Distributed Probabilistic Strategies

Glynn Winskel

Generalise domain theory. An aim in developing distributed games and strategies is to tackle anomalies like non-deterministic dataflow, and repair the divide between denotational and operational semantics.

Distributed games, with behaviour based on event structures, rather than trees. The extra generality reveals new structure and a mathematical robustness to the concept of strategy—showing strategies are (special) profunctors. \rightarrow a language for strategies.

Extension with probability to probabilistic strategies, and quantum strategies?

Prakash Fest, Oxford, 24 May 2014

Event structures

An event structure comprises (E, \leq, Con) , consisting of a set of events E

- partially ordered by \leq , the **causal dependency relation**, and

- a nonempty family Con of finite subsets of E, the **consistency relation**, which satisfy

$$\{e' \mid e' \leq e\} \text{ is finite for all } e \in E,$$

$$\{e\} \in \text{Con for all } e \in E,$$

$$Y \subseteq X \in \text{Con} \Rightarrow Y \in \text{Con}, \text{ and}$$

$$X \in \text{Con } \& e \leq e' \in X \Rightarrow X \cup \{e\} \in \text{Con}.$$

Say e, e' are **concurrent** if $\{e, e'\} \in \text{Con } \& e \not\leq e' \& e' \not\leq e$. In games the relation of **immediate dependency** $e \rightarrow e'$, meaning e and e' are distinct with $e \leq e'$ and no event in between, will play an important role.

Configurations of an event structure

The **configurations**, $\mathcal{C}^{\infty}(E)$, of an event structure E consist of those subsets $x \subseteq E$ which are

Consistent: $\forall X \subseteq_{\text{fin}} x. X \in \text{Con}$ and

Down-closed: $\forall e, e'. e' \leq e \in x \Rightarrow e' \in x$.

Often concentrate on the finite configurations C(E).

Structural maps of event structures

A map of event structures $f: E \to E'$ is a partial function on events $f: E \to E'$ such that for all $x \in \mathcal{C}(E)$

 $fx \in \mathcal{C}(E')$ and if $e_1, e_2 \in x$ and $f(e_1) = f(e_2)$, then $e_1 = e_2$. (local injectivity)

An affine map $f: E \to_a E'$ is defined similarly but now $f \emptyset$ maybe a nonempty configuration of E'. It comprises a configuration $y \in C(E')$ and a map of event structures $f_1: E \to E'/y$ where E'/y denotes the event structure after y. By definition $fx =_{def} y \cup f_1 x$.

Distributed games

Games and strategies are represented by **event structures with polarity**, an event structure (E, \leq, Con) where events E carry a polarity +/- (Player/Opponent), respected by maps.

(Simple) Parallel composition: $A \parallel B$, by juxtaposition.

Dual, B^{\perp} , of an event structure with polarity B is a copy of the event structure B with a reversal of polarities; this switches the roles of Player and Opponent.

Distributed plays and strategies

A **nondeterministic play** in a game A is represented by a total map

 $\sigma: S \to A$

preserving polarity; S is the event structure with polarity describing the moves played.

A strategy in a game A is a (special) nondeterministic play $\sigma : S \to A$. A strategy from A to B is a strategy in $A^{\perp} \parallel B$, so $\sigma : S \to A^{\perp} \parallel B$. [Conway, Joyal]

NB: A strategy in a game A is a strategy for Player; a strategy for Opponent - a counter-strategy - is a strategy in A^{\perp} .

Example of a strategy: copy-cat strategy from A to A

6

Composition of strategies $\sigma: S \to A^{\perp} || B$, $\tau: T \to B^{\perp} || C$ Via pullback. Ignoring polarities, the composite partial map

has the partial-total map factorization: $P \longrightarrow T \odot S \xrightarrow{\tau \odot \sigma} A \| C$.

For copy-cat to be identity w.r.t. composition

The only immediate causal dependencies a strategy can introduce: $\ominus \twoheadrightarrow \oplus$

An alternative characterization of strategies

Defining a partial order — the Scott order — on configurations of A

$$y \sqsubseteq_A x$$
 iff $y \supseteq^- \cdot \subseteq^+ \cdot \supseteq^- \cdots \supseteq^- \cdot \subseteq^+ x$
we obtain a factorization system $((\mathcal{C}(A), \sqsubseteq_A), \supseteq^-, \subseteq^+)$, *i.e.* $\exists !z.$ $y \supseteq^- z.$
Proposition $z \in \mathcal{C}(\mathbb{C}_A)$ iff $z_2 \sqsubseteq_A z_1$.

