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A historical interlude

- MFPS 1990

Thursday, 17 May

9:00 am

P. Panangaden - Invited Speake-

Queen’s University
10:00 am

S. Brookes

Camegie Mellon University

Towards a theorv of parallel algorithms on concrete data struciures.
1030 am

Coffee Break
11.00 am

. R. Kent

University of Arkansas

Processes as 2-dimensional relational structures.
11:30 am

M. Kwiatkowska

University of Leicester

Causality and fairness properties.

- No probability, yet...



A few years later...

Probabilistic Methods in Verification
(PROBMIV'98)

A Pre-LICS'98 Workshop
19-20 June 1998, Indianapolis, Indiana, USA

Workshop description and aims

Scientific Justification: While there has been a steady
current of research activity in probabilistic logics and
systems bor some years
done up until now. This situaTon = begmning to changs.
Randomization has proved effective in deriving efficient
distributed algorithms and is n-:-n pr ac-
tical applications, to mention computer networks and
graphics. However, randomized algorithms are notori-
ously difficult to verify: the proofs of their correctness are
complex, and therefore argued informally, and thus ap-
proprig formal methods and tools are called for Y hese
have to combine & variety of dissimilar techniques, from
conventional proof theory and model checking, through
systems modelling to linear algebra and probability the-
ory.

has bean

www.cs.bham.ac.uk/~mzk/probmiv98.html

Questions asked in panel
session

— Randomization - is it really
used widely?

— Where are the tools?
heuristics?

— Did you find any bugs?

In this talk
— Some answers
— As always, new challenges!



Probabilistic model checking

First algorithms proposed in 1980s
— [Vardi, Courcoubetis, Yannakakis, ...]
— algorithms [Hansson, Jonsson, de Alfaro] & first implementations

2000: tools ETMCC (MRMC) & PRISM released

— PRISM: efficient extensions of symbolic model checking

— ETMCC (now MRMC): model checking for continuous-time Markov
chains [Baier, Hermanns, Haverkort, Katoen, ...]

- Selected advances in probabilistic model checking:

— 1997 BBD-based symbolic methods [Baier, de Alfaro, K, Parker, ...]

— 2000 Uniformisation [Baier, Haverkort, Hermanns, Katoen, ...]

— 1999 Zone-based techniques [Sproston, Norman, Parker, K, ...]

— 2007 Multi-objective methods [Etessami, Vardi, K, Yannakakis, ...]

— 2010 Compositional methods [K, Norman, Parker, Qu, ...]

— 2012 Stochastic games [Simaitis, Forejt, Chen, Parker, K, ...] 6




Probabilistic model checking

What’ s involved

— typically more expensive than the non-probabilistic case:
need to build and so/ve model

— algorithms involve often non-trivial combination of

. graph-based analysis (typically symbolic)

. and numerical solution, e.g. linear equations/linear programming
— or simulation-based analysis (statistical model checking)

The state of the art
— fast/efficient techniques for a range of probabilistic models
— feasible for models of up to 107 states (109 with symbolic)

— successfully applied to many application domains:

. distributed randomised algorithms, communication protocols,
security protocols, biological systems, quantum cryptography, ...

— beyond model checking: parametric methods, synthesis, ...



Probabilistic model checking in action

- Bluetooth device discovery protocol 0
— frequency hopping, randomised delays

— low-level model in PRISM, based on
detailed Bluetooth reference documentation

— numerical solution of 32 Markov chains, ; |Rd|f tha )
. A expected time to hear two replies (sec
each approximately 3 billion states

— identified worst-case time to hear one message, 2.5 seconds
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- FireWire root contention
— wired protocol, uses randomisation
— model checking using PRISM

— optimum probability of leader election
by time T for various coin biases

— demonstrated that a biased coin can improve performance




Probabilistic model checking in action

DNA transducer gate [Lakin et al, 2012]

— DNA computing with a restricted
class of DNA strand displacement

structures
— transducer design due to Cardelli

— automatically found and fixed
design error, using Microsoft’s DSD and PRISM

—— Terminate
—— Error
—— Success

Probability

o o

Microgrid demand management protocol [TACAS12,FMSD13]

— designed for households to actively manage N \ ™ W
demand while accessing a variety of energy o B
sources ﬁ i B

— found and fixed a flaw in the protocol, due to
lack of punishment for selfish behaviour

— implemented in PRISM-games

uuuuuuuu




- Largely limited to discrete state, discrete probability models
— Markov chains, Markov decision processes
— continuous time: via uniformisation or zone abstractions

— continuous distributions: via discretisation, no error bounds

— continuous space: some early work on probabilistic hybrid
automata, via reduction to MDPs [Hahn, Hermanns, ...]

