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How I learned quantum mechanics from Prakash in 2000

Peter: Please teach me about quantum mechanics.

Prakash: Do you know about vector spaces and linear maps?

Peter: Yes.

Prakash: Great, then you already know quantum mechanics!

The end.
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Thesis: Good algorithms come from good mathematics

e Solovay-Kitaev algorithm (ca. 1995):
Geometry.

ABA BT,

e New efficient synthesis algorithms (ca. 2012):
Algebraic nhumber theory.

a+ bv/2.



Gate complexity, in numbers.

Precision
e =10"10
e =102
e = 10100

c — 10—1000

Solovay-Kitaev
0O(log3.97(1/¢€))
~ 4,000

~ 60, 000

~ 37,000, 000
~ 350, 000, 000, 000

Lower bound
31095(1/€e) + K

~ 102
~ 198
~ 998
~ 9966



Part I: Grid problems



The ring Z[v/2]

Consider Z[v2] ={a+bv2]| a,b € Z}.

This is a ring (addition, subtraction, multiplication).
It has a form of conjugation: (a+ bv2)® = a — bV/2.

The map “e' is an automorphism:

(x+B)® = o®+p°
(x—B)® = «
(xB)® = «o°*p®

Finally, «®*« = a? — 2b% is an integer, called the norm of «.
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Dense or discrete?
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Dense or discrete?

The ring Z[v/2] is dense in the real numbers.

bv/2
.................. a:a+b¢z
a
.................. o — a—by3

But it is better to think of Z[v/2] as discrete.
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The automorphism “e”’

The function o — «® is extremely non-continuous. In fact, it
can never happen that |« — 3] and |«® — 3®| are small at the same
time (unless o = ).

Proof: let « — B =a+bv2. Then |x—B|-|a® —B® =
(a +bv2)(a —bv2) = a? — 2b%, which is an integer.

b2

x—pB=a+bv2

x®*—pB*=a—byv2
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1-dimensional grid problems

Definition. Let B be a set of real numbers. The grid for B is

the set
grid(B) = {« € Z[V2] | «* € B}.
B
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1-dimensional grid problems

Definition. Let B be a set of real numbers. The grid for B is
the set

grid(B) = {« € Z[V2] | «® € B.

B A
o-oje—ere—ereeo oo o NN o oSENEES o oo oo
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Given finite intervals A and B of the real numbers, the
1-dimensional grid problem is to find « € Z[v/2] such that

xeA and «° € B.
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1-dimensional grid problems

Given finite intervals A and B of the real numbers, the
1-dimensional grid problem is to find « € Z[v/2] such that

xce A and «° e B.
Equivalently, find a,b € Z such that:

a+bv2eA and a—bv2cB.
bv2

A = [x0,x1], B =I[y0,yl]

| 1 iy ~ a
Yo Y X0 X

It is clear that there will be solutions when |A| and |B| are large.
The number of solutions is O(|A| - |B|) in that case.
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The problematic case: long and skinny

Suppose |A| is tiny and |B] is large, so that we end up with a
long and skinny rectangle:
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Solution: scaling. A =1+ +/2 is a unit of the ring Z[v/2], with
AT =v2-1. So multiplication by A maps the grid to itself. So
we can equivalently consider the problem for A™A and A*"B,

which takes us back to the ‘fat’” case.
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The problematic case: long and skinny

Suppose |A| is tiny and |B] is large, so that we end up with a
long and skinny rectangle:
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Solution: scaling. A =1+ +/2 is a unit of the ring Z[v/2], with
AT =v2-1. So multiplication by A maps the grid to itself. So
we can equivalently consider the problem for A™A and A*"B,

which takes us back to the ‘fat’” case.
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Solution of 1-dimensional grid problems

T heorem. Let A and B be finite real intervals. There exists an
efficient algorithm that enumerates all solutions of the grid
problem for A and B.
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2-dimensional grid problems

Consider the ring Z[w], where w = ¢4 = 41 714] is a subset of
the complex numbers, which we can |dentngy with the Euclidean
plane RZ.

S

Definition. Let B be a bounded convex subset of the plane.
Just as in the 1-dimensional case, the grid for B is the set

grid(B) = {x € Z[w] | «® € B}.
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2-dimensional grid problems

Given bounded convex subsets A and B of the plane, the
2-dimensional grid problem is to find u € Z[w] such that

ue A and u® e B.
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The easiest case: upright rectangles

If A =[x, x1] X Yo, Y1l and B =[x}, x1] x [yy,y7l, the problem
reduces to two 1-dimensional problems:
a € [xo,x1l,  «®€lxyx 1 and B € lyo,yil, B® € lyyyil,

where u = a+ip € Zlw]. (This means «,p € Z[v/2] or
«, B € ZIV2] +1/V2).
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Also easy: upright sets

The uprightness of a set A is the ratio of its area to the area of
its bounding box. If A and B are upright, the grid problem
reduces to that of rectangles.

[ ] . . [ ] ._.2 | [ ] . [ ] . . [ ]
[ ] [ ._ 3 I (] [ ] [
[ ] [ ] _A' ] [ ] [ ] [ ]
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Also easy: upright sets

The uprightness of a set A is the ratio of its area to the area of
its bounding box. If A and B are upright, the grid problem
reduces to that of rectangles.
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The hardest case: long and skinny, not upright

Convex sets that are not upright are long and skinny. In this
case, finding grid points is a priori a hard problem.
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Our solution: grid operators

A linear operator G :R? — R? is called a grid operator if
G(Zlw]) = Z[w].

