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Thesis: Good algorithms come from good mathematics

• Solovay-Kitaev algorithm (ca. 1995):

Geometry.

ABA−1B−1.

• New efficient synthesis algorithms (ca. 2012):

Algebraic number theory.

a + b
√
2.
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Gate complexity, in numbers.

Precision Solovay-Kitaev Lower bound

O(log3 .97(1/ǫ)) 3 log2(1/ǫ) + K

ǫ = 10−10 ≈ 4, 000 ≈ 102

ǫ = 10−20 ≈ 60, 000 ≈ 198

ǫ = 10−100 ≈ 37, 000, 000 ≈ 998

ǫ = 10−1000 ≈ 350, 000, 000, 000 ≈ 9966
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Part I: Grid problems
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The ring Z[
√
2]

Consider Z[
√
2] = {a + b

√
2 | a, b ∈ Z}.

This is a ring (addition, subtraction, multiplication).

It has a form of conjugation: (a + b
√
2)• = a − b

√
2.

The map “•” is an automorphism:

(α + β)• = α• + β•
(α − β)• = α• − β•
(αβ)• = α•β•

Finally, α•α = a2 − 2b2 is an integer, called the norm of α.
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Dense or discrete?

The ring Z[
√
2] is dense in the real numbers.

α = a + b
√
2
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The automorphism “•”

The function α 7→ α• is extremely non-continuous. In fact, it

can never happen that |α− β| and |α• − β•| are small at the same

time (unless α = β).

Proof: let α − β = a + b
√
2. Then |α − β| · |α• − β•| =

(a + b
√
2)(a − b

√
2) = a2 − 2b2, which is an integer.

a

b
√
2

α − β = a + b
√
2

α• − β• = a − b
√
2
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1-dimensional grid problems

Definition. Let B be a set of real numbers. The grid for B is

the set

grid(B) = {α ∈ Z[
√
2] | α• ∈ B}.

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

B

Given finite intervals A and B of the real numbers, the

1-dimensional grid problem is to find

xyzα ∈ A and α• ∈ B.
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1-dimensional grid problems

Given finite intervals A and B of the real numbers, the

1-dimensional grid problem is to find α ∈ Z[
√
2] such that

α ∈ A and α• ∈ B.

Equivalently, find a, b ∈ Z such that:

a + b
√
2 ∈ A and a − b

√
2 ∈ B.

a

b
√
2

y0 y1 x0 x1

A = [x0, x1], B = [y0, y1]

It is clear that there will be solutions when |A| and |B| are large.

The number of solutions is O(|A| · |B|) in that case.
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The problematic case: long and skinny

Suppose |A| is tiny and |B| is large, so that we end up with a

long and skinny rectangle:

a

b
√
2

Solution: scaling. lambda=1+sqrt2 is a unit of the ring

Z[sqrt2], with lambda=sqrt2-1. So multiplication by lambda

maps the grid to itself. So we can equivalently consider the

problem for lambdaA and
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Solution of 1-dimensional grid problems

Theorem. Let A and B be finite real intervals. There exists an

efficient algorithm that enumerates all solutions of the grid

problem for A and B.
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2-dimensional grid problems

Consider the ring Z[ω], where ω = eiπ/4 = 1+i√
2
. Z[ω] is a subset of

the complex numbers, which we can identify with the Euclidean
plane R

2.

Definition. Let B be a bounded convex subset of the plane.
Just as in the 1-dimensional case, the grid for B is the set

grid(B) = {α ∈ Z[ω] | α• ∈ B}.

−4−3−2−1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

B
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2-dimensional grid problems

Given bounded convex subsets A and B of the plane, the

2-dimensional grid problem is to find u ∈ Z[ω] such that

u ∈ A and u• ∈ B.

A

B
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0
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4
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The easiest case: upright rectangles

If A = [x0, x1]× [y0, y1] and B = [x ′0, x
′
1]× [y ′

0, y
′
1], the problem

reduces to two 1-dimensional problems:

α ∈ [x0, x1], α• ∈ [x ′0, x
′1] and β ∈ [y0, y1], β• ∈ [y ′

0, y
′
1],

where u = α + iβ ∈ Z[ω]. (This means α, β ∈ Z[
√
2] or

α, β ∈ Z[
√
2] + 1/

√
2).

B

A

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4
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Also easy: upright sets

The uprightness of a set A is the ratio of its area to the area of

its bounding box. If A and B are upright, the grid problem

reduces to that of rectangles.

B
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The hardest case: long and skinny, not upright

Convex sets that are not upright are long and skinny. In this

case, finding grid points is a priori a hard problem.

B
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Our solution: grid operators

A linear operator G : R2
→ R2 is called a grid operator if

G(Z[ω]) = Z[ω].

Some useful grid operators:

R =
1√
2

[

1 −1

1 1

]

A =

[

1 −2

0 1

]

B =

[

1
√
2

0 1

]

K =
1√
2

[

−λ−1 −1

λ 1

]

X =

[

0 1

1 0

]

Z =

[

1 0

0 −1

]

Proposition. Let G be a grid operator. Then the grid problem

for A and B is equivalent to the grid problem for G(A) and G•(B).

Proof: obvious, because α ∈ A iff G(α) ∈ G(A), and α• ∈ B iff

G(α)• ∈ G•(B).
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Effect of a grid operator

B =
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1
√
2

0 1
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√
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Demo
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Solution of 2-dimensional grid problems

Main Theorem. Let A and B be bounded convex sets with

non-empty interior. Then there exists a grid operator G such

that G(A) and G•(B) are 1/15-upright.

