
Quantum Recursion and Second
Quantisation

Basic Ideas and Examples

Mingsheng Ying

University of Technology, Sydney, Australia
and

Tsinghua University, China

Happy Birthday Prakash!

I’m very grateful to Prakash for teaching me second
quantisation method during his visit to UTS in 2013

Happy Birthday Prakash!

I’m very grateful to Prakash for teaching me second
quantisation method during his visit to UTS in 2013

Outline

1. Introduction

2. Quantum Case Statement and Quantum Choice

3. Motivating Example: Recursive Quantum Walks

4. Second Quantisation

5. Semantics of Quantum Recursion

7. Conclusion

Outline

1. Introduction

2. Quantum Case Statement and Quantum Choice

3. Motivating Example: Recursive Quantum Walks

4. Second Quantisation

5. Semantics of Quantum Recursion

7. Conclusion

Classical Recursion of Quantum Programs

I Recursive procedure in quantum programming language QPL
[Selinger, Mathematical Structures in Computer Science’2004].

I Termination of quantum while-loops in finite-dimensional state
spaces [Ying, Feng, Acta Informatica’2010].

I Selinger’s slogan: Quantum data, classical control - control flow
of the quantum recursions is classical because branchings are
determined by the outcomes of certain quantum measurements.

Classical Recursion of Quantum Programs

I Recursive procedure in quantum programming language QPL
[Selinger, Mathematical Structures in Computer Science’2004].

I Termination of quantum while-loops in finite-dimensional state
spaces [Ying, Feng, Acta Informatica’2010].

I Selinger’s slogan: Quantum data, classical control - control flow
of the quantum recursions is classical because branchings are
determined by the outcomes of certain quantum measurements.

Classical Recursion of Quantum Programs

I Recursive procedure in quantum programming language QPL
[Selinger, Mathematical Structures in Computer Science’2004].

I Termination of quantum while-loops in finite-dimensional state
spaces [Ying, Feng, Acta Informatica’2010].

I Selinger’s slogan: Quantum data, classical control - control flow
of the quantum recursions is classical because branchings are
determined by the outcomes of certain quantum measurements.

Quantum Control Flow
Quantum programming language QML [Altenkirch and Grattage,
LICS’2005]:

Two case constructs in the quantum setting:
I case, measure a qubit in the data it analyses - The control flow is

determined by the outcome of a measurement and thus is
classical.

I case◦, analyse quantum data without measuring -
if◦ − then− else statement.

Quantum Control Flow
Quantum programming language QML [Altenkirch and Grattage,
LICS’2005]:

Two case constructs in the quantum setting:
I case, measure a qubit in the data it analyses - The control flow is

determined by the outcome of a measurement and thus is
classical.

I case◦, analyse quantum data without measuring -
if◦ − then− else statement.

Quantum Control Flow

Hadamard gate:

had x = if◦ x

then { 1√
2
(qfalse− qtrue)}

else { 1√
2
(qfalse+ qtrue)}

Quantum Control Flow
NOT gate:

not x = if◦ x
then qfalse

else qtrue

CNOT gate:

cnot c x = if◦ c
then (qtrue, not x)
else (qfalse, x)

Outline

1. Introduction

2. Quantum Case Statement and Quantum Choice

3. Motivating Example: Recursive Quantum Walks

4. Second Quantisation

5. Semantics of Quantum Recursion

7. Conclusion

“Coined” Quantum Case Statement
I Introduce an external “quantum coin” c:

The state Hilbert spaceHc = span{|0〉, |1〉}

I U0 and U1 two unitary transformations on a quantum system q -
the state Hilbert spaceHq.

I A quantum case statement employing “quantum coin” c:

qif [c] |0〉 → U0[q]
� |1〉 → U1[q]

fiq

“Coined” Quantum Case Statement
I Introduce an external “quantum coin” c:

The state Hilbert spaceHc = span{|0〉, |1〉}
I U0 and U1 two unitary transformations on a quantum system q -

the state Hilbert spaceHq.

I A quantum case statement employing “quantum coin” c:

qif [c] |0〉 → U0[q]
� |1〉 → U1[q]

fiq

“Coined” Quantum Case Statement
I Introduce an external “quantum coin” c:

The state Hilbert spaceHc = span{|0〉, |1〉}
I U0 and U1 two unitary transformations on a quantum system q -

the state Hilbert spaceHq.
I A quantum case statement employing “quantum coin” c:

qif [c] |0〉 → U0[q]
� |1〉 → U1[q]

fiq

“coined” Quantum Case Statement
I The semantics is an unitary operator U inHc ⊗Hq - the state

Hilbert space of the composed system of “coin” c and principal
system q:

U|0, ψ〉 = |0〉U0|ψ〉, U|1, ψ〉 = |1〉U1|ψ〉

I Matrix representation:

U = |0〉〈0| ⊗U0 + |1〉〈1| ⊗U1 =

(
U0 0
0 U1

)
.

“coined” Quantum Case Statement
I The semantics is an unitary operator U inHc ⊗Hq - the state

Hilbert space of the composed system of “coin” c and principal
system q:

U|0, ψ〉 = |0〉U0|ψ〉, U|1, ψ〉 = |1〉U1|ψ〉

I Matrix representation:

U = |0〉〈0| ⊗U0 + |1〉〈1| ⊗U1 =

(
U0 0
0 U1

)
.