Theorem Strategies $\sigma: S \to A$ correspond to discrete fibrations

 \rightarrow A lax functor from strategies to profunctors ...

Ρ

A bicategory of games

Objects are event structures with polarity—the games, A, B, ... ;

```
arrows \sigma: A \twoheadrightarrow B are strategies \sigma: S \to A^{\perp} || B;
```

2-cells are (the obvious) maps of strategies.

The vertical composition of 2-cells is the usual composition of maps. Horizontal composition is given by the composition of strategies \odot (which extends to a functor on 2-cells via the universality of pullback).

Duality: $\sigma : A \twoheadrightarrow B$ corresponds to $\sigma^{\perp} : B^{\perp} \twoheadrightarrow A^{\perp}$, as $A^{\perp} || B \cong (B^{\perp})^{\perp} || A^{\perp}$. The bicategory of strategies is rich in structure, in particular, it is compactclosed (so has a trace, a feedback operation extending that of nondeterministic dataflow)—though with the addition of the extra features of winning conditions or pay-off, compact closure will weaken to *-autonomy.

From strategies to probabilistic strategies

 $S \\ \downarrow \sigma \\ A$

Aim

(1) To endow S with probability, while

(2) taking account of the fact that in a strategy Player can't be aware of the probabilities assigned by Opponent.

Probabilistic event structures

A probabilistic event structure comprises an event structure $E = (E, \leq, \text{Con})$ together with a *(normalized) continuous valuation, i.e.* a function v from the Scott open subsets of configurations $C^{\infty}(E)$ to [0, 1] which is

(normalized) $v(\mathcal{C}^{\infty}(E)) = 1$ (strict) $v(\emptyset) = 0$

(monotone) $U \subseteq V \Rightarrow v(U) \leq v(V)$

(modular) $v(U \cup V) + v(U \cap V) = v(U) + v(V)$

(continuous) $v(\bigcup_{i\in I} U_i) = \sup_{i\in I} v(U_i)$ for *directed* unions $\bigcup_{i\in I} U_i$.

Intuition: v(U) is the probability of the result being in U. A cts valuation extends to a probability measure on Borel sets of configurations. A workable characterization. A probabilistic event structure comprises an event structure E with a configuration-valuation $v : C(E) \rightarrow [0, 1]$ which satisfies

(normalized) $v(\emptyset) = 1$ and

(non-ve drop) $d_v^{(n)}[y; x_1, \cdots, x_n] \ge 0$, for all $n \in \omega$, and $y \subseteq x_1, \cdots, x_n$ in $\mathcal{C}(E)$.

For $y \subseteq x_1, \cdots, x_n$ in $\mathcal{C}(E)$,

$$d_v^{(n)}[y; x_1, \cdots, x_n] =_{\text{def}} v(y) - \sum_I (-1)^{|I|+1} v(\bigcup_{i \in I} x_i),$$

—the index I ranges over $\emptyset \neq I \subseteq \{1, \dots, n\}$ s.t. $\{x_i \mid i \in I\}$ is compatible. (Sufficient to check the 'drop condition' for $y = cx_1, \dots, x_n$)

Theorem. Continuous valuations restrict to configuration-valuations. A configuration-valuation extends to a unique continuous valuation on open sets, and that to a unique probabilistic measure on Borel subsets of configurations. (*The result holds in greater generality, for Scott domains*)

Probabilistic event structure with polarities

Let E be an event structure in which (not necessarily all) events carry +/-. Write $x \subseteq^p y$ if $x \subseteq y$ and no event in $y \setminus x$ has polarity -.

Now, a **configuration-valuation** is a function $v : \mathcal{C}(E) \to [0,1]$ for which

$$v(\emptyset) = 1$$
, $x \subseteq \overline{y} \Rightarrow v(x) = v(y)$, for all $x, y \in \mathcal{C}(E)$,

and the "drop condition"

$$d_v^{(n)}[y;x_1,\cdots,x_n] \ge 0$$

for all $n \in \omega$ and $y \subseteq^p x_1, \cdots, x_n$ in $\mathcal{C}(E)$.

