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ABSTRACT
Traditional query processing involves a search for plans formed by
applying algebraic operators on top of primitives representing ac-
cess to relations in the input query. But many querying scenarios in-
volve two interacting issues that complicate the search. On the one
hand, the search space may be limited by access restrictions asso-
ciated with the interfaces to datasources, which require certain pa-
rameters to be given as inputs. On the other hand, the search space
may be extended through the presence of integrity constraints that
relate sources to each other, allowing for plans that do not match
the structure of the user query.

In this paper we present the first optimization approach that at-
tacks both these difficulties within a single framework, presenting a
system in which classical cost-based join optimization is extended
to support both access-restrictions and constraints. Instead of iter-
atively exploring subqueries of the input query, our optimizer ex-
plores a space of proofs that witness the answering of the query,
where each proof has a direct correspondence with a query plan.

1. INTRODUCTION
Query processing involves generating plans for accessing a given

set of datasources, with plans typically given in some variant of re-
lational algebra. However many applications, such as data integra-
tion, impose both restrictions and expansions of the search space.
Interfaces to datasources, particularly in the Web data integration
setting, often come with access restrictions, requiring certain pa-
rameters to be given as inputs, thus restricting the space of plans.
On the other hand, integrity constraints between sources can rad-
ically expand the search space, allowing for plans that bear little
resemblance to the source query. These two aspects have a rich in-
teraction. Constraints may relate two sources that have very differ-
ent access – for example, one that has unrestricted access and one
that has no access at all, such as a virtual table used in data inte-
gration. Thus the presence of both integrity constraints and access
restrictions may make it both possible and necessary to consider
plans using relations that are not mentioned in the user query.
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In this paper we give an approach to query optimization consid-
ering both access restrictions, integrity constraints, and their inter-
action. Our approach explores the space of plans for implementing
a query by exploring a space of proofs that witness the answering
of the query, where each proof has a direct correspondence with a
query plan. Proof steps can represent derivation of implicit infor-
mation using constraints. Proofs can also capture reasoning about
access restrictions on sources. Consider, for example, the reasoning
that a parameter needed for one data access (e.g. an argument to a
web service) can be provided as output from another data access.
In our framework, this will correspond to matching the hypotheses
of one proof (the fact that a parameter is assumed to be available)
with one of the conclusions of another proof (the fact that a certain
parameter is returned). While classical query optimization involves
searching for good ways of composing expressions (e.g. join order-
ing) to answer a query, in our system optimization involves search-
ing for good ways of constructing proofs from subproofs.

EXAMPLE 1. Consider a schema that exposes the relations
Profinfo(Pname,Profid), OfficeIn(Profid,Offid) and Offices
(Offid,Bname). Informally, Profinfo contains names and ids of
professors, OfficeIn tells which office a professor has, while Offices
maps office ids to building names.

The following query Q asks for the names of professors in Van
Vleck hall:

{Pname | ∃Profid Offid Profinfo(Pname,Profid)∧
OfficeIn(Profid,Offid)∧Offices(Offid,“Van Vleck”)}

There is a service that allows access to Profinfo, but it re-
quires as input a professor’s id. OfficeIn and Offices are
GAV relations, i.e., virtual tables with no access at all. How-
ever, OfficeIn and Offices are related to a web-based source
OfficeInfo(Profid,Bname) that stores the building in which each
professor’s office is located, which allows access on the building
name.

Query Q can be answered by first doing a lookup in OfficeInfo
using input “Van Vleck” to get a list of Profids, and then finding
the names by doing a lookup on each id within Profinfo. But rea-
soning that this is the case requires making use of the integrity
constraint that captures the informal semantics described above,
i.e., the constraint asserting that OfficeInfo contains exactly the
pairs (Profid,Bname) satisfying ∃Offid OfficeIn(Profid,Offid)∧
Offices(Offid,Bname).

Accounting for the access methods is also critical in reasoning
that this plan is correct. For example, we would not be able to
answer a query asking for the office id of professors in Van Vleck,
since the ids are not accessible. Clearly the kind of plans we need
will be quite different from the plans in traditional processing. 2



EXAMPLE 2. Let the relations Employee(eid,ename, . . .,
mgrid) and Manager(mgrid,deptmanaged, . . .) with Employee
having two access methods, looking up on eid and mgrid re-
spectively, and Manager having an access method with input
deptmanaged. We have a referential constraint from Employee to
Manager and also a referential constraint stating that every mgrid
in Manager is the eid of an Employee. The query that asks for the
names of employees in the mathematics department, as well as the
names of their managers, is answerable: by first doing an access to
Manager, selecting those mgrids corresponding to mathematics,
doing a lookup in Employee on mgrid to extract employee names,
and finally doing a second lookup on Employee’s eid to extract
the manager names. Notice that the integrity constraints here
contain “cycles”, since Employee points to Manager and vice
versa. Many methods for reasoning with queries under constraints
(those based on a “terminating chase” [11]) do not deal with such
constraint classes.2

We will start with an idea from earlier theoretical work [5],
which takes as input a query Q and schema S with access restric-
tions and constraints, and generates a proof goal which corresponds
to reasoning that the query can be answered using the integrity con-
straints but abiding by the access restrictions. The proof goal will
have the property that each proof of the goal will correspond to a
plan for answering the query. Thus by exploring these proofs, we
can consider radically different query plans.

We will look at how this theory can translate into an effective
query optimization algorithm, while both incorporating standard
search heuristics for query optimization, such as the use of dynamic
programming, and allowing the flexibility to produce plans that are
not left-deep, since left-deep plans can lead to inefficiency in the
presence of access restrictions (see Florescu et al. [10]). We will
develop a compositional proof system for building up “proofs of
answerability” in this work, along with an algorithm for convert-
ing these proofs to query plans. Using these two tools we will give
a new recursive search procedure which begins with small proofs
and combines them into larger proofs, until finally we find a proof
of the entire proof goal, corresponding (via the proof-to-plan al-
gorithm) to a plan that answers a query. Building up proofs from
subproofs will be analogous to building up larger query plans from
subplans in classical query optimization. We will show that this
method can give both left-deep and “bushy” query plans, and that
it can be adapted using the same variations used in classical query-
optimizations – e.g. using either dynamic programming or heuristic
search. On the other hand, we provide optimizations that are spe-
cific to the proof-driven context, chiefly by discarding proof states
that are less interesting than those already discovered.

In summary, we present the first system for doing cost-based op-
timization focusing on access restrictions, constraints, and their in-
teraction, along with an experimental evaluation of the performance
of the system.

Related Work. This work concerns the interaction of access
restrictions and constraints on query answering. The impact of ac-
cess restrictions on query answering in the absence of constraints
has been considered in a number of theoretical works (e.g. [13]).
Deutsch et al. [7] was the first work to deal with query answering
with constraints and access patterns from a theoretical perspective.
They provide a decision procedure for determining whether a query
has a feasible plan in the presence of access restrictions and con-
straints for which the chase terminates. Complexity bounds for this
problem, as well as extensions to richer constraint classes, can be
found in [2, 5]. In particular, [5] introduces the idea that plans for
answering a query correspond to proofs that use two copies of the
integrity constraints along with “accessibility axioms”. We make

heavy use of this correspondence here, but explore how it can be
used within cost-based query optimization. The idea of reducing a
query planning problem to verification that the query is “answer-
able” in turn has its origins in the work of Nash, Segoufin, and
Vianu [15].

From the point of view of cost-based query optimization, the
main prior work on integrating access restrictions into a rule-based
optimizer is Florescu et al.’s [10], which is the departure point for
this work. In the absence of constraints, access restrictions limit
the possible join orderings that should be considered, since many
are infeasible for execution. At the same time, they can lead to
non-optimality of left-deep plans, thus requiring an expansion of
the search space. Florescu et al. adapt traditional dynamic pro-
gramming, searching equivalence classes of subqueries under an
equivalence relation that is aware of access restrictions. We will
introduce a notion of subquery equivalence (fact-equivalence, see
Section 5) that can be seen as an extension of the one in [10] to
the constraint-aware case. To deal with the expansion of the search
space, [10] depart from traditional dynamic programming in em-
ploying a “best-first” search strategy, focusing the search on sub-
plans that are optimal in a heuristic plan utility measure. We will
use utility heuristics based on the constraint graph to achieve a simi-
lar reduction in the setting with integrity constraints (see Section 5).

