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Lebesgue Measure and Unit Interval

» [0,1] C R inherits Lebesgue measure: X\([a, b]) = b — a.

» Translation invariance: A\(A + x) = A(A) for all (Borel)
measurable A C R and all x € R.



Lebesgue Measure and Unit Interval
» [0,1] € R inherits Lebesgue measure: A([a, b]) = b — a.

» Translation invariance: A\(A + x) = A(A) for all (Borel)
measurable A C R and all x € R.

» Theorem (Haar, 1933) Every locally compact group G has a
unique (up to scalar constant) left-translation invariant
regular Borel measure ¢ called Haar measure.

If G is compact, then pg(G) = 1.
Example: T ~ R /7 with quotient measure from .

If G is finite, then pg is normalized counting measure.
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C =(),Cn C [0, 1] compact O-dimensional, A\(C) = 0.



The Cantor Set
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C =(),Cn C [0, 1] compact 0-dimensional, A(C) = 0.

Theorem: C is the unique compact Hausdorff 0-dimensional
second countable perfect space.
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Cantor Groups

» Canonical Cantor group:
C ~ 7o is a compact group in the product topology.

e is the product measure (uz,(Z2) = 1)

Theorem: (Schmidt) The Cantor map C — [0, 1] sends Haar
measure on C = Z, ™ to Lebesgue measure.

Goal: Generalize this to all group structures on C.



Cantor Groups

» Canonical Cantor group:
C ~ 7o is a compact group in the product topology.

pc is the product measure (uz,(Z2) = 1)

» G =]],-1Znis also a Cantor group.
we is the product measure (uz,(Zn) = 1)
> Zpo =lim Zpn — p-adic integers.
x = xmod p: Zpntr — Lpn.
» H=T]][, S(n) = S(n) symmetric group on n letters.

Definition: A Cantor group is a compact, 0-dimensional
second countable perfect space endowed with a topological
group structure.



Two Theorems and a Corollary

» Theorem: If G is a compact 0-dimensional group,
then G has a neighborhood basis at the identity of
clopen normal subgroups.

» Proof:

1. G is a Stone space, so there is a basis O of clopen
neighborhoods of e.

fOeO,thene-0=0 = (FUeO)U-0CO
UCO = U>?CU-0CO0.SoU"CO.
Assuming U = U™!, the subgroup H =J, U" C O.



Two Theorems and a Corollary

» Theorem: If G is a compact 0-dimensional group,
then G has a neighborhood basis at the identity of
clopen normal subgroups.

» Proof:

1. G is a Stone space, so there is a basis O of clopen
neighborhoods of e.

fOe€O, thene-0=0 = (UeO)U-0CO
UCO = UPCU-0C0.S U"CO.
Assuming U = U™!, the subgroup H =J, U" C O.
2. Given H < G clopen, H = {xHx™! | x € G} is compact.
G x H — H by (x,K) — xKx~1 is continuous.
K = {x | xHx~1 = H} is clopen since H is, so G/K is finite.

Then |G/K| = |H]| is finite, so L = (.o xHx™* C H is clopen
and normal.
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with G, finite for each n.
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clopen normal subgroups.

» Corollary: If G is a Cantor group, then G ~ |im G,

. . <n
with G, finite for each n.

» Theorem: (Fedorchuk, 1991) If X ~ lim._, Xiis a
strict projective limit of compact spaces, then
Prob(X) ~ lim., Prob(X;).



Two Theorems and a Corollary

» Theorem: If G is a compact 0-dimensional group,
then G has a neighborhood basis at the identity of
clopen normal subgroups.

» Corollary: If G is a Cantor group, then G ~ Imn Gp
with G, finite for each n.

» Theorem: (Fedorchuk, 1991) If X ~ im._, Xiis a
strict projective limit of compact spaces, then
Prob(X) ~ lim., Prob(X;).

» Lemma: If ¢: G — H is a surmorphism of compact groups,
then Prob(p)(ug) = pH-



Two Theorems and a Corollary

» Theorem: If G is a compact 0-dimensional group,
then G has a neighborhood basis at the identity of
clopen normal subgroups.

» Corollary: If G is a Cantor group, then G ~ |im G,

. . —n
with G, finite for each n.

» Theorem: (Fedorchuk, 1991) If X ~ lim._, Xiis a
strict projective limit of compact spaces, then
Prob(X) =~ lim., Prob(X;).
In particular, if X = G, X; = G; are compact groups, then
pe = limigs pg,.



Two Theorems and a Corollary

» Theorem: If G is a compact 0-dimensional group,
then G has a neighborhood basis at the identity of
clopen normal subgroups.

