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A historical interlude

• MFPS 1990
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A historical interlude

• MFPS 1990

• No probability, yet…
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A few years later…

• Questions asked in panel 
session

− Randomization – is it really
used widely?

− Where are the tools? 
heuristics?

− Did you find any bugs?

• In this talk

− Some answers

− As always, new challenges!

www.cs.bham.ac.uk/~mzk/probmiv98.html
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Probabilistic model checking

• First algorithms proposed in 1980s

− [Vardi, Courcoubetis, Yannakakis, …]

− algorithms [Hansson, Jonsson, de Alfaro] & first implementations

• 2000: tools ETMCC (MRMC) & PRISM released

− PRISM: efficient extensions of symbolic model checking

− ETMCC (now MRMC): model checking for continuous-time Markov 
chains [Baier, Hermanns, Haverkort, Katoen, …]

• Selected advances in probabilistic model checking:

− 1997 BBD-based symbolic methods [Baier, de Alfaro, K, Parker, …]

− 2000 Uniformisation [Baier, Haverkort, Hermanns, Katoen, …]

− 1999 Zone-based techniques [Sproston, Norman, Parker, K, …]

− 2007 Multi-objective methods [Etessami, Vardi, K, Yannakakis, …]

− 2010 Compositional methods [K, Norman, Parker, Qu, …]

− 2012 Stochastic games [Simaitis, Forejt, Chen, Parker, K, …]
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Probabilistic model checking

• What’s involved

− typically more expensive than the non-probabilistic case: 
need to build and solve model

− algorithms involve often non-trivial combination of 

• graph-based analysis (typically symbolic)

• and numerical solution, e.g. linear equations/linear programming

− or simulation-based analysis (statistical model checking)

• The state of the art

− fast/efficient techniques for a range of probabilistic models

− feasible for models of up to 107 states (1010 with symbolic)

− successfully applied to many application domains:

• distributed randomised algorithms, communication protocols, 
security protocols, biological systems, quantum cryptography, …

− beyond model checking: parametric methods, synthesis, …
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Probabilistic model checking in action

• Bluetooth device discovery protocol

− frequency hopping, randomised delays

− low-level model in PRISM, based on
detailed Bluetooth reference documentation

− numerical solution of 32 Markov chains,
each approximately 3 billion states

− identified worst-case time to hear one message, 2.5 seconds 

• FireWire root contention

− wired protocol, uses randomisation

− model checking using PRISM

− optimum probability of leader election 
by time T for various coin biases

− demonstrated that a biased coin can improve performance
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Probabilistic model checking in action

• DNA transducer gate [Lakin et al, 2012]

− DNA computing with a restricted 
class of DNA strand displacement 
structures

− transducer design due to Cardelli

− automatically found and fixed 
design error, using Microsoft’s DSD and PRISM

• Microgrid demand management protocol [TACAS12,FMSD13]

− designed for households to actively manage 
demand while accessing a variety of energy 
sources

− found and fixed a flaw in the protocol, due to
lack of punishment for selfish behaviour

− implemented in PRISM-games
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But…

• Largely limited to discrete state, discrete probability models

− Markov chains, Markov decision processes

− continuous time: via uniformisation or zone abstractions

− continuous distributions: via discretisation, no error bounds

− continuous space: some early work on probabilistic hybrid 
automata, via reduction to MDPs [Hahn, Hermanns, …]

• At the same time

− need more realistic models (real-time behaviour, continuous 
dynamics, stochastic hybrid systems, etc)

− since 1997, much existing work on continuous space models 
[Panangaden, Desharnais, …]

− separately, also in control and decision literature

• This talk: about extending probabilistic model checking for 
Labelled Markov Processes
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Overview

• Probabilistic model checking & PRISM

− background & history

• Labelled Markov processes (LMPs)

− semantics of LMP models 

− formally relating LMPs and Markov decision processes (MDPs)

• Notions of (approximate) bisimulation for LMPs

• Probabilistic model checking of LMPs via PRISM

− constructive derivation of finite abstraction (approximate 
bisimmulation) for LMP (MDP and thus for LMP)

− case study: room temperature control
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Labelled Markov processes

• Labelled Markov processes (LMPs)  [Panangaden et al.]