There is also considerable amount of work on querying with con-
straints, but in the absence of access restrictions. The implementa-
tions of querying with constraints have focused on query reformu-
lation, where the input query Q is pre-processed to form another
query Q′ that is equivalent to Q under constraints. The chase and
backchase approach (C&B) originating in work of Deutsch, Popa,
and Tannen [8, 17] is the most mature method for performing refor-
mulation, focusing on the case of TGD constraints where the chase
terminates. A number of optimizations of the chase and backchase
have appeared recently [14, 11] that report drastic improvements in
speed of reformulation.

While efficiency in the reformulation process has been investi-
gated, the notion of cost used in optimizing reformulations is gen-
erally restricted to minimizing the number of query atoms: remain-
ing cost considerations are delegated to a query engine. In C&B,
physical query optimization, other than join ordering considera-
tions, is accommodated to some extent by dividing up the schema
into logical and physical subschema, with the latter corresponding
to accesses. The output of reformulation is a query over the phys-
ical subschema, which is given a canonical physical implementa-
tion. But access ordering and cost considerations that depend upon
ordering are not considered. Note that in the presence of access
restrictions, dealing with ordering issues is crucial to query opti-
mization, since some orderings may not be realizable.

The book of Toman and Weddell [18] overviews a broad ap-
proach to reformulation that maintains the logical/physical schema
restriction, but adds access restrictions to the mix. A reformulation
process that works for general first-order constraints is outlined,
which produces a query over the physical schema, but one that
may not abide by access restrictions. In a post-processing phase,
the query is rewritten to obey access restrictions. The approach
does not target integration with a database engine, and optimizing
join ordering is not considered.

In contrast, our work does not target simple reformulation –
e.g. producing a set of query atoms which need to be ordered and
implemented by another optimizer. In addition, we deal with a
broad class of cost functions, and we deal natively with ordering is-
sues. We target a physical plan language that consists of a sequence
of access and join operators. This requires us to revisit traditional
join optimization issues in the light of both access restrictions (as



in [10]) and in the presence of constraints – we know of no other
work that presents and evaluates a system that handles both issues.

Our general framework for constraint-based optimization does
not depend upon termination of the chase, but applies to a wide
range of constraints for which effective decision procedures exist.
We thus see this work as a key step in making recent work on deci-
sion procedures for richer constraint languages (e.g. [6]) applicable
to query optimization.

The methods presented in this paper were implemented in a sys-
tem named PDQ, whose front-end for web-based data was pre-
sented as a demonstration in VLDB 2014 [4]. It can be downloaded
from our project website and run as a stand-alone GUI1.

2. DEFINITIONS
Our starting point will be a schema which describes a querying

scenario, consisting of:
• A collection of relations, each of a given arity. A position of

a relation R is a number ≤ arity(R).
• A finite collection C of schema constants (“smith”, 3, . . .).

Informally, these represent a fixed set of values that a querier
might use as input values in accesses. For example, if the
user is performing a query involving the string “smith”, we
would assume that “smith” was a schema constant – but not
arbitrary unrelated strings.
• For each relation R, a collection (possibly empty) of access

methods. Each method mt is associated with a collection of
positions of R – the input positions of mt.
• A collection of integrity constraints, which we will always

assume are given by sentences of first-order logic (inter-
preted under the active domain semantics [1]), using only
relations and constants from the schema.
We will give particular attention to constraints given by
tuple-generating dependencies (TGDs), given syntactically
as

∀~x ϕ(~x)→∃~y ρ(~x,~y)

where ϕ and ρ are conjunctions of relational atoms, possibly
including constants from the set C.
A special subclass consists of Guarded TGDs, in which ϕ is
of the form R(~x)∧ϕ ′ where R(~x) contains all variables of ϕ ′.
These subsume inclusion dependencies (IDs): where ϕ is of
the form R(~x) in which no variables are repeated and there
are no constants, while ρ is also a single atom with no re-
peated variables or constants. IDs are also called “referential
constraints”.

Informally, the access methods give restrictions on how relations
can be accessed. A standard example of relations with access meth-
ods comes from Web forms, where the input positions represent
mandatory fields of the form.

We will use standard terminology for describing queries in first-
order logic, including the notion of free variable, quantifiers, con-
nectives, etc. [1]. A database instance (or just database) I for
schema S assigns to every relation R in S a collection of tuples I(R)
of the right arity, in such a way that any integrity constraints of S
are satisfied. An association of a database relation R with a tuple~c
of the proper arity will be referred to as a fact. A database instance
can equivalently be seen as a collection of facts.

We consider conjunctive queries (CQs), of the form Q(~x) =
∃~y A1∧·· ·∧An, where Ai is an atom using a relation of the schema
and variables from~x and~y and/or constants from the schema as ar-
guments. These are equivalent to queries built up from selection,
1http://www.cs.ox.ac.uk/projects/pdq/

projection, and join in relational algebra, and we will freely move
back-and-forth between logic-based notation and relational algebra
notation, and also between positional and attribute-based notation
for components of a tuple. Given a conjunctive query Q and in-
stance I, Q(I) is the result of evaluating Q on I. A homomorphism
of CQ Q into some instance I is a mapping of the variables of Q to
values of I that preserves all atoms of Q.

We say that a query Q entails another query Q′ with respect to a
set of integrity constraints if in any instance that satisfies the con-
straints ∀~x (Q(~x)→Q′(~x)) holds. As with other notions, by default
we deal here with arbitrary instances, not necessarily finite. Entail-
ment of first-order logic formulas can be captured by proof systems,
and thus it is equivalent to say that Q proves Q′, for any complete
proof system.

Chase proofs. In this work we will make use of the “forward-
chaining” proof system known in the database literature as the
chase [1, 16]. A proof in the chase can be rephrased as a sequence
of database instances, beginning with the canonical database of
query Q: the database whose elements are the constants of Q plus
copies ci of each variable xi in Q and which has a fact R(c1 . . .cn)
for each atom R(x1 . . .xn) of Q. These databases evolve by firing
rules. Consider a set of facts I, a TGD δ = ∀~x ϕ(~x)→ ∃~y ρ(~x,~y),
and~e such that ϕ(~e) holds but there is no ~f for which ρ(~e, ~f ) holds
in I. A chase step for such a δ ,~e adds facts to I that make ρ(~e, ~f )
true, where f1 . . . fk are new constants (“chase constants”).

A chase sequence following a set of dependencies Σ consists of
a sequence of instances Fi : 1 ≤ i ≤ n, where F0 is the canonical
database of Q and Fi+1 is obtained from Fi by some firing of a
dependency in Σ. A successful chase sequence witnessing that Q
entails Q′ is one that ends with an instance Fn such that Q′ has a ho-
momorphism that is consistent with Q: mapping the free variables
of Q′ to the constants corresponding to free variables of Q. We also
say that there is a match for Q′ in Fn.

We now have the following well-known result, stating that the
chase is a complete proof system (e.g. [1])

PROPOSITION 1. For any conjunctive queries Q and Q′ (with
the same free variables), and any TGD constraints Σ, Q entails Q′

w.r.t. Σ iff there is a successful chase sequence following Σ witness-
ing this.

Access plans and costs. We now describe the plan language that
will be the target of our query optimizer, which will mix variants
of relational algebra operators with abstractions for low-level ac-
cess, abiding by the access methods in the schema. The language
is still quite high-level, and admits a variety of implementations.
The most natural one in the Web setting is to perform the algebra
operators in middleware, while using the accesses to model bulk
invocation of a web service or bulk extraction from a web form.
We can also implement the plan language on top of a database
manager (translating the language back to SQL), or mapping to
the low-level access and operators in the database manager’s plan
language. To accommodate the set of plans that are produced from
our proof-based approach, we will need a very flexible formalism
for representing open plans – that is, plans that can not be executed
stand-alone, but instead require an additional input relation, repre-
senting a set of values for plan parameters that may flow in from an
external source.

