
Generating Low-cost Plans From Proofs ∗

Michael Benedikt
Oxford University

Balder ten Cate
LogicBlox Inc. & UC Santa Cruz

Efthymia Tsamoura
Oxford University

ABSTRACT
We look at generating plans that answer queries over restricted inter-
faces, making use of information about source integrity constraints, ac-
cess restrictions, and access costs. Our method can exploit the integrity
constraints to find low-cost access plans even when there is no direct
access to relations appearing in the query. The key idea of our method
is to move from a search for a plan to a search for a proof that a query
is answerable, and then generate a plan from a proof. Discovery of
one proof allows us to find a single plan that answers the query; explo-
ration of several alternative proofs allows us to find low-cost plans. We
start by mapping out a correspondence between proofs and restricted-
interface plans in the context of arbitrary first-order constraints, based
on interpolation. The correspondence clarifies the connection be-
tween preservation and interpolation theorems in predicate logic and
reformulation problems, and generalizes it in several dimensions. We
then provide algorithms for schemas based on tuple-generating depen-
dencies. These algorithms perform interpolation, but generate plans
directly. Finally, we show how the direct plan-generation approach
can be adapted to take into account the cost of plans.

1. INTRODUCTION
This work concerns answering queries in the presence of integrity

constraints, where the datasources may vary in terms of their access
restrictions and access costs. Examples of restricted interfaces include
web forms, web services, and legacy databases. Examples of access
cost include the monetary cost of accessing certain services, and the
cost in time of accessing data through web service calls, by iteratively
filling out web forms, or using particular indices. Our goal is getting
plans which (a) give complete answers to queries while (b) minimizing
the access cost. The first condition means that, for a query asking
for the office number of all Professors with last name “Smith”, we
want a plan that returns all tuples in the answer, even if access to
the Professor relation is limited. The second condition means that
our goal is not merely to get a complete answer, but also to take
into account the cost of making accesses to the sources, which we
assume will dominate the cost of local query processing. An obvious
question arises: if access to a source is restricted, how can one hope
to get complete answers, or any answers at all? Relationships between
sources can help us find plans that can answer a query.

∗Benedikt and Tsamoura are supported by EPSRC grant
EP/G004021/1. Ten Cate is supported by NSF grant IIS-1217869.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PODS’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2375-8/14/06 ...$15.00.
http://dx.doi.org/10.1145/2594538.2594550.

EXAMPLE 1. Consider a Profinfo table containing information
about faculty, including their last names, office number, and employ-
eeid, but with a restricted interface that requires giving an employeeid
as an input. The query Q asking for ids of faculty named smith cannot
be completely answered over this schema.

If another source has a Udirect table containing the employeeid
and last name of every university employee, with unrestricted access,
then Q is completely answerable: one plan pulls all tuples from the
Udirect table and check them with the Profinfo table.

The above example shows that complete answers may or may
not be obtainable, and that information on source overlap, which
we can formalize using referential integrity constraints, can play
an important role in determining whether and how queries can be
completely answered. The simple example above involves two kinds
of inferences to see that the query is answerable: reasoning about the
logical relations between relations (referential constraints, mappings,
view definitions), and also reasoning concerning what kinds of access
we have to the data. The latter must account for the fact that some
relations, such as materialized views, are freely accessible, while
others (base relations hidden behind views, virtual relations within
a data integration schema) may not be directly accessible at all. Or
as above, it may capture finer notions of access – e.g. that a relation
can be accessed only via certain indexes. In Example 1, the reasoning
was straightforward, but in the presence of more complex schemas
we may have to chain several inferences:

EXAMPLE 2. We consider two telephone directory datasources
with overlapping information. One source exposes information
from Direct1(uname,addr,uid) via an access requiring a uname
and uid. There is also a table Ids(uid) with no access restric-
tion, that makes available the set of uids (hence a referential con-
straint from Direct1 into Ids on uid). The other source exposes
Direct2(uname,addr,phone), requiring a uname and addr, and
also a table Names(uname) with no access restriction that reveals
all unames in Direct2 (that is, a referential constraint from Direct2
to Names). There is also a referential constraint from Direct1 to
Direct2 on uname and addr. Consider a query asking for all phone
numbers in the second directory:
Q = {phone | ∃ uname addr Direct2(uname,addr,phone)}.