Quantum Choice
I V a unitary operator in the state Hilbert spaceHc of the “coin”.

I The quantum choice of U0[q] and U1[q] with “coin-tossing” V[c]:

U0[q]⊕V[c] U1[q]
def
=

V[c]; qif [c] |0〉 → U0[q]
� |1〉 → U1[q]

fiq

I Compare with probabilistic choice [McIver and Morgan,
Abstraction, Refinement and Proof for Probabilistic Systems, 2005]

Quantum Choice
I V a unitary operator in the state Hilbert spaceHc of the “coin”.
I The quantum choice of U0[q] and U1[q] with “coin-tossing” V[c]:

U0[q]⊕V[c] U1[q]
def
=

V[c]; qif [c] |0〉 → U0[q]
� |1〉 → U1[q]

fiq

I Compare with probabilistic choice [McIver and Morgan,
Abstraction, Refinement and Proof for Probabilistic Systems, 2005]

Quantum Choice
I V a unitary operator in the state Hilbert spaceHc of the “coin”.
I The quantum choice of U0[q] and U1[q] with “coin-tossing” V[c]:

U0[q]⊕V[c] U1[q]
def
=

V[c]; qif [c] |0〉 → U0[q]
� |1〉 → U1[q]

fiq

I Compare with probabilistic choice [McIver and Morgan,
Abstraction, Refinement and Proof for Probabilistic Systems, 2005]

External “Quantum Coin”
I Superpositions of time evolutions of a quantum system

[Aharonov, Anandan, Popescu, Vaidman, Plysical Review Letters
1990].

I Quantum walks [Ambainis, Bach, Nayak, Vishwanath, Watrous,
STOC’2001; Aharonov, Ambainis, Kempe, Vazirani, STOC’2001].

I Unitary transformations U0[q], U1[q] are replaced by general
quantum programs that may contain quantum measurements?
[Ying, Yu, Feng, arXiv:1209.4379]

External “Quantum Coin”
I Superpositions of time evolutions of a quantum system

[Aharonov, Anandan, Popescu, Vaidman, Plysical Review Letters
1990].

I Quantum walks [Ambainis, Bach, Nayak, Vishwanath, Watrous,
STOC’2001; Aharonov, Ambainis, Kempe, Vazirani, STOC’2001].

I Unitary transformations U0[q], U1[q] are replaced by general
quantum programs that may contain quantum measurements?
[Ying, Yu, Feng, arXiv:1209.4379]

External “Quantum Coin”
I Superpositions of time evolutions of a quantum system

[Aharonov, Anandan, Popescu, Vaidman, Plysical Review Letters
1990].

I Quantum walks [Ambainis, Bach, Nayak, Vishwanath, Watrous,
STOC’2001; Aharonov, Ambainis, Kempe, Vazirani, STOC’2001].

I Unitary transformations U0[q], U1[q] are replaced by general
quantum programs that may contain quantum measurements?
[Ying, Yu, Feng, arXiv:1209.4379]

Outline

1. Introduction

2. Quantum Case Statement and Quantum Choice

3. Motivating Example: Recursive Quantum Walks

4. Second Quantisation

5. Semantics of Quantum Recursion

7. Conclusion

A new notion of quantum recursion can be defined based
on quantum case statement and quantum choice

Example - One-dimensional quantum walk

I One-dimensional random walk - a particle moves on a line
marked by integers Z; at each step it moves one position left or
right, depending on the flip of a fair coin.

I Hadamard walk - a quantum variant of one-dimensional
random walk.

I Its state Hilbert spaceHd ⊗Hp:

I Hd = span{|L〉, |R〉}, L, R indicate the direction Left and Right.
I Hp = span{|n〉 : n ∈ Z}, n indicates the position marked by integer

n.

A new notion of quantum recursion can be defined based
on quantum case statement and quantum choice

Example - One-dimensional quantum walk

I One-dimensional random walk - a particle moves on a line
marked by integers Z; at each step it moves one position left or
right, depending on the flip of a fair coin.

I Hadamard walk - a quantum variant of one-dimensional
random walk.

I Its state Hilbert spaceHd ⊗Hp:

I Hd = span{|L〉, |R〉}, L, R indicate the direction Left and Right.
I Hp = span{|n〉 : n ∈ Z}, n indicates the position marked by integer

n.

A new notion of quantum recursion can be defined based
on quantum case statement and quantum choice

Example - One-dimensional quantum walk

I One-dimensional random walk - a particle moves on a line
marked by integers Z; at each step it moves one position left or
right, depending on the flip of a fair coin.

I Hadamard walk - a quantum variant of one-dimensional
random walk.

I Its state Hilbert spaceHd ⊗Hp:

I Hd = span{|L〉, |R〉}, L, R indicate the direction Left and Right.
I Hp = span{|n〉 : n ∈ Z}, n indicates the position marked by integer

n.

A new notion of quantum recursion can be defined based
on quantum case statement and quantum choice

Example - One-dimensional quantum walk

I One-dimensional random walk - a particle moves on a line
marked by integers Z; at each step it moves one position left or
right, depending on the flip of a fair coin.

I Hadamard walk - a quantum variant of one-dimensional
random walk.