- At the same time

— need more realistic models (real-time behaviour, continuous
dynamics, stochastic hybrid systems, etc)

— since 1997, much existing work on continuous space models
[Panangaden, Desharnais, ...]

— separately, also in control and decision literature

- This talk: about extending probabilistic model checking for
Labelled Markov Processes 10



Overview

Probabilistic model checking & PRISM
— background & history

Labelled Markov processes (LMPs)
— semantics of LMP models
— formally relating LMPs and Markov decision processes (MDPs)

Notions of (approximate) bisimulation for LMPs

Probabilistic model checking of LMPs via PRISM

— constructive derivation of finite abstraction (approximate
bisimmulation) for LMP (MDP and thus for LMP)

— case study: room temperature control

11



Labelled Markov processes

Labelled Markov processes (LMPs) [Panangaden et al.]
— uncountably infinite (continuous) state space
— (we skip here details on measurability and topology)
— evolve sequentially in discrete time-steps
— here, we restrict our attention to a finite time interval [O,N]

- An LMP is a structure (S, sy, B(S), {T,/lu € U}) where:

— S is the state space

— Sy € Sis the initial state

— B(S) is a Borel o-field on S

— T, :S X B(S) — [0,1] is a sub-probability transition function
— and U is a finite set of labels

Evolution of LMP depends on the choice of label (“action”)
u € U at each time step, which may be accepted or rejected
12



Labelled Markov processes

For the purposes of model checking, we also add:
— a labelling L : S — 2AP of states with atomic propositions
— reward (or cost) structures of the formr:S x U - R_,

LMP semantics: two alternative views...
— testing (a la [Larsen/Skou]) or decision processes (e.g. MDPs)

- Testing process

— emphasis on observing labels (u € U)

Decision process

— emphasis on controlling the system via labels and observing
underlying system dynamics (variables, atomic propositions)

13



Semantics of LMPs

- Semantics of LMP (S, s, B(S), {T,/lu € U})
Model initialised at k=0 in state s,

- At any O<k<N-1, given s, € S and selecting u, € U:
— probability of successor s, ., given by T,(s,, ")
— label u, is accepted with probability [¢ T, (sy,dx)
— otherwise, action u, is rejected, with two possible behaviours:

1. (testing process) the dynamics stops, s, . is undefined,
process yields finite trace (sq,ug),(S1,U7),...,(SK,U})

2. (decision process) some default action u is selected (either u,
or some extra u'¢U), continues with sample s,.; ~ T (S, ),
yielding (sg,Uq),(S1,U7),ee 05 (S, U5 (Syy 1,U)eeey (Sy_1,U),Sp)

For a policy (or strategy) o that picks each u,, we get a

probability measure P° over the sample space SN+!
14



Semantics: Examples

Example (testing process)
— slot/vending machine
— internal state with finite—-memory register
— at a given (discrete) time, user pushes button (label)

— machine (possibly - with some probability) outputs such label,
and if so probabilistically updates state of register

Example (decision process)
— room temperature control (see later case study)

— temperature in room evolves non-autonomously,
i.e. is affected by controllable heater

— at a given (discrete) time, user selects heater status (label)
and the temperature is updated accordingly

— heater can break down with some probability (label rejected)
— temperature still updated according to default action

15



Exact probabilistic bisimulation

Probabilistic bisimulation for LMPs [Desharnais/Edalat/Panangden'02]
— extends notion for (discrete-state) Markov chains, MDPs

- An (exact) probabilistic bisimulation is an equivalence
relation R on LMP states S such that, whenever s, R s,:
— L(s;) = L(s,) and r(s,,u) = r(s,,u) forallu € U

— T,(sy,b) = T,(s,,b) for any u € U and set b € S/R (which is Borel
measurable)

- As usual:

— 5,5, € S are called bisimilar if s; R's, for some such relation R
— definition can be extended to relate two LMPs

Questions/issues:
— too conservative (i.e. fine) in practice?

