From Haar to Lebesgue via Domain Theory

Michael Mislove Tulane University

PrakashFest Oxford Friday, May 23, 2014 Joint work with Will Brian Work Supported by US NSF & US AFOSR

Lebesgue Measure and Unit Interval

- ▶ $[0,1] \subseteq \mathbb{R}$ inherits Lebesgue measure: $\lambda([a,b]) = b a$.
- Translation invariance: λ(A + x) = λ(A) for all (Borel) measurable A ⊆ ℝ and all x ∈ ℝ.

Lebesgue Measure and Unit Interval

- ▶ $[0,1] \subseteq \mathbb{R}$ inherits *Lebesgue measure*: $\lambda([a,b]) = b a$.
- Translation invariance: λ(A + x) = λ(A) for all (Borel) measurable A ⊆ ℝ and all x ∈ ℝ.
- ► Theorem (Haar, 1933) Every locally compact group G has a unique (up to scalar constant) left-translation invariant regular Borel measure µ_G called *Haar measure*.

If G is compact, then $\mu_G(G) = 1$.

Example: $\mathbb{T} \simeq \mathbb{R}/\mathbb{Z}$ with quotient measure from λ .

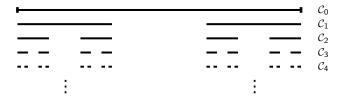
If G is finite, then μ_G is normalized counting measure.

The Cantor Set

L			 \mathcal{C}_{0}
			 \mathcal{C}_1
			\mathcal{C}_2
			 \mathcal{C}_3
			 \mathcal{C}_4
	:		

 $\mathcal{C} = \bigcap_n \mathcal{C}_n \subseteq [0, 1]$ compact 0-dimensional, $\lambda(\mathcal{C}) = 0$.

The Cantor Set



 $\mathcal{C} = \bigcap_n \mathcal{C}_n \subseteq [0, 1]$ compact 0-dimensional, $\lambda(\mathcal{C}) = 0$.

Theorem: C is the unique compact Hausdorff 0-dimensional second countable perfect space.

Cantor Groups

Canonical Cantor group:
 C ≃ Z₂^N is a compact group in the product topology.

 $\mu_{\mathcal{C}}$ is the product measure $(\mu_{\mathbb{Z}_2}(\mathbb{Z}_2)=1)$

Cantor Groups

• Canonical Cantor group:

 $\mathcal{C}\simeq \mathbb{Z}_2{}^{\mathbb{N}}$ is a compact group in the product topology.

 $\mu_{\mathcal{C}}$ is the product measure $(\mu_{\mathbb{Z}_2}(\mathbb{Z}_2)=1)$

Theorem: (Schmidt) The Cantor map $\mathcal{C} \to [0, 1]$ sends Haar measure on $\mathcal{C} = \mathbb{Z}_2^{\mathbb{N}}$ to Lebesgue measure.

Goal: Generalize this to all group structures on C.

Cantor Groups

Canonical Cantor group: $\mathcal{C} \simeq \mathbb{Z}_2^{\mathbb{N}}$ is a compact group in the product topology. $\mu_{\mathcal{C}}$ is the product measure $(\mu_{\mathbb{Z}_2}(\mathbb{Z}_2)=1)$ • $G = \prod_{n > 1} \mathbb{Z}_n$ is also a Cantor group. μ_G is the product measure $(\mu_{\mathbb{Z}_n}(\mathbb{Z}_n)=1)$ • $\mathbb{Z}_{p^{\infty}} = \lim_{n \to \infty} \mathbb{Z}_{p^n} - p$ -adic integers. $x \mapsto x \mod p \colon \mathbb{Z}_{p^{n+1}} \to \mathbb{Z}_{p^n}.$ • $H = \prod_{n} S(n) - S(n)$ symmetric group on *n* letters.

Definition: A *Cantor group* is a compact, 0-dimensional second countable perfect space endowed with a topological group structure.

Theorem: If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.

► Proof:

G is a Stone space, so there is a basis O of clopen neighborhoods of e.
 If O ∈ O, then e · O = O ⇒ (∃U ∈ O) U · O ⊆ O U ⊆ O ⇒ U² ⊆ U · O ⊆ O. So Uⁿ ⊆ O.

Assuming $U = U^{-1}$, the subgroup $H = \bigcup_n U^n \subseteq O$.

- ► Theorem: If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.
- ► Proof:
 - G is a Stone space, so there is a basis O of clopen neighborhoods of e. If O ∈ O, then e · O = O ⇒ (∃U ∈ O) U · O ⊆ O U ⊆ O ⇒ U² ⊆ U · O ⊆ O. So Uⁿ ⊆ O. Assuming U = U⁻¹, the subgroup H = ⋃_n Uⁿ ⊆ O.
 Given H < G clopen, H = {xHx⁻¹ | x ∈ G} is compact. G × H → H by (x, K) ↦ xKx⁻¹ is continuous.

 $K = \{x \mid xHx^{-1} = H\}$ is clopen since H is, so G/K is finite.