I Its state Hilbert spaceHd ⊗Hp:
I Hd = span{|L〉, |R〉}, L, R indicate the direction Left and Right.

I Hp = span{|n〉 : n ∈ Z}, n indicates the position marked by integer
n.

A new notion of quantum recursion can be defined based
on quantum case statement and quantum choice

Example - One-dimensional quantum walk

I One-dimensional random walk - a particle moves on a line
marked by integers Z; at each step it moves one position left or
right, depending on the flip of a fair coin.

I Hadamard walk - a quantum variant of one-dimensional
random walk.

I Its state Hilbert spaceHd ⊗Hp:
I Hd = span{|L〉, |R〉}, L, R indicate the direction Left and Right.
I Hp = span{|n〉 : n ∈ Z}, n indicates the position marked by integer

n.

Example - One-dimensional quantum walk
I One step of Hadamard walk — W = T(H⊗ I):

I Translation T:

T|L, n〉 = |L, n− 1〉, T|R, n〉 = |R, n + 1〉

is unitary operator inHd ⊗Hp.
I

H =
1√

2

(
1 1
1 −1

)
is Hadamard transform in the direction spaceHd

Example - One-dimensional quantum walk
I One step of Hadamard walk — W = T(H⊗ I):

I Translation T:

T|L, n〉 = |L, n− 1〉, T|R, n〉 = |R, n + 1〉

is unitary operator inHd ⊗Hp.

I

H =
1√

2

(
1 1
1 −1

)
is Hadamard transform in the direction spaceHd

Example - One-dimensional quantum walk
I One step of Hadamard walk — W = T(H⊗ I):

I Translation T:

T|L, n〉 = |L, n− 1〉, T|R, n〉 = |R, n + 1〉

is unitary operator inHd ⊗Hp.
I

H =
1√

2

(
1 1
1 −1

)
is Hadamard transform in the direction spaceHd

Example - One-dimensional quantum walk

I Define the left and right translation operators TL and TR in the
position spaceHp :

TL|n〉 = |n− 1〉, TR|n〉 = |n + 1〉

I Then the translation operator T is a quantum case statement:

T = qif [d] |L〉 → TL[p]
� |R〉 → TR[p]

fiq

I The single-step walk operator W is a quantum choice:

TL[p]⊕H[d] TR[p]

I Hadamard walk — repeated applications of operator W.

Example - One-dimensional quantum walk

I Define the left and right translation operators TL and TR in the
position spaceHp :

TL|n〉 = |n− 1〉, TR|n〉 = |n + 1〉

I Then the translation operator T is a quantum case statement:

T = qif [d] |L〉 → TL[p]
� |R〉 → TR[p]

fiq

I The single-step walk operator W is a quantum choice:

TL[p]⊕H[d] TR[p]

I Hadamard walk — repeated applications of operator W.

Example - One-dimensional quantum walk

I Define the left and right translation operators TL and TR in the
position spaceHp :

TL|n〉 = |n− 1〉, TR|n〉 = |n + 1〉

I Then the translation operator T is a quantum case statement:

T = qif [d] |L〉 → TL[p]
� |R〉 → TR[p]

fiq

I The single-step walk operator W is a quantum choice:

TL[p]⊕H[d] TR[p]

I Hadamard walk — repeated applications of operator W.

Example - One-dimensional quantum walk

I Define the left and right translation operators TL and TR in the
position spaceHp :

TL|n〉 = |n− 1〉, TR|n〉 = |n + 1〉

I Then the translation operator T is a quantum case statement:

T = qif [d] |L〉 → TL[p]
� |R〉 → TR[p]

fiq

I The single-step walk operator W is a quantum choice:

TL[p]⊕H[d] TR[p]

I Hadamard walk — repeated applications of operator W.

(Unidirectional) Recursive Hadamard Walk
I The walk first runs the “coin-tossing” Hadamard operator H[d],

and then a quantum case statement:

I if the “direction coin” d is in state |L〉 then the walker moves one
position left;

I if d is in state |R〉 then it moves one position right, followed by a
procedure behaving as the recursive walk itself .

I Recursive Hadamard walk — program X declared by the
recursive equation:

X⇐ TL[p]⊕H[d] (TR[p]; X)

(Unidirectional) Recursive Hadamard Walk
I The walk first runs the “coin-tossing” Hadamard operator H[d],

and then a quantum case statement:
I if the “direction coin” d is in state |L〉 then the walker moves one

position left;

I if d is in state |R〉 then it moves one position right, followed by a
procedure behaving as the recursive walk itself .

I Recursive Hadamard walk — program X declared by the
recursive equation:

X⇐ TL[p]⊕H[d] (TR[p]; X)

(Unidirectional) Recursive Hadamard Walk
I The walk first runs the “coin-tossing” Hadamard operator H[d],

and then a quantum case statement:
I if the “direction coin” d is in state |L〉 then the walker moves one

position left;
I if d is in state |R〉 then it moves one position right, followed by a

procedure behaving as the recursive walk itself .