— is it feasible (or robust) to compute?
16



Approximate probabilistic bisimulation

- Approximate probabilistic bisimulation [Desharnais/Laviolette/Tracol'08]
— for some precision €, i.e. e-probabilistic bisimulation

- An e-probabilistic bisimulation is a relation R on LMP states
S such that, whenever s, R s,:

— L(s;) = L(s,) and r(s,,u) = r(s,,u) forallu € U
— |1,(sy,b) - T,(s,,b)| < €eforany u € Uand R.-closed setb =S

In general, R_ is not an equivalence relation (not transitive)
— so induces a covering, not a partition, of S

Like before:

— 5,5, € S are e-bisimilar if s; R_ s, for some such relation R,
— definition can be extended to relate two LMPs

- And again: may be difficult to compute in practice
17



Finite-state approximations of LMPs

- We construct an abstraction of a (continuous-state) LMP

as a (discrete-state) Markov decision process (MDP)

— strictly speaking, abstraction is a labelled Markov chain
(possibly containing sub-distributions)

Induced by discretisation of state space S
— i.e. a finite partition S;U...U Sq =S
— that preserves both state labels and rewards
— partition blocks correspond to abstract states
— transition probabilities approximated by piecewise constant f.

Finite abstraction (MDP) is e-probabilistically bisimilar to
concrete model where, over any possible label, €

— depends on max partition diameters and volumes
— depends on Lipschitz constant
— ... straightforward to compute 18



Probabilistic model checking LMPs

- Time-bounded (finite-horizon) fragment of PRISM's
property specification language (PCTL + rewards)

~¢ n=true|aldAad| b [P [dUKPII R, [C=K]

— where a is an atomic proposition, p € [0,1] is a probability
bound, x € R_, is a reward bound, ~ € {<,>,<,>}, k € N

- Semantics defined wrt policies o0 mapping state/time to
labels

— verification: M,s satisfies ¢ for all policies
— synthesis: find optimal policy that satisfies ¢

- Examples

— P_, [ ¢ U=k ] - probability of satisfying until formula is ~ p
— Praxez [ @ U=k ] - maximum probability of satisfying until
— R_, [ C=k] - expected reward cumulated up to k steps is ~ x
19



Main theorem

- Theorem (approx. preservation of logic)
For e-bisimilar states s € M, sd € M9 and until property

U=
— For any (measurable) policy o of M there exists a policy o9 on
Md such that

| Po(s, d UsK b ) - Pd(sd, d UsK ) | < eK
— where K is the step bound of until

— For any policy 09 on Mdthere exists a (measurable) policy o of
M a such that

| Pod(sd, @ U=K b ) - Py(s, d UsK ) | < eK
- Similarly for rewards
- (Approx) verification and synthesis thus

— reduce to the computation of min/max probability (reward) on
the discretised finite LMP

— can reuse existing techniques for MDPs 50



Case study

Case study: multi-room heating system
— 2 adjacent rooms, each with a heater and one shared control
— control switches both heaters between 10 heating levels

Modelled as an LMP with state space S = R?
— state (t,,t,) € S gives temperature t;, in room |

— average temperature evolves according to a stochastic
difference equation; also model heat transfer between rooms

— labels correspond to heating level changes

— goal: keep temperature in "safe" interval [17.5, 22.5]°C
— 0-1 reward structured added to count time in "safe"

— fixed time horizon of N=180 steps

Abstraction

— temperature range partitioned into 5 sub-intervals
21



Case study

- Use probabilistic model checking to find:
— (i) min/max probability of staying in "safe" over k steps
— (ii) min/max expected time spent in "safe" over k steps
— also synthesise optimal strategy (policy) to achieve these

- Tools used:
— MATLAB to build abstraction; PRISM for prob. model checking

(i) o Policy: full heat, (ii)
0.9 then decrease as  ,..
0.8 temp. nears max g
5 0.7 J f 100 Policy: heaters
z 06 E on full
505 ~ max :“Di ¢ :n;j:f
gg.: - - min g 50 — min
o Policy: heaters off 5
0.1 J

©
o
o

0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175 >
k K 2



Conclusions

Developed automated methods to compute approximations
of LMPs

— enabled (approx) verification and strategy synthesis for LMPs
— guaranteed error bounds: Ke, where K is the step bound
— extends to bounded LTL

Efficient/symbolic implementation?
— e.g. combination of numerical solution and simulation
More expressive properties?
— e.g. multiobjective
More expressive models?
— e.g. incentivise behaviour
More case studies?
— e.g. automotive controllers

23



