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Classical Recursion of Quantum Programs

I Recursive procedure in quantum programming language QPL
[Selinger, Mathematical Structures in Computer Science’2004].

I Termination of quantum while-loops in finite-dimensional state
spaces [Ying, Feng, Acta Informatica’2010].

I Selinger’s slogan: Quantum data, classical control - control flow
of the quantum recursions is classical because branchings are
determined by the outcomes of certain quantum measurements.
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Quantum Control Flow
Quantum programming language QML [Altenkirch and Grattage,
LICS’2005]:

Two case constructs in the quantum setting:
I case, measure a qubit in the data it analyses - The control flow is

determined by the outcome of a measurement and thus is
classical.

I case◦, analyse quantum data without measuring -
if◦ − then− else statement.
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Quantum Control Flow

Hadamard gate:

had x = if◦ x

then { 1√
2
(qfalse− qtrue)}

else { 1√
2
(qfalse+ qtrue)}



Quantum Control Flow
NOT gate:

not x = if◦ x
then qfalse

else qtrue

CNOT gate:

cnot c x = if◦ c
then (qtrue, not x)
else (qfalse, x)
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“Coined” Quantum Case Statement
I Introduce an external “quantum coin” c:

The state Hilbert spaceHc = span{|0〉, |1〉}

I U0 and U1 two unitary transformations on a quantum system q -
the state Hilbert spaceHq.

I A quantum case statement employing “quantum coin” c:

qif [c] |0〉 → U0[q]
� |1〉 → U1[q]

fiq
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“coined” Quantum Case Statement
I The semantics is an unitary operator U inHc ⊗Hq - the state

Hilbert space of the composed system of “coin” c and principal
system q:

U|0, ψ〉 = |0〉U0|ψ〉, U|1, ψ〉 = |1〉U1|ψ〉

I Matrix representation:

U = |0〉〈0| ⊗U0 + |1〉〈1| ⊗U1 =

(
U0 0
0 U1

)
.
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Quantum Choice
I V a unitary operator in the state Hilbert spaceHc of the “coin”.

I The quantum choice of U0[q] and U1[q] with “coin-tossing” V[c]:

U0[q]⊕V[c] U1[q]
def
=

V[c]; qif [c] |0〉 → U0[q]
� |1〉 → U1[q]

fiq

I Compare with probabilistic choice [McIver and Morgan,
Abstraction, Refinement and Proof for Probabilistic Systems, 2005]
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External “Quantum Coin”
I Superpositions of time evolutions of a quantum system

[Aharonov, Anandan, Popescu, Vaidman, Plysical Review Letters
1990].

I Quantum walks [Ambainis, Bach, Nayak, Vishwanath, Watrous,
STOC’2001; Aharonov, Ambainis, Kempe, Vazirani, STOC’2001].

I Unitary transformations U0[q], U1[q] are replaced by general
quantum programs that may contain quantum measurements?
[Ying, Yu, Feng, arXiv:1209.4379]
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A new notion of quantum recursion can be defined based
on quantum case statement and quantum choice

Example - One-dimensional quantum walk

I One-dimensional random walk - a particle moves on a line
marked by integers Z; at each step it moves one position left or
right, depending on the flip of a fair coin.

I Hadamard walk - a quantum variant of one-dimensional
random walk.

I Its state Hilbert spaceHd ⊗Hp:

I Hd = span{|L〉, |R〉}, L, R indicate the direction Left and Right.
I Hp = span{|n〉 : n ∈ Z}, n indicates the position marked by integer

n.
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Example - One-dimensional quantum walk
I One step of Hadamard walk — W = T(H⊗ I):

I Translation T:

T|L, n〉 = |L, n− 1〉, T|R, n〉 = |R, n + 1〉

is unitary operator inHd ⊗Hp.
I

H =
1√

2

(
1 1
1 −1

)
is Hadamard transform in the direction spaceHd



Example - One-dimensional quantum walk
I One step of Hadamard walk — W = T(H⊗ I):

I Translation T:

T|L, n〉 = |L, n− 1〉, T|R, n〉 = |R, n + 1〉

is unitary operator inHd ⊗Hp.

