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Lebesgue Measure and Unit Interval

I [0, 1] ⊆ R inherits Lebesgue measure: λ([a, b]) = b − a.

I Translation invariance: λ(A + x) = λ(A) for all (Borel)
measurable A ⊆ R and all x ∈ R.
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I [0, 1] ⊆ R inherits Lebesgue measure: λ([a, b]) = b − a.

I Translation invariance: λ(A + x) = λ(A) for all (Borel)
measurable A ⊆ R and all x ∈ R.

I Theorem (Haar, 1933) Every locally compact group G has a
unique (up to scalar constant) left-translation invariant
regular Borel measure µG called Haar measure.

If G is compact, then µG (G ) = 1.

Example: T ' R/Z with quotient measure from λ.

If G is finite, then µG is normalized counting measure.
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C =
⋂

n Cn ⊆ [0, 1] compact 0-dimensional, λ(C) = 0.

Theorem: C is the unique compact Hausdorff 0-dimensional
second countable perfect space.
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Cantor Groups

I Canonical Cantor group:
C ' Z2

N is a compact group in the product topology.

µC is the product measure (µZ2(Z2) = 1)

Theorem: (Schmidt) The Cantor map C → [0, 1] sends Haar
measure on C = Z2

N to Lebesgue measure.

Goal: Generalize this to all group structures on C.



Cantor Groups

I Canonical Cantor group:
C ' Z2

N is a compact group in the product topology.

µC is the product measure (µZ2(Z2) = 1)

I G =
∏

n>1 Zn is also a Cantor group.

µG is the product measure (µZn(Zn) = 1)

I Zp∞ = lim←−n
Zpn – p-adic integers.

x 7→ x mod p : Zpn+1 → Zpn .

I H =
∏

n S(n) – S(n) symmetric group on n letters.

Definition: A Cantor group is a compact, 0-dimensional
second countable perfect space endowed with a topological
group structure.



Two Theorems and a Corollary

I Theorem: If G is a compact 0-dimensional group,
then G has a neighborhood basis at the identity of
clopen normal subgroups.

I Proof:

1. G is a Stone space, so there is a basis O of clopen
neighborhoods of e.
If O ∈ O, then e · O = O ⇒ (∃U ∈ O) U · O ⊆ O

U ⊆ O ⇒ U2 ⊆ U · O ⊆ O. So Un ⊆ O.

Assuming U = U−1, the subgroup H =
⋃

n Un ⊆ O.
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I Proof:

1. G is a Stone space, so there is a basis O of clopen
neighborhoods of e.
If O ∈ O, then e · O = O ⇒ (∃U ∈ O) U · O ⊆ O

U ⊆ O ⇒ U2 ⊆ U · O ⊆ O. So Un ⊆ O.

Assuming U = U−1, the subgroup H =
⋃

n Un ⊆ O.

2. Given H < G clopen, H = {xHx−1 | x ∈ G} is compact.

G ×H → H by (x ,K ) 7→ xKx−1 is continuous.

K = {x | xHx−1 = H} is clopen since H is, so G/K is finite.

Then |G/K | = |H| is finite, so L =
⋂

x∈G xHx−1 ⊆ H is clopen
and normal.
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Gn
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I Theorem: (Fedorchuk, 1991) If X ' lim←−i∈I Xi is a
strict projective limit of compact spaces, then
Prob(X ) ' lim←−i∈I Prob(Xi ).

I Lemma: If ϕ : G → H is a surmorphism of compact groups,
then Prob(ϕ)(µG ) = µH .



Two Theorems and a Corollary

I Theorem: If G is a compact 0-dimensional group,
then G has a neighborhood basis at the identity of
clopen normal subgroups.

I Corollary: If G is a Cantor group, then G ' lim←−n
Gn

with Gn finite for each n.

I Theorem: (Fedorchuk, 1991) If X ' lim←−i∈I Xi is a
strict projective limit of compact spaces, then
Prob(X ) ' lim←−i∈I Prob(Xi ).

In particular, if X = G ,Xi = Gi are compact groups, then
µG = limi∈I µGi

.



Two Theorems and a Corollary

I Theorem: If G is a compact 0-dimensional group,
then G has a neighborhood basis at the identity of
clopen normal subgroups.

I Corollary: If G is a Cantor group, then G ' lim←−n
Gn

with Gn finite for each n.
Moreover, µG = limn µn, where µn is normalized counting
measure on Gn.



It’s all about Abelian Groups

I Theorem: If G = lim←−n
Gn is a Cantor group, there is a

sequence (Zki )i>0 of cyclic groups so that H = lim←−n
(⊕i≤nZki )

has the same Haar measure as G .

Proof: Let G ' lim←−n
Gn, |Gn| <∞.

Assume |Hn| = |Gn| with Hn abelian.

Define Hn+1 = Hn × Z|Gn+1|/|Gn|. Then |Hn+1| = |Gn+1|,
so µHn = µn = µGn for each n, and H = lim←−n

Hn is abelian.

Hence µH = limn µn = µG .



Combining Domain Theory and Group Theory

C = lim←−n
Hn, Hn = ⊕i≤n Zki

Endow Hn with lexicographic order for each n; then

πn : Hn+1 → Hn by πn(x1, . . . , xn+1) = (xi , . . . , xn) &

ιn : Hn ↪→ Hn+1 by ιn(x1, . . . , xn) = (xi , . . . , xn, 0) form

embedding-projection pair.
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C ' bilim (Hn, πn, ιn) is bialgebraic chain:

• C totally ordered, has all sups and infs

• K (C) =
⋃

n{(x1, . . . , xn, 0, . . .) | (x1, . . . , xn) ∈ Hn}
• K (Cop) = {sup (↓k \ {k}) | k ∈ K (C)}
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µC(ϕ̂−1(a, b)) = λ((a, b)) for a ≤ b ∈ [0, 1]; i.e., Prob(ϕ̂)(µC) = λ.



Combining Domain Theory and Group Theory

C = lim←−n
Hn, Hn = ⊕i≤n Zki

Endow Hn with lexicographic order for each n; then

πn : Hn+1 → Hn by πn(x1, . . . , xn+1) = (xi , . . . , xn) &

ιn : Hn ↪→ Hn+1 by ιn(x1, . . . , xn) = (xi , . . . , xn, 0) form

embedding-projection pair.

C ' bilim (Hn, πn, ιn) is bialgebraic chain:

ϕ : K (C)→ [0, 1] by ϕ(x1, . . . , xn) =
∑

i≤n
xi

k1···ki strictly monotone

induces ϕ̂ : C → [0, 1] monotone, Lawson continuous.

Direct calculation shows:

µC(ϕ̂−1(a, b)) = λ((a, b)) for a ≤ b ∈ [0, 1]; i.e., Prob(ϕ̂)(µC) = λ.

If C′ = lim←−n
Gn with Gn finite, then

ϕ̂−1 ◦ ϕ̂′ : C′ \ K (C′)→ C \ K (C) is a Borel isomorphism.
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λ = Prob(µC) = lim Prob(µn) =
∑

1≤i≤2n
1
2n · δ[ i−1
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, i
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]

3. Theorem: (Skorohod) If µ is a Borel measure on [0, 1], then
there is a measurable map ξµ : [0, 1]→ [0, 1] satisfying
Prob(ξµ)(λ) = µ.



Prakash!!


	Random Variables

