992] on fbufs).
Now present in Linux (PaX), Windows, Mac OS X, iOS,
Android (4.0).

jump0x4

x y z
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A theory of layout randomization

Abadi and Plotkin did a first formalization, using operational
methods.

Further work [Jagadeesan et al., Abadi et al.] concerned
memories containing functions and arrays.

Here we consider commands that make nondeterministic
choices (as a first step towards parallelism).

We use denotational methods rather than operational ones
(for interest, but not only).

We use random variables for probability rather than
distributions, as events are not independent.
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Probabilities and nondeterminism

Probabilities:

0.6

0.3

0.1

Not red with
≥ 0.9
probability

Probabilistic cryptographic
schemes

Differential privacy

Low-level software
protection (Layout
randomization)

Nondeterminism:

Never red
Network communications

Nondeterministic scheduling

User interaction
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Probabilities↔ Nondeterminism: Game theory

Player 1 chooses a bit (b1) by flipping a coin

Player 2 chooses a bit (b2) nondeterministically

Player 1 wins if he guesses right:

b1 = b2

The program:

b1 := 0 + 1
2

1; (b2 := 0 OR b2 := 1)
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Probabilities↔ Nondeterminism: Game theory
b1 := 0 + 1

2
1; (b2 := 0 OR b2 := 1)

What should its semantics be?

a set of distributions on
outcomes

0.5

0.5

0.5

0.5

Player I always wins with
probability 1/2.

a distribution on sets of
outcomes

0.5

0.5

Player I can win or lose.
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Probabilities↔ Nondeterminism: Game theory

b1 := 0 + 1
2

1; (b2 := 0 OR b2 := 1)

The obvious semantics for sets of distributions on outcomes does
not compose as expected:

0.5
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1

1

0.5
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1

1

b1 := 0 + 1
2

1

b2 := 0 OR b2 := 1
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Probabilities↔ Nondeterminism: Algebra

Resolving probabilistic choice first:
- Distribute nondeterministic choice over probabilistic choice:

x ∪ (y +p z)= (x ∪ y)+p (x ∪ z)

- One can prove that for all p, q: x +p y = x +q y so the +p

become a second semilattice, distributing over the first one.
- Free Algebra over a set X : Non-empty finite ∪-closed sets of

non-empty finite subsets of X .

Resolving nondeterministic choice first:
- Distribute probabilistic choice over nondeterministic choice:

x +p (y ∪ z)= (x +p y)∪ (x +p z)

- Free Algebra over a set X : Non-empty finitely generated
convex sets of distributions over X .
But gives the "wrong" semantics to our program.
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Roadmap

Define high-level and low-level languages, each with access
to (the same) private and public locations.
⇒ View the implementations as compilations.
View attackers as (high- or low-level) “public” contexts: those
with no access to private locations.
⇒ Relate commands depending on their public behaviour in
public contexts.
Characterize the contextual relations using semantical
simulations (a kind of logical relation)
⇒ prove that high-level contextual relations correspond to
low-level contextual relations (full abstraction):

[[c]]� [[c′]] ⇔ ∀high-level public C[ ]. [[C[c]]]≤L [[C[c′]]]
m

[[c↓]]� [[c′↓]] ⇔ ∀low-level public C[ ]. [[C[c↓]]]≤L [[C[c′↓]]]
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High-level language

e ::= k | !lloc | e + e | e ∗e
b ::= e≤ e | ¬b |true |false | b∨b | b∧b
c ::= lloc := e |ifbthencelsec | skip | c;c |

c + c |whilebdoc

Finitely many locations.

They are divided into private (high) and public (low).

store s: locations→ values

Semantics [[c]]: stores→H (stores⊥)
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Refinement relation (high-level)

For X ,Y ∈H (stores⊥), X refines Y if the public part of any
store in X is the public part of a store in Y .

