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What is the  
logic 
of quantum 
computation?
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The Curry-Howard-Lambek 
correspondence

Cartesian closed 
categories

Intuitionistic  
Logic

Simply typed 
λ-calculus
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General Scheme

Categorical 
Structure Logic

Rewriting system
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Proofs and types

Proofs and programs are the same thing.   

• Propositions are types. 

• Many different proofs of the same theorem: processes 
producing output of that type. 

• Less interested in the validity of propositions than the 
relationship between proofs
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Proofs and types

Pragmatics: 

• The type of a program should provide some useful 
information about that program. 

• The type system should exclude (certain) programming 
errors.
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Proofs and types

Pragmatics: 

• The type of a program should provide some useful 
information about that program. 

• The type system should exclude (certain) programming 
errors.

“It type checks — it must be right”



Ross Duncan ● PrakashFest  ● Oxford 2014

The objective:

Categorical 
Structure Logic

Rewriting system
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The objective:

Categorical 
Structure Logic

Rewriting system

Quantum
Quantum

Quantum

??????

??????
??????
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Quantum Logic

The Birkhoff-von Neumann approach and its 
problems
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Propositions and projectors
A proposition is a question with a yes/no answer: 
   A = “Is the spin up?” 
but the answer will be given by a quantum measurement:  
!
hence each proposition corresponds to a pair of orthogonal 
subspaces. 
!
!
!
The “lattice of propositions” is simply the collection of closed 
subspaces ordered under inclusion.

� |= A � pA |�� = |��

�

�

X�XZ Z�
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Distributivity Fails
In general we have                         which implies the failure of 
distributivity.   
Consider: 
!
!
!
!
we have  
!
hence such a lattice is not distributive.   
(It does satisfy a weaker law called orthomodularity which I won’t discuss.)

pApB �= pBpA

A

A�

B

B�

� = (A �B) � (A� �B) �= (A �A�) �B = B
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No deduction theorem

Theorem:  Suppose we can define a connective      such that  
!
then the lattice is distributive. 
!
Corollary:  Quantum logic does not admit modus ponens. 
!
Note that the sub-lattice defined by any set of commuting 
projectors is just a boolean lattice.

�

A �X � B � X � A� B



Ross Duncan ● PrakashFest  ● Oxford 2014

Quantum Mechanics

Overview of the physical theory
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unless      and      are orthogonal [Wooters & Zurek 1982]

Theorem:  There are no quantum operations D such that 

D : |⇥⌅ ⇤⇥ |⇥⌅ � |⇥⌅
D : |�⌅ ⇤⇥ |�⌅ � |�⌅

No-Cloning and No-Deleting

unless      and      are orthogonal [Pati & Braunstein 2000]

Theorem:  There are no quantum operations E such that 

E : |⇥⇤ ⇥� |0⇤
E : |�⇤ ⇥� |0⇤

|��

|�� |��

|��
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Separate classical and quantum data in a hybrid 
machine

Linear types have been proposed* to capture this:
!A A�B

No-Cloning and No-Deleting

*vanTonder 2003,   Selinger and Valiron 2005,   Arrighi and Dowek 2003,   Altenkirch & Grattage 2005

** Hensinger et al 
Nature 2005 
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Separate classical and quantum data in a hybrid 
machine

Linear types have been proposed* to capture this:
!A A�B

No-Cloning and No-Deleting

*vanTonder 2003,   Selinger and Valiron 2005,   Arrighi and Dowek 2003,   Altenkirch & Grattage 2005

** Hensinger et al 
Nature 2005 

Not good enough!
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Map-State Duality
Recall that there is an isomorphism : 
! A � B ⇥= A�B

I =
�

1 0
0 1

⇥
⇥⇤ |00⌅+ |11⌅ =: |Bell1⌅

X =
�

0 1
1 0

⇥
⇥⇤ |01⌅+ |10⌅ =: |Bell2⌅

Z =
�

1 0
0 �1

⇥
⇥⇤ |00⌅ � |11⌅ =: |Bell3⌅

XZ =
�

0 �1
1 0

⇥
⇥⇤ |01⌅ � |10⌅ =: |Bell4⌅
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�00| + �11|

Quantum Teleportation 

BobAlice 
Audrey

|�� |00� + |11�
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�00| + �11|

Quantum Teleportation 

BobAlice 
Audrey

|�� |00� + |11�

|��
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Channels via entanglement

Bennett at al: 
!
!
!
!