A plan over a schema S with access methods is a term built up
from typed operators. The basic types are the relational types.
Plans with such types are standard “closed plans”, requiring no in-
put and returning a relation. These types are specified by giving the
output attributes of the relation (here without domain datatypes, for
simplicity). We denote such a type as {a1 . . .an} where ai are the



output attributes. Types can then be built up via the function and
product constructors.

We have an atomic operator for datasource access, AccessOp,
labelled with method mt on relation R and type I → O, where I
are the input attributes of mt and O are all attributes of R. We also
allow AccessOp to be annotated with both a method mt and an
additional mapping σ of a subset of the input positions of mt to
values from the set C of schema constants: now the inputs I are the
unmapped input attributes of mt. We also have atomic operators
for relational algebra selections and projections.

Finally, we have generalized dependent join operators partic-
ularly appropriate for combining plans in middleware. For in-
put attributes a1 . . .am, b1 . . .b j and output attributes a1 . . .an and
b1 . . .bk, with m ≤ n, j ≤ k we have a higher order operator
−→./(P1,P2) operating on a plan P1 with input attributes a1 . . .am
and output attributes a1 . . .an, and a plan P2 with input attributes
b1 . . .b j and output attributes b1 . . .bk. The operator produces a
plan with input attributes {a1 . . .am} ∪ ({b1 . . .b j} − {a1 . . .an})
and output attributes {a1 . . .an} ∪ {b1 . . .bk}. A plan with no in-
puts is called closed; otherwise it is called open.

Terms are built from composing these operators, with the types
of terms computed compositionally. The plans of interest to us will
be the terms of either type {b1 . . .bn} for attributes b1 . . .bn, or of
type {a1 . . .am}→ {b1 . . .bn} for attributes a1 . . .am,b1 . . .bn. That
is, either a closed plan returning relations having attributes b1 . . .bn
or an open plan with input tuple having attributes a1 . . .am. We can
speak of the input and output attributes of such a plan. Every plan
denotes a function mapping an input parameter matching the input
attributes (empty if no input) to a set of tuples of the given output
attributes.

The atomic plans generated for methods and for the relational
operators are the obvious ones. Execution for −→./(P1,P2) proceeds,
given an input parameter ~t, by projecting ~t on the inputs for P1,
making a recursive call to the execution method to run P1 on the
projected tuple, joining the output back with~t, and then doing the
same for P2 on each resulting joined tuple. In the special case where
P1 has no input, this degenerates to a traditional dependent join,
which can be optimized in many ways ( e.g., discussion in [10]).

An example plan for answering the query in Example 1 would
be −→./(AccessOp(mtOfficeInfo),AccessOp(mtProfinfo,{Bname =
“Van Vleck”})). Here mtOfficeInfo is the access to table OfficeInfo.

Given a schema S with access methods and constraints, a plan
answers a query Q if for every instance I satisfying the constraints
of S, the output of the plan on I is the same as the output of Q. We
say that the plan answers Q over finite instances if this holds for
every finite instance I satisfying the constraints.

For general constraints, query answering over all instances is not
always the same as answering over finite instances. But for the
constraints considered in this paper (TGDs with terminating chase
and Guarded TGDs) the two notions of answerability are known to
coincide [3].

Cost. A plan cost function associates every plan with a real-
valued cost. The minimal cost problem for a schema with access
restrictions and integrity constraints, query and cost function is the
problem of finding a plan answering the query with minimal value
of the cost function.

Our framework can work with a “black box” cost function on
plans. If no information about the underlying sources is avail-
able, a default cost metric would associate each access method mt
with a positive rational cost cmt, and then the total cost of a plan
whose access commands are calls to mt1 . . .mtn (with possibly the
same method repeated with different arguments) would be defined
as Σi≤ncmti . We refer to these as simple cost functions in the re-

mainder, and we will provide refinements of the algorithms for this
case.

3. REDUCING PLAN SEARCH TO PROOF
SEARCH

We now review the idea of reducing plan search to proof search.
The first step is to axiomatize the access restrictions, an idea that
goes back to [9, 7]. Here we use a variation of the formalization
of [5].

Given schema S0, the Accessible Schema for S0, denoted
AcSch(S0), is the schema without any access restrictions, such that:
• The constants are those of S0.
• The relations are those of S0, a copy of each relation R de-

noted InfAccR (the inferred accessible version of R), a unary
relation accessible(x) (x is an accessible value).

• The constraints of the accessible schema consist of
– the constraints of S0 (referred to as original constraints

below),
– inferred accessible fact rules, which consist of a copy

of each of the original integrity constraints, with each
relation R replaced by InfAccR.

– accessibility axioms: for each access method mt on re-
lation R of arity n with input positions j1 . . . jm we have
a rule:

accessible(x j1)∧ . . .∧accessible(x jm)∧R(x1 . . .xn)→

InfAccR(x1 . . .xn)∧
∧

i
accessible(xi)

In addition, we have accessible(c) for each constant c
of S0. Note that our assumption on the schema guar-
antees that two access methods can not generate the
same accessibility axiom. Note that in presenting the
accessibility axioms above, we drop the leading uni-
versal quantifiers for brevity.

Informally, the original copies of the relations represent data in the
underlying “hidden” tables, while the inferred accessible copies
represent the subset of the hidden data whose truth we could in-
fer by first using accesses and then reasoning using the integrity
constraints. The assertion accessible(c) indicates that the value c
can be returned in some sequence of accesses. Thus the acces-
sibility axioms represent the rules that allow one to move from
a “hidden fact” (e.g., R(c1 . . .cn)) to an inferred accessible fact
(e.g., InfAccR(c1 . . .cn)), corresponding to making an access. The
axioms also capture that a value in a fact that is returned by an
access is available for use in further accesses. The inferred ac-
cessible copy of the original schema represents the rules that al-
low one to take explicitly accessed information and infer new im-
plicit facts via constraints: e.g., if from an accessibility axiom we
have inferred InfAccR(c1 . . .cn), and we have a referential con-
straint that says that R is contained in S, we would be able to infer
InfAccS(c1 . . .cn).

EXAMPLE 3. In Example 1, there is an accessibility axiom cap-
turing the semantics of the restricted access on OfficeInfo given
by Ax1 : accessible(Bname) ∧ OfficeInfo(Profid,Bname) →
InfAccOfficeInfo(Profid,Bname), while the axiom Ax2 :
accessible(Profid) ∧ Profinfo(Name,Profid) → InfAccProfinfo
(Name,Profid), corresponds to the restricted access on Profinfo.
2

Given a query Q, its inferred accessible version InfAccQ is
obtained by replacing each relation R by InfAccR. Informally,



InfAccQ asserts that the truth of Q can be detected through making
accesses and reasoning.

A main result of [5] is:

THEOREM 2. Q entails InfAccQ with respect to the constraints
in the accessible schema iff there is a plan that answers Q.

Plans from chase proofs. We want to look at proofs witnessing
that Q entails InfAccQ with respect to the generated schema ax-
ioms above. Since these axioms consists of TGDs, we can make
use of the chase proof system, described in Section 2. Combin-
ing Theorem 2 and the completeness of the chase, Proposition 1,
we immediately see that Q entails InfAccQ exactly when there is a
chase sequence beginning with the canonical database of Q leading
to a set of facts where there is a match for InfAccQ.

EXAMPLE 4. In Example 1, a proof must start with the
canonical database of the query Q which consists of the facts
Profinfo(Name0,Profid0), OfficeIn(Profid0,Offid0) and Offices(
Id0,“Van Vleck”).