≤L

Formally:

X ≤L Y ≡∀s ∈ stores.sL ∈ X ⇒ sL ∈ Y

For commands, c refines c′, written c ≤L c′ when, for every
input, the outputs of c refine those of c′:

∀s ∈ stores. [[c]](s)≤L [[c′]](s)
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Simulation (high-level)

Simulation relation � on commands such that

Theorem 1
For all high-level commands c, c′, we have:

[[c]]� [[c′]] ⇔ ∀ high-level public C[ ]. [[C[c]]]≤L [[C[c′]]]

Simple without nondeterminism or nontermination:

R
[[c]]

[[c′]]
=

R
=
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Simulation (details)

R
=

[[c]]

[[c′]]

R
=

R
=

So begin with R ⊆H (private-stores⊥)2, subject to conditions

Then construct R+ ⊆H (stores⊥)2 from R

Then

[[c]]� [[c′]] ≡def ∀X ,Y ∈H (stores⊥).XR+Y ⇒ [[c]](X)R+[[c′]](Y )

Martín Abadi, Jérémy Planul, Gordon Plotkin Layout Randomization and Nondeterminism 20/36



Low-level memory model

Memories (m ∈Mem) are partial mappings from the set of
memory addresses Add = {1, . . . , r} to values.

Memory layouts (w ∈ Lay) are injective mappings from
locations to the addresses Add.

=⇒ stores map to memories via layouts.

bla
bla

l1 7→
l2 7→
l3 7→

s

w(s)

l1 7→ 7
l2 7→ 28
l3 7→ 14

w
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Layout randomization

We fix a public layout wp.

We randomize the private layout (using a distribution d)

We rely on one value in our theorems, the minimum
probability for a guessed private address to be unallocated:

δ = min{P(i 6∈ ran(w)) | i ∈ Add \ ran(wp)}
= 1− |PriLoc|/|Add \ ran(wp)| (d uniform)

w1

w5

w2

w4

l1 7→
l2 7→
l3 7→

s

w3(s)

l1 7→ 7
l2 7→ 28
l3 7→ 14

w3
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Low-level language

e ::= k | lnat | !e | e + e | e ∗e
b ::= e≤ e | ¬b |true |false | b∨b | b∧b
c ::= e := e |ifbthencelsec | skip | c;c |

c + c |whilebdoc

We can compute over lnat, ex: (x + lnat) :=nat (x + l ′nat).
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Low-level semantics

The final memory depends on the initial one and the layout,
We cannot prove security using a semantics of the form:

Mem×Lay→H (Memξ,⊥)

for consider the command:

(1:=1) + (2:=1) + (3:=1) + (4:=1)

l1 7→ 2

ξ

ξ

ξ

1 := 1

2 := 1

3 := 1

4 := 1

+
+
+
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Low-level semantics

So we need to resolve probabilities after nondeterminism:

However
Mem→H (V (Memξ,⊥))

does not work as our events are not independent.

For example, suppose there is just one private location l1, and
1,2 are not public addresses. Then:

- 1:=1 ; 2:=1 should always give an error.
- 1 := 1 ; 1 := 2 should give an error or overwrite l1
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Low-level semantics

Solution idea: replace distributions

d ∈V (Memξ,⊥)

by random variables

ζ : Lay→Memξ,⊥

with layouts as the sample space, obtaining:

Mem→H (Lay→Memξ,⊥)

which compose, using Kleisli structure onH .

Martín Abadi, Jérémy Planul, Gordon Plotkin Layout Randomization and Nondeterminism 26/36



Low-level semantics

Solution idea: replace distributions

d ∈V (Memξ,⊥)

by random variables

ζ : Lay→Memξ,⊥

with layouts as the sample space, obtaining:

Mem→H (Lay→Memξ,⊥)

Sadly, these do not compose (cf intro) and we instead use:

(Lay→Memξ,⊥)→H (Lay→Memξ,⊥)

which compose, using Kleisli structure onH .
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Low level semantics

Example:

(1:=1) + (2:=1) + (3:=1) + (4:=1)

(l1 7→ 2)→

1 := 1

2 := 1

3 := 1

4 := 1

+
+
+

(l1 7→ 1)→ ξ

(l1 7→ 3)→ ξ
(l1 7→ 4)→ ξ(l1 7→ 2)→

(l1 7→ 1)→

(l1 7→ 3)→
(l1 7→ 4)→

(l1 7→ 2)→ ξ
(l1 7→ 1)→ ξ

(l1 7→ 3)→ ξ
(l1 7→ 4)→

...