There is a plan that answers this query: it gets all the uids from Ids
and unames from Names first, puts them into the access on Direct1,
then uses the uname and addr of the resulting tuples to get the phone
numbers in Direct2.

We will begin with the case of arbitrary first-order logic constraints.
We show that existence of a plan for a query is equivalent to an entail-
ment between formulas, with the entailment holding relative to a set
of rules that encode both integrity constraints and access/availability
restrictions. We show that by “tweaking” the axioms, we can charac-
terize the existence of a plan that uses only positive relational algebra
operators, and a plan that uses positive relational algebra operators
and the difference operator restricted to atomic relations. Our equiv-
alence theorems are closely-related to interpolation and preservation

theorems in first-order logic. On the one hand, we generalize results
of Nash, Segoufin, and Vianu [15] to show that several of the main
preservation theorems in first-order model theory correspond to results
that characterize which queries can be reformulated over restricted
interfaces. Futhermore, we show that these results have effective con-
tent, allowing us to compute a reformulation from a proof of a certain
entailment. Finally, our results on first-order constraints show that
the connection between interpolation and reformulation applies not
only to the setting of view definitions, but to the more refined notion
of restricted interface given by access patterns, and in the presence
of arbitrary first-order integrity constraints. The latter extension is
obtained via a new interpolation theorem, which is of independent in-
terest as it generalizes existing interpolation theorems in the literature
and provides the first constructive proof of a prior theorem.

We go on to show that for a wide class of constraints used in
databases, tuple-generating dependencies, plan-generation from
a proof can be done via a particularly simple algorithm, which
produces plans that are efficient in terms of number of accesses
made. We provide algorithms for relational algebra plans, along
with an algorithm geared towards plans that use conjunctive queries.
This latter algorithm generalizes the decidability of conjunctive
reformulation over views (a seminal result of Levy et al. [?]) and is
the basis for the work on low-cost plans in the remainder of the paper.

Our initial plan-generation algorithm would generate the “obvious
plans” for either of the examples above, thus satisfying requirement
(a) in the first paragraph above. But what about (b)? In the setting of
overlapping datasources, there can be many plans with very distinct
costs. Consider a variant of Example 1 in which there are two tables
Udirect1 and Udirect2 that contain the necessary information. In
this case we would have at least three plans: one that first accesses
Udirect1 as above and then checks the results in Profinfo, another
that first accesses Udirect2, and a third that accesses both Udirect1
and Udirect2 and intersects the results in middleware before doing
the check in Profinfo. Which of these is best will depend on how
costly access is to each of the directory tables, and what percentage
of the tuples in the two directory tables match a result in Profinfo.
Notice that these plans are not variants of one another, and one cannot
be obtained from the other by applying algebraic transformations.

A salient fact about our algorithms is that they can directly produce
physical plans whose structure mirrors the structure of proofs. We
can thus search for a good physical plan while searching through
the space of proofs, rather than having separate reformulation and
optimization phases. We discuss how to use this approach to find the
lowest-cost plan, thus addressing requirement (b), in the setting where
we may have complex constraints, and a “generic” cost function on
access plans. The main idea is to explore the full space of proofs,
but guiding the search by cost as well as proof structure. The notion
of searching simultaneously in “proof space” and “plan space” is a
key contribution – we believe that it is applicable in a wide variety
of query reformulation settings, unifying cases with very distinct
integrity constraints and optimisation requirements.

Related Work. The goal here of plans that get complete answers
to queries contrasts with much work in data integration and knowledge
representation, which deals with the more general problem of getting
the maximal number of answers possible (the certain answers) or the
best plan in a certain language (the maximal contained rewriting). For
example, in the setting of the semantic web it is generally assumed
that sources are inherently incomplete, and thus one cannot hope
to get the complete answers. Although we believe our techniques
can apply to this broader problem, by restricting to the “completely
answerable” setting we circumvent many complications: for example,
the resulting plans will never require recursion [3]. This restriction
will allow us to focus on the basic ideas in our approach to query
reformulation via proof exploration.

