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Residuated Monoids
A residuated monoid M is a partially ordered monoid 
where the multiplication has a left and a right adjoint.

Pregroups for Sanskrit 3

adjunction inequalities hold:

p

l · p  1  p · pl p · pr  1  p

r · p

The two inequalities on the left side of 1 are referred to as contractions, while the
two at the right side are called expansions; adjoints are unique and contravariant:

p  q =) q

l  p

l and q

r  p

r

As a consequence of the compact property of the monoidal operation (which
gives rise to the adjunction inequalities), the unit 1 and the multiplication are
self dual [24, 9, 26, 28], that is:

1l = 1 = 1r (p · q)l = q

l · pl (p · q)r = q

r · pr

Some other properties of pregroups are as follows:

1- The adjoint of multiplication is the multiplication of adjoints but in the reverse
order, that is:

(p · q)l = q

l · pl (p · q)r = q

r · pr

2- The adjoint operation is order reversing, that is:

p  q =) q

r  p

r and p  q =) q

l  p

l

3- Composition of the opposite adjoints is identity, that is:

(pl)r = (pr)l = p

4- Composition of the same adjoints is not identity, that is:

p

ll = (pl)l 6= p, p

rr = (pr)r 6= p

This leads to the existence of iterated adjoints [24], so that each element of a
pregroup can have countably many iterated adjoints, for instance we have:

· · · , pll, pl, p, pr, prr, · · ·

A group is a pregroup where p

r = p

l for all p 2 P . Another example of a
pregroup is the set of all monotone unbounded maps on integers f : Z ! Z. In
this pregroup, function composition is the monoid multiplication and the identity
map is its unit; the underlying order on integers lifts to an order on the maps
whose Galois adjoints are their pregroup adjoints, defined as follows:

f

l(x) = min{y 2 Z | x  f(y)} f

r(x) = max{y 2 Z | f(y)  x}

A residuated monoid (M,, ·, 1, /, \) is a partially ordered monoid, where
the monoid multiplication has a right � \� and a left �/� adjoint, that is, for
a, b, e 2 M we have

b  a \ e , a · b  e , a  e/b
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Monoidal Closed Category
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Pregroups
A pregroup P is a partially ordered monoid where the 
each element  has a left and a right adjoint.

2 C. Casadio and M. Sadrzadeh

perfect grammatical structure. In this paper, we use pregroups to analyse a basic
fragment of Sanskrit, similar to the fragment used by Lambek in his treatment
of English in a number of papers, and consecutively by various other authors in
their analysis, such as the work of current authors on Persian, Hungarian, and
Latin [31, 32, 14].

We invoke recent work of the authors about precyclic properties in pregroups
[17], and show that a weaker version of Yetter’s cyclic axiom [35] hold in pregroup
algebras, via the translation between residuated monoids and pregorups [13]
and Abrusci’s cyclic sequent calculus rules for a non-commutative linear logic
[2, 1]. Then we use ideas from [16] on word order alternation in language and
develop corresponding permutations and transformations to analyse word order
alternations in Sanskrit and study its movement patterns. We type the Sanskrit
sentence assuming the canonical word order suggested in Apte [5]. We also type
a number of Sanskrit compounds based on the classification of Gillon [20]. The
focus of the current paper, however, is reasoning about alternation of word order
in Sanskrit. To achieve this, we use the rules of word order and movement in
Sanskrit according to the analysis of Gillon [18] and most of the examples are
also taken from the work of Gillon [18–20]. The present work is intended as the
basis for a further more detailed analysis, such as extending the work of [7] from
production rules to a pregroup grammar.

The connection to Prakash’s work is that pregorups are compact closed cate-
gories; these have been used to analyze quantum protocols in the work of Abram-
sky and Coecke. They have also been applied to reason about vector space se-
mantics of natural language, in the work of Clark, Coecke, and Sadrzadeh. This
latter work develops a primary syntactic analysis of the language under con-
sideration in a pregroup grammar. So our analysis of Sanskrit can be used to
provide a vector space semantics, based on the texts written in Sanskrit. There
is also a connection to Prakash himself, since Sanskrit was the ancient o�cial
language of India and remains one of its main religious and literary languages.

2 Pregroup Algebras

Lambek developed the calculus of pregroups as an alternative to his Syntac-
tic Calculus [23], usually known as Lambek Calculus [29]. While the latter is
an intuitionistic system, based on the operation of implication, the former is a
classical system, based on the operation of multiplicative conjunction (for de-
tails see [9, 11, 13, 26]). The mathematical and logical properties of pregroups are
studied in [10, 9, 24, 28]. In a short span of time, pregroups have been applied to
the grammatical analysis of fragments of a wide range of languages: English [25],
French [6, 27], Italian [12], Arabic [8], Polish [22], Persian [31] and others [15].

In a nutshell, a pregroup P , denoted by the structure (P, · , 1,, ()l, ()r),
is a partially ordered monoid (formally defined in the next section), ‘·’ is a
multiplicative operation, 1 is the unit of this multiplication, and each element
p 2 P has both a left adjoint p

l and a right adjoint p

r, so that the following
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adjunction inequalities hold:

p

l · p  1  p · pl p · pr  1  p

r · p

The two inequalities on the left side of 1 are referred to as contractions, while the
two at the right side are called expansions; adjoints are unique and contravariant:

p  q =) q

l  p

l and q

r  p

r

As a consequence of the compact property of the monoidal operation (which
gives rise to the adjunction inequalities), the unit 1 and the multiplication are
self dual [24, 9, 26, 28], that is:

1l = 1 = 1r (p · q)l = q

l · pl (p · q)r = q

r · pr

Some other properties of pregroups are as follows:

1- The adjoint of multiplication is the multiplication of adjoints but in the reverse
order, that is:

(p · q)l = q

l · pl (p · q)r = q

r · pr

2- The adjoint operation is order reversing, that is:

p  q =) q

r  p

r and p  q =) q

l  p

l

3- Composition of the opposite adjoints is identity, that is:

(pl)r = (pr)l = p

4- Composition of the same adjoints is not identity, that is:

p

ll = (pl)l 6= p, p

rr = (pr)r 6= p

This leads to the existence of iterated adjoints [24], so that each element of a
pregroup can have countably many iterated adjoints, for instance we have:

· · · , pll, pl, p, pr, prr, · · ·

A group is a pregroup where p

r = p

l for all p 2 P . Another example of a
pregroup is the set of all monotone unbounded maps on integers f : Z ! Z. In
this pregroup, function composition is the monoid multiplication and the identity
map is its unit; the underlying order on integers lifts to an order on the maps
whose Galois adjoints are their pregroup adjoints, defined as follows:

f

l(x) = min{y 2 Z | x  f(y)} f

r(x) = max{y 2 Z | f(y)  x}

A residuated monoid (M,, ·, 1, /, \) is a partially ordered monoid, where
the monoid multiplication has a right � \� and a left �/� adjoint, that is, for
a, b, e 2 M we have

b  a \ e , a · b  e , a  e/b

Compact Closed Category
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Some Properties
Adjoint are order reversing

Opposite adjoints cancel out

Pregroups for Sanskrit 3
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A group is a pregroup where p

r = p

l for all p 2 P . Another example of a
pregroup is the set of all monotone unbounded maps on integers f : Z ! Z. In
this pregroup, function composition is the monoid multiplication and the identity
map is its unit; the underlying order on integers lifts to an order on the maps
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f
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b  a \ e , a · b  e , a  e/b

Non-opposite adjoints don’t
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Multiplication is self adjoint
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Translation
An element x of a residuated monoid is translated into 
an element of a pregroup t(x) as follows

4 C. Casadio and M. Sadrzadeh

The passage from residuated monoids (on which the Lambek Calculus is based)
to pregroups can be thought of as replacing the two adjoints of the monoid
multiplication with the two adjoints of the elements. If a residuated monoid has
a dualizing object, i.e. an object 0 2 M satisfying (0/p) \ 0 = p = 0/(p \ 0)
for p 2 M , then one can define for each element a left and a right negation as
p

0 := p\0 and 0
p := 0/p. It would then be tempting to think of these negations as

the two pregroup adjoints, i.e. to define p

0 = p

r and 0
p = p

l. The problem with
this definition is that the operation involved in a\b (or b/a) - the linear logic “par”
- is di↵erent from the operation in (a . b) - the tensor product. One can however
translate, on this basis, Lambek Calculus expressions into pregroups, provided
that these two operations are identified with the pregroup unique operation:
then all the a\b (or b/a) types will become arb (or b al). In thise sense, pregroups
are non conservative extensions of the Lambek Calculus [24, 26].

3 Precyclic Properties

According to Yetter [35], an element c of a partially ordered monoid M is said
to be cyclic whenever, for all a, b 2 M , we have:

a · b  c =) b · a  c

Although this definitions was first used in the setting of residuated monoids,
one can as well use it for partially ordered monoids that are not necessarily
residuated, since obviously the definition does not involve the adjoints to the
multiplication. For the reader more familiar with Yetter’s original definition, note
that whenever a monoid is residuated, the cyclic condition becomes equivalent
to one involving the adjoints, as follows:

c/a = a\c

We say that a partially ordered monoid (residuated or not) is cyclic whenever
it has a cyclic element. Residuated monoids admit the notion of dualization. An
element d of a residuated monoid is dualizing whenever for all a 2 M we have:

(d/a)\d = a = d/(a\d)

If the dualizing element of M is furthermore cyclic, we obtain:

d/(d/a) = a = (a\d)\d

Using the usual translation between residuated monoids and pregroups [13],
we can investigate whether and how the above notions may hold in a pregroup.
In particular, we can show that 1 is a dualizing element which is not necessarily
cyclic.

Definition 1. Given an element x of a residuated monoid M , we denote its

translation into a pregroup by t(x). For all a, b 2 M , this translation is defined

as follows:

t(1) = 1, t(a · b) = t(a) · t(b), t(a\b) = t(a)r · t(b), t(a/b) = t(a) · t(b)l
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translation into a pregroup by t(x). For all a, b 2 M , this translation is defined

as follows:

t(1) = 1, t(a · b) = t(a) · t(b), t(a\b) = t(a)r · t(b), t(a/b) = t(a) · t(b)l
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r and 0
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l. The problem with
this definition is that the operation involved in a\b (or b/a) - the linear logic “par”
- is di↵erent from the operation in (a . b) - the tensor product. One can however
translate, on this basis, Lambek Calculus expressions into pregroups, provided
that these two operations are identified with the pregroup unique operation:
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that whenever a monoid is residuated, the cyclic condition becomes equivalent
to one involving the adjoints, as follows:
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We say that a partially ordered monoid (residuated or not) is cyclic whenever
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Cyclicity
A partially ordered monoid is cyclic whenever we have 
an element c such that for all a,b we have 
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Dualization
An element d of a residuated monoid is dualizing 
whenever for all a,b  we have

If the dualizing element is furthermore cyclic, we obtain
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Example
In a residuated lattice monoid (quantale), the bottom of 
the lattice is used to define a notion of negation.

Bottom is dualizing.

Bottom is cyclic.