A probabilistic event structure with polarity comprises E an event structure with polarity together with a configuration-valuation $v_E : C(E) \rightarrow [0, 1]$.

Probabilistic strategies

Assume games are *race-free*, *i.e.* there is no immediate conflict between events of opposite polarity. *E.g.* ban $\ominus \cdots \oplus$.

A probabilistic strategy in A comprises S, v_S , a probabilistic event structure with polarity, and a strategy $\sigma : S \to A$.

A race-free game A has a **probabilistic copy-cat** by taking $v_{\mathbb{C}_A}$ constantly 1 —this is a configuration-valuation as \mathbb{C}_A is deterministic for race-free A.

For the **composition** $\tau \odot \sigma$ endow the pb P with configuration-valuation $v(x) = v_S(\pi_1 x) \times v_T(\pi_2 x)$. This forms a configuration-valuation because assuming $\pi_1 y - \mathbb{C}^+ \pi_1 x_i$ when $1 \le i \le m$ and $\pi_2 y - \mathbb{C}^+ \pi_2 x_i$ when $m + 1 \le i \le n$,

$$d_v^{(n)}[y;x_1,\cdots,x_n] = d_v^{(m)}[\pi_1y;\pi_1x_1,\cdots,\pi_1x_m] \times d_v^{(n-m)}[\pi_2y;\pi_2x_{m+1},\cdots,\pi_2x_n].$$

 \rightarrow A bicategory of games and probabilistic strategies Objects are race-free games A, B, C, \dots ;

arrows $\sigma: A \rightarrow B$ are probabilistic strategies $\sigma: S \rightarrow A^{\perp} || B$ with configuration valuation $v: \mathcal{C}(S) \rightarrow [0, 1]$;

commute which reflect + compatibility, i.e. $x \subseteq^+ x_1 \& x \subseteq^+ x_2 \& fx_1 \uparrow fx_2 \Rightarrow x_1 \uparrow x_2$, and where v(x) = v'(fx) for all $x \in C(S)$. Includes rigid embeddings and \leq . (Currently I'm working on more general two-cells.)

Constructions on probabilistic strategies

Types: Race-free games A, B, C, \ldots with operations $A^{\perp}, A \parallel B$, sums $\sum_{i \in I} A_i$, recursively-defined types, . . .

A term

$$x_1: A_1, \cdots, x_m: A_m \vdash t \dashv y_1: B_1, \cdots, y_n: B_n,$$

denotes a strategy $A_1 \parallel \cdots \parallel A_m \twoheadrightarrow B_1 \parallel \cdots \parallel B_n.$
$$\underbrace{A_1 \longrightarrow B_1}_{i i j i} \underbrace{B_1}_{i i j j}$$

Idea: t denotes a strategy $S \to \vec{A}^{\perp} \| \vec{B}$. The term t describes witnesses, finite configurations of S, to a relation between finite configurations \vec{x} of \vec{A} and \vec{y} of \vec{B} . Cf. profunctors.

Duality and Composition

Duality of input and output:

$$\frac{\Gamma, x : A \vdash t \dashv \Delta}{\Gamma \vdash t \dashv x : A^{\perp}, \Delta}$$

because t denotes a strategy in $(\Gamma^{\perp} \| A^{\perp}) \| \Delta \cong \Gamma^{\perp} \| (A^{\perp} \| \Delta)$.

Composition of strategies:

$$\frac{\Gamma \vdash t \dashv \Delta \qquad \Delta \vdash u \dashv \mathbf{H}}{\Gamma \vdash \exists \Delta. [t \parallel u] \dashv \mathbf{H}}$$

When Δ is empty, this yields simple parallel composition t || u.

Hom-set terms

Copy-cat on
$$A$$
, $x : A \vdash y \sqsubseteq_A x \dashv y : A$ or $\vdash y \sqsubseteq_A x \dashv x : A^{\perp}, y : A$.
 $\oplus \leftarrow \ominus$
 $\ominus \rightarrow \oplus$

Generally, when $f: A \to_a C$ and $g: B \to_a C$ are affine maps s.t. $g \emptyset \sqsubseteq_C f \emptyset$

$$x: A \vdash gy \sqsubseteq_C fx \dashv y: B$$

denotes a deterministic strategy—with configuration valuation constantly 1 provided f reflects --compatibility and g reflects +-compatibility.