We are interested not just in getting the complete answers, but in
getting them with the lowest possible cost. The impact of access re-
strictions on cost-based optimization has been considered before. Flo-
rescu et al. [9] look at integrating access restrictions into a cost-based
optimizer, following up on earlier cost-agnostic work on querying
with access patterns by Li and Chang [12]. In the absence of integrity

constraints, querying with access patterns amounts to a limitation on
the search space, restricting the ordering of atoms within a query plan.
In contrast, we allow schemas that can simultaneously restrict the
search space (via access restrictions) and extend it (via integrity con-
straints, which allow relations outside of the query to become relevant)
in comparison to the search space of traditional query optimizers.

Our approach starts by connecting plan generation with interpo-
lation and preservation properties, building on the work of Nash,
Segoufin, and Vianu [15]. [15] introduces the idea of going from a
preservation property (in their case, determinacy of a query by views)
to a plan (in their case, a rewriting of the query over the set of views).
We give theorems for plan-generation over arbitrary first-order con-
straints, which work via new preservation and interpolation theorems.
The results connecting preservation properties and existence of a
plan can be seen as generalizations of [15] to the setting with access
patterns and constraints, as explained later on. We also show how this
connection can be “pushed down” to smaller classes of constraints,
generating plans directly, rather than going via queries, and how this
approach can be combined with cost considerations.

Several works provide algorithms for querying in the presence of
both access patterns and integrity constraints, usually in the context of
computing maximal answers rather than complete answers. Duschka
et al. [8] include access patterns in their Datalog-based approach to
data integration. They observe, following [11], that the accessible
data can be “axiomatized” using recursive rules. We will make use
of this axiomatization (see the “accessibility axioms” defined later
on) but establish a tighter relationship between proofs that use these
axioms and query plans.

Much closer to our work is the chase and backchase (C&B) method
elaborated in work of Popa [17], Tannen, and Deutsch (e.g., [7, 6])
for reformulating queries on a physical schema while exploiting
constraints. The main idea is to produce a “universal plan” (the
chase) and then simplify it (back-chasing). Our work connects the
approach via preservation of Nash, Segoufin and Vianu with the
C&B method, while pointing out new applications. The proof-to-plan
approach here applies to logics beyond dependencies (where the chase
is not applicable), and to dependencies where the chase does not
converge. We demonstrate this flexibility by discussing a cost-aware
plan-generation algorithm for guarded dependencies. This class of
constraints is orthogonal to those in [17, 7], which use an OO model
that includes both TGDs and EGDs (e.g. keys), but relying on chase
termination. In the special case of TGDs where the chase terminates,
our algorithm can be seen as a way of combining the cost-based C&B
described in Chapter 6 of Popa’s thesis [17] with the access-method
extension of C&B given in the work of Deutsch, Ludäscher, and Nash
[5]. We note that unlike [17, 6] the cost-based algorithm outlined
in this paper is not targeted towards generating physical plans on a
single source (and thus we do not assume, as in these works, a fine
model of how physical and logical schemas interact) – instead we are
interested in optimizing the performance of expensive queries on top
of sources, using a DBMS in the middleware.

Chapter 5 of the book of Toman and Weddell [18] (see also [?]) out-
lines an approach to reformulating queries with respect to a physical
schema that is based on proofs. They discuss proofs using the chase
algorithm, as well as an extended proof system connected to Craig
Interpolation, remarking as we do that the latter can synthesize plans
that are not conjunctive. Our results give a finer look at how plan-
generation is impacted by the expressiveness of integrity constraints,
axioms for capturing access restrictions, and the chosen proof system.

The recent work [3] studies the complexity of “complete answer-
ability” for constraints in guarded logics. We will use several tools
from [3], but our focus is exploring the relationship of proofs to
plans: in the general first-order setting as well as for restricted con-
straint classes; finding optimal plans in addition to finding some plan;
checking if a plan exists and finding plans efficiently.