Teleporting an unknown quantum state via dual classical and EPR channels, PRL, 1993 
!
This suggests that the type of an entangled pair should be the 
linear type             rather than the usual             .Q Q

“Note that qubits are a directed channel 
resource, sent in a particular direction from the 
sender to the receiver;  by contrast [entangled 
pairs] are an undirected resource shared between 
the sender and receiver.”

Q� Q
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More Entanglement
Entanglement can be used for a lot more than just transmitting 
information: 
!
!
!
!
!
!
!
MBQC is a universal model of computation which is based on 
the flow of information through large entangled states. 
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Propositions as types for QM

A logic based on processes not properties
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What is the quantum version?
• We want a logic of “quantum processes” 
!
Some hints as to what this should be: 

• entangled systems can’t be described by a Cartesian 
product 

• map-state duality suggests we should have a “function-
type” 

• no-cloning and no-deleting imply that the underlying 
setting should be linear 

• ....however we still need some way to represent non-
determinism
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The quantum version:

?

?

?
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?

?
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The quantum version:

?

?
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†-compact closed 
categories with 
†-biproducts

The quantum version:

?

?
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Q
�1Q�� Q� (Q� �Q)

� � (Q�Q�)�Q

(I � I � I � I)�Q

��1Q�, �x�, �z�, �xz�� � 1Q

�

Q�Q�Q�Q

�=

�

Q�Q�Q�Q

1Q � x† � z† � (xz)†

�

�

�



Ross Duncan ● PrakashFest  ● Oxford 2014

Q
�1Q�� Q� (Q� �Q)

� � (Q�Q�)�Q

(I � I � I � I)�Q

��1Q�, �x�, �z�, �xz�� � 1Q

�

Q�Q�Q�Q

�=

�

Q�Q�Q�Q

1Q � x† � z† � (xz)†

�

�

�

Prepare Bell state
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Q
�1Q�� Q� (Q� �Q)

� � (Q�Q�)�Q

(I � I � I � I)�Q

��1Q�, �x�, �z�, �xz�� � 1Q

�

Q�Q�Q�Q

�=

�

Q�Q�Q�Q

1Q � x† � z† � (xz)†

�

�

�

Relocalise
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Q
�1Q�� Q� (Q� �Q)

� � (Q�Q�)�Q

(I � I � I � I)�Q

��1Q�, �x�, �z�, �xz�� � 1Q

�

Q�Q�Q�Q

�=

�

Q�Q�Q�Q

1Q � x† � z† � (xz)†

�

�

�

Bell basis measurement
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Q
�1Q�� Q� (Q� �Q)

� � (Q�Q�)�Q

(I � I � I � I)�Q

��1Q�, �x�, �z�, �xz�� � 1Q

�

Q�Q�Q�Q

�=

�

Q�Q�Q�Q

1Q � x† � z† � (xz)†

�

�

�

Classical communication
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Q
�1Q�� Q� (Q� �Q)

� � (Q�Q�)�Q

(I � I � I � I)�Q

��1Q�, �x�, �z�, �xz�� � 1Q

�

Q�Q�Q�Q

�=

�

Q�Q�Q�Q

1Q � x† � z† � (xz)†

�

�

�
Unitary correction
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Q
�1Q�� Q� (Q� �Q)

� � (Q�Q�)�Q

(I � I � I � I)�Q

��1Q�, �x�, �z�, �xz�� � 1Q

�

Q�Q�Q�Q

�=

�

Q�Q�Q�Q

1Q � x† � z† � (xz)†

�

�

�

Specification
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An invitation:
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An invitation:

161 pages!



Ross Duncan ● PrakashFest  ● Oxford 2014

†-compact closed 
categories with 
†-biproducts

The quantum version:

Tensor-sum  
logic

Generalised 
self-dual 
proof-nets
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The connectives

conjunction disjunction

Classical logic

� �¬(A �B) = ¬A � ¬B

¬(A �B) = ¬A � ¬B

¬¬A = A
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The connectives

conjunction disjunction

multiplicative

additive

Linear logic 
(MALL)

�
�&

A�� = A

(A�B)� = A� B�

(A B)� = A� �B�

(A&B)� = A� �B�

(A�B)� = A�&B�
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The connectives

multiplicative

additive

Tensor-sum “logic”

(A�B)� = A� �B�

(A�B)� = A� �B�

A�� = A
�
�
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A professional opinion:

“One must leave it in the 
department of atrocities...” 

J.-Y. Girard, The Blind Spot, 2006
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A professional opinion:

“One must leave it in the 
department of atrocities...” 