I Recursive Hadamard walk — program X declared by the
recursive equation:

X⇐ TL[p]⊕H[d] (TR[p]; X)

(Unidirectional) Recursive Hadamard Walk
I The walk first runs the “coin-tossing” Hadamard operator H[d],

and then a quantum case statement:
I if the “direction coin” d is in state |L〉 then the walker moves one

position left;
I if d is in state |R〉 then it moves one position right, followed by a

procedure behaving as the recursive walk itself .
I Recursive Hadamard walk — program X declared by the

recursive equation:

X⇐ TL[p]⊕H[d] (TR[p]; X)

Bidirectional Recursive Hadamard Walk
I The walk first runs the “coin-tossing” Hadamard operator H[d]

and then a quantum case statement:

I if the “direction coin” d is in state |L〉 then the walker moves one
position left, followed by a procedure behaving as the recursive
walk itself;

I if d is in state |R〉 then it moves one position right, also followed by
a procedure behaving as the recursive walk itself.

I The walk — Program X (or program Y) declared by the recursive
equation:

X⇐ (TL[p]; X)⊕H[d] (TR[p]; X)

I A variant of the bidirectional recursive Hadamard walk is
declared by the following system of recursive equations:{

X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]

Bidirectional Recursive Hadamard Walk
I The walk first runs the “coin-tossing” Hadamard operator H[d]

and then a quantum case statement:
I if the “direction coin” d is in state |L〉 then the walker moves one

position left, followed by a procedure behaving as the recursive
walk itself;

I if d is in state |R〉 then it moves one position right, also followed by
a procedure behaving as the recursive walk itself.

I The walk — Program X (or program Y) declared by the recursive
equation:

X⇐ (TL[p]; X)⊕H[d] (TR[p]; X)

I A variant of the bidirectional recursive Hadamard walk is
declared by the following system of recursive equations:{

X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]

Bidirectional Recursive Hadamard Walk
I The walk first runs the “coin-tossing” Hadamard operator H[d]

and then a quantum case statement:
I if the “direction coin” d is in state |L〉 then the walker moves one

position left, followed by a procedure behaving as the recursive
walk itself;

I if d is in state |R〉 then it moves one position right, also followed by
a procedure behaving as the recursive walk itself.

I The walk — Program X (or program Y) declared by the recursive
equation:

X⇐ (TL[p]; X)⊕H[d] (TR[p]; X)

I A variant of the bidirectional recursive Hadamard walk is
declared by the following system of recursive equations:{

X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]

Bidirectional Recursive Hadamard Walk
I The walk first runs the “coin-tossing” Hadamard operator H[d]

and then a quantum case statement:
I if the “direction coin” d is in state |L〉 then the walker moves one

position left, followed by a procedure behaving as the recursive
walk itself;

I if d is in state |R〉 then it moves one position right, also followed by
a procedure behaving as the recursive walk itself.

I The walk — Program X (or program Y) declared by the recursive
equation:

X⇐ (TL[p]; X)⊕H[d] (TR[p]; X)

I A variant of the bidirectional recursive Hadamard walk is
declared by the following system of recursive equations:{

X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]

Bidirectional Recursive Hadamard Walk
I The walk first runs the “coin-tossing” Hadamard operator H[d]

and then a quantum case statement:
I if the “direction coin” d is in state |L〉 then the walker moves one

position left, followed by a procedure behaving as the recursive
walk itself;

I if d is in state |R〉 then it moves one position right, also followed by
a procedure behaving as the recursive walk itself.

I The walk — Program X (or program Y) declared by the recursive
equation:

X⇐ (TL[p]; X)⊕H[d] (TR[p]; X)

I A variant of the bidirectional recursive Hadamard walk is
declared by the following system of recursive equations:{

X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]

A More Interesting Recursive Quantum Walk

I Let n ≥ 2. Another variant of unidirectional recursive quantum
walk is defined as the program declared by the following
recursive equation:

X⇐ ((TL[p]; X)⊕H[d] (TR[p]; X)); (TL[p]⊕H[d] TR[p])n

How to solve these quantum recursive equations?

A More Interesting Recursive Quantum Walk

I Let n ≥ 2. Another variant of unidirectional recursive quantum
walk is defined as the program declared by the following
recursive equation:

X⇐ ((TL[p]; X)⊕H[d] (TR[p]; X)); (TL[p]⊕H[d] TR[p])n

How to solve these quantum recursive equations?

Syntactic Approximation

I A recursive program X declared by equation

X⇐ F(X)

I Syntactic approximations:{
X(0) = Abort,
X(n+1) = F[X(n)/X] for n ≥ 0.

Program X(n) is the nth syntactic approximation of X.
I Semantics ~X� of X is the limit

~X� = lim
n→∞
~X(n)�

Syntactic Approximation

I A recursive program X declared by equation

X⇐ F(X)

I Syntactic approximations:{
X(0) = Abort,
X(n+1) = F[X(n)/X] for n ≥ 0.

Program X(n) is the nth syntactic approximation of X.

I Semantics ~X� of X is the limit

~X� = lim
n→∞
~X(n)�

Syntactic Approximation

I A recursive program X declared by equation

X⇐ F(X)

I Syntactic approximations:{
X(0) = Abort,
X(n+1) = F[X(n)/X] for n ≥ 0.

Program X(n) is the nth syntactic approximation of X.
I Semantics ~X� of X is the limit

~X� = lim
n→∞
~X(n)�

Example - (Unidirectional) Recursive Hadamard Walk

X(0) = abort,

X(1) = TL[p]⊕H[d] (TR[p]; abort),

X(2) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; abort)),

X(3) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; TL[p]⊕H[d2]

(TR[p]; abort))),

............