Summary of Contributions. In summary, this work outlines a
new perspective on implementing queries over restricted interfaces,
by generating plans from proofs.
• We prove theorems characterizing the existence of a plan for a

query. These results can be read as semantics-to-syntax results

– if a query has a certain preservation property then it can be
rewritten in a certain form. They have an alternative effective
reading, providing a recipe for deriving a plan from a proof.
• We show that these results generalize a number of theorems con-

cerning views, and give a parallel between reformulation results
for queries in databases and preservation and definability theorems
in classical logic.
• We provide a new constructive interpolation theorem for predicate

logic that generalizes many prior results, and provides a powerful
new tool in the study of query reformulations.
• For TGDs, we give algorithms that produce plans directly from

chase proofs. Informally, these algorithms perform interpolation
directly over a plan language. We show that the proof-generated
plans are as efficient as arbitrary plans based on conjunctive queries.
• We show how the direct proof-to-plan approach outlined for TGDs

can be extended to find the lowest cost plan, even in the case of
TGDs where the chase does not converge.

2. DEFINITIONS
Our starting point will be a schema which describes a querying

scenario, consisting of:
• A collection of relations, each of a given arity. A position of a

relation R is a number ≤ arity(R).
• A finite collection C of schema constants (“smith”, 3, . . .). Infor-

mally, these represent a fixed set of values that a querier might use
as test values in accesses. For example, if the user is performing a
query involving the string “smith”, we would assume that “smith”
was a schema constant – but not arbitrary unrelated strings.
• For each relation R, a collection (possibly empty) of access methods.

Each method mt is associated with a collection of positions of R –
the input positions of mt.
• A collection of integrity constraints, which we will always assume

are given by sentences of first-order logic (interpreted under the
active domain semantics [1]), using only relations and constants
from the schema.
We will give particular attention to constraints given by tuple-
generating dependencies (TGDs), given syntactically as

∀xϕ(x)→∃yρ(x,y)

where ϕ and ρ are conjunctions of relational atoms, possibly
including constants.
A special subclass consists of Guarded TGDs, in which ϕ is of
the form R(x)∧ϕ ′ where R(x) contains all variables of ϕ ′. These
subsume inclusion dependencies (IDs): where ϕ is of the form
R(x) in which no variables are repeated and there are no constants,
while ρ is also a single atom with no repeated variables or constants.
IDs are also called “referential constraints”.

Informally, the access methods give restrictions on how relations can
be accessed. A standard example of relations with access methods
comes from Web forms, where the input positions represent mandatory
fields of the form.

We will use standard terminology for describing queries in first-
order logic, including the notion of free variable, quantifiers, connec-
tives, etc. [1]. A database instance (or just database) I for schema S
assigns to every relation R in S a collection of tuples I(R) of the right
arity, in such a way that any integrity constraints of S are satisfied. An
association of a database relation R with a tuple c of the proper arity
will be referred to as a fact. A database instance can equivalently be
seen as a collection of facts.

We consider conjunctive queries (CQs) Q(x) = ∃y(A1∧·· ·∧An),
where Ai is an atom using a relation of the schema and variables from
x and y and/or constants from the schema as arguments. These are
equivalent to ESPJ queries in relational algebra (defined below), and
we will freely move back-and-forth between logic-based notation and
relational algebra notation, and also between positional and attribute-
based notation for components of a tuple. Given a conjunctive query
Q and instance I, Q(I) is the result of evaluating Q on I.

Access plans and costs. We look at plans for answering a query
respecting the access methods.

An access command over a schema S with access methods consists
of an access method mt from S on some relation R, a relational algebra
expression E over some set of relations not in S (“temporary relations”
henceforward), a bijective mapping bin taking output attributes of E
to the input positions of mt, an output temporary relation T and a
binary relation bout relating positions of R to positions of T , such that
every position of T is in the range of bout .

We will generally omit the mappings in the notation (and it will be
clear from context in the examples), and we write an access command
as T ⇐mt⇐ E, denoting that mt is invoked with inputs produced
by relational algebra expression E with the result going into T . For
example, a plan for the query in Example 2 might begin with a
command T1⇐mtIds⇐ /0, where mtIds is the input-free access to
table Ids, T1 is a temporary table with a single column, and /0 (by
convention) represents no input.