First, using the integrity constraint relating OfficeInfo to the
relations in the query, we infer OfficeInfo(Profid0,“Van Vleck”).
Using the accessible fact accessible(“Van Vleck”) and the
axiom Ax1 on OfficeInfo(Profid0,“Van Vleck”) we derive
the fact InfAccOfficeInfo(Profid0,“Van Vleck”). Third, by
applying the accessibility axiom Ax2 to Profinfo(Name0,
Profid0) we derive the fact InfAccProfinfo (Name0,Profid0)
and, finally, using the copy of the integrity constraints,
we add the facts InfAccOfficeIn(Profid0,Offid1) and
InfAccOffices(Offid1,“Van Vleck”).

The accumulated facts now have a match for the query
InfAccQ = InfAccProfinfo(Name0,Profid0) ∧ InfAccOfficeIn
(Profid0,Offid0)∧ InfAccOffices(Id0,“Van Vleck”).2

In searching for proofs, or even for proofs with the minimal num-
ber of firings of accessibility axioms, it is possible to restrict atten-
tion to eager proofs: those in which original constraints and in-
ferred accessible fact rules always take preference over accessibil-
ity axioms. Formally, a proof is eager if it does not have a firing of
an accessibility axiom at some step i, and then at a later step a rule
firing involving the initial integrity constraints or their copies on the
relations InfAccR that was already applicable at step i. It is clear
that any proof can be turned into an eager proof by re-arranging
the proof steps. The advantage of restricting to eager proofs is that
their structure is simple: they consist of firing of the original in-
tegrity constraints on the canonical database, which we denote as
an initial chase, followed by segments that consist of firing an ac-
cessibility axiom and then the firing of follow-up rules, the latter
consisting of firing instances of the InfAcc copy of the integrity
constraints.

Generating proofs compositionally. We will now provide a
way of building up eager proofs compositionally in a “bottom-up”
fashion, similar to the way a relational algebra plan for a query can
be built bottom-up via subplans.

A proof space consists of (i) initial chase facts – informally, the
facts generated by an initial chase of the canonical database of the
query under the integrity constraints. The constants used in these
are called the initial chase constants. (ii) A collection of proof
configurations, or just configurations for short.

Proof configurations will be built up from atomic proofs via a
composition operator, and each configuration is associated with
(i) a collection of facts using initial chase constants called the out-
put facts OF , which will always implicitly include the initial chase
facts, (ii) a subset of the initial chase constants, called the input
chase constants IC. IC will represent hypotheses that the proof uses

about which values are accessible. We can derive from the output
facts the collection of output chase constants OC of the configu-
ration: those that are mentioned in the facts OF . A configuration
with input constants IC and output facts OF represents a proof of
OF using the rules of AcSch, starting from the hypothesis that each
c ∈ IC is accessible.

Configurations will be built in a “bottom-up” manner from basic
configurations which correspond to firing of accessibility axioms.

Formally, configurations are built up inductively as follows:
• The basic configurations are ApplyRule(R,~b), where R is

an accessibility axiom corresponding to method mt on re-
lation R, and~b is a binding of the universally quantified vari-
ables of R to chase constants or schema constants. The in-
put constants are all those chase constants in ~b where the
corresponding variable of R occurs within the R atoms of
R at an input position of method mt. The outputs facts
of the configuration are any inferred accessible facts pro-
duced be applying R with binding~b, as well as all facts that
are consequences from these under the copy of the integrity
constraints. Calculating these output facts requires a conse-
quence closure procedure, discussed later.
• We say that an ordered pair of configurations (conf1,conf2)

is non-trivial if the output facts of conf2 are not included in
the output facts of conf1 and vice versa, and if the ApplyRule
subconfigurations of conf1 and conf2 do not overlap. Infor-
mally, non-trivial configurations represent proofs that pro-
duce incomparable conclusions, and without redundant rule
firings. Whenever (x,y) is non-trivial, Compose(x,y) is a
new configuration, which has input I1∪ (I2−O1) and output
O1 ∪O2, and output facts all facts that are consequences of
the union of the facts in x and y under the copy of the integrity
constraints on the InfAcc relations. As above, calculating the
set of facts requires the use of consequence closure.

A configuration is successful if its output facts contain a match
for InfAccQ. It is hypothesis-free if it has no input constants.

EXAMPLE 5. In Example 1, our initial chase starts with
the canonical database of the query and adds the facts
OfficeInfo(Profid0,“Van Vleck”) and accessible(“Van Vleck”).
One atomic proof configuration conf1 is ApplyRule(Ax1,
OfficeInfo(Profid0,“Van Vleck”)), where conf1 has empty in-
put constants as accessible(“Van Vleck”) is part of the ini-
tial chase. The output facts of conf1 include InfAccOfficeInfo
(Profid0,“Van Vleck”), accessible(Profid0), as well as the
facts InfAccOfficeIn(Profid0,Offid1) and InfAccOffices(Offid1,
“Van Vleck”), since the output facts are closed under ap-
plying the copy of the intergrity constraints. Another con-
figuration conf2 = ApplyRule(Ax2,Profinfo (Name0,Profid0))
has the input constant Profid0 and a single output fact
InfAccProfinfo(Name0,Profid0).

Composing the first two proof configurations we get conf3 =
Compose(conf1,conf2), which has no input constants and whose
output facts include the output facts of conf1 unioned with those
of conf2. Configuration conf3 has a match for the target query
InfAccQ in its output facts, and thus conf3 is an example of a suc-
cessful and hypothesis-free configuration.2

We will now define a compositional proof-to-plan algorithm
ToPlan(conf) that takes any configuration conf and produces a
(possibly open) plan, where the input parameters correspond to the
input constants of conf. In particular, if conf is hypothesis-free,
ToPlan(conf) will be a query over the original schema with no
parameters.



The output relation of ToPlan(conf) will have attributes the out-
put constants of conf (output attributes below). If conf is suc-
cessful and hypothesis-free, ToPlan(conf) will, by convention, not
return the whole set of outputs, but rather project onto the con-
stants that correspond to free variables of the input query Q. Since
InfAccQ must have a match in such a configuration, these must
necessarily be output attributes.

ToPlan(conf) is defined by induction on the structure of conf.
• We explain ToPlan(ApplyRule(R,~b)), for R an accessibility

axiom and~b a grounding of its quantified variables. Thus the
grounding will be of the form:

accessible(b j1)∧ . . .∧accessible(b jm)∧R(~b)→ InfAccR(~b)

where R has an access method mt with input j1 . . . jm. We as-
sume first for simplicity that~b does not contain repeated val-
ues and that schema constants in~b appear only in input posi-
tions of mt. We generate the plan AccessOp(mt,σ), with σ

the mapping taking constants in b j1 . . .b jm to the correspond-
ing positions j1 . . . jm. In the case that schema constants oc-
cur in output positions, we compose the operator above with
selections filtering the output according to the schema con-
stants. Repeated values in~b result in composing with further
equality selections.
• The plan produced by ToPlan(Compose(conf1,conf2))

will depend on the properties of conf1,conf2. If
conf1conf2 are hypothesis-free, then a traditional join
method can be used on the common output constants of
conf1,conf2. In the general case, we simply generate
−→./(ToPlan(conf1),ToPlan(conf2)).

Note that the collection of access commands in ToPlan(conf) will
correspond exactly to the collection of accessibility axiom firings
within conf. But the additional axioms are how we determine
whether a configuration is successful, and thus whether the corre-
sponding plan answers the query. To turn a successful hypothesis-
free proof into a plan, we apply ToPlan as above and then add a
top-level projection onto the attributes corresponding to the com-
mon free variables of Q and InfAccQ. As an optimization, this
projection can be pushed deeper into the plan as a post-processing
step.

EXAMPLE 6. Returning to the configurations from
Example 5, the atomic proof configuration conf1 =
ApplyRule(Ax1,OfficeInfo(Profid0,“Van Vleck”)) generates
a plan Plan1 that does a look-up in OfficeInfo on building
name “Van Vleck”, returning a set of Profids. Configuration
conf2 = ApplyRule(Ax2,Profinfo(Name0,Profid0)) generates
plan Plan2 taking as input a parameter tuple with one attribute
Profid0, performing look up on Profinfo, putting the resulting
names and pids in an output table.