− uncountably infinite (continuous) state space

− (we skip here details on measurability and topology)

− evolve sequentially in discrete time-steps

− here, we restrict our attention to a finite time interval [0,N]

• An LMP is a structure (S, s0, B(S), {τu|u ∈ U}) where:

− S is the state space

− s0 ∈ S is the initial state

− B(S) is a Borel σ-field on S 

− τu : S × B(S) → [0,1] is a sub-probability transition function

− and U is a finite set of labels

• Evolution of LMP depends on the choice of label (“action”) 
u ∈ U at each time step, which may be accepted or rejected
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Labelled Markov processes

• For the purposes of model checking, we also add:

− a labelling L : S → 2AP of states with atomic propositions

− reward (or cost) structures of the form r : S × U → ℝ≥0

• LMP semantics: two alternative views…

− testing (à la [Larsen/Skou]) or decision processes (e.g. MDPs)

• Testing process

− emphasis on observing labels (u ∈ U)

• Decision process

− emphasis on controlling the system via labels and observing 
underlying system dynamics (variables, atomic propositions)
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Semantics of LMPs

• Semantics of LMP (S, s0, B(S), {τu|u ∈ U})

• Model initialised at k=0 in state s0

• At any 0≤k≤N−1, given sk ∈ S and selecting uk ∈ U:

− probability of successor sk+1 given by τu(sk,·)

− label uk is accepted with probability ∫S τuk
(sk,dx)

− otherwise, action uk is rejected, with two possible behaviours: 

1. (testing process) the dynamics stops, sk+1 is undefined, 
process yields finite trace (s0,u0),(s1,u1),...,(sk,uk) 

2. (decision process) some default action u is selected (either uk

or some extra u'∉U), continues with sample sk+1 ∼ τu(sk,·), 
yielding (s0,u0),(s1,u1),...,(sk,uk),(sk+1,u)...,(sN−1,u),sN)

• For a policy (or strategy) σ that picks each uk, we get a 
probability measure Pσ over the sample space SN+1
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Semantics: Examples

• Example (testing process)

− slot/vending machine 

− internal state with finite-memory register 

− at a given (discrete) time, user pushes button (label) 

− machine (possibly - with some probability) outputs such label, 
and if so probabilistically updates state of register 

• Example (decision process)

− room temperature control (see later case study)

− temperature in room evolves non-autonomously,
i.e. is affected by controllable heater 

− at a given (discrete) time, user selects heater status (label)
and the temperature is updated accordingly 

− heater can break down with some probability (label rejected)

− temperature still updated according to default action 
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Exact probabilistic bisimulation

• Probabilistic bisimulation for LMPs

− extends notion for (discrete-state) Markov chains, MDPs

• An (exact) probabilistic bisimulation is an equivalence 
relation R on LMP states S such that, whenever s1 R s2:

− L(s1) = L(s2) and r(s1,u) = r(s2,u) for all u ∈ U

− τu(s1,b) = τu(s2,b) for any u ∈ U and set b ∈ S/R (which is Borel 
measurable)

• As usual:

− s1,s2 ∈ S are called bisimilar if s1 R s2 for some such relation R

− definition can be extended to relate two LMPs

• Questions/issues:

− too conservative (i.e. fine) in practice?

− is it feasible (or robust) to compute?

[Desharnais/Edalat/Panangden'02]
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Approximate probabilistic bisimulation

• Approximate probabilistic bisimulation

− for some precision ϵ, i.e. ϵ-probabilistic bisimulation

• An ϵ-probabilistic bisimulation is a relation R on LMP states 
S such that, whenever s1 R s2:

− L(s1) = L(s2) and r(s1,u) = r(s2,u) for all u ∈ U

− |τu(s1,b) - τu(s2,b)| ≤ ϵ for any u ∈ U and Rε-closed set b ⊆ S

• In general, R
ϵ
is not an equivalence relation (not transitive)

− so induces a covering, not a partition, of S

• Like before:

− s1,s2 ∈ S are ϵ-bisimilar if s1 Rϵ s2 for some such relation R
ϵ

− definition can be extended to relate two LMPs

• And again: may be difficult to compute in practice

[Desharnais/Laviolette/Tracol'08]
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Finite-state approximations of LMPs

• We construct an abstraction of a (continuous-state) LMP
as a (discrete-state) Markov decision process (MDP)

− strictly speaking, abstraction is a labelled Markov chain 
(possibly containing sub-distributions)

• Induced by discretisation of state space S

− i.e. a finite partition S1∪…∪ SQ = S

− that preserves both state labels and rewards

− partition blocks correspond to abstract states 

− transition probabilities approximated by piecewise constant f.

• Finite abstraction (MDP) is ϵ-probabilistically bisimilar to 
concrete model where, over any possible label, ϵ

− depends on max partition diameters and volumes 

− depends on Lipschitz constant 

− … straightforward to compute
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Probabilistic model checking LMPs

• Time-bounded (finite-horizon) fragment of PRISM's 
property specification language (PCTL + rewards)

− φ  ::=  true | a | φ ∧ φ | ¬φ | P~p [ φ U≤k φ ]| R~x [ C≤k ]

− where a is an atomic proposition, p ∈ [0,1] is a probability 
bound, x ∈ ℝ≥0 is a reward bound, ~ ∈ {<,>,≤,≥}, k ∈ ℕ

• Semantics defined wrt policies σ mapping state/time to 
labels

− verification: M,s satisfies φ for all policies

− synthesis: find optimal policy that satisfies φ

• Examples

− P~p [ φ U≤k φ ] – probability of satisfying until formula is ~ p

− Pmax=? [ φ U≤k φ ] – maximum probability of satisfying until

− R~x [ C≤k ] – expected reward cumulated up to k steps is ~ x
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Main theorem

• Theorem (approx. preservation of logic)

• For ϵ-bisimilar states s ∈ M, sd ∈ Md and until property 
φ U≤K φ 

− For any (measurable) policy σ of M there exists a policy σd on 
Md such that 

| Pσ(s, φ U≤K φ ) - Pσ
d(sd, φ U≤K φ ) | ≤ ϵK

− where K is the step bound of until

− For any policy σd on Md there exists a (measurable) policy σ of 
M a such that 

| Pσ
d(sd, φ U≤K φ ) - Pσ(s, φ U≤K φ ) | ≤ ϵK

• Similarly for rewards

• (Approx) verification and synthesis thus

− reduce to the computation of min/max probability (reward) on 
the discretised finite LMP 

− can reuse existing techniques for MDPs
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Case study

• Case study: multi-room heating system

− 2 adjacent rooms, each with a heater and one shared control

− control switches both heaters between 10 heating levels

• Modelled as an LMP with state space S = ℝ2

− state (t1,t2) ∈ S gives temperature ti in room i

− average temperature evolves according to a stochastic 
difference equation; also model heat transfer between rooms

− labels correspond to heating level changes

− goal: keep temperature in "safe" interval [17.5, 22.5]ºC

− 0-1 reward structured added to count time in "safe"

− fixed time horizon of N=180 steps

• Abstraction

− temperature range partitioned into 5 sub-intervals
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Case study

• Use probabilistic model checking to find:

− (i) min/max probability of staying in "safe" over k steps  

− (ii) min/max expected time spent in "safe" over k steps

− also synthesise optimal strategy (policy) to achieve these

• Tools used:

− MATLAB to build abstraction; PRISM for prob. model checking

(i) (ii)

Policy: heaters off

Policy: full heat, 
then decrease as 
temp. nears max

Policy: heaters
on full
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Conclusions

• Developed automated methods to compute approximations 
of LMPs

− enabled (approx) verification and strategy synthesis for LMPs

− guaranteed error bounds: Kϵ, where K is the step bound

− extends to bounded LTL

• Efficient/symbolic implementation?

− e.g. combination of numerical solution and simulation

• More expressive properties?

− e.g. multiobjective

• More expressive models?

− e.g. incentivise behaviour

• More case studies?

− e.g. automotive controllers