A middleware query command is of the form T := E , where T is a
temporary relation and E is a relational algebra expression. The input
relations of E are temporary relations filled by other access commands,
while the relation T may be used as input in further commands.

An RA-plan consists of a sequence of access and middleware query
commands, along with a distinguished final output relation Tf in. We
can similarly talk about SPJ-plans, where the expressions in access
and middleware query commands are built up from relational algebra
operators SELECT, PROJECT, and JOIN, USPJ-plans that allow
UNION in addition to SPJ operators, and USPJ¬-plans that allow
the difference operator E−E ′ to be applied only in taking the output
tuples of E and subtracting out tuples that are in some relation R,
where R has at least one method. Hence USPJ¬-plans implement
queries that use the difference operator only when the second argument
is a relation. Similarly we can talk about plans for other relational
algebra fragments. We allow for the use of inequalities in selections
and join conditions, and we denote by ESPJ the fragment of SPJ
where only equality conditions are allowed. EUSPJ and EUSPJ¬
are defined analogously.

The semantics of plans is straightforward. Given a database instance
I that interprets a relation R with access method mt having input
positions j1 . . . jm, and also interpreting the relations mentioned in
expression E, an access command T ⇐ mt⇐ E is executed by
performing the query E on I and “accessing mt on every result tuple”.
That is, each output tuple of E is mapped to a tuple t j1 . . . t jm using
the input mapping. For each tuple t = t1 . . . tn ∈ R that “matches” (i.e.
that extends) t j1 . . . t jm , t is transformed to a tuple t′ added to T using
the output mapping bout . If bout maps one position of R to multiple
positions in T , the values ti are duplicated in t′. If bout maps positions
p, p′ of R to the same position in T , then a tuple t′ is only added to T
if tp = tp′ . A middleware query command T := E executes query E
on the current contents of the temporary tables mentioned in E, and
then places the result in temporary table T . A plan is evaluated on an
instance of S by evaluating each command in sequence, starting with
all temporary relations initially empty. The output of the plan on an
input database is the content of the table Tf in.

Given a schema S with access methods and constraints, a plan
answers a query Q (over all instances) if for every instance I satisfying
the constraints of S, the output of the plan on I is the same as the
output of Q. We say that the plan answers Q over finite instances if
this holds for every finite instance I satisfying the constraints.

For general constraints, answering over all instances is not always
the same as answering over finite instances, and in this work we will
always deal, by default, with the unrestricted notion of answering. We
will discuss the modification for the finite case later in the paper, and
in particular we will show that for the main class of constraints we
work with in our implementation (Guarded TGDs) the two notions of
answerability coincide.

The requirement that the plan generate all outputs of Q on every
instance formalizes our notion of “complete answerability” mentioned
in the introduction.

Cost. We will be interested in finding plans that minimize a plan
cost function, which associates every plan with a real-valued cost. Our
framework can work with a “black box” cost function on plans that is
monotone as additional access commands are concatenated to the plan.

If no information about the underlying sources is available, a default
cost metric would associate each access method mt with a positive
rational cost cmt, and then the total cost of a plan whose access
commands are calls to mt1 . . .mtn (with possibly the same method
repeated with different arguments) would be defined as Σi≤ncmti . We
refer to these as simple cost functions in the remainder, and we will
provide refinements of the algorithms for this case.

3. FROM FO PROOFS TO PLANS
We describe how to generate plans that correspond to proofs that a

query can be answered, in the setting of arbitrary first-order integrity
constraints. Two kinds of reasoning are needed to know whether
a query can be answered. One concerns the semantic relationships
between tables, captured by integrity constraints. Another concerns
what sort of access we have to relations. We formalize this second
type of reasoning by revisiting and extending a prior technique for
axiomatizing properties of accesses in rules (see [8, 5]).