The plan Plan3 for compound configuration conf3 =
Compose(conf1,conf2) first does the lookup of Plan1, then
uses the results as inputs to Plan2 via a dependent join on the
resulting sets of Profids. As pointed out in Example 5, there is
a match of the query InfAccQ to the output facts of conf3, and
thus conf3 is a successful hypothesis-free configuration. We thus
can get a successful plan by projecting the result on the attribute
corresponding to the only free variables of the query, namely
Name0.2

Consider an arbitrary chase proof witnessing that Q proves
InfAccQ using the accessible schema. Such a proof can be obtained
as a simple kind of configuration, in which the right hand side of
every Compose operation is an atomic ApplyRule configuration.

We refer to these as linear configurations. Proof configurations
generalize chase proofs to allow a more general way of composing
proofs.

The following result, proved using the completeness of the chase
procedure (e.g. [16]), shows the soundness and completeness of this
method for generating plans:

PROPOSITION 3. For any proof configuration conf for query
Q and schema S with conf successful and hypothesis-free,
ToPlan(conf) is an SPJ-plan that answers Q abiding by the
schema. Conversely, if Q has any SPJ-plan , then it has one of
the form ToPlan(conf) where conf is a linear configuration.

In particular, we have completeness of linear proof configura-
tions, which correspond to left-deep plans. Despite this, there are
advantages to enabling the searching to range over a larger space
of configurations, because it has been observed in Florescu et al.
(Example 3.2 of [10]) that in the presence of access restrictions, re-
stricting to left-deep plans can be particularly undesirable, forcing
the creation of cross products.

Computing configurations and consequence closure. To con-
struct a proof space we need to form the set of initial chase facts
and we need to determine the output facts in each composition
step. Both of these require a basic subprocedure of consequence
closure – finding all consequences of some set of facts. Our high-
level algorithms will be agnostic to how consequence closure is
performed, and thus it applies to any logic that has an effective con-
sequence closure operation. For TGDs where the chase necessarily
terminates (for example, those that are weakly acyclic, or stratified
[16]), we simply apply the rules of the chase algorithm until no
rule is applicable. We also support Guarded TGDs, even when the
chase does not terminate: we do this by cutting of the chase when
it can be determined that further rule firings can not lead to a proof
(see [6, 5]).

4. BASIC PROOF-DRIVEN SEARCH
We begin with a generic bottom-up algorithm, detailed in Al-

gorithm 1, which searches for an optimal successful plan, build-
ing up a set of configurations Configs, while looking for one that
is successful and for which the corresponding plan has low cost.
We start by choosing a set of basic configurations of the form
ApplyRule(R,B), corresponding to single-relation plans. We then
extend Configs by adding new configurations built up using the bi-
nary operator Compose. The content of old configurations is never
changed in this process.

This extension process proceeds in iterations. In the first
phase of any iteration i we can add Compose(conf1,conf2) where
conf1,conf2 are configurations from iteration i− 1 such that nei-
ther of conf i is both hypothesis-free and successful. After forming
the new configuration conf = Compose(conf1,conf2), we gener-
ate the corresponding plan and estimate its cost. We then check
if it is unnecessary to add conf to the list of plan components –
e.g. if we have already discovered that it is more expensive than
a previously-discovered successful configuration. Assuming conf
passes this test, we add it to the list of configurations, and we also
check whether it represents a successful configuration. Both the
formation of the initial facts and the implementation of the compo-
sition operator assume an effective consequence closure algorithm,
as discussed earlier.

We can also restrict the shape of plans by considering only some
subclass of shape-restricted configurations in each iteration of the
loop. For example we can restrict to configurations that generate



Algorithm 1: Basic search
Input: query Q, schema S, height limit d
Output: plan BestPlan

1 Let PlanDag := /0.
2 Initialize the set F0 of facts obtained by firing original integrity

constraint rules up to a termination condition.
3 Choose appropriate set of pairs (R,~b), where R is an

accessibility axiom corresponding to access method mt and~b
is a binding that matches the input of mt, and add the
corresponding configuration ApplyRule(R,~b) to PlanDag.

4 if there is a successful hypothesis-free configuration in
PlanDag then

5 BestPlan := plan corresponding to the successful
hypothesis-free configuration with lowest cost;

6 BestCost := cost(BestPlan)

7 else
8 BestPlan :=⊥ BestCost(n) = ∞ BestCost := ∞ ;

9 r := 1;
10 while r ≤ d and PlanDag has changed from previous r do
11 for all conf1,conf2 of height at most r,

conf1,conf2 ∈ PlanDag with Compose(conf1,conf2)
satisfying any additional shape-restriction do

12 Let conf = Compose(conf1,conf2);
13 if Cost(ToPlan((conf)))≤ BestCost then
14 Add conf to PlanDag;
15 Determine if conf is successful by checking if

InfAccQ holds;
16 if conf is successful and hypothesis-free and

Cost(ToPlan(conf))< BestCost then
17 BestCost = Cost(ToPlan(conf)) ;
18 BestPlan = ToPlan(conf);

19 r := r+1;
20 return BestPlan;

only left-deep plans. Recall that these are the “linear configura-
tions” – those where every composition has an ApplyRule configu-
ration as a second argument.

Unlike a bottom-up join-ordering algorithm, the size of the orig-
inal query does not bound the size of the output plan. We limit this
by bounding the height of a configuration, where the height is the
maximal nesting of binary operators within it. This bound will be
a parameter to the algorithm.

In each round, the main loop chooses configurations to combine.
If all pairs of configurations are considered, completeness is guar-
anteed. But as with traditional join processing, one can restrict
attention to certain candidates (as discussed further in the paper).

Using the completeness of the chase, one can prove that if there
is some plan for query Q, then Algorithm 1 will find it at some
depth d. Further, for cost functions satisfying additional properties
– e.g. the “simple cost functions” such as those that just count
the number of access commands in a plan – one can show that the
algorithm will find a cost-optimal plan.

5. DYNAMIC PROGRAMMING FOR
PROOF-DRIVEN QUERYING

The basic template in the previous section proceeds in rounds,
and is thus analogous to the building up of larger query plans from
smaller in standard query processing. But in the standard theory a
key optimization is not to keep all sub-plans in each round, but only
the best within some class – e.g. the best plan that covers a given

Algorithm 2: Chase-friendly dynamic programming search
Input: query Q, schema S, height limit d
Output: plan BestPlan

1 Let PlanDag := /0.
2 Initialize the set F0 of facts obtained by firing original integrity

constraint rules up to a termination condition.
3 Choose appropriate set of pairs (R,~b), where R is an

accessibility axiom and~b is a binding for rule R, and then
generate the corresponding configurations ApplyRule(R,~b)
adding them to PlanDag.

4 if there is a successful hypothesis-free configuration in
PlanDag then

5 BestPlan := plan corresponding to the successful
hypothesis-free configuration with lowest cost;

6 BestCost := Cost(BestPlan)

7 else
8 BestPlan :=⊥ BestCost := ∞ ;

9 Reps := PlanDag ;
10 Set RepOf(conf) = (conf) and WitnessMap(conf) =

identity, ∀ conf ∈ PlanDag;
11 r := 1;
12 while r ≤ d and PlanDag changed from previous r do
13 CandConf := all conf ∈ PlanDag such that

dominated(conf) = SucDom(conf) = False;
14 Let CandPairs := all shape-restricted pairs conf1,conf2

with conf1,conf2 ∈ CandConf not considered in previous
rounds;

15 Let RepPairs := all pairs conf1,conf2 with
conf1,conf2 ∈ Reps such that ∃ conf ′1,conf ′2 ∈ CandPairs
with RepOf(conf ′i) = conf i i = 1,2;

16 for conf1,conf2 ∈ RepPairs (in parallel) do
17 Create conf = Compose(conf1,conf2) via chasing

and add to CandConf;

18 for conf1,conf2 ∈ CandPairs−RepPairs do
19 Let conf ′1 = RepOf(conf1),

h1 = WitnessMap(conf1), conf ′2 = RepOf(conf2) ,
h2 = WitnessMap(conf2);

20 Retrieve conf ′ = Compose(conf ′1,conf ′2) from
PlanDag;

21 Form conf = Compose(conf1,conf2) by applying
maps h1, h2 to conf ′;

22 Add conf to PlanDag ;

23 for all newly-added configurations conf from this round
that are successful and hypothesis-free with
Cost(ToPlan(conf))< BestCost do

24 BestCost = Cost(ToPlan(conf));
BestPlan = ToPlan(conf);

25 Update dominated,SucDom for all configurations;
26 Update WitnessMap,≡Fact,RepOf,Reps ;
27 r := r+1;

28 return BestPlan;

set of subrelations, or the best plan for a given “interesting order”.
We wish to apply the same idea in exploring proof configurations
and their corresponding plans.