Observation
I Continuously introduce new “coin” to avoid variable conflict.

I Variables d, d1, d2, ... denote identical particles.
I The number of the “coin” particles that are needed in running

the recursive walk is unknown beforehand.
I We need to deal with quantum systems where the number of

particles of the same type may vary.

Example - (Unidirectional) Recursive Hadamard Walk

X(0) = abort,

X(1) = TL[p]⊕H[d] (TR[p]; abort),

X(2) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; abort)),

X(3) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; TL[p]⊕H[d2]

(TR[p]; abort))),

............

Observation
I Continuously introduce new “coin” to avoid variable conflict.
I Variables d, d1, d2, ... denote identical particles.

I The number of the “coin” particles that are needed in running
the recursive walk is unknown beforehand.

I We need to deal with quantum systems where the number of
particles of the same type may vary.

Example - (Unidirectional) Recursive Hadamard Walk

X(0) = abort,

X(1) = TL[p]⊕H[d] (TR[p]; abort),

X(2) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; abort)),

X(3) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; TL[p]⊕H[d2]

(TR[p]; abort))),

............

Observation
I Continuously introduce new “coin” to avoid variable conflict.
I Variables d, d1, d2, ... denote identical particles.
I The number of the “coin” particles that are needed in running

the recursive walk is unknown beforehand.

I We need to deal with quantum systems where the number of
particles of the same type may vary.

Example - (Unidirectional) Recursive Hadamard Walk

X(0) = abort,

X(1) = TL[p]⊕H[d] (TR[p]; abort),

X(2) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; abort)),

X(3) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; TL[p]⊕H[d2]

(TR[p]; abort))),

............

Observation
I Continuously introduce new “coin” to avoid variable conflict.
I Variables d, d1, d2, ... denote identical particles.
I The number of the “coin” particles that are needed in running

the recursive walk is unknown beforehand.
I We need to deal with quantum systems where the number of

particles of the same type may vary.

Outline

1. Introduction

2. Quantum Case Statement and Quantum Choice

3. Motivating Example: Recursive Quantum Walks

4. Second Quantisation

5. Semantics of Quantum Recursion

7. Conclusion

Fock Spaces

I The principle of symmetrisation: the states of n identical
particles are either completely symmetric or completely
antisymmetric with respect to the permutations of the particles.
[bosons - symmetric; fermions - antisymmetric]

I LetH be the state Hilbert space of one particle.
I For each permutation π of 1, ..., n, define the permutation

operator Pπ inH⊗n by

Pπ |ψ1 ⊗ ...⊗ ψn〉 = |ψπ(1) ⊗ ...⊗ ψπ(n)〉

I Define the symmetrisation and antisymmetrisation operators in
H⊗n:

S+ =
1
n! ∑

π

Pπ , S− =
1
n! ∑

π

(−1)πPπ

Fock Spaces

I The principle of symmetrisation: the states of n identical
particles are either completely symmetric or completely
antisymmetric with respect to the permutations of the particles.
[bosons - symmetric; fermions - antisymmetric]

I LetH be the state Hilbert space of one particle.

I For each permutation π of 1, ..., n, define the permutation
operator Pπ inH⊗n by

Pπ |ψ1 ⊗ ...⊗ ψn〉 = |ψπ(1) ⊗ ...⊗ ψπ(n)〉

I Define the symmetrisation and antisymmetrisation operators in
H⊗n:

S+ =
1
n! ∑

π

Pπ , S− =
1
n! ∑

π

(−1)πPπ

Fock Spaces

I The principle of symmetrisation: the states of n identical
particles are either completely symmetric or completely
antisymmetric with respect to the permutations of the particles.
[bosons - symmetric; fermions - antisymmetric]

I LetH be the state Hilbert space of one particle.
I For each permutation π of 1, ..., n, define the permutation

operator Pπ inH⊗n by

Pπ |ψ1 ⊗ ...⊗ ψn〉 = |ψπ(1) ⊗ ...⊗ ψπ(n)〉

I Define the symmetrisation and antisymmetrisation operators in
H⊗n:

S+ =
1
n! ∑

π

Pπ , S− =
1
n! ∑

π

(−1)πPπ

Fock Spaces

I The principle of symmetrisation: the states of n identical
particles are either completely symmetric or completely
antisymmetric with respect to the permutations of the particles.
[bosons - symmetric; fermions - antisymmetric]

I LetH be the state Hilbert space of one particle.
I For each permutation π of 1, ..., n, define the permutation

operator Pπ inH⊗n by

Pπ |ψ1 ⊗ ...⊗ ψn〉 = |ψπ(1) ⊗ ...⊗ ψπ(n)〉

I Define the symmetrisation and antisymmetrisation operators in
H⊗n:

S+ =
1
n! ∑

π

Pπ , S− =
1
n! ∑

π

(−1)πPπ

Fock Spaces
v = + for bosons, v = − for fermions.
I Write

|ψ1, ..., ψn〉v = Sv|ψ1 ⊗ ...⊗ ψn〉.