Cyclic Properties: from Linear Logic to Pregroups 3

As a consequence of the compact property of the monoidal operation, the unit
1 and the multiplication are self dual [25, 7, 28, 30]:

1l = 1 = 1r (p · q)l = q

l · pl (p · q)r = q

r · pr

3 Cyclicity in Algebra

3.1 Residuated Monoids

A monoid (M, ·, 1) is a set M with an associative operation with unit 1. A
monoid is partially ordered when M is partially ordered and the order preserves
the monoid operation, that is for every a, b, e 2 M we have:

a  b =) a · e  b · e and e · a  e · b
We denote a partially ordered monoid M by (M, ·, 1,). A residuated monoid,
denoted by (M, ·, 1, ,, /, \), is a partially ordered monoid in which we have:

b  a \ e , a · b  e , a  e/b

An element c of a partially ordered monoid M is said to be cyclic whenever, for
all a, b 2 M , we have:

a · b  c =) b · a  c

Thus, one can define the notion of cyclicity for partially ordered monoids that are
not necessarily residuated. Whenever a monoid is residuated, the cyclic condition
becomes equivalent to:

c/a = a\c
We say that a partially ordered monoid (residuated or not) is cyclic whenever

it has a cyclic element. Residuated monoids admit also the notion of dualization.
An element d of a residuated monoid is dualizing whenever for all a 2 M we
have:

(d/a) \ d = a = d/(a \ d)
If the dualizing element of M is furthermore cyclic, we obtain:

d/(d/a) = a = (a \ d) \ d
These notions have all been defined by Yetter [37]. However, Yetter’s focus was
on residuated monoids which moreover had a lattice structure, i.e. residuated
lattice monoids (M, ·, 1, /, \,_,^,?,>). In such structures, one can show that
the bottom element of the lattice, that is ?, is dualizing. The bottom element is
used to define two notions of negation on a residuated lattice monoid, as follows:

¬r
a := a \? ¬l

a := ?/a

If the two negations of a residuated lattice monoid coincide, i.e. when we have
¬l
a = ¬r

a, then ? is also cyclic. As is well known, Yetter used these notions
to provide an algebraic semantics for Girard’s Linear Logic. In particular, he
used a complete version of a residuated lattice monoid, i.e. one in which the
underlying lattice is a complete lattice. These structures are otherwise known as
quantales. Yetter called the quantales in which the two negations coincide, i.e.
the quantales in which ? is cyclic, Girard Quantales.
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Precyclicity
Observation. In any pregroup 1 is dualizing. If the 
pregroup is proper, 1 is not cyclic.

Proposition. In any pregroup, the following hold

Cyclic Properties: from Linear Logic to Pregroups 5

Proof. Consider the first case. Suppose pq  r, since the multiplication operation
of a pregroup is order preserving, we multiply both sides by p

r from the left
and obtain (⇤) p

r
pq  p

r
r. Now from the axioms of a pregroup it follows that

q  p

r
pq, by order preservation of multiplication, unity of 1, and from the two

validities q  q and 1  p

r
p. From this and (⇤), by transitivity it follows that

q  p

r
r. Consider the second case now. Suppose q  rp, multiply both sides

from the right with p

r and obtain qp

r  rpp

r, by a similar argument as before
we have that rpp

r  r in any pregroup, hence by transitivity it follows that
qp

r  r. The proofs of the other two cases are similar.

We refer to the kind of cyclicity given by Proposition (3) as precyclicity ; as a
consequence we have:

Corollary 1. The following hold in any pregroup P , for any a, b 2 P :

(1) 1  ab

(ll)
=) 1  ba

ll (2) 1  ab

(rr)
=) 1  b

rr
a

Proof. Suppose 1  ab; by case (iv) of Proposition 3 we have that a

l1  b,
since 1 is the unit of P this is equivalent to 1al  b, from which by case (iii) of
Proposition 3 it follows that 1  ba

ll. The proof of the second case is similar.

We also obtains the following properties, closer to Yetter’s cyclic axioms: (*)

Corollary 2. The following hold in any pregroup P , for any a, b 2 P :

(3) brar  1 =) a

l
b

r  1 (4) blal  1 =) a

l
b

r  1

Proof. Suppose b

r
a

r  1; take the left adjoints of both sides of this inequality
and obtain 1r  (brar)l, which is equivalent to 1  ab. From this by property
(1) of Corollary 1 we obtain 1  ba

ll, take the right adjoints of both sides of
this inequality and obtain (ball)r  1r, equivalent to a

l
b

r  1. The proof of the
second case is similar.

Other variants of the above are as follows, for a pregroup P and p, q 2 P : (*)

(5) 1  p

r
q

l =) 1  q

l
p

l (6) 1  p

r
q

l =) 1  q

r
p

r

(7) pq  1 =) q

ll
p  1 (8) pq  1 =) qp

rr  1

a · b  1
(ll)
=) b

ll · a  1 a · b  1
(rr)
=) b · arr  1

The properties of the first line are obtained by taking a = p

r and b = q

l in the
properties of Corollary 1; the properties of the second line are obtained by taking
a = q

l and b = p

l in the properties of Corollary 2. Finally note that another
interesting feature of the precyclicity property is the fact that it can be used to
obtain the adjunction inequalities of a pregroup.

Proposition 4. The pregroup adjunction inequalities follow from precyclicity.
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Pregroup Grammars
A pregroup grammar for a language L is a free 
pregroup T(B) freely generated over a set  B of basic 
grammatical types of L together with a relation D over 
the vocabulary Z  of  L  and T(B). 
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n : noun phrase ⇡ : subject o : object s : sentence

The linguistic reading of a pregroup partial order a  b is that a word of type
a is also of type b. We assume the partial orders n  ⇡ and n  o, routinely
used in pregroup grammars. The free pregroup generated over the above basic
types includes simple types such as n

l
, n

r
,⇡

l
,⇡

r, and compound types such as
(⇡r

s o

l). A sentence is defined to be grammatical whenever the multiplication
(syntactic composition) of the types of its constituents is less than or equal to
the type s. The computations that lead to deciding this matter are referred to
as grammatical reductions. For example, the assignments of the words of the
declarative sentence ‘I saw him.’ and its grammatical reduction are as follows :

✓

I saw him.
⇡ (⇡r

s o

l) o

⇡(⇡r
s o

l) o  1 s 1 = s

The subject is accessed by the verb by using the inequality

⇡⇡

r  1, similarly, the object is accessed by using the

inequality o

l
o  1, and since 1 is the unit of juxtaposition

the result is the type of the sentence.