Moreover, if A and B are M-upright, then G can be efficiently

computed in O(log(1/M)) steps.

Corollary (Solution of 2-dimensional grid problems). Let A

and B be bounded convex sets with non-empty interior. There

exists an efficient algorithm that enumerates all solutions of the

grid problem for A and B.
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Part II: An algorithm for optimal Clifford+T

approximations

26



The single-qubit Clifford+T group

The Clifford+T group on one qubit is generated by the

Hadamard gate H, the phase gate S, the scalar ω = eiπ/4, and

the T- or π/8-gate:

H =
1√
2

(

1 1
1 −1

)

, S =

(

1 0
0 i

)

,

ω = eiπ/4 =
1 + i√

2
, T =

(

1 0
0 ω

)

.
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Exact synthesis of Clifford+T operators

Theorem (Kliuchnikov, Maslov, Mosca). Let U =

(

u v
t s

)

be a

unitary operator. Then U is a Clifford+T operator if and only if

u, v, t, s ∈ 1√
2k
Z[ω].

Example.

1√
27

(

−3 + 4
√
2 + (3 + 5

√
2) i 3 + (−1 + 3

√
2) i

−3 −
√
2 + (3 − 2

√
2) i 9 − (1 + 3

√
2) i

)

= T HT SHT SHT HT SHT HT SHT HT HT SHT SSSω7

Moreover, if detU = 1, then the T-count of the resulting

operator is equal to 2k − 2.
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The approximate synthesis problem

Problem.Given an operator U ∈ SU(2) and ǫ > 0, find a

Clifford+T operator U ′ of small T-count, such that

‖U ′ − U‖ ≤ ǫ.

Basic construction

We will approximate a z-rotation

Rz(θ) =

(

e−iθ/2 0

0 eiθ/2

)

by a matrix of the form

U =
1

√
2
k

(

u −t†

t u†

)

,

where u, t ∈ Z[ω].

29



Observation. The error is a function of u (and not of t).

Indeed, setting z = e−iθ/2 and u ′ = u√
2
k, we have

‖U − Rz(θ)‖ ≤ ǫ iff ~u ′ · ~z ≥ 1 −
ǫ2

2
.

D

i

1

~z

ǫ2

2

≈ 2ǫ

Rǫ

The problem then reduces to:

(1) Finding u ∈ Z[ω] such that u√
2
k ∈ Rǫ, with small k;

(2) Solving the Diophantine equation t†t + u†u = 2k.
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Diophantine equations are computationally easy

(if we can factor)

Consider a Diophantine equation of the form

t†t = ξ (1)

where ξ ∈ Z[
√
2] is given and t ∈ Z[ω] is unknown.

Necessary condition. The equation (1) has a solution only if

ξ ≥ 0 and ξ• ≥ 0.

Theorem. There exists a probabilistic polynomial time

algorithm which decides whether the equation (1) has a solution

or not, and produces the solution if there is one, provided that

the algorithm is given the prime factorization of n = ξ•ξ.

This is okay, because factoring random numbers is not as hard

as worst-case numbers.
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The candidate selection problem

The only remaining problem is to find suitable u. Note that

ξ• = (2k − u†u)• ≥ 0 iff u•/
√
2k is in the unit disk.

Candidate selection problem. Find k ∈ N and u ∈ Z[ω] such

that

1. u/
√
2k is in the epsilon-region Rǫ;

2. u•/
√
2k is in the unit disk;

D

i

1

~z

ǫ2

2

≈ 2ǫ

Rǫ

But this is a 2-dimensional grid problem, so can be solved

efficiently.

32



Algorithm 1

(1) For all k ∈ N, enumerate all u ∈ Z[ω] such that u/
√
2k ∈ Rǫ

and u•/
√
2k ∈ D.

(2) For each u:

(a) Compute ξ = 2k − u†u and n = ξ•ξ.
(b) Attempt to find a prime factorization of n.

(c) If a prime factorization is found, attempt to solve the

equation t†t = ξ.

(3) When step (2) succeeds, output U.
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Results

• In the presence of a factoring oracle (e.g., a quantum

computer), Algorithm 1 is optimal in an absolute sense: it

finds the solution with the smallest possible T-count

whatsoever, for the given θ and ǫ.

• In the absence of a factoring oracle, Algorithm 1 is nearly

optimal: it yields T-counts of m +O(log(log(1/ǫ))), where m

is the second-to-optimal T-count.

• The algorithm yields an upper bound and a lower bound for

the T-count of each problem instance.

• The runtime is polynomial in log(1/ǫ).
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Gate complexity, in numbers.

Precision Solovay-Kitaev Lower bound This algorithm

ǫ = 10−10 ≈ 4, 000 102 102

ǫ = 10−20 ≈ 60, 000 198 200

ǫ = 10−100 ≈ 37, 000, 000 998 1000

ǫ = 10−1000 ≈ 350, 000, 000, 000 9966 9974
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10−1 10−10 10−100 10−1000 ǫ

10

100

1000

10000

T

RS2014: K + 3 log2(1/ǫ)

Sel2012: K + 4 log2(1/ǫ)

KMM2012: K + 3.21 log2(1/ǫ)

Fow2004: K + 3 log2(1/ǫ)

SK1995: O(log3.97(1/ǫ))
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The end.