I The state space of n bosons and that of fermions are

H⊗n
v = SvH⊗n = span{|ψ1, ..., ψn〉v : |ψ1〉, ..., |ψn〉 are inH}

I Introduce the vacuum state |0〉 and the one-dimensional space
H⊗0

v = H⊗0 = span{|0〉}.
I The space of the states of variable particle number is the Fock

space:

Fv(H) =
∞

∑
n=0
H⊗n

v

I The free Fock space:

F (H) =
∞

∑
n=0
H⊗n

Fock Spaces
v = + for bosons, v = − for fermions.
I Write

|ψ1, ..., ψn〉v = Sv|ψ1 ⊗ ...⊗ ψn〉.
I The state space of n bosons and that of fermions are

H⊗n
v = SvH⊗n = span{|ψ1, ..., ψn〉v : |ψ1〉, ..., |ψn〉 are inH}

I Introduce the vacuum state |0〉 and the one-dimensional space
H⊗0

v = H⊗0 = span{|0〉}.
I The space of the states of variable particle number is the Fock

space:

Fv(H) =
∞

∑
n=0
H⊗n

v

I The free Fock space:

F (H) =
∞

∑
n=0
H⊗n

Fock Spaces
v = + for bosons, v = − for fermions.
I Write

|ψ1, ..., ψn〉v = Sv|ψ1 ⊗ ...⊗ ψn〉.
I The state space of n bosons and that of fermions are

H⊗n
v = SvH⊗n = span{|ψ1, ..., ψn〉v : |ψ1〉, ..., |ψn〉 are inH}

I Introduce the vacuum state |0〉 and the one-dimensional space
H⊗0

v = H⊗0 = span{|0〉}.

I The space of the states of variable particle number is the Fock
space:

Fv(H) =
∞

∑
n=0
H⊗n

v

I The free Fock space:

F (H) =
∞

∑
n=0
H⊗n

Fock Spaces
v = + for bosons, v = − for fermions.
I Write

|ψ1, ..., ψn〉v = Sv|ψ1 ⊗ ...⊗ ψn〉.
I The state space of n bosons and that of fermions are

H⊗n
v = SvH⊗n = span{|ψ1, ..., ψn〉v : |ψ1〉, ..., |ψn〉 are inH}

I Introduce the vacuum state |0〉 and the one-dimensional space
H⊗0

v = H⊗0 = span{|0〉}.
I The space of the states of variable particle number is the Fock

space:

Fv(H) =
∞

∑
n=0
H⊗n

v

I The free Fock space:

F (H) =
∞

∑
n=0
H⊗n

Fock Spaces
v = + for bosons, v = − for fermions.
I Write

|ψ1, ..., ψn〉v = Sv|ψ1 ⊗ ...⊗ ψn〉.
I The state space of n bosons and that of fermions are

H⊗n
v = SvH⊗n = span{|ψ1, ..., ψn〉v : |ψ1〉, ..., |ψn〉 are inH}

I Introduce the vacuum state |0〉 and the one-dimensional space
H⊗0

v = H⊗0 = span{|0〉}.
I The space of the states of variable particle number is the Fock

space:

Fv(H) =
∞

∑
n=0
H⊗n

v

I The free Fock space:

F (H) =
∞

∑
n=0
H⊗n

Evolution in the Fock Spaces

I Let the (discrete-time) evolution of one particle be unitary
operator U.

I The evolution of n particles without mutual interactions is
operator U inH⊗n:

U|ψ1 ⊗ ...⊗ ψn〉 = |Uψ1 ⊗ ...⊗Uψn〉

I

U|ψ1, ..., ψn〉v = |Uψ1, ...Uψn〉v.

I Extend to the Fock spaces Fv(H) and F (H):

U

(
∞

∑
n=0
|Ψ(n)〉

)
=

∞

∑
n=0

U|Ψ(n)〉

Evolution in the Fock Spaces

I Let the (discrete-time) evolution of one particle be unitary
operator U.

I The evolution of n particles without mutual interactions is
operator U inH⊗n:

U|ψ1 ⊗ ...⊗ ψn〉 = |Uψ1 ⊗ ...⊗Uψn〉

I

U|ψ1, ..., ψn〉v = |Uψ1, ...Uψn〉v.

I Extend to the Fock spaces Fv(H) and F (H):

U

(
∞

∑
n=0
|Ψ(n)〉

)
=

∞

∑
n=0

U|Ψ(n)〉

Evolution in the Fock Spaces

I Let the (discrete-time) evolution of one particle be unitary
operator U.

I The evolution of n particles without mutual interactions is
operator U inH⊗n:

U|ψ1 ⊗ ...⊗ ψn〉 = |Uψ1 ⊗ ...⊗Uψn〉

I

U|ψ1, ..., ψn〉v = |Uψ1, ...Uψn〉v.

I Extend to the Fock spaces Fv(H) and F (H):

U

(
∞

∑
n=0
|Ψ(n)〉

)
=

∞

∑
n=0

U|Ψ(n)〉

Evolution in the Fock Spaces

I Let the (discrete-time) evolution of one particle be unitary
operator U.

I The evolution of n particles without mutual interactions is
operator U inH⊗n:

U|ψ1 ⊗ ...⊗ ψn〉 = |Uψ1 ⊗ ...⊗Uψn〉

I

U|ψ1, ..., ψn〉v = |Uψ1, ...Uψn〉v.