The grammar of a wide range of natural languages have been analysed using
pregroup grammars, see [28, 14]. The computations that lead to type reductions
are depicted by the under-link diagrams, reminescent of the planar proof nets of
non-commutative linear logic, as shown in the calculi developed in [2, 7].

There are grammatical regularities within languages that involve word order
changes: e. g., certain language units within a sentence move from after the verb
to before it, or from before the verb to after it, and the resulting juxtaposition
of words is still a grammatical sentence. Pregroups were not able to reason
about change of word order in a general way and we o↵er a solution here. We
propose to enrich the pregroup grammar of a language with a set of precyclic
transformations that allow for substituting certain type combinations with their
precyclic permutations. These permutations di↵er from language to language and
express di↵erent, language specific, movement patterns. Within each language,
they are restricted to a specific set so that not all word orders become permissible.
More formally, we define:

Definition 2. In a pregroup P , whenever 1  ab =) 1  ba

ll
or 1  b

rr
a,

then we refer to ba

ll
and b

rr
a as precyclic permutations of ab and denote this

relationship by ab

�
; ba

ll
and ab

�
; b

rr
a.

Definition 3. In a pregroup P , for ba

ll
and b

rr
a precyclic permutations of ab,

and any A,B,C 2 P , we define the following precyclic transformations

3
:

(ll)-transformation A  B(ab)C
(ll)
; A  B(ball)C

(rr)-transformation A  B(ab)C
(rr)
; A  B(brra)C

3 These transformations prevent us from making isolated assumptions such as 1  so

l

and stop generation of meaningless inequalities such as 1o  (sol)o  s.

D Z x  T(B)

A string of words of L is a grammatical sentence, 
whenever the multiplication of the types of the words 
is below the type s. 
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Precyclic Pregroup Grs

A precyclic pregroup grammar  is a pregroup grammar 
with a set of transformations as follows

12 C. Casadio and M. Sadrzadeh

6 Cyclic Rules and Alternation of Word Order

By alternation of word order, we mean that certain language units within a
sentence move from after the verb to before it, or from before the verb to after

it, such that the resulting composition of words is still a grammatical sentence,
although they may convey a di↵erent meaning. Non-inflectional languages such
as English seem to have a fixed word order and inflectional ones, such as Latin,
a free word order. However, the former cases do allow for alternations in word
order as a result of, for instance, putting emphasis on a part of speech. At the
same time, the latter cases do not allow for all possible permutations without
changing the meaning.

Pregroups were not able to reason about alternations of word order in a gen-
eral way and we o↵er a solution here. We propose to enrich the pregroup grammar
of a language with a set of precyclic transformations that allow for substituting
certain type combinations with their precyclic permutations. These transforma-
tions di↵er from language to language and express di↵erent, language specific,
movement patterns. Within each language, they are restricted to a specific set
so that not all word orders become permissible. More formally, we define:

Definition 2. In a pregroup P , whenever 1  ab =) 1  ba

ll
or 1  b

rr
a,

then we refer to ba

ll
and b

rr
a as precyclic permutations of ab and denote this

relationship by ab

�(ll)
; ba

ll
and ab

�(rr)
; b

rr
a.

Definition 3. In a pregroup P , for ba

ll
and b

rr
a precyclic permutations of ab,

and any A,B,C 2 P , we define the following precyclic transformations

4
:

(ll)-transformation A  B(ab)C
(ll)
; A  B(ball)C

(rr)-transformation A  B(ab)C
(rr)
; A  B(brra)C

Definition 4. A precyclic pregroup grammar is a pregroup grammar with a set

of precyclic transformations.

The intuitions behind the (ll) and (rr) annotations of the � denotations and
the transformation rules are as described after Corollary 1. For instance, the (ll)
permutation rule allows us to substitute the type ab with a permuted version of
it, obtained by moving a from the left of the compound to the right of it, but as
a result of this movement, we have to annotate a with ll, hence it becomes all.
This annotation registers the fact that a has moved to its current position from
the left. The case for the (rr) rule is the same, here we substitute ab with b

rr
a

and the annotation registers the fact that b has moved to its current position
from the right of the compound.

Assuming these definitions, we formalise patterns of movement by providing
a procedure on the basis of which one can derive the type of the verb after the
movement, from its type before the movement. Hence, given the reduction of the

4 These transformations prevent us from making isolated assumptions such as 1  so

l

and block the generation of meaningless inequalities such as 1o  (sol)o  s.
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and block the generation of meaningless inequalities such as 1o  (sol)o  s.
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same time, the latter cases do not allow for all possible permutations without
changing the meaning.

Pregroups were not able to reason about alternations of word order in a gen-
eral way and we o↵er a solution here. We propose to enrich the pregroup grammar
of a language with a set of precyclic transformations that allow for substituting
certain type combinations with their precyclic permutations. These transforma-
tions di↵er from language to language and express di↵erent, language specific,
movement patterns. Within each language, they are restricted to a specific set
so that not all word orders become permissible. More formally, we define:

Definition 2. In a pregroup P , whenever 1  ab =) 1  ba

ll
or 1  b

rr
a,

then we refer to ba

ll
and b

rr
a as precyclic permutations of ab and denote this

relationship by ab

�(ll)
; ba

ll
and ab

�(rr)
; b

rr
a.