J.-Y. Girard, The Blind Spot, 2006

&

“Here one witnesses a frank divorce between 
the logical viewpoint and the category-theoretic 
viewpoint, for which ⊗ =     is not absurd. Thus, 
in algebra, the tensor is often equal to the 
cotensor, for instance in finite dimensional 
vector spaces ... This remark illustrates the gap 
separating logic and categories, by the way 
quite legitimate activities, that one should not 
try to crush one upon another.”
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Tensor-Sum Logic
Tensor-sum logic is a Gentzen system, designed to capture 
the structure of a certain free category on some generators    . 

• Essentially it is MALL with self-dual connectives 

• Every proof has an interpretation as an arrow of          

• Every arrow of        has a corresponding proof 

• The system is cut-eliminating, and the cut-elimination 
procedure is sound wrt the interpretation.

A

FA
FA
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Tensor-Sum Logic
Tensor-sum logic is a Gentzen system, designed to capture 
the structure of a certain free category on some generators    . 

• Essentially it is MALL with self-dual connectives 

• Every proof has an interpretation as an arrow of          

• Every arrow of        has a corresponding proof 

• The system is cut-eliminating, and the cut-elimination 
procedure is sound wrt the interpretation.

A

FA
FA

It has some oddities as a logical system: 

• Every entailment            is derivable with a zero proof 

• Self-duality allows the formation of self-cuts 
- the empty sequent is derivable in many inequivalent ways

A � B
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Proof-nets for tensor and sum
Define a system of proof-nets with non-logical axioms:
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Proof-nets for tensor and sum
Define a system of proof-nets with non-logical axioms:
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Proof-nets for tensor and sum
Define a system of proof-nets with non-logical axioms:

Theorem: cut-elimination is 
strongly normalising
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Example: teleportation

The shared Bell state and the input qubit:
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Example: teleportation

The Bell basis measurement
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Example: teleportation

The classically controlled corrections:
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Example: teleportation
The whole protocol:
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Example: teleportation
The whole protocol:
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Example: teleportation
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Example: teleportation
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Example: teleportation
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Example: teleportation
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Example: teleportation
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Example: teleportation
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Example: teleportation
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Example: teleportation

X2 = 1Q

Y 2 = 1QZ2 = 1Q
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Example: teleportation
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Full completeness

Theorem: Let P be a compact symmetric polycategory.  
There is an equivalence of categories between Circ(P) and 
PN(P).
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The biproduct
We used the biproduct to encode the branching nature of 
quantum processes. 

• The diagonal map shows the possibility of different 
choices: 
!

• But what about the codiagonal? 
!

• Semantically this corresponds to superposition rather 
than probabilistic mixing --- the wrong interpretation 

• To properly address the issue of probabilities in QM we 
use Selinger’s CPM construction

Q
�� Q�Q

Q�Q
�� Q
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Normal form theorem
Pure logic, determined by 

premise 
!
 

A unique A-labelled circuit 
!
!
!

Pure logic determined by 
conclusion
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Types for entanglement?

Can we regain the the separation between      and      to talk 
about entanglement? 

• Entangled states do not form a subspace 

• Do double gluing on fdHilb 

-     gives product states 
-     gives all states 

• Hence      is a subtype of

Q Q

Q Q
Q Q

⌦

⌦

⌦
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How many types anyway?

Defn:  A state S is said to be SLOCC reachable from state S’ 
if there is a sequence of stochastic local operations and 
classical communications producing S from S’ 
!
Defn: If S and S’ are mutually SLOCC reachable then they are 
SLOCC equivalent.
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How many types anyway?

Prop: For 2-qubit states there are 2 SLOCC classes: 
!

Q Q ⌦
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How many types anyway?

Prop: For 3-qubit states there are 6 SLOCC classes: 
!

W

⌦ ⌦

Q Q⌦ Q Q⌦ Q Q⌦

GHZ
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How many types anyway?

Prop: For 4-qubit states there are uncountably many 
SLOCC classes 
!
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How many types anyway?

Prop: For 4-qubit states there are uncountably many 
SLOCC classes 
!

!
Forget about types to describe entanglement 

!
Just look at the terms 
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The ZX-calculus

Quantum processes, diagrammatically
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“Classical” Quantum States

When can a quantum state be treated as if classical? 

• no-go theorems allow copying and deleting of orthogonal 
states; 

In other words: 

• A quantum state may be copied and deleted if it is an 
eigenstate of some known observable. 