Some useful grid operators:

Al Al ) eelo

| [ Nl R 0 1 1 0
K:\ﬁ[ A 1] X:[1 o] Z:[o —1]

Proposition. Let G be a grid operator. Then the grid problem
for A and B is equivalent to the grid problem for G(A) and G*(B).

R —

Proof: obvious, because « € A iff G(x) € G(A), and «® € B iff
G(x)® € G*(B).
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Effect of a grid operator
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Effect of a grid operator
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Demo
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Solution of 2-dimensional grid problems

Main Theorem. Let A and B be bounded convex sets with
non-empty interior. Then there exists a grid operator G such
that G(A) and G®*(B) are 1/15-upright.

Moreover, if A and B are M-upright, then G can be efficiently
computed in O(log(1/M)) steps.

Corollary (Solution of 2-dimensional grid problems). Let A
and B be bounded convex sets with non-empty interior. There
exists an efficient algorithm that enumerates all solutions of the
grid problem for A and B.
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Part II: An algorithm for optimal Clifford+4T
approximations
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The single-qubit Clifford4T group

The Clifford+T group on one qubit is generated by the
Hadamard gate H, the phase gate S, the scalar w = ei“/“, and
the T- or nt/8-gate:

=z ) s=(e %)
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Exact synthesis of Clifford+T operators

Theorem (Kliuchnikov, Maslov, Mosca). Let U = ( 1; \S) ) be a

unitary operator. Then U is a Clifford+T operator if and only if
u, v, t, s € ﬁZ[w].

Example.

1 [ 3442+ (34+5V2)1 3+ (—1+3V2)d
V27 =3—=V2+(3=2V2)i 9—(1+3V2)i

— THT SHT SHT HT SHT HT SHT HT HT SHT SSSw”

Moreover, if detU =1, then the T-count of the resulting
operator is equal to 2k — 2.
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The approximate synthesis problem

Problem. Given an operator U € SU(2) and € >0, find a
Clifford4+T operator U’ of small T-count, such that
U —uj <e.

Basic construction
We will approximate a z-rotation

e—i@/z 0
Rz(0) = ( 0 ¢i0/2 >

by a matrix of the form

where u,t € Zlw].
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Observation. The error is a function of u (and not of t).

Indeed, setting z = e 9/2 and u/ = ﬁ we have
2
U —R.(0)]| < e iff a’-zz1—€7
1
/ D Red 7
]
2 2€ \\
N 2

The problem then reduces to:

(1) Finding u € Z[w] such that ﬁ € Re, with small k;

(2) Solving the Diophantine equation tt + ufu = 2k.
30



Diophantine equations are computationally easy
(if we can factor)

Consider a Diophantine equation of the form
tht = ¢ (1)
where & € Z[\/2] is given and t € Z[w] is unknown.

Necessary condition. The equation (1) has a solution only if
£&>0and &* > 0.

Theorem. There exists a probabilistic polynomial time
algorithm which decides whether the equation (1) has a solution
or not, and produces the solution if there is one, provided that
the algorithm is given the prime factorization of n = &£°®€.

This is okay, because factoring random numbers is not as hard

as worst-case numbers.
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The candidate selection problem

The only remaining problem is to find suitable u. Note that
£ = (2K —ufw)® > 0 iff u®/+v/2¥ is in the unit disk.

Candidate selection problem. Find k € N and u € Z[w] such

that
1. u/v/2% is in the epsilon-region Re; 4
2. u®/+/2% is in the unit disk;

3l
™
Ny

But this is a 2-dimensional grid problem, so can be solved
efficiently.
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Algorithm 1

(1) For all k € N, enumerate all u € Z[w] such that u/v2* € Re
and u®/v2k e D.

(2) For each u:
(a) Compute & =2%—ufu and n = £°¢.

(b) Attempt to find a prime factorization of n.
(c) If a prime factorization is found, attempt to solve the

equation tit = &.

(3) When step (2) succeeds, output U.
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Results

e In the presence of a factoring oracle (e.g., a quantum
computer), Algorithm 1 is optimal in an absolute sense: it
finds the solution with the smallest possible T-count
whatsoever, for the given 6 and e.

e In the absence of a factoring oracle, Algorithm 1 is nearly
optimal. it yields T-counts of m + O(log(log(1/€))), where m
IS the second-to-optimal T-count.

e [ he algorithm vields an upper bound and a lower bound for
the T-count of each problem instance.

e The runtime is polynomial in log(1/€).
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Gate complexity, in humbers.

Precision
e =10"10
e =102
e = 10100

e — 101000

Solovay-Kitaev

~ 4,000

~ 60, 000

~ 37,000,000

~ 350, 000, 000, 000

Lower bound

102
198
9298
92966

This algorithm

102
200
1000
92974
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SK1995: O(log3?/(1/¢€))

T Sel2012: K+ 41og,(1/€)
10000 — RS2014: K+ 31095(1/¢€)
1000 —

. KMM2012: K+ 3.21109,(1/€)

Fow2004: K+ 3log,(1/€)

10 —

10—1 10—10 10—100 10—1000 €
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