Given schema S0, the Accessible Schema for S0, denoted
AcSch(S0), is the schema without any access restrictions, such that:
• The constants are those of S0.
• The relations are those of S0, a copy of each relation R de-

noted AccessedR (the “accessible version of R”), a unary relation
accessible(x) (“x is an accessible value”) plus another copy of
each relation R of S0 called InferredAccR – the “inferred accessi-
ble version of R”. We refer to the relations of the form AccessedR
and the relation accessible as the “accessible copy of S0” .
• The constraints are those of S0 (referred to as “original constraints”

below) along with the following constraints (dropping universal
quantifiers on the outside for brevity)
– A “defining axiom” for the relation accessible:

AccessedR(x)→ accessible(xi)

for every R and xi in x. Informally, this says that accessible is
the active domain of all accessible facts.

– accessibility axioms: for each access method mt on relation R
of arity n with input positions j1 . . . jm we have a rule:

accessible(x j1)∧ . . .∧accessible(x jm)∧R(x1 . . .xn)→
AccessedR(x1 . . .xn)

In addition, we have accessible(c) for each constant c of S0.
– inferred accessible fact rules, which are of two forms. First we

have rules:

AccessedR(x)→ InferredAccR(x)

Secondly, we have a copy of each of the original integrity
constraints, with each relation R replaced by InferredAccR.

Informally, the accessible versions of relations represent the facts
that can be explicitly retrieved from the access methods, while
accessible(c) indicates that the value c can be returned by some
access. The inferred accessible relations represent facts that can be
derived from the accessible facts using reasoning. Thus the accessible
schema represents the rules that allow one to move from a “hidden
fact” (e.g. R(c1 . . .cn)) to an accessible fact (AccessedR(c1 . . .cn)),
and from there – using the constraints – to an inferred fact (e.g.
∃y InferredAccS(c1 . . .cn,y)). From the structure of the rules it is
easy to see that “inferred accessible rules” can fire based upon facts
generated by other kinds of rules, but not vice versa.

Given a query Q, its inferred accessible version InferredAccQ is
obtained by replacing each relation R by InferredAccR and adding the
atom accessible(x) for every free variable. InferredAccQ represents
the fact that the existence of a witness to Q can be obtained through
making accesses and reasoning.

We say that Q entails Q′ with respect to a set of integrity constraints
if in any instance that satisfies the constraints ∀x(Q(x)→ Q′(x))
holds. As with other notions, by default, we deal here with arbitrary
instances, not necessarily finite.

In particular, if Q entails InferredAccQ, this means that we can
infer from Q holding in a hidden database that Q’s truth can be learned
by a user via accesses and reasoning with constraints.

EXAMPLE 3. The query Q from Example 1 can be expressed as
∃onum Profinfo(eid,onum,“smith”). Therefore InferredAccQ is
accessible(eid)∧∃onum InferredAccProfinfo(eid,onum,“smith”).
The accessible schema includes rules:
• Profinfo(eid,onum, lname)→ Udirect(eid, lname)
• Udirect(eid, lname) → AccessedUdirect(eid, lname)
• AccessedUdirect(eid, lname) →

accessible(eid)∧accessible(lname)
• Profinfo(eid,onum, lname)∧accessible(eid) →

AccessedProfinfo(eid,onum, lname)
• AccessedProfinfo(eid,onum, lname) →

InferredAccProfinfo(eid,onum, lname)

One can see that Q entails InferredAccQ with respect to these rules.

The relationship between entailment using the accessible schema
and plans is encoded in the following theorem:

THEOREM 1. For any conjunctive query Q and schema S0 con-
taining constraints specified in first-order logic and access restrictions,
there is a complete USPJ-plan for Q (over databases in S0) if and
only if Q entails InferredAccQ with respect to AcSch(S0).

Furthermore, if the constraints of S0 are specified by equality-free
first-order formulas (e.g., TGDs), then we can replace USPJ-plan
with EUSPJ-plan in the above statement.

Theorem 1 gives a correspondence between Q entailing InferredAccQ
and the existence of complete plans based on unions of conjunctive
queries. Its proof, discussed further down, yields an algorithm for gen-
erating plans, given a proof witnessing that Q entails InferredAccQ.
But for first-order constraints such proofs cannot be found effec-
tively. We will look at plan-generation algorithms for more restricted
constraints in the next section.