Definition 3. In a pregroup P , for ba

ll
and b

rr
a precyclic permutations of ab,

and any A,B,C 2 P , we define the following precyclic transformations

4
:

(ll)-transformation A  B(ab)C
(ll)
; A  B(ball)C

(rr)-transformation A  B(ab)C
(rr)
; A  B(brra)C

Definition 4. A precyclic pregroup grammar is a pregroup grammar with a set

of precyclic transformations.

The intuitions behind the (ll) and (rr) annotations of the � denotations and
the transformation rules are as described after Corollary 1. For instance, the (ll)
permutation rule allows us to substitute the type ab with a permuted version of
it, obtained by moving a from the left of the compound to the right of it, but as
a result of this movement, we have to annotate a with ll, hence it becomes all.
This annotation registers the fact that a has moved to its current position from
the left. The case for the (rr) rule is the same, here we substitute ab with b

rr
a

and the annotation registers the fact that b has moved to its current position
from the right of the compound.

Assuming these definitions, we formalise patterns of movement by providing
a procedure on the basis of which one can derive the type of the verb after the
movement, from its type before the movement. Hence, given the reduction of the

4 These transformations prevent us from making isolated assumptions such as 1  so

l

and block the generation of meaningless inequalities such as 1o  (sol)o  s.
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Sentence Structure

8 C. Casadio and M. Sadrzadeh

which played a major role in the institutional language of India. The great legend
of Mahdbharata from 6th century BC and the philosophical poem of Bhagavad-
Glta are the two most important texts written in Sanskrit. It was on the basis
on these texts that Panini presented the grammar of Sanskrit. His work is a set
of algebraic formula-like rules that produce what is greatly known as Sanskrit

Compounds. These are mainly formed based on euphonic rules, rarely seen in
any other language. This is the reason why Sanskrit is claimed to have a ”pre-
fect grammar”. However, it has also been argued that these rules describe an
artificial language, one that has been used in religious and highly literary texts
and not one that is spoken by the people in the street [34].

The formation of Sanskrit compounds is complex and usually relies on en-
riched versions of the context-free rules [20]. In this paper we focus on a small
set of compounds, as well as the general rules of sentence formation. It is argued
that since the grammar of Sanskrit was based on hymns and poems, sentences
did not play a major role in its grammar, as originally put down by scholars.
In this paper we work with the invaluable exposition of Sanskrit grammar in
the style of European grammars by Apte [5] and a modern take of it by using
generative means by Gillon [18–20].

According to Apte, Sanskrit sentence can be of three kind: simple, complex,
and compound. Simple sentences are the ones that have one subject and one
verb. Complex sentences have one subject, one principal verb, and two or more
secondary verbs. Compound sentences consist of two or more principal sentences.
Verbs can be classified into copular and non-copular. Copulars are sentences
where a subject is connected to a predicate, also referred to by a complement.
Like in most languages, the best representative of a copular case is the verb to

be; ‘aste’ in Sanskrit. Similarly to Latin and certain European languages such
as Spanish, the verbs of the copular sentences are sometimes dropped, but for
now we disregard this case. Sanskrit also uses ‘aste’ for existential purposes, e.g.
in the sentence ‘There is a man.’ (‘The man is.’) in Sanskrit. In most of these
cases the copula is not dropped. The non-copular sentences are those in which
the verb is reporting the occurrence of an action, such as loving or going. These
verbs, may have objects, hence called transitive, or not, hence called intransitive.

The canonical pattern of a simple Sanskrit sentence is as follows:

Subject - Subject-Enlargement - Verb - Object - Object-Enlargement - Adverb

Enlargements of the subject and the object are ways of qualifying nouns; they
consist of adjectives and other nouns and compounds. The subject and object
can be nouns, noun compounds, or pronouns. If the verb needs more than one
object, there will be an order on the objects, e.g. preliminary, secondary etc; this
order is kept in the sentence.

The simplest type of compounds are aluk compounds. In these compounds
the leftmost part of the compound is inflected and the rest of the compound
is not. The remaining compounds are of the luk type, where the avyayibhava

compounds are the easiest; they are the inflected adverbs, for instance obtained
from a preposition followed by a noun. We also deal with the nan-tatpurusa com-
pounds,which are prefixed with the bound morpheme a or an and the upapada-
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tatpurusa ones, which end with bound morphemes derived from a verbal root,
such as bhida, jna, and ghna.

Sanskrit is a highly inflected language, with three genders (masculine, fem-
inine, neutral), three numbers (singular, dual, plural), and eight cases (nom-
inative, accusative, dative, ablative, locative, vocative, instrumental). For the
purposes of demonstration, we deal with the singular nominative and accusative
inflections. The former has ending ‘h’ and the latter has ending ‘m’. So for in-
stance, the name Rama will have the form Ramah in singular nominative case
and the form Ramam in singular accusative case.

5.1 A Pregroup Grammar for Sanskrit

We start with a set of basic types {⇢,⇡, o, p, n, s}. Apart from ⇢, these types
are the same as in English: ⇢ denotes the subject of a predicative copular2. The
enlargements are treated as modifiers of the subject, the object or the predicate
and, since they are placed to the right of the unit they are modifying, they
will have a right adjoint type. Consequently, the subject-enlargement will be
assigned the type ⇡

r
⇡, the object-enlargement the type o

r
o, and the predicate

enlargement the type p

r
p.