We’ll use this property to formalise observables in terms of 
copying and deleting operations.
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Classical Structures
� = �† = �† =

=

=

= =

� =

=

=

= =

= = =
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Classical Structures
� = �† = �† =� =

In other words: a classical structure is a 
special commutative †-Frobenius algebra
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Classical Structures
� = �† = �† =� =

In other words: a classical structure is a 
special commutative †-Frobenius algebra

Theorem: in FDHilb, classical structures are in bijective 
correspondence to bases. [Coecke, Pavlovic, Vicary]
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Classical Structures
� = �† = �† =� =

In other words: a classical structure is a 
special commutative †-Frobenius algebra

Theorem: in FDHilb, classical structures are in bijective 
correspondence to bases. [Coecke, Pavlovic, Vicary]

Each (well behaved) observable defines a basis, therefore :  
every observable defines a classical structure!
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Classical Structures
� = �† = �† =� =

In other words: a classical structure is a 
special commutative †-Frobenius algebra

Theorem: in FDHilb, classical structures are in bijective 
correspondence to bases. [Coecke, Pavlovic, Vicary]

Each (well behaved) observable defines a basis, therefore :  
every observable defines a classical structure!

Still not enough!
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Enough equations (probably)

Final ingredient:  complementarity
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Enough equations (probably)

Only 86 pages!

Final ingredient:  complementarity
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Complementary Observables
a0

a1

b1 b0

|�ai | bj⇥| =
1⌅
D
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Strong Complementarity

Strongly complementary observables form a bialgebra

=

=
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Strongly complementary 
observables form Hopf algebras

Theorem: 

Remark: under the assumption of enough classical points the “strong” assumption is 
not needed; simple complementarity suffices

=
=
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Strong Complementarity

Many useful properties now follow… too many to discuss! 
!
I claim that such interacting algebras are a fundamental new 
structure for computer science 
!
See work of Sobocinski and various coauthors 
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ZX-calculus syntax

Defn:  A diagram is an undirected open graph 
generated by the above vertices. 

Defn:  let     be the dagger compact category of 
diagrams s.t.  

(·)† : � �� ��

D
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Equations
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Equations

· · ·

· · ·

�
2

↵+ n�
2

�
2

�
2

�
2

· · ·

· · ·

�⇡
2

↵

�⇡
2 �⇡

2

�⇡
2

=

(colour change)
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controlled 
gate 

Z�/2

j1 = |1�

j0 = |0�

input  
qubits

Example:  2-Qubit Quantum 
Fourier Transform

�

H
��/4

H

�/4
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Example:  2-Qubit Quantum 
Fourier Transform

�

H
��/4

H

�/4
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Example:  2-Qubit Quantum 
Fourier Transform

�

H
��/4

��
H

�/4



Ross Duncan ● PrakashFest  ● Oxford 2014

Example:  2-Qubit Quantum 
Fourier Transform

�

H
��/4

��

H

�/4
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Example:  2-Qubit Quantum 
Fourier Transform

H
��/4

�

�

�
�/4
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Example:  2-Qubit Quantum 
Fourier Transform

��/4
�

�

�
�/4



Ross Duncan ● PrakashFest  ● Oxford 2014

Example:  2-Qubit Quantum 
Fourier Transform

��/4
�

�

�/4
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Example:  2-Qubit Quantum 
Fourier Transform

��/4
�

�

�/4
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Example:  2-Qubit Quantum 
Fourier Transform

�

�/4 �/4
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Example:  2-Qubit Quantum 
Fourier Transform

�

�/2
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output  
qubits

j0 = |0� + e
i�
2 |1�

j1 = |0� + ei� |1�

Example:  2-Qubit Quantum 
Fourier Transform

�

�/2
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Extensions (1)
The calculus as presented does not deal with non-
determinism or probabilities.  Two extensions: 

• Conditional vertices:  
 
 
 

• Selinger’s CPM construction:  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Extensions (2)

The CPM approach was used to prove that strong 
complementarity is equivalent to non-locality: 
!
!
!
!
!
!
... justifying the claim that this is a fundamental notion for QM
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Extensions (3)

The conditional vertices approach was used to prove the 
correctness of quantum programs: 
!
!
!
!
!
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Extensions (3)

... and error-correcting codes:  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Advertising

http://dream.inf.ed.ac.uk/projects/quantomatic/

Graphical tool for doing graphical calculations:

http://dream.inf.ed.ac.uk/projects/quantomatic/
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Happy Birthday Prakash!