...

So, as desired, always get an error with high probability.
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Low-level semantics

[[c]] : (Lay→Memξ,⊥)→H (Lay→Memξ,⊥)

Most cases are straightforward:

[[c + c′]](ζ) = [[c]](ζ)∪ [[c′]](ζ)
[[c;c′]] = [[c′]]†◦[[c]]
[[skip]] = η

[[e := e′]](ζ) =







η(λw .m[[[e]]w
ζ(w) 7→ [[e′]]w

ζ(w)])

(if [[e]]w
ζ(w) ∈ dom(m))

η(λw .ξ) (otherwise)

[[ifbthencelsec′]] = Cond([[b]], [[c]], [[c′]])
[[whilebdoc]] = µθ .Cond([[b]],θ †◦[[c]],η)
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Example conditional semantics

[[ifbthencelsec′]]
�

w1 7→m1
w2 7→m2
w3 7→m3

�

=

w1 7→mc′1
w2 7→mc2
w3 7→mc′3

w1 7→m′c′1
w2 7→m′c2

w3 7→m′c′3

w1 7→mc′1
w2 7→m′c2
w3 7→mc′3

w1 7→m′c′1
w2 7→mc2

w3 7→m′c′3

[[c]]
�

w1 7→m1
w2 7→m2
w3 7→m3

�

= [[c′]]
�

w1 7→m1
w2 7→m2
w3 7→m3

�

=[[b]]
�

w1 7→m1
w2 7→m2
w3 7→m3

�

=

w1 7→ false
w2 7→ true
w3 7→ false

w1 7→mc1
w2 7→mc2
w3 7→mc3

w1 7→m′c1
w2 7→m′c2
w3 7→m′c3

w1 7→mc′1
w2 7→mc′2
w3 7→mc′3

w1 7→m′c′1
w2 7→m′c′2
w3 7→m′c′3

Martín Abadi, Jérémy Planul, Gordon Plotkin Layout Randomization and Nondeterminism 29/36



Refinement relation (low-level)

Input We are interested in the distinguishing capacities of the
adversary on inputs that directly correspond to stores.
These are called store projections and are random variables
(Lay→Mem⊥,ξ) of the form w 7→w(s) for some store s (but
also allow ⊥ and ξ).

Output For X ,Y ∈H (Lay→Mem⊥,ξ), X ≤L Y iff (roughly)
the public parts of the random variables in X are less than
those of Y with probability greater than δ. More precisely, for
all ζ∈ X , there exists ζ′ ∈ Y such that:

ζL ≤ ζ′L, or
P(ζ(w)∈ {ξ,⊥})≥δ and P(ζ′(w)= ξ)≥δ.

Command refinement c refines c′, written c ≤L c′, when:

∀s ∈ stores. [[c]](w 7→w(s))≤L [[c′]](w 7→w(s))
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Simulation relation

We mostly consider public contexts containing safe
commands.

Safe commands transform store projections into store
projection sets, which are (downsets of) sets of

store projections, or
random variables with high probability of error (>δ).

We project those semantics and define a simulation relation
similar to the high-level one.

Theorem 2
For all safe low-level commands c, c′, we have:

[[c]]� [[c′]] ⇔ ∀ low-level public C[ ]. [[C[c]]]≤L [[C[c′]]]
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Simulation relation - more detail

Begin with R ⊆H (private-stores⊥,ξ)2, subject to conditions

Then construct R+ ⊆H (stores⊥,ξ)2 from R, much as before

Then construct R× ⊆H (Lay→Memξ,⊥)2 from R+ by:

XR×Y ≡def X and Y are store projection sets
∧ χ(X)R+χ(Y )

(where χ extracts the stores, bottom, and, possibly, error from
a store projection set).