I Extend to the Fock spaces Fv(H) and F (H):

U

(
∞

∑
n=0
|Ψ(n)〉

)
=

∞

∑
n=0

U|Ψ(n)〉

Creation and Annihilation of Particles
I The transitions between states of different particle numbers.

I Creation operator a∗(ψ) in Fv(H):

a∗(ψ)|ψ1, ..., ψn〉v =
√

n + 1|ψ, ψ1, ..., ψn〉v

Add a particle in the individual state |ψ〉 to the system of n
particles without modifying their respective states.

I Annihilation operator a(ψ) — the Hermitian conjugate of a∗(ψ):

a(ψ)|0〉 = 0,

a(ψ)|ψ1, ..., ψn〉v =
1√

n

n

∑
i=1

(v)i−1〈ψ|ψi〉|ψ1, ..., ψi−1, ψi+1, ..., ψn〉v

Decrease the number of particles by one unit, while preserving
the symmetry of the state.

Creation and Annihilation of Particles
I The transitions between states of different particle numbers.
I Creation operator a∗(ψ) in Fv(H):

a∗(ψ)|ψ1, ..., ψn〉v =
√

n + 1|ψ, ψ1, ..., ψn〉v

Add a particle in the individual state |ψ〉 to the system of n
particles without modifying their respective states.

I Annihilation operator a(ψ) — the Hermitian conjugate of a∗(ψ):

a(ψ)|0〉 = 0,

a(ψ)|ψ1, ..., ψn〉v =
1√

n

n

∑
i=1

(v)i−1〈ψ|ψi〉|ψ1, ..., ψi−1, ψi+1, ..., ψn〉v

Decrease the number of particles by one unit, while preserving
the symmetry of the state.

Creation and Annihilation of Particles
I The transitions between states of different particle numbers.
I Creation operator a∗(ψ) in Fv(H):

a∗(ψ)|ψ1, ..., ψn〉v =
√

n + 1|ψ, ψ1, ..., ψn〉v

Add a particle in the individual state |ψ〉 to the system of n
particles without modifying their respective states.

I Annihilation operator a(ψ) — the Hermitian conjugate of a∗(ψ):

a(ψ)|0〉 = 0,

a(ψ)|ψ1, ..., ψn〉v =
1√

n

n

∑
i=1

(v)i−1〈ψ|ψi〉|ψ1, ..., ψi−1, ψi+1, ..., ψn〉v

Decrease the number of particles by one unit, while preserving
the symmetry of the state.

Outline

1. Introduction

2. Quantum Case Statement and Quantum Choice

3. Motivating Example: Recursive Quantum Walks

4. Second Quantisation

5. Semantics of Quantum Recursion

7. Conclusion

Second quantisation provides us with the necessary tool
for defining the semantics of quantum recursion!

Example - (Unidirectional) Recursive Hadamard Walk
Semantics of the recursive Hadamard walk:

~X� =

 ∞

∑
i=0

 i−1⊗
j=0

|R〉dj
〈R| ⊗ |L〉di

〈L|

⊗ TLTi
R

 (H⊗ I)

I An operator in

Fv(Hd)⊗Hp → F (Hd)⊗Hp.

I The sign v is + or −, depending on using bosons or fermions to
implement the “direction coins” d, d1, d2,

Second quantisation provides us with the necessary tool
for defining the semantics of quantum recursion!

Example - (Unidirectional) Recursive Hadamard Walk
Semantics of the recursive Hadamard walk:

~X� =

 ∞

∑
i=0

 i−1⊗
j=0

|R〉dj
〈R| ⊗ |L〉di

〈L|

⊗ TLTi
R

 (H⊗ I)

I An operator in

Fv(Hd)⊗Hp → F (Hd)⊗Hp.

I The sign v is + or −, depending on using bosons or fermions to
implement the “direction coins” d, d1, d2,

Principal System Semantics

I Each state |Ψ〉 in Fock space Fv(Hd) induces mapping:

~X, Ψ�p : pure states→ partial density operators inHp

~X, Ψ�p(|ψ〉) = trF (Hd)
(|Φ〉〈Φ|)

where |Φ〉 = ~X�(|Ψ〉 ⊗ |ψ〉)

I Mapping ~X, Ψ�p is called the principal system semantics of X
with “coin” initialisation |Ψ〉.

Principal System Semantics

I Each state |Ψ〉 in Fock space Fv(Hd) induces mapping:

~X, Ψ�p : pure states→ partial density operators inHp

~X, Ψ�p(|ψ〉) = trF (Hd)
(|Φ〉〈Φ|)

where |Φ〉 = ~X�(|Ψ〉 ⊗ |ψ〉)

I Mapping ~X, Ψ�p is called the principal system semantics of X
with “coin” initialisation |Ψ〉.

Bidirectional Recursive Quantum Walk{
X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]

I Coherent state of bosons in the symmetric Fock space F+(H)
overH:

|ψ〉coh = exp
(
−1

2
〈ψ|ψ〉

) ∞

∑
n=0

[a∗(ψ)]n

n!
|0〉

I The walk starts from position 0 and the coins are initialised in
the coherent states of bosons corresponding to |L〉:

~X, Lcoh�p(|0〉) =
1√

e

(
∞

∑
k=0

1
22k+1 | − 1〉〈−1|+

∞

∑
k=0

1
22k+2 |2〉〈2|

)

=
1√

e

(
2
3
| − 1〉〈−1|+ 1

3
|2〉〈2|

)
.