In the classical setting, we only compare subplans P1 and P2 that
cover the same set of atoms, since two such plans have “the same



functionality” when used as components of a final plan. Thus in
the classical case, we only compare components that appear in the
same round of the search. In the proof-driven setting, two configu-
rations may have the “same information” – producing the same of
output facts using the same set of inputs – even though they appear
in different rounds. Thus we will need an equivalence relation that
compares configurations appearing in different rounds.

A related issue is that in traditional dynamic programming, if
a subquery Q1 covers strictly fewer atoms then another subquery
Q2, then Q1 would be considered at a lower round of the recursion.
Thus the “information ordering” on subqueries is compatible with
the order of consideration in dynamic programming. In the pres-
ence of integrity constraints the situation is much different, because
a query plan produces not only the explicit information returned by
accesses, but also the implicit information implied by constraints.
Thus a proof configuration C1 produced at an early round – for ex-
ample, one corresponding to a single access – may produce strictly
more facts than a configuration produced at a later round, corre-
sponding to multiple accesses. To deal with this, we will need to
maintain not only a notion of “equivalent information” of compo-
nents, but also a notion of “greater information”. We will thus
maintain a measure of information content of configurations, and
keep only those which have maximal information content and min-
imal cost among those configurations with the same information
content. This will be formalized via the notions of fact-domination,
fact-equivalence, and domination, given below.

Comparing configurations. Our comparison of the informa-
tion content of configurations must consider the input constants
that they require and also the output facts that they produce –
since clearly a configuration conf producing more output facts
may be more valuable than one that produces less, even if conf ′

is more costly. The notion of having “no greater inputs and no
fewer outputs” can be formalized via the appropriate notion of
mapping. A mapping h from the chase constants of one configu-
ration conf to the chase constants of another configuration conf ′

is fact-preserving if it preserves inferred accessible output facts
in going from conf to conf ′, and if the h image of every input
constant of conf is an input constant of conf ′. If a mapping h is
fact-preserving, then a successful plan p using conf can be con-
verted into a successful plan p′ = h(p) for conf ′, by applying the
mapping h to tables and commands in the obvious way. We write
conf �h

FactDom conf ′ if h is a fact-preserving mapping from conf
to conf ′, and conf �FactDom conf ′ (conf is fact-dominated by
conf ′) if such an h exists. Say that configurations conf,conf ′ are
fact-equivalent, written≡Fact, if there is a bijective fact-preserving
mapping h between them. Clearly, this is an equivalence relation.

Checking for isomorphism on the entire set of constants may be
expensive. Thus in our implementation we strengthen the require-
ment further (over-approximating) by using “canonical names”
(skolem terms) for constants generated via rules, and then requiring
that the mapping preserve the name of all constants. This allows
the �FactDom checks to reduce to a string match, and eliminates
the choice of h (and hence the need to store it). Further, this will
guarantee that any two fact-dominating mappings are compatible,
which we will rely on below.

The above captures our notion of same/greater information. Let
us now turn to cost.

Ideally, we would say that configuration conf is cost-dominated
by configuration conf ′ (relative to a cost function) if for any suc-
cessful superconfiguration conf∗ of conf, substituting conf with
conf ′ in conf∗ yields a successful superconfiguration of conf ′ that
is no more costly than conf∗. Clearly, in such a case we can discard
conf. For simple cost-functions, this definition collapses to fact

domination along with the easily-verifiable cost-related condition
Cost(ToPlan(conf))≥ Cost(ToPlan(conf ′)). For the moment we
defer a discussion of how to estimate that configuration conf ′ is
“hereditarily lower cost” than configuration conf in the sense above
for more general cost functions, and simply assume this is captured
by a relation conf �CostDom conf ′. We say that configuration conf
is dominated by configuration conf ′, if conf �FactDom conf ′ and
conf �CostDom conf ′.

We say that a configuration conf is success-dominated within a
collection of configurations C if there is a successful configuration
conf ′ ∈C such that conf �CostDom conf ′. Assuming that the cost-
domination relation is accurate, and that cost is monotone as access
commands are added on to a plan, a success-dominated configura-
tion should also not be explored. Neither assumption is universally
true, but we make use of both as heuristics. We thus modify Al-
gorithm 1 by calculating the �CostDom and �FactDom relations at
every round, calculating the configuration that are dominated and
success-dominated, keeping only those that do not fall into either
category.

Reduction of chasing time. In classical dynamic programming
the running time is proportional to the number of subqueries being
considered, because the work done within the body of the recursion
consists of operations that are not costly, such as computing the
cost of a composed query from its components. In the proof-driven
setting, forming a new configuration requires chasing, which can
be extremely expensive. We will now consider ways to diminish
chasing time.

The first optimization is to perform the chasing within a round
in parallel. Instead of doing a simple iteration in forming new con-
figurations from pairs (conf1,conf2) as in Algorithm 1, we first
perform a parallel loop over pairs, forming the output facts of each
triple independently, by chasing the union of the output facts in
conf1 and conf2.

The second optimization is to make use of the fact-equivalence
relation. Notice that if conf1 ≡Fact conf ′1 via h, then for any com-
patible conf2, if we have chased to form Compose(conf1,conf2),
we can immediately obtain Compose(conf ′1,conf2) by applying h,
rather than having to re-chase.

Thus, assuming we maintain the ≡Fact relation, the witness
maps, and a distinguished representative of each equivalence class
for ≡Fact, in the chasing step we can chase pairs that involve only
two representatives, then apply the resulting maps to get the re-
maining composed configurations. To optimize further, we need
not consider any candidate representative such that all equiva-
lent elements are either cost- and fact-dominated or are success-
dominated.

The optimized dynamic programming approach is shown in Al-
gorithm 2. We omit the pseudo-code for domination and success-
domination in the figure, assuming variable dominated in the al-
gorithm is set to true exactly when a configuration is dominated,
and similarly with variable SucDom. As with Algorithm 1, the
algorithm is parameterized by a collection of shape-restricted con-
figurations – e.g. linear configurations.

Cost estimation. We now return to the issue of the relation
conf1 �CostDom conf2. For hypothesis-free configurations we can
apply ToPlan to both configurations and estimate their cost using
a traditional cost function – e.g. via recursive estimation of out-
put size and operation cost. In the case where one of conf1,conf2
is open, a conservative approach is to require conf1 and conf2 to
have the same inputs while having an embedding of the plan op-
erations of conf1 into conf2. We currently employ a more relaxed
heuristic, summing up weights associated with each access, as in
the simple cost case. Cost-domination can also be tuned to favor a



certain class of plans. For example, if we wish to be able to look
at some “bushy” plans, but favor left-deep ones, we can simply ex-
clude the possibility that a linear configuration is dominated by a
non-left-deep plan. Excluding left-deep plans from domination by
non-left-deep-plans will also ensure that the domination heuristic
does not lose completeness of the search procedure.