Extending to larger classes of plans. The proof/plan correspon-
dence is not limited to USPJ plans. Let AcSch↔(S0) extend the
axioms of AcSch(S0) with the axioms ∀x AccessedR(x)→ R(x)
and the following axioms (universal quantifiers omitted):∧
i≤m

accessible(x ji)∧ InferredAccR(x1 . . .xn)→ AccessedR(x1 . . .xn)

Above, R is a relation of S0 having an access method with input
positions j1 . . . jm. Notice that these rules are obtained from those of
AcSch(S0) by switching the roles of InferredAccR and R, resulting
in a rule set where the original schema and the InferredAcc copy are
treated symmetrically. The following result shows that provability
with these “bi-directional axioms” corresponds to existence of a
relational algebra plan:

THEOREM 2. For any relational query Q and schema S0 contain-
ing access restrictions and constraints specified in first-order logic,
there is an RA-plan answering Q (over databases in S0) if and only if
Q entails InferredAccQ with respect to the rules in AcSch↔(S0).

In between the RA and USPJ versions, we have a version for queries
that allow atomic negation: allowing the difference operator E−R,
but where R must be a relation. Let AcSch¬(S0) extend AcSch(S0)
with the following “negative accessibility axioms”, for all relations R
that have some access method:∧

i≤n
accessible(xi)∧¬R(x1 . . .xn)→¬InferredAccR(x1 . . .xn)

Intuitively, the rule says that if the hidden database does not include
a hidden fact, and all the values in the fact are known to a user, then
the user can infer that the fact does not hold using accesses. The result
below shows that this axiom system characterizes USPJ¬ plans:

THEOREM 3. For any relational algebra query Q and schema S0
containing access restrictions and constraints specified in first order
logic, there is a complete USPJ¬-plan for Q (over databases in S0) if
and only if Q entails InferredAccQ with respect to AcSch¬(S0).

Furthermore, if the constraints of S0 are equality-free then we can
replace USPJ¬-plan with EUSPJ¬-plan.

Proofs of the main first-order theorems. We now begin the
proofs of these three theorems, beginning with two main tools, exe-
cutable queries and an interpolation theorem that can produce exe-
cutable queries.

Executable queries and plans. In creating our plans that witness
the proof-to-plan direction of the theorems, we will sometimes find it
convenient to produce not a plan, but an executable FO rewriting. For
us, an executable FO query (relative to a schema with access methods)
is a first-order formula built up from equalities and the formula True
using arbitrary boolean operations and the quantifiers:

∀y [(R(x,y)→ ϕ(x,y,z)] and ∃y R(x,y)∧ϕ(x,y,z)

where R has an access method mt such that, in R(x,y) above, all of
the input positions of mt are occupied by some xi. An executable
FO rewriting of Q (relative to a schema S0 with access methods and
constraints) is an executable FO query for S0 that is equivalent to Q
over instances that satisfy the constraints of S0. To improve readability,
we will drop the schema S0 from the terminology, and just talk about
executable FO queries and rewritings henceforward.

The intuition is that these queries are such that given an input tuple
matching the free variables, we can use the access methods to verify
whether it satisfies the query. In particular, executable boolean RA
queries can be easily converted directly to RA-plans via induction.

PROPOSITION 1. There is a linear time procedure converting an
executable boolean FO query into an RA-plan. Furthermore, if the
FO query is existential (resp. existential without inequalities) the
result is a USPJ¬ (resp. EUSPJ¬)-plan, while if the query is positive
existential, the result is a USPJ (resp. EUSPJ)-plan

Interpolation. The next key element of our proofs will be interpo-
lation theorems. The Craig interpolation theorem states that if ϕ1 and
ϕ2 are first-order formulas such that ϕ1 entails ϕ2, then there exists a
first-order formula ϕ such that ϕ1 entails ϕ and ϕ entails ϕ2, and ϕ

uses only relation symbols occurring in both ϕ1 and ϕ2.
Variants of the Craig interpolation theorem exist that allow one

to make further conclusions about the interpolant. For example,
the Lyndon interpolation theorem [14] restricts the relations that
occur positively (resp. negatively) in the interpolant to those occurring
positively and negatively on both the left and right. More recently Otto
[16] has proven a more powerful relativized interpolation theorem
that not only controls the polarity of relations, but the pattern of
quantification that occurs within them. Inspired by Otto’s result,
we prove a version of Craig interpolation that allows us to relate the
“binding patterns” used in the interpolant ϕ with those used in ϕ1 or ϕ2.
When we apply this theorem to the entailment of InferredAccQ by Q,
we will be able to conclude that the interpolant is an executable query.