Bidirectional Recursive Quantum Walk{
X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]

I Coherent state of bosons in the symmetric Fock space F+(H)
overH:

|ψ〉coh = exp
(
−1

2
〈ψ|ψ〉

) ∞

∑
n=0

[a∗(ψ)]n

n!
|0〉

I The walk starts from position 0 and the coins are initialised in
the coherent states of bosons corresponding to |L〉:

~X, Lcoh�p(|0〉) =
1√

e

(
∞

∑
k=0

1
22k+1 | − 1〉〈−1|+

∞

∑
k=0

1
22k+2 |2〉〈2|

)

=
1√

e

(
2
3
| − 1〉〈−1|+ 1

3
|2〉〈2|

)
.

Quantum while-loop

I Program X declared by the recursive equation

X⇐ W[c, q]; qif[c] |0〉 → skip
� |1〉 → U[q]; X

fiq

where W a unitary operator inHc ⊗Hq — the interaction
between the “coin” c and the principal system q.

I Semantics of X:

~X� =
∞

∑
k=1

k−1

∏
j=0

W[cj, q]

k−2⊗
j=0

|1〉cj〈1| ⊗ |0〉ck−1〈0| ⊗Uk−1[q]

from the space Fv(H2)⊗Hq into F (H2)⊗Hq.

Quantum while-loop

I Program X declared by the recursive equation

X⇐ W[c, q]; qif[c] |0〉 → skip
� |1〉 → U[q]; X

fiq

where W a unitary operator inHc ⊗Hq — the interaction
between the “coin” c and the principal system q.

I Semantics of X:

~X� =
∞

∑
k=1

k−1

∏
j=0

W[cj, q]

k−2⊗
j=0

|1〉cj〈1| ⊗ |0〉ck−1〈0| ⊗Uk−1[q]

from the space Fv(H2)⊗Hq into F (H2)⊗Hq.

Outline

1. Introduction

2. Quantum Case Statement and Quantum Choice

3. Motivating Example: Recursive Quantum Walks

4. Second Quantisation

5. Semantics of Quantum Recursion

7. Conclusion

Problems:
I What kind of problems can be solved more conveniently by

using quantum recursion? Sorting? [Høyer, Neerbek, Shi,
ICALP’2001]

I Hoare logic for quantum while-loops defined using quantum
“coins”?

I Fock space can serve as a model of linear logic with exponential
types [Blute, Panangaden, Seely, MFPS’1994].

I Combine linear logic with Hoare logic for quantum programs
[Ying, TOPLAS’2011]?

I What kind of physical systems can be used to implement
quantum recursion where new “coins” must be continuously
created?

Problems:
I What kind of problems can be solved more conveniently by

using quantum recursion? Sorting? [Høyer, Neerbek, Shi,
ICALP’2001]

I Hoare logic for quantum while-loops defined using quantum
“coins”?

I Fock space can serve as a model of linear logic with exponential
types [Blute, Panangaden, Seely, MFPS’1994].

I Combine linear logic with Hoare logic for quantum programs
[Ying, TOPLAS’2011]?

I What kind of physical systems can be used to implement
quantum recursion where new “coins” must be continuously
created?

Problems:
I What kind of problems can be solved more conveniently by

using quantum recursion? Sorting? [Høyer, Neerbek, Shi,
ICALP’2001]

I Hoare logic for quantum while-loops defined using quantum
“coins”?

I Fock space can serve as a model of linear logic with exponential
types [Blute, Panangaden, Seely, MFPS’1994].

I Combine linear logic with Hoare logic for quantum programs
[Ying, TOPLAS’2011]?

I What kind of physical systems can be used to implement
quantum recursion where new “coins” must be continuously
created?

Problems:
I What kind of problems can be solved more conveniently by

using quantum recursion? Sorting? [Høyer, Neerbek, Shi,
ICALP’2001]

I Hoare logic for quantum while-loops defined using quantum
“coins”?

I Fock space can serve as a model of linear logic with exponential
types [Blute, Panangaden, Seely, MFPS’1994].

I Combine linear logic with Hoare logic for quantum programs
[Ying, TOPLAS’2011]?

I What kind of physical systems can be used to implement
quantum recursion where new “coins” must be continuously
created?

Problems:
I What kind of problems can be solved more conveniently by

using quantum recursion? Sorting? [Høyer, Neerbek, Shi,
ICALP’2001]

I Hoare logic for quantum while-loops defined using quantum
“coins”?

I Fock space can serve as a model of linear logic with exponential
types [Blute, Panangaden, Seely, MFPS’1994].

I Combine linear logic with Hoare logic for quantum programs
[Ying, TOPLAS’2011]?

I What kind of physical systems can be used to implement
quantum recursion where new “coins” must be continuously
created?

Thank You!

	1. Introduction
	2. Quantum Case Statement and Quantum Choice
	3. Motivating Example: Recursive Quantum Walks
	4. Second Quantisation
	5. Semantics of Quantum Recursion
	7. Conclusion