Then

[[c]]� [[c′]] ≡def ∀X ,Y .XR×Y ⇒ [[c]](X)R×[[c′]](Y )
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Compilation

High-level commands c are compiled to low-level commands c↓ by:

(!lloc)↓ = !lnat
(lloc := e)↓ = lnat := e↓

Theorem 3

For all high-level commands c, c′ we have: c � c′ iff c↓ � c′↓

Theorem 4
For all high-level commands c, c′,

∀high-level public C[ ]. [[C[c]]]≤L [[C[c′]]]

holds iff
∀low-level public C[ ]. [[C[c↓]]]≤L [[C[c′↓]]]

does
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Naturality of the semantics

Parameterising over sets of layouts:

Looking at the type of the semantics

[[c]] :MemW
ξ⊥ → H(MemW

ξ⊥)

one may be concerned that there is no apparent relation between the
layouts used in the input to [[c]] and those in its output. However, we note
that the semantics could be made parametric. For every W � ⊆ W , replace
W by W � in the definition of [[c]] to obtain:

[[c]]W � :MemW �
ξ⊥ → H(MemW �

ξ⊥ )

There is then a naturality property, that the following diagram com-
mutes for all W �� ⊆ W � ⊆ W :

MemW �
ξ⊥

[[c]]W �✲ H(MemW �
ξ⊥ )

MemW ��
ξ⊥

Memι
ξ⊥

❄

[[c]]W ��
✲ H(MemW ��

ξ⊥ )

H(Memι
ξ⊥)

❄

where ι : W �� ⊆ W � is the inclusion map. Taking W � = W and W ��

a singleton yields the expected relation between input and output: the
value of a random variable in the output at a layout depends only on the
value of the input random variable at that layout. The naturality property
suggests re-working the low-level denotational semantics in the category
of presheaves over sets of layouts, and this may prove illuminating (see [22]
for relevant background).

4.3 Operational Semantics

As a counterpart to the denotational semantics, we give a big-step deter-
ministic operational semantics using oracles to make choices.

The set of oracles Π is ranged over by π and is given by the following
grammar:

π ::= ε | Lπ | Rπ | π;π | if (π,π)

A low-level state σ is:

– a pair �c, m� of a command c and a memory m,
– a memory m, or
– the error element ξ.

Suggests working with presheaves.
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Summary of this work

A semantic approach to layout randomization

[[c]]� [[c′]] ⇔ ∀ public C[ ]. [[C[c]]]≤L [[C[c′]]]
m

[[c↓]]� [[c′↓]] ⇔ ∀ public C[ ]. [[C[c↓]]]≤L [[C[c′↓]]]

Nondeterminism (and its interaction with probabilities).

Concurrency would be an interesting next step (or
higher-order)

Martín Abadi, Jérémy Planul, Gordon Plotkin Layout Randomization and Nondeterminism 35/36



Summary of this work

A semantic approach to layout randomization

[[c]]� [[c′]] ⇔ ∀ public C[ ]. [[C[c]]]≤L [[C[c′]]]
m

[[c↓]]� [[c′↓]] ⇔ ∀ public C[ ]. [[C[c↓]]]≤L [[C[c′↓]]]

Nondeterminism (and its interaction with probabilities).

Concurrency would be an interesting next step (or
higher-order)

But there is still something to understand.
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What is the corresponding operational semantics?

To make sense of our semantics, we want
operational/denotational consistency, akin to:

ζ′ ∈ [[c]](ζ) ⇔ ∀w .w |= 〈c,ζ(w)〉→∗ ζ′(w)

Once again, the nondeterminism is chosen after the layout.

We set the nondeterminism with an oracle, then the
operational semantics is deterministic:

ζ′ ∈ [[c]](ζ) ⇔ ∃π.∀w .w |= 〈c,ζ(w),π〉→∗ ζ′(w)
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