An intransitive verb has type ⇡

r
s and a transitive verb has type ⇡

r
s o

l.
The Sanskrit copula ‘aste’ (is) in its existential form has type ⇡

r
s and in its

predicative form has type ⇢

r
s p

l. The adverb is treated as a sentence modifier:
it takes a sentence and modifies it, and as it occurs to the right of the verb, it
will also have the type of a right adjoint of the sentence: srs. On this basis, the
pregroup type assignment table corresponding to the general Sanskrit sentence
structure is as follows:

Subject Subject-Enl Verb Object Object-Enl Adverb
⇡ ⇡

r
⇡ o o

r
o s

r
s

Intransitive ⇡

r
s

Existential Copular ⇡

r
s

Transitive ⇡

r
s o

l

Predicative Copular ⇢

r
s p

l

and sentences with a transitive verb or a predicative copular are typed as follows:

Subject Subject-Enlargement Verb Object Object-Enlargement Adverb.
⇡ (⇡r

⇡) (⇡r
so

l) o o

r
o s

r
s

Subject Subject-Enlargement Verb Predicate Predicate-Enlargement Adverb.
⇢ (⇢r⇢) (⇢rspl) p p

r
p s

r
s

2 As we will see in Section 7.2, copulars play a more complex role in word order
alternation in Sanskrit than in English. That is why we assign a di↵erent type to
the predicative copular subjects.
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The intransitive verb and the existential copulars are special cases of the exam-
ples below, where the object and predicate (correspondingly for each case) are
dropped.

As an example of a transitive sentence, consider the sentence ‘Rama from the
old city saw Súbhadrā (a) beautiful woman’3, which types as follows:

Ramah from the old city saw Súbhadrā (a) beautiful woman.
Ramah kapiJjalArma apasyat Súbhadrā maJjunAzI

⇡ (⇡r
⇡) (⇡r

s o

l) o (oro)

As an example of a copular sentence, consider the sentence ‘Rama from the old
city [is] asked for instruction (as a teacher)’, in which ‘adhISTa’ is an adjective
in predicative role, and types as follows:

Rama from the old city [is] asked for instruction.
Ramah kapiJjalArma [aste] adhISTa

⇢ (⇢r⇢) (⇢rs pl) p

As for the compounds, we only describe here the case of transitive sentences;
the case of copulars is obtained by replacing o with p and ⇡ with ⇢ or �, where
appropriate. The internal structure of a compound is set in such a way that its
resulting type, after the internal cancellations have taken place, is either ⇡

r
⇡

or o

r
o. We develop a procedure for two-word ⇡

r
⇡ compounds, trusting that

the two-word o

r
o compounds can be treated in a similar fashion, basically by

substituting the type ⇡ with o and any of the ⇡ adjoints with the correspond-
ing o adjoint. The treatment for k-word compounds follows shortly below. For
aluke compounds, we type the first word of the compound as ⇡

r
⇡⇡

l and the
second word as ⇡, so that the first word inputs the second word and outputs
a subject enlargement. The same methodology is used for the avyayibhava and
nan-tatpurusa compounds, where the preposition of the first case and the mor-
phemes of the second case are assumed to input the noun and output a subject
enlargement. As for the upapada-tatpurusa compounds, the methodology is basi-
cally the same, but because the morpheme occurs at the end of the compound, it
has to have type ⇡

r
⇡

r
⇡. These assignments are expressed in the following table:

Type of Compound Word 1 Word 2

1 aluke ⇡

r
⇡⇡

l
⇡

luke

2 avyayibhava ⇡

r
⇡⇡

l
⇡

3 nan-tatpurusa ⇡

r
⇡⇡

l
⇡

4 upapada-tatpurusa ⇡ ⇡

r
⇡

r
⇡

3 Súbhadrā in Mahaabharata in the wife of Arjuna, one of the heroes of the poem.

Copulars (verb aste) are treated differently, see paper.

6 C. Casadio and M. Sadrzadeh

Informally, case (1) of the above corollary says that whenever a juxtaposition
of types, e.g. ab, is above the monoidal unit, then so is a permuted version of
it, where a moves from the left of b to the right of it, but as a result of this
movement, a gets marked with double adjoints ll to register the fact that it
came from the left. That is why this property is annotated with (and we thus
refer to it by) ll. Case (2) is similar, except that in this case it is b that moves
from the right of a to its left, hence it is marked with rr.

A more direct connection between these properties and cyclicity is highlighted
by the sequent calculus for linear logic. In this context, the cyclic properties were
originally represented via the exchange rule, first introduced by Girard [21]:

` �, A

` A,�

CycExch

Later, Abrusci generalised this rule in the following way referring to its logic as
Pure Non-Commutative Classical Linear Logic (SPNCL

0)[1]:

` �, A

` ¬r¬r
A,�

Cyc

+2
` A,�

` �,¬l¬l
A

Cyc

�2

Using the translations ¬r¬r
A := A

rr and ¬l¬l
A := A

ll, and Buzskowsi’s in-
terpretation map of compact bi-linear logic into pregroups [10], one can easily
see that the properties of Corollary 1 are the semantic counterparts of Abrusci’s
cyclic rules (the empty sequent on the left is the unit of multiplication).

4 Pregroup Grammars

To analyse a natural language we use a pregroup grammar. On analogy with
other type logical or categorial grammars, a pregroup grammar consists in a
free pregroup generated over a set of basic grammatical types together with the
assignment of the pregroup types to the vocabulary of the language. To exemplify
consider the set of basic types {⇡, o, p, n, s}, representing five basic grammatical
roles as follows:

⇡ : subject o : object p : predicate s : sentence n : noun phrase

The linguistic reading of partial orders on basic types is as follows: whenever
we have a  b we read it as ‘a word of type a can also have type b’. Examples
of these partial orders are n  ⇡ and n  o. The free pregroup generated over
the above basic types includes simple types such as ⇡l