Then $|G/K| = |\mathcal{H}|$ is finite, so $L = \bigcap_{x \in G} xHx^{-1} \subseteq H$ is clopen and normal.

- ► **Theorem:** If *G* is a compact 0-dimensional group, then *G* has a neighborhood basis at the identity of clopen normal subgroups.
- ► **Corollary:** If G is a Cantor group, then $G \simeq \varprojlim_n G_n$ with G_n finite for each n.

- Theorem: If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.
- ► **Corollary:** If G is a Cantor group, then $G \simeq \varprojlim_n G_n$ with G_n finite for each n.
- ► Theorem: (Fedorchuk, 1991) If X ≃ lim_{i∈I} X_i is a strict projective limit of compact spaces, then Prob(X) ≃ lim_{i∈I} Prob(X_i).

- Theorem: If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.
- ► **Corollary:** If G is a Cantor group, then $G \simeq \varprojlim_n G_n$ with G_n finite for each n.
- ► Theorem: (Fedorchuk, 1991) If X ~ lim_{i∈I} X_i is a strict projective limit of compact spaces, then Prob(X) ~ lim_{i∈I} Prob(X_i).
- Lemma: If φ: G → H is a surmorphism of compact groups, then Prob(φ)(μ_G) = μ_H.

- Theorem: If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.
- **Corollary:** If G is a Cantor group, then $G \simeq \varprojlim_n G_n$ with G_n finite for each n.
- ► Theorem: (Fedorchuk, 1991) If X ≃ lim_{i∈I} X_i is a strict projective limit of compact spaces, then Prob(X) ≃ lim_{i∈I} Prob(X_i).
 In particular, if X = G, X_i = G_i are compact groups, then μ_G = lim_{i∈I} μ_{Gi}.

- Theorem: If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.
- ► Corollary: If G is a Cantor group, then G ≃ kim G_n G_n with G_n finite for each n. Moreover, μ_G = lim_n μ_n, where μ_n is normalized counting measure on G_n.

It's all about Abelian Groups

▶ **Theorem:** If $G = \varprojlim_n G_n$ is a Cantor group, there is a sequence $(\mathbb{Z}_{k_i})_{i>0}$ of cyclic groups so that $H = \varprojlim_n (\bigoplus_{i \le n} \mathbb{Z}_{k_i})$ has the same Haar measure as G.

Proof: Let $G \simeq \varprojlim_n G_n$, $|G_n| < \infty$. Assume $|H_n| = |G_n|$ with H_n abelian. Define $H_{n+1} = H_n \times \mathbb{Z}_{|G_{n+1}|/|G_n|}$. Then $|H_{n+1}| = |G_{n+1}|$, so $\mu_{H_n} = \mu_n = \mu_{G_n}$ for each n, and $H = \varprojlim_n H_n$ is abelian. Hence $\mu_H = \lim_n \mu_n = \mu_G$. **Combining Domain Theory and Group Theory** $C = \varprojlim_n H_n, \ H_n = \bigoplus_{i \le n} \mathbb{Z}_{k_i}$ Endow H_n with *lexicographic order* for each n; then $\pi_n \colon H_{n+1} \to H_n$ by $\pi_n(x_1, \ldots, x_{n+1}) = (x_i, \ldots, x_n)$ & $\iota_n \colon H_n \hookrightarrow H_{n+1}$ by $\iota_n(x_1, \ldots, x_n) = (x_i, \ldots, x_n, 0)$ form embedding-projection pair. **Combining Domain Theory and Group Theory** $C = \varprojlim_n H_n, \ H_n = \bigoplus_{i \le n} \mathbb{Z}_{k_i}$ Endow H_n with *lexicographic order* for each n; then $\pi_n \colon H_{n+1} \to H_n$ by $\pi_n(x_1, \ldots, x_{n+1}) = (x_i, \ldots, x_n)$ & $\iota_n \colon H_n \hookrightarrow H_{n+1}$ by $\iota_n(x_1, \ldots, x_n) = (x_i, \ldots, x_n, 0)$ form embedding-projection pair.

- $C \simeq \text{bilim}(H_n, \pi_n, \iota_n)$ is bialgebraic chain:
- $\ensuremath{\mathcal{C}}$ totally ordered, has all sups and infs

•
$$\mathcal{K}(\mathcal{C}) = \bigcup_n \{ (x_1, \ldots, x_n, 0, \ldots) \mid (x_1, \ldots, x_n) \in H_n \}$$

• $\mathcal{K}(\mathcal{C}^{op}) = \{ \sup (\downarrow k \setminus \{k\}) \mid k \in \mathcal{K}(\mathcal{C}) \}$