I

H =
1√

2

(
1 1
1 −1

)
is Hadamard transform in the direction spaceHd



Example - One-dimensional quantum walk
I One step of Hadamard walk — W = T(H⊗ I):

I Translation T:

T|L, n〉 = |L, n− 1〉, T|R, n〉 = |R, n + 1〉

is unitary operator inHd ⊗Hp.
I

H =
1√

2

(
1 1
1 −1

)
is Hadamard transform in the direction spaceHd



Example - One-dimensional quantum walk

I Define the left and right translation operators TL and TR in the
position spaceHp :

TL|n〉 = |n− 1〉, TR|n〉 = |n + 1〉

I Then the translation operator T is a quantum case statement:

T = qif [d] |L〉 → TL[p]
� |R〉 → TR[p]

fiq

I The single-step walk operator W is a quantum choice:

TL[p]⊕H[d] TR[p]

I Hadamard walk — repeated applications of operator W.
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(Unidirectional) Recursive Hadamard Walk
I The walk first runs the “coin-tossing” Hadamard operator H[d],

and then a quantum case statement:

I if the “direction coin” d is in state |L〉 then the walker moves one
position left;

I if d is in state |R〉 then it moves one position right, followed by a
procedure behaving as the recursive walk itself .

I Recursive Hadamard walk — program X declared by the
recursive equation:

X⇐ TL[p]⊕H[d] (TR[p]; X)
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Bidirectional Recursive Hadamard Walk
I The walk first runs the “coin-tossing” Hadamard operator H[d]

and then a quantum case statement:

I if the “direction coin” d is in state |L〉 then the walker moves one
position left, followed by a procedure behaving as the recursive
walk itself;

I if d is in state |R〉 then it moves one position right, also followed by
a procedure behaving as the recursive walk itself.

I The walk — Program X (or program Y) declared by the recursive
equation:

X⇐ (TL[p]; X)⊕H[d] (TR[p]; X)

I A variant of the bidirectional recursive Hadamard walk is
declared by the following system of recursive equations:{

X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]
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A More Interesting Recursive Quantum Walk

I Let n ≥ 2. Another variant of unidirectional recursive quantum
walk is defined as the program declared by the following
recursive equation:

X⇐ ((TL[p]; X)⊕H[d] (TR[p]; X)); (TL[p]⊕H[d] TR[p])n

How to solve these quantum recursive equations?
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Syntactic Approximation

I A recursive program X declared by equation

X⇐ F(X)

I Syntactic approximations:{
X(0) = Abort,
X(n+1) = F[X(n)/X] for n ≥ 0.

Program X(n) is the nth syntactic approximation of X.
I Semantics ~X� of X is the limit

~X� = lim
n→∞
~X(n)�
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Example - (Unidirectional) Recursive Hadamard Walk

X(0) = abort,

X(1) = TL[p]⊕H[d] (TR[p]; abort),

X(2) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; abort)),

X(3) = TL[p]⊕H[d] (TR[p]; TL[p]⊕H[d1]
(TR[p]; TL[p]⊕H[d2]

(TR[p]; abort))),

............

Observation
I Continuously introduce new “coin” to avoid variable conflict.

I Variables d, d1, d2, ... denote identical particles.
I The number of the “coin” particles that are needed in running

the recursive walk is unknown beforehand.
I We need to deal with quantum systems where the number of

particles of the same type may vary.
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Fock Spaces

I The principle of symmetrisation: the states of n identical
particles are either completely symmetric or completely
antisymmetric with respect to the permutations of the particles.
[ bosons - symmetric; fermions - antisymmetric]

I LetH be the state Hilbert space of one particle.
I For each permutation π of 1, ..., n, define the permutation

operator Pπ inH⊗n by

Pπ |ψ1 ⊗ ...⊗ ψn〉 = |ψπ(1) ⊗ ...⊗ ψπ(n)〉

I Define the symmetrisation and antisymmetrisation operators in
H⊗n:

S+ =
1
n! ∑

π

Pπ , S− =
1
n! ∑

π

(−1)πPπ
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operator Pπ inH⊗n by

Pπ |ψ1 ⊗ ...⊗ ψn〉 = |ψπ(1) ⊗ ...⊗ ψπ(n)〉

I Define the symmetrisation and antisymmetrisation operators in
H⊗n:

S+ =
1
n! ∑

π

Pπ , S− =
1
n! ∑

π
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Fock Spaces
v = + for bosons, v = − for fermions.
I Write

|ψ1, ..., ψn〉v = Sv|ψ1 ⊗ ...⊗ ψn〉.

I The state space of n bosons and that of fermions are

H⊗n
v = SvH⊗n = span{|ψ1, ..., ψn〉v : |ψ1〉, ..., |ψn〉 are inH}

I Introduce the vacuum state |0〉 and the one-dimensional space
H⊗0

v = H⊗0 = span{|0〉}.
I The space of the states of variable particle number is the Fock

space:

Fv(H) =
∞

∑
n=0
H⊗n

v

I The free Fock space:

F (H) =
∞

∑
n=0
H⊗n
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Evolution in the Fock Spaces

I Let the (discrete-time) evolution of one particle be unitary
operator U.