,⇡

r
, o

l
, o

r, and compound

types such as ool,⇡⇡l
, s

r
s,⇡

r
s,⇡

r
s o

l.
A sentence of type s is defined to be grammatical whenever the multiplication

- corresponding to syntactic composition - of the types of its constituents is
less than or equal to the type s. This means that the type of a sentences is
derivable from the types assigned to its constituents. The computations that
lead to deciding about this matter are referred to as grammatical reductions. For
example, the type assignments to the words of the declarative sentence ‘John
saw Mary.’ are the following:

Basic types
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The above procedure extends to compounds that have more than two words as
follows. Suppose there are k words in a compound, then the first word of the
compounds of type 1 to 3 will be typed as follows:

⇡

r
⇡ ⇡

l · · ·⇡l
| {z }

k�1

The compounds of type 4 will be typed as follows:

⇡

r · · ·⇡r
| {z }

k�1

⇡

r
⇡

Here are three examples; the first is aluke, the second is avyayibhava and the
third is upapada-tatpurusa. Following [18], the inflected word (i.e. the first one
of the aluke compound) is denoted by the label N1, the inflected adverb by D1,
the non-inflected noun by N , and the non-inflected adjective by A.

[[N1 atamane] [N pada]] ! [N atamanepada]
⇡

r
⇡ ⇡

l
⇡  ⇡

r
⇡

oneself voice voice for oneself

[[N1 upari] [N bhumi]] ! [N uparibhumi]
⇡

r
⇡ ⇡

l
⇡  ⇡

r
⇡

above earth above the ground

[N [N sarva] [N -jna]] ! [N sarvajna]
⇡ ⇡

r
⇡

r
⇡  ⇡

r
⇡

all knowing omniscient

As for inflections, we assign the type n

r
⇡ to the nominative case morpheme

and the type nr
o to the accusative case morpheme. When these attach themselves

to the end of a noun, which is of type n, the cancellation between the type n of
the noun and the type n

r of these morphemes, will produce a subject ⇡ and an
object o, respectively. The singular nominative and accusative cases are typed
in the following table:

Case Type of Morpheme Reduction

Nominative n

r
⇡ n(nr

⇡)  ⇡

Accusative n

r
o n(nr

o)  o

So, for instance, we assign the type n to Rama and the type nr
⇡ to the nominative

morpheme ‘h’, hence Rama-h will have type ⇡. Similarly, we assign the type nr
o

to the accusative morpheme ‘m’, hence obtaining the type o for Rama-m.

Rama h ! Ramah Rama m ! Ramam
n (nr

⇡)  ⇡ n (nr
o)  o

luke aluke
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We are not allowed to reduce the other possible four orderings (him saw I, saw
I him, saw him I, I him saw) to s, since for obtaining similar permutations we
need either the subject to move to after the verb, or subject and object invert
their relative position; in both cases the consequence is that the subject and the
verb occur in configurations like verb-subject (inversion) or subject-object-verb
(separate) not admitted by the English grammar, as pointed out in [4]. Hence, we
have not included the unlawful permutations that lead to these cases; examples

of these are (⇤1) ⇡

r
s

�(ll)
; s⇡

l and (⇤2) ⇡

r
so

l �(ll)
; so

l
⇡

l. As another example,
consider the sentence ‘He must love her’, as typed below:

He must love her.
⇡ (⇡r

si

l) (iol) o

Here we can have both topicalisation (case (1) below) and VP-preposing (case
(2) below). The type assignments and reductions of these cases are as follows:

(1) Her he must love. : o ⇡(⇡r
s i

l)(i ol)  o (sol)
(rr)
; o (or s)  s

(2) Love her he must. : (i ol) o ⇡ (⇡r
s i

l)  i (s i

l)
(rr)
; i (ir s)  s

Non-permissible combinations like ‘must love her he’ or ‘must love he her’ cannot
be derived, because they require, as before, a transformation corresponding to
the precyclic permutation ⇡

r
so

l �
; so

l
⇡

l, in which the subject is expected to
occur after the verb, that has not been included into the pregroup grammar.

7 Alternation of Word Order in Sanskrit

Like Latin, Sanskrit is a case-sensitive or inflectional language. That is, it has
morphemes that attach themselves to the end of the words and specify their
grammatical role in the sentence. For instance a subject may be marked with
the morpheme ‘h’, for the nominative case, and an object with the morpheme
‘m’, for the accusative case, as in the following transitive sentence:

Ramah apasyat Govindam.

Rama saw Govinda

which is typed as follows:

Ramah apasyat Govindam.
⇡ (⇡r s ol) o  s

One might think that, no matter where these words appear in the sentence, one
can be certain of their role and it need not be the case, as it is in English, that
the word order tells you which word is the subject and which is the object. For
instance the above Sanskrit sentence may as well be as follows and there might
be no doubt that still ‘Ramah’ is its subject and ‘Govindam’ is its object:
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Govindam apasyat Ramah.

Govindam saw Ramah

Whereas if the order of the words of a sentence changes in English, the roles
change as well. The sentence ‘Rama saw Govinda’ has a very di↵erent meaning
with respect to ‘Govinda saw Rama’: subject and object exchange their roles.
Because of these matters, it is argued that Sanskrit has a free word order. How-
ever, a completely free word order for Sanskrit has been debated, e.g. by Staal
[33] and later by Gillon [18] and even the original work of Apte [5] expresses
concern for this presupposition. Apte insists that certain word orders may not
be ungrammatical, but they are certainly awkward. In the following, we first
present Staal’s view and his constraints on movement, and then review Gillon’s
view and give some examples for each case.

7.1 Staal’s Constraints

According to Staal [33] word order is free among the branches (sisters) of one
and the same constituent. So for instance in the above example, Ramah is one
of the branches and apasyat Govindam is the other one, which itself consists of
two branches: apasyat and Govindam. Consequently, apasyat and Govindam can
change their order, and then Ramah can change its order with regard to these
two possible orders in apasyat Govindam.