» Corollary: If G is a Cantor group, then G ~ an G,
with G, finite for each n.
Moreover, pg = limp, p,, where p, is normalized counting
measure on G,,.



It’s all about Abelian Groups

» Theorem: If G = I<i£1n Gn is a Cantor group, there is a
sequence (Zy,)i>o of cyclic groups so that H = @n(@;gnzk,)
has the same Haar measure as G.

Proof: Let G ~ I<iLnn Gn, |Gp| < 0.

Assume |H,| = | G,| with H,, abelian.

Define Hyy1 = Hn X ZjG,,,1/|G,)- Then [Hnt1| = |Gy,
SO [y, = fn = 4G, for each n, and H = ”L”,, H, is abelian.

Hence puy = lim, pup = pg-



Combining Domain Theory and Group Theory
C= I<i_rl1n Hn, Hy = ®i<n Zy,

Endow H,, with lexicographic order for each n; then
Tn: Hpp1 — Hy by ma(x1, - ooy Xng1) = (Xiy ooy Xn) &
tn: Hp = Hng1 by tn(x1, ... xn) = (X5, ..., Xn, 0) form

embedding-projection pair.



Combining Domain Theory and Group Theory
C=lim Hp Hy= ®i<nZy

Endow H,, with lexicographic order for each n; then
Tn: Hpp1 — Hy by ma(x1, - ooy Xng1) = (Xiy ooy Xn) &
tn: Hp = Hng1 by tn(x1, ... xn) = (X5, ..., Xn, 0) form
embedding-projection pair.

C ~ bilim (H,, mn, tp) is bialgebraic chain:

e ( totally ordered, has all sups and infs

e K(C)=U,{(x1,...,xn,0,...) | (x1,...,%n) € Hp}
o K(CP)={sup({k\ {Kk})| k€ K(C)}



Combining Domain Theory and Group Theory

C=lim Hp Hy= ®i<nZy

Endow H,, with lexicographic order for each n; then

Tn: Hpp1 — Hy by ma(x1, - ooy Xng1) = (Xiy ooy Xn) &

tn: Hp = Hng1 by tn(x1, ... xn) = (X5, ..., Xn, 0) form
embedding-projection pair.

C ~ bilim (H,, mn, tp) is bialgebraic chain:

¢: K(C) = [0,1] by ¢(x1,...,xn) = > i<, 5% strictly monotone
induces @: C — [0, 1] monotone, Lawson continuous.

Direct calculation shows:

pe(@Ha, b)) = M(a, b)) for a < b € [0,1]; i.e., Prob(?)(pc) = .



Combining Domain Theory and Group Theory

C=lim Hp Hy= ®i<nZy

Endow H,, with lexicographic order for each n; then

Tn: Hpp1 — Hy by ma(x1, - ooy Xng1) = (Xiy ooy Xn) &

tn: Hp = Hng1 by tn(x1, ... xn) = (X5, ..., Xn, 0) form
embedding-projection pair.

C ~ bilim (H,, mn, tp) is bialgebraic chain:

¢: K(C) = [0,1] by ¢(x1,...,xn) = > i<, 5% strictly monotone
induces @: C — [0, 1] monotone, Lawson continuous.

Direct calculation shows:

pe(@Ha, b)) = M(a, b)) for a < b € [0,1]; i.e., Prob(?)(pc) = .
If ¢’ = Imn G, with G, finite, then

Lo :C"\ K(C') — C\ K(C) is a Borel isomorphism.
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1. Cantor Fan: CF ~¥Y* =Y*Ux¥, X ={0,1}
s<t <= (Ju)su=t. Then MaxCF ~C.
2. Interval domain: Z([0,1]) = ({[a,b] |0 < a< b < 1},D)
¢: C — [0,1] extends to ®: CF — Z([0, 1]) Scott continuous.
Then Prob(®): Prob(CF) — Prob(Z([0,1])), so
A = Prob(uc) = lim Prob(jin) = 1<jcon 37 - Opizt iy
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1. Cantor Fan: CF ~¥>* =3¥*Ux¥ Y ={0,1}
s<t <= (Ju)su=t. Then MaxCF ~C.

2. Interval domain: Z([0,1]) = ({[a,b] |0 < a< b <1},D)
¢: C — [0,1] extends to d: CF — Z([0,1]) Scott continuous.
Then Prob(®): Prob(CF) — Prob(Z([0,1])), so
X = Prob(uc) = lim Prob(in) = > 1<j<on 25+ 6 S

3. Theorem: (Skorohod) If 1 is a Borel measure on [0, 1], then
there is a measurable map &,: [0,1] — [0, 1] satisfying
Prob(€,)(A) = .
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