I The evolution of n particles without mutual interactions is
operator U inH⊗n:

U|ψ1 ⊗ ...⊗ ψn〉 = |Uψ1 ⊗ ...⊗Uψn〉

I

U|ψ1, ..., ψn〉v = |Uψ1, ...Uψn〉v.

I Extend to the Fock spaces Fv(H) and F (H):

U

(
∞

∑
n=0
|Ψ(n)〉

)
=

∞

∑
n=0

U|Ψ(n)〉
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Creation and Annihilation of Particles
I The transitions between states of different particle numbers.

I Creation operator a∗(ψ) in Fv(H):

a∗(ψ)|ψ1, ..., ψn〉v =
√

n + 1|ψ, ψ1, ..., ψn〉v

Add a particle in the individual state |ψ〉 to the system of n
particles without modifying their respective states.

I Annihilation operator a(ψ) — the Hermitian conjugate of a∗(ψ):

a(ψ)|0〉 = 0,

a(ψ)|ψ1, ..., ψn〉v =
1√

n

n

∑
i=1

(v)i−1〈ψ|ψi〉|ψ1, ..., ψi−1, ψi+1, ..., ψn〉v

Decrease the number of particles by one unit, while preserving
the symmetry of the state.
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Second quantisation provides us with the necessary tool
for defining the semantics of quantum recursion!

Example - (Unidirectional) Recursive Hadamard Walk
Semantics of the recursive Hadamard walk:

~X� =

 ∞

∑
i=0

 i−1⊗
j=0

|R〉dj
〈R| ⊗ |L〉di

〈L|

⊗ TLTi
R

 (H⊗ I)

I An operator in

Fv(Hd)⊗Hp → F (Hd)⊗Hp.

I The sign v is + or −, depending on using bosons or fermions to
implement the “direction coins” d, d1, d2, ....
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Principal System Semantics

I Each state |Ψ〉 in Fock space Fv(Hd) induces mapping:

~X, Ψ�p : pure states→ partial density operators inHp

~X, Ψ�p(|ψ〉) = trF (Hd)
(|Φ〉〈Φ|)

where |Φ〉 = ~X�(|Ψ〉 ⊗ |ψ〉)

I Mapping ~X, Ψ�p is called the principal system semantics of X
with “coin” initialisation |Ψ〉.
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Bidirectional Recursive Quantum Walk{
X⇐ TL[p]⊕H[d] (TR[p]; Y),
Y⇐ (TL[p]; X)⊕H[d] TR[p]

I Coherent state of bosons in the symmetric Fock space F+(H)
overH:

|ψ〉coh = exp
(
−1

2
〈ψ|ψ〉

) ∞

∑
n=0

[a∗(ψ)]n

n!
|0〉

I The walk starts from position 0 and the coins are initialised in
the coherent states of bosons corresponding to |L〉:

~X, Lcoh�p(|0〉) =
1√

e

(
∞

∑
k=0

1
22k+1 | − 1〉〈−1|+

∞

∑
k=0

1
22k+2 |2〉〈2|

)

=
1√

e

(
2
3
| − 1〉〈−1|+ 1

3
|2〉〈2|

)
.
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Quantum while-loop

I Program X declared by the recursive equation

X⇐ W[c, q]; qif[c] |0〉 → skip
� |1〉 → U[q]; X

fiq

where W a unitary operator inHc ⊗Hq — the interaction
between the “coin” c and the principal system q.

I Semantics of X:

~X� =
∞

∑
k=1

k−1

∏
j=0

W[cj, q]

k−2⊗
j=0

|1〉cj〈1| ⊗ |0〉ck−1〈0| ⊗Uk−1[q]


from the space Fv(H2)⊗Hq into F (H2)⊗Hq.
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Problems:
I What kind of problems can be solved more conveniently by

using quantum recursion? Sorting? [Høyer, Neerbek, Shi,
ICALP’2001]

I Hoare logic for quantum while-loops defined using quantum
“coins”?

I Fock space can serve as a model of linear logic with exponential
types [Blute, Panangaden, Seely, MFPS’1994].

I Combine linear logic with Hoare logic for quantum programs
[Ying, TOPLAS’2011]?

I What kind of physical systems can be used to implement
quantum recursion where new “coins” must be continuously
created?
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Thank You!
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