Heuristics and shape-restrictions considered. Algorithms 1
and 2 are parameterized by the notion of shape-restrictions that
one imposes on proofs/plans. Our implementation controls this
via a “bushiness” parameter, defined inductively. Configurations
of bushiness 0 are linear configurations, corresponding to left-deep
plans. Configurations of bushiness k+ 1 allow only one top-level
composition of configurations conf1 and conf2 of bushiness at
most k, and further require that no subconfiguration of conf1 or
conf2 is of form Compose(conf ′1,conf ′2) with conf ′1 of bushiness
k and conf ′2 not an atomic configuration. We implement a search
for bushiness k by iteratively running Algorithm 2 with shapes re-
stricted to configurations, built up form composing with atomic
ApplyRule configurations on the right, but starting with the results
of the previous iteration: this is analogous to the iterative dynamic
programming approach of Kossmann and Stocker [12].

Even with restrictions on bushiness, other heuristics on shape
are needed to reduce the search space. Consider the case where
every relation is accessible and where the constraints allow each
atom R in the initial query to be inferred via n alternative means
(e.g. n atomic access methods, or non-overlapping sequences of
access methods). If k is the number of atoms in the query, then
the search space is proportional to nk, even when only left-deep
plans are considered – we see this explosion in some of our sample
queries (see Q11 in our benchmark discussed in Section 6). Thus as
an additional heuristic, we associate each atom in the initial chase
configuration its distance from the source query atoms in the “chase
graph” which connects atoms A1 and A2 if a rule firing on A1 gener-
ates A2. Each configuration is then given a “query proximity rank”
as the maximal distance of any chase atom exposed in the configu-
ration. In line 14 of Algorithm 2, we then consider only the top d
configurations conf ′2, ordered by distance, where d is a parameter
given as an argument to the algorithm.

6. IMPLEMENTATION AND EVALUA-
TION

We now describe the implementation of our planning system,
denoted PDQ (Proof-Driven Querying), and perform an evaluation
of it.

Figure 1: System’s architecture.

The system’s architecture is depicted in Figure 1. It features a
planner, runtime, and wrappers.

Planner. A planner object implements the consequence closure
operation in the algorithm. The implementation supported now is
based on the chase algorithm: a chase-until-termination method is
available for terminating chase classes, a blocking chase for con-
straints with non-terminating chase (cutting off the chase when
it can be determined that further chasing can not lead to a proof,
see [5]) for schemas containing guarded TGDs. Lastly, we support
a bounded chase where we only fire up to a fixed number of times,
passed as a parameter. The proof-to-plan module is in charge of
building execution plans from proofs, making calls to the reasoner
for consequence closure. Finally, a cost module to evaluate and
compare the quality of our plans, which may interact with the un-
derlying data management layer to collect statistics on the data. In
particular, our cost module implements both (i) a simple cost func-
tion, as described in Section 2 and (ii) a typical “textbook” cost
function, where the cost of a plan equals the estimated total number
of I/Os performed by every operator. This function will be used in
the experiments presented throughout the rest of this section, unless
otherwise stated. Finally, (iii) the cost module can also delegate the
cost computation to the underlying data management layer. Our lat-
est release supports calls to external DBMS APIs when the schema
relations are all stored on the same DBMS. Experiments using the
PostgreSQL API will be presented on Section 6.5.

Runtime. PDQ has an execution environment with several ex-
ecution modes. For example, in the iterator-type engine, a plan is
a tree or DAG of physical operators consuming tuples from their
children, and outputting tuples to their parents. Similar to the cost
estimation module, the runtime can also delegate the execution to a
third party RDBMS (typically when the cost was also delegated to
that system).

Wrappers. The wrapper layer acts as an interface with the un-
derlying storage in the case where execution is not delegated to the
DBMS. Currently, two types of storages, relational databases and
web services, are supported. The layer is responsible for reading
and writing data, and also providing metadata to be used by the ap-
propriate cost models (e.g. skew, connection latency, etc.) or by the
planner (schema information, access methods given by indices or
required input fields).

6.1 Experimental setting
Environment. We used the Amazon Cloud Computing envi-

ronment to run our experiments, with each machine using 4 vir-
tual CPUs (Intel Xeon / Ivy Bridge), with a maximum of 12GB
of RAM allocated to the Java Virtual Machine. For TPCH-based
experiments, the data resided in a PostgreSQL 9.2 database. Un-
less specified otherwise, we allocated 15 minutes for each planning
session to complete.

Datasets. We evaluated PDQ on the TPCH benchmark on lo-
cal, relational tables. Since our focus is on conjunctive queries, we
handcrafted 13 CQs of different sizes (1 to 9 atoms) and shapes (in-
cluding stars, chains, cycles, self-joins). Furthermore, we extracted
the CQ components of seven of the TCPH standard benchmark
queries (that is, eliminating uses of GROUP BY). The dependen-
cies on the schema are those given by the foreign keys constraints.
In addition, we created three arbitrary materialized views on the
relations region-nation (V1), orders− lineitem−part− customer
(V2) and orders− lineitem−part− supplier (V3).

The TPCH benchmark does not come with any access restric-
tions. We therefore created manually various ranges of access pat-
terns on top of the base schema. The schemas for which we re-
port numbers in this paper allow free access to the V2, V3 and rela-



tions that are small or reference no other relation, namely region,
supplier and part. Materialized views also feature access meth-
ods for each key and foreign key of the participating base tables.
For other relations, our default schema features a “canonical” set
of access restrictions guided by the foreign key constraints of the
schema, i.e., every foreign attribute corresponds to a required input.
We observed that for “natural” queries such as ours, where joins are
on key/foreign key attributes, there are cross product-free left-deep
plans. We also present results for an alternate schema, in which ac-
cess restrictions are placed on attributes where we experimentally
found this property was not met.

The database data has been generated using the 2.15.0 TPCH
generator with scaling factor 0.001. In our experiments, the largest
relation (line− item) contains 60K tuples. Note that the size of the
data is immaterial to the performance of planning, but data statistics
are used in evaluating the cost of the resulting plans.

6.2 Answerability
The first experiments investigate the benefits of constraint-

awareness in the presence of access restrictions: how often our
approach can find plans where a constraint-unaware optimizer will
not find any, and how often it will find better plans than a constraint-
unaware optimizer. We test this by not considering integrity con-
straints but only access patterns. In this experiment, we used the
default schema (i.e., input attributes correspond to foreign key at-
tributes). We report the numbers in Figure 2. The hatch-patterned
bars indicate the cost of the best plans found when integrity con-
straints are disabled and we search the space of left-deep plan ex-
haustively. The plain bars correspond to cases where constraints
were enabled. In this case, we employed a priority ordering heuris-
tic, detailed in Section 6.3, to ensure completion within the time
limit.

It is interesting to note that even with such minor restrictions,
only six of our queries turn out to be answerable. Unanswerable
queries correspond to missing bars on the figure. Moreover, the cost
of plans for queries that were answerable was significantly reduced
for half of these cases.

6.3 Planning time versus cost
We next evaluated the ability of PDQ to trade off planning time

for cost, configuring the algorithm for linear configurations (hence
left-deep plans) and using the ordering heuristic (see Section 5) of
only exposing atoms the top d atoms in distance from the canonical
database of Q in the chase graph. Results showing the impact as
d varies are in Figures 3 and 4. We first ran the planner on all the
queries for d=1, then 2, 3 and 5, where 5 is the length of the longest
path in the chase graph. As in the previous experiment, we relied
on the default schema.

Figure 3 shows planning time in milliseconds. For all but one
query, planning time is a few seconds for d=1, then increases by 1
to 2 orders of magnitude as d is increased to 5. One outlier, Q11,
is our most demanding query. It has 8 atoms and triggers many
constraints, leading to an initial chase with 22 atoms. For Q11,
planning with d=1 took 26 seconds, and increasing d to 2 caused
the planner to time out (denoted by empty bars).

Figure 4 shows the cost of the best plan found for the same exam-
ples. Clearly, in most cases, the largest cost reduction is achieved
when incrementing d from 1 to 2, with a gain of 2 orders of magni-
tude in half of the cases. Increasing d beyond 2 pays off mainly for
queries whose relations are farther away from relations R for which
there is no dependency with R in the right-hand side. This prop-
erty can be checked easily at the beginning of the planning process.

Overall, setting d to 2 by default yields a very good cost reduction
with a minor penalty on planning time.