Combining Domain Theory and Group Theory $\mathcal{C} = \lim_{n \to \infty} H_n, \ H_n = \bigoplus_{i \leq n} \mathbb{Z}_{k_i}$ Endow H_n with *lexicographic order* for each n; then $\pi_n: H_{n+1} \to H_n$ by $\pi_n(x_1, \ldots, x_{n+1}) = (x_i, \ldots, x_n)$ & $\iota_n \colon H_n \hookrightarrow H_{n+1}$ by $\iota_n(x_1, \ldots, x_n) = (x_i, \ldots, x_n, 0)$ form embedding-projection pair. $\mathcal{C} \simeq \text{bilim}(H_n, \pi_n, \iota_n)$ is bialgebraic chain: $\varphi \colon \mathcal{K}(\mathcal{C}) \to [0,1]$ by $\varphi(x_1,\ldots,x_n) = \sum_{i \leq n} \frac{x_i}{k_1 \cdots k_i}$ strictly monotone induces $\widehat{\varphi} \colon \mathcal{C} \to [0,1]$ monotone, Lawson continuous. Direct calculation shows:

$$\mu_{\mathcal{C}}(\widehat{\varphi}^{-1}(a,b)) = \lambda((a,b)) \text{ for } a \leq b \in [0,1]; \text{ i.e., } Prob(\widehat{\varphi})(\mu_{\mathcal{C}}) = \lambda.$$

Combining Domain Theory and Group Theory $\mathcal{C} = \lim_{n \to \infty} H_n, \ H_n = \bigoplus_{i \leq n} \mathbb{Z}_{k_i}$ Endow H_n with *lexicographic order* for each n; then $\pi_n: H_{n+1} \to H_n$ by $\pi_n(x_1, \ldots, x_{n+1}) = (x_i, \ldots, x_n)$ & $\iota_n \colon H_n \hookrightarrow H_{n+1}$ by $\iota_n(x_1, \ldots, x_n) = (x_i, \ldots, x_n, 0)$ form embedding-projection pair. $\mathcal{C} \simeq \text{bilim}(H_n, \pi_n, \iota_n)$ is bialgebraic chain: $\varphi \colon \mathcal{K}(\mathcal{C}) \to [0,1]$ by $\varphi(x_1,\ldots,x_n) = \sum_{i \leq n} \frac{x_i}{k_1 \cdots k_i}$ strictly monotone induces $\widehat{\varphi} \colon \mathcal{C} \to [0,1]$ monotone, Lawson continuous. Direct calculation shows:

$$\mu_{\mathcal{C}}(\widehat{\varphi}^{-1}(a, b)) = \lambda((a, b)) \text{ for } a \leq b \in [0, 1]; \text{ i.e., } Prob(\widehat{\varphi})(\mu_{\mathcal{C}}) = \lambda.$$

If $\mathcal{C}' = \varprojlim_n G_n$ with G_n finite, then
 $\widehat{\varphi}^{-1} \circ \widehat{\varphi}' \colon \mathcal{C}' \setminus K(\mathcal{C}') \to \mathcal{C} \setminus K(\mathcal{C}) \text{ is a Borel isomorphism.}$

1. Cantor Fan: $C\mathcal{F} \simeq \Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$, $\Sigma = \{0, 1\}$ $s \leq t \iff (\exists u) su = t$. Then $Max C\mathcal{F} \simeq C$.

1. Cantor Fan: $\mathcal{CF} \simeq \Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}, \quad \Sigma = \{0,1\}$

 $s \leq t \iff (\exists u) su = t$. Then $\operatorname{Max} \mathcal{CF} \simeq \mathcal{C}$.

2. Interval domain: $\mathcal{I}([0,1]) = (\{[a,b] \mid 0 \le a \le b \le 1\}, \supseteq)$ $\widehat{\phi} \colon \mathcal{C} \to [0,1]$ extends to $\Phi \colon \mathcal{CF} \to \mathcal{I}([0,1])$ Scott continuous. Then $Prob(\Phi) \colon Prob(\mathcal{CF}) \to Prob(\mathcal{I}([0,1]))$, so $\lambda = Prob(\mu_{\mathcal{C}}) = \lim Prob(\mu_n) = \sum_{1 \le i \le 2^n} \frac{1}{2^n} \cdot \delta_{[\frac{i-1}{2^n}, \frac{i}{2^n}]}$ 1. Cantor Fan: $\mathcal{CF} \simeq \Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}, \quad \Sigma = \{0, 1\}$

 $s \leq t \iff (\exists u) su = t$. Then $\operatorname{Max} \mathcal{CF} \simeq \mathcal{C}$.

- 2. Interval domain: $\mathcal{I}([0,1]) = (\{[a,b] \mid 0 \le a \le b \le 1\}, \supseteq)$ $\widehat{\phi} \colon \mathcal{C} \to [0,1]$ extends to $\Phi \colon \mathcal{CF} \to \mathcal{I}([0,1])$ Scott continuous. Then $Prob(\Phi) \colon Prob(\mathcal{CF}) \to Prob(\mathcal{I}([0,1]))$, so $\lambda = Prob(\mu_{\mathcal{C}}) = \lim Prob(\mu_n) = \sum_{1 \le i \le 2^n} \frac{1}{2^n} \cdot \delta_{[\frac{i-1}{2^n}, \frac{i}{2^n}]}$
- 3. Theorem: (Skorohod) If μ is a Borel measure on [0, 1], then there is a measurable map $\xi_{\mu} \colon [0, 1] \to [0, 1]$ satisfying $Prob(\xi_{\mu})(\lambda) = \mu$.

Prakash!!