These alternations are formalised via just two permutations:
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r
s

�(ll)
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l
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s)C
(ll)
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r
s o

l �(rr)
; o

r
⇡

r
s A  B(⇡r

so

l)C
(rr)
; A  B(or⇡r

s)C

We have the following sentences and reductions:

– When apasyat and Govindam swap order

Ramah Govindam apasyat.

⇡ o (⇡r
so

l)
(rr)
; ⇡ o (or⇡r

s)  s

– When Ramah swaps order with apaysat Govindam

apasyat Govindam Ramah.

(⇡r s ol) o ⇡  (⇡r
s) ⇡

(ll)
; (s ⇡l) ⇡  s
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so
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(rr)
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l �(rr)
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r
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so

l �(ll)
; so

l
⇡

l, which we have not allowed.
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7.2 Gillon’s Conjectures

In [18], after reviewing Staal’s constraints, Gillon observes that certain word or-
ders that Staal’s theory considered unlawful, do occur in his reference Sanskrit
corpus. This corpus consists of examples from Apte and some older texts. His
observation shows that Staal’s constraints might be too rigid. Gillon goes on
to find a pattern within these occurrences and develop appropriate constraints
for word order alternation in Sanskrit. The constraints he discovers show them-
selves when working with sentences in which at least the subject and the verb
have modifiers. In this paper, we study some of these constraints using precyclic
transformations.

Although Gillon suggests that simple transitive sentences, such as the exam-
ple of the previous section, allow for a fairly free word order, none of his witness
sentences are simple. That is, in all the sentences he presents and studies the
subject and/or object have modifiers, whereas in a simple transitive sentence
subject and object do not have modifiers. Hence, in this section we let the in-
valid permutations of the previous section remain invalid and allow for new
predictive permutations including the following ones:

(oro)
�(ll)
; (ool) (⇡r

⇡)
�(ll)
; (⇡⇡l) (⇢r⇢)

�(ll)
; (⇢⇢l) (srs)

�(ll)
; (ssl)

These permutations, enable the subject and object change order with their en-
largements, and the verb swap place with adverbs (which can be seen as verb
enlargements and some times even referred to as verb complements). At the
same time, we will not allow for a fully free word order within a simple transi-
tive sentence, that is a subject and object that do not have enlargements will
obey Staal’s constraints. If at any point, one wants to allow for these alternations
as well (hence allowing for all of the six permutations of words in a three-word
transitive sentence), one can include (⇤1) and (⇤2) of the previous section in the
set of lawful permutations.

Extraposition from Subject. Here the suggestion is that the subject modifier
can be separated from the subject, despite the fact that they form a constituent
and according to Staal should not be separated. As an example consider the
sentence “Rama from the old city saw Govinda”, where the subject “Rama” has
the enlargement “from the old city”:

Rama from the old city apasyat Govinda.
Ramah kapiJjalArma saw Govindam.

⇡ (⇡r
⇡) (⇡r

s o

l) o

Here, “Rama” and “from the old city” form one constituent and, although
they can change position, allowing for phrases such as “from the old city Rama”,
according to Staal, they should never be separated from each other in a sentence.
However, according to Gillon’s witness sentences, it should be possible to form
the following sentence, in which this separation does indeed occur5:

5 We do not give exactly the same example as Gillon, since his examples are retrieved
from a real corpus and are rather complex, e.g. the example for this case is in question
form, and we have not discussed question forms here.
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from the old city saw Govinda Rama.
kapiJjalArma apasyat Govindam Ramah.

(⇡r
⇡) (⇡r

so

l) o ⇡

This sentence types in the following way: first the subject modifier’s type
will change from (⇡r

⇡) to (⇡⇡l) via an (ll)-permutation; then the subject swaps
places with the verb phrase “saw Govinda” of type (⇡r

s) via the following (ll)-
permutation:

(⇡r
s)⇡

�(ll)
; ⇡(⇡r

s)ll

As a result of these movements, the subject modifier type (⇡⇡l) and the subject
type ⇡ will cancel out. Now it remains to input the subject to the verb; this
is done by swapping the type of the verb with the subject and permuting it to
(s⇡l). The corresponding permutations are as follows:

⇡(⇡r
s)ll

�(rr)
; (⇡r

s)⇡ (⇡r
s)

�(ll)
; (s⇡l)

The full reduction is shown below:

from the old city saw Govinda Rama.
kapiJjalArma apasyat Govindam Ramah.

(⇡r
⇡) (⇡r

so

l) o ⇡  (⇡r
⇡)(⇡r

s)⇡
(ll)
; (⇡⇡l)(⇡r

s)⇡
(ll)
; (⇡⇡l)⇡(⇡r

s)ll  ⇡(⇡r
s)ll

(rr)
; (⇡r

s)⇡
(ll)
; (s⇡l)⇡  s

Extraposition from Verb Phrase. Here, Gillon observes that the object can
be separated from its verb and move (on its own and leaving the verb behind) to
the beginning of the sentence, which is exactly the (⇤1) case that was discarded
by Staal. However, Gillon argues that this probably only happens in sentences
where the object has an enlargement and that this enlargement will remain in
situ, keeping the (perviously maintained by the object) connectivity to the verb.
An example is the sentence “Ramah saw Govindam from the old city”:

Ramah apasyat Govindam kapiJjalArma
⇡ (⇡r

so

l) o (oro)  s

A verb phrase extraposition of the above sentence results in the following:

Govindam Ramah apasyat kapiJjalArma.
o ⇡ (⇡r

so

l) (oro)

We type this sentence by first inputting the subject to the verb and reducing
the ⇡(⇡r

s o

l) phrase to (s ol). Then we apply a (ll)-permutation to this phrase
and the object modifier and swap their places; this permutation is as follows:

(s ol)(oro)
�(ll)
; (oro)(s ol)ll
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