6.4 Impact of bushy plans
Recall that bushy plans may be necessary to avoid Cartesian

products, and thus our implementation includes a “bushiness”’ pa-
rameter, which controls how many nested bushy joins are consid-
ered in proof and plan search.

To test the impact of this parameter on plan cost, we use the
alternate schema mentioned in Section 6.1, for which 15 of our
queries do not have any Cartesian products-free left-deep plan. One
query, Q6, becomes unanswerable in this schema. Figure 5 shows a
comparison of the cost of the best plans found for our set of queries
under this scenario. In this figure, bushy corresponds to our own
bushiness-friendly algorithm described in Section 5. In order to
exhaustively search the space of plans, and to see the impact of
bushy search in isolation, these experiments were run without the
distance-based heuristic enabled. We allocated a 1h limit to the
planner.

Our bushy search looks for left-deep plans as an initialization
phase, and thus it generally finds a plan at least as good as the best
left-deep plan, if given the time to complete this initialization.

The results show that allowing for bushy plans can lead to large
savings. For two thirds of our queries, the planner managed to
find plans within the allocated time. Moreover, searching for bushy
plans pays off with a cost reduction of about one order of magnitude
in half of those cases, while other plans were similar to the best left-
deep ones.

However, our current bushy search is still quite expensive, often
leading to long planning times, reflecting the intrinsic combinato-
rial difficulty in searching for bushy plans in queries that when, ex-
panded by constraints, may have >10 atoms. For the seven remain-
ing answerable queries, the search for bushy plans timed out with-
out yielding any solution. This was partially related to the fact that
the experiment did not apply the distance-based heuristic. Under
this setting, even a left-deep plan could not be found for Q11, our
most expensive query. The remaining queries all use the lineitem
relation. In our schema, this relation only has limited access and
is 3 steps away from any free access relation in the “dependency
graph” that relates tables if they are connected by a dependency.
Therefore, a large reasoning effort is required before lineitem is
determined to be accessible, an effort that is compounded when
bushy search is employed.

An example of the benefits for medium-sized queries is
query Q3, asking for the names and account balance of US
suppliers along with the costs of their supplied parts, i.e.,
{suppname,actbal,suppcost | partsupp(partkey,suppkey,supp−
cost, . . .) ∧ supplier(suppkey,suppname,nationkey,actbal, . . .)
∧ nation(nationkey, ‘US’, . . .)}. The best left-deep plan found is
given by P =−→./(−→./(−→./(region nation(nationkey, ‘US’, . . .),
part(partkey, . . .)),supplier(suppkey,suppname,nationkey,actbal,
. . .)), partsupp(partkey,suppkey,suppcost, . . .)) and has cost
4.96E7. The underlined attributes partkey and suppkey correspond
to inputs for the relation partsupp. Note the presence of the
view region nation and of the relation part in P. Neither of these
appear explicitly in Q3, but the key foreign-key dependencies
from partsupp to part and from region to nation, as well as the
region nation view definition enable us to retrieve the data related
to partsupp and nation from part and region nation, respec-
tively. The execution of this plan involves a cartesian product
between region nation and part, then a traditional join between
−→./(region nation, part) and supplier and, finally, a dependent join
with partsupp using the attributes partkey and suppkey.
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Figure 2: Cost of the best plan with and without reasoning enabled.
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Figure 3: Planning time with varying d
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Figure 4: Cost of the best plan with varying d
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Figure 5: Comparison of cost between left-deep and bushy plans.

The best bushy plan found is given by
P′ =−→./(−→./(region nation(nationkey, ‘US’, . . .),supplier
(suppkey,suppname,nationkey,actbal, . . .)),−→./(part(partkey, . . .),
partsupp(partkey,suppkey,suppcost, . . .))) and has cost one order
of magnitude lower than the cost of P (4.72E6). This plan performs
a traditional join between region nation and supplier and then a
dependent join between the previously joined data and the output of
−→./(part(partkey, . . .), partsupp(partkey,suppkey,suppcost, . . .)).

6.5 Impact of join-order-aware cost-based
plan search

Recall that we search for efficient implementations at the plan
level, judging cost with a call to a cost function. In particular,
we do not identify better plans with some syntactic requirement
on a query, such as minimality of the number of query atoms.
Our last experiment compares the plans found by our system with
those found by a minimal-rewriting approach, such as the chase
and backchase of [17, 14, 11]. We mimicked the minimal-rewriting
query-based approach (MR below) simply by setting our cost func-

tion to be the number of atoms, and then randomly re-ordering the
atoms in the resulting plan. Note that, in cases where MR found
multiple minimal rewritings, we randomly chose one of them. In
evaluating our system and the minimal-rewriting-based one, we
used the PostgreSQL plan analyser tool EXPLAIN to evaluate the
cost. As our system produces physical plans, in contrast to MR
which returns logical rewritings, we translated the plans or rewrit-
ing found by our system and MR, respectively, to SQL queries,
which were subsequently supplied to PostgreSQL for analysis. We
used a schema featuring 12 views with free access and made the
base relation inaccessible except region, nation and supplier. All
queries are answerable using the accessible tables: we first added
materialized views for every pair connected by a key-foreign key
constraint, and then added one view for every triple of relations for
which there exists a single “hub” relation having key-foreign key
constraints with the two other relations, with the remaining rela-
tions not being associated via a key foreign-key dependency. In
this experiment, our system was restricted to search for left-deep
plans.
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Figure 6: Comparison of costs between order-aware and order-oblivious plans.

The results are presented in Figure 6. In most of the
cases, we can observe improvements of several orders
of magnitude. For example, Q2, asks for the manufac-
tures of the parts whose available quantity is 10 units:
{〈manu f acture〉 | partsupp(partkey, partname,10, . . .)

∧part(partkey,manu f acture, . . .)}
Some of the input-free-access views that our schema has are
part partsupp, supplier partsupp, and nation supplier, which are
the natural joins of the corresponding tables. It is clear that our
query can be directly answered by accessing the part partsupp
view. This is actually the minimal rewriting returned by MR. For
this rewriting, PostgreSQL produces a physical plan that, first,
performs a sequential scan on part partsupp and, second, filters
out the tuples with available quantity 6= 10. The total cost of these
operations is estimated by PostgreSQL at 433.00. However, we
could answer that query 20 times faster approximately by first
accessing the nation supplier view, then the supplier partsupp
view and finally the part partsupp view. In particular, the physical
plan that PostgreSQL produces joins the tuples of nation supplier
with the ones of supplier partsupp, after performing, first, a se-
quential scan on nation supplier and, second, an indexed scan on
supplier partsupp filtering out the tuples with available quantity
6= 10. The total cost of the above operations is estimated at 13.69.
As a final step, it joins the previously derived tuples with the ones
acquired after performing an indexed scan on part partsupp and
filtering out the tuples with available quantity 6= 10. The overall
cost is estimated at 22.13.

7. CONCLUSIONS AND FUTURE WORK
We have presented here a basic framework for creating query

plans while accounting for both access patterns and integrity con-
straints. Our goal was to show how these features can be accom-
modated as a generalization of traditional query optimization.

We believe that the framework gives an approach to a very broad
class of queries and constraints. For example, we have considered
here only TGDs, but the basic framework can accommodate ar-
bitrary first-order constraints and queries. In particular, we can
extend the framework to key dependencies and more generally,
Equality-generating Dependencies (EGDs), requiring only the ap-
propriate extension of the chase procedure to account for EGDs.

Our model of access methods here was extremely simplistic,
corresponding to a lookup operation. To account for either real-
istic DBMS access primitives or for the diversity of APIs avail-
able in web sources, one would need to deal with a much richer
model, allowing e.g. bulk access, block-oriented access, and itera-
tion through a result set. Likewise, for simplicity in this work we
assumed the existence of only a “vanilla” join and dependent join
operation, and our algorithms returned only one plan, rather than
multiple plans representing different “interesting orders” on out-

puts. But we believe our algorithms can easily be extended to a
more sophisticated operator model.
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