Lifting maps and shifting strategies

An affine map $f : A \rightarrow B$ of games which reflects --compatibility lifts to a deterministic strategy $f_! : A \twoheadrightarrow B$:

$$x: A \vdash y \sqsubseteq_B f x \dashv y: B.$$

An affine map $f : A \to B$ of games which reflects +-compatibility lifts to a deterministic strategy $f^* : B \twoheadrightarrow A$:

$$y: B \vdash fx \sqsubseteq_B y \dashv x: A.$$

 $f^* \odot t$ denotes the **pullback** of a strategy t in B across the map $f : A \to B$. It can introduce extra events and dependencies in the strategy. It subsumes prefixing.

Pullback of strategies

 $\frac{\Gamma \vdash t_1 \dashv \Delta \quad \Gamma \vdash t_2 \dashv \Delta}{\Gamma \vdash t_1 \land t_2 \dashv \Delta}$

In the case where t_1 and t_2 denote the respective probabilistic strategies v_1 , $\sigma_1: S_1 \to \Gamma^{\perp} || \Delta$ and $v_2, \sigma_2: S_2 \to \Gamma^{\perp} || \Delta$ the strategy $t_1 \wedge t_2$ denotes the pullback

with configuration valuation $x \mapsto v_1(\pi_1 x) \times v_2(\pi_2 x)$ for $x \in \mathcal{C}(S_1 \wedge S_2)$.

Probabilistic sum of strategies

In the **probabilistic sum of strategies**, in the same game, the strategies are glued together on their initial Opponent moves (to maintain receptivity) and only commit to a component with the occurrence of a Player move. For I countable and a sub-probability distribution $p_i, i \in I$,

 $\frac{\Gamma \vdash t_i \dashv \Delta \quad i \in I}{\Gamma \vdash \sum_{i \in I} p_i t_i \dashv \Delta}.$

We use \perp for the **empty probabilistic sum**, when the rule above specialises to

$$\Gamma \vdash \bot \dashv \Delta \,,$$

which denotes the minimum strategy in the game $\Gamma^{\perp} \| \Delta$ —it comprises the initial segment of the game $\Gamma^{\perp} \| \Delta$ consisting of all the initial Opponent events of A.

Duplication

We duplicate arguments through a probabilistic strategy $\delta_A : A \rightarrow A \| A$. In the absence of probability δ_A forms a comonoid with counit $\bot : A \rightarrow \emptyset$. The general defn is involved, but *e.g.*,

 \rightsquigarrow duplication terms such as $x: A \vdash \delta(x, y_1, y_2) \dashv y_1: A, y_2: A.$

Recursion

Given $x: A, \Gamma \vdash t \dashv y: A$,

the term $\Gamma \vdash \mu x : A.t \dashv y : A$ denotes the \leq -least fixed point amongst strategies $X : \Gamma \twoheadrightarrow A$ of $F(X) = t \odot (id_{\Gamma} || X) \odot \delta_{\Gamma}$:

As δ_{Γ} is not a comonoid - it is not associative - not all the "usual" laws of recursion will hold.

Quantum strategies—sketch

A quantum game comprises a quantum event structure A, Q with initial state ρ , where each event of A has a polarity Player/Opponent. A quantum strategy is a probabilistic strategy $v_s, \sigma : S \to A$.

The play of a strategy $v_S, \sigma : S \to A$ against a counter-strategy $v_T, \tau : T \to A^{\perp}$ results in a probabilistic quantum experiment P, v_P with $f : P \to A$ where P the pullback of σ , τ and $f =_{\text{def}} \sigma \pi_1 = \tau \pi_2$ in $P = \pi_1 \xrightarrow{\pi_1} \xrightarrow{\pi_2} \pi_2$

Quantum strategies inherit types and operations from probabilistic strategies, though need extra type constructions to introduce new entanglement. Welcome to 60 Prakash!

Stay young at heart!