We associate to first-order formulas the set of binding patterns used
in quantification, where a binding pattern is a relation and a subset of
the positions. This is done by induction on the formula:

BindPatt(>) = BindPatt(x = y) = /0
BindPatt(R(t1, . . . , tn)) = {(R,{1, . . . ,n})}
BindPatt(¬ϕ) = BindPatt(ϕ)
BindPatt(ϕ ∧ψ) = BindPatt(ϕ)∪BindPatt(ψ)
BindPatt(ϕ ∨ψ) = BindPatt(ϕ)∪BindPatt(ψ)
BindPatt(∃x(R(t1, . . . , tn)∧ϕ)) = BindPatt(ϕ)∪{(R,{i | ti 6∈ x})}
BindPatt(∀x(R(t1, . . . , tn)→ ϕ)) = BindPatt(ϕ)∪{(R,{i | ti 6∈ x})}

Intuitively, BindPatt(ϕ) describes the kind of access that is used
if ϕ is evaluated in an instance using a straightforward inductive
evaluation procedure. For example,

BindPatt(∃xy(Rxy∧∀z(Sxyz→Uxyz))) =

{(R, /0),(S,{1,2}),(U,{1,2,3})}

In particular, if each pattern in BindPatt(ϕ) is represented by a
method in a schema S0, then ϕ is an executable FO query for S0.

Note that, for formulas ϕ containing unrestricted quantifiers, such
as ∃x ¬P(x), BindPatt(ϕ) is undefined. However, every conjunctive
query can be viewed (modulo minor syntactic transformations) as
having no unrestricted quantifiers, and, furthermore, under the ac-
tive domain semantics, every formula is equivalent to one without
unrestricted quantifiers.

We say that a relation symbol R occurs positively (negatively) in
a formula ϕ if some occurrence of R in ϕ is in the scope of an even
(odd) number of negations. For the purpose of this definition, we view
the implication symbol as a shorthand: ψ → χ stands for ¬ψ ∨ χ .
Thus, for example, in the formula ∀x(P(x)→∃yR(x,y)), the relation
symbol P occurs negatively and R occurs positively.

THEOREM 4 (ACCESS INTERPOLATION). Let ϕ1 and ϕ2 be
first-order sentences such that ϕ1 entails ϕ2. Then there exists a
first-order sentence ϕ such that
1. ϕ1 entails ϕ and ϕ entails ϕ2,
2. A relation symbol occurs positively (negatively) in ϕ only if it

occurs positively (negatively) in both ϕ1 and ϕ2.
3. A constant symbol occurs in ϕ only if it occurs both in ϕ1 and ϕ2
4. If BindPatt(ϕ1) and BindPatt(ϕ2) are both defined, then

BindPatt(ϕ)⊆ BindPatt(ϕ1)∪BindPatt(ϕ2).
5. If ϕ1 and ϕ2 are both equality-free, then ϕ is equality-free.
Furthermore, ψ can be computed in polynomial time from a proof (in
a suitable proof system) of the entailment ϕ1→ ϕ2.

The proof of the Access interpolation theorem, deferred to the
full paper, is constructive (in fact, polynomial time), producing an
interpolant inductively from a proof that ϕ1 entails ϕ2 in a particular
proof system. Both the proof system used (tableaux) and the technique
used to extract the interpolant follow along the lines of a standard
technique for interpolation, annotating the proof elements with a “bias”
and extracting an interpolant bottom-up on the proof tree (e.g. [2, 4]).
The new component is an analysis of the relationship between binding
patterns in the output formula and those in the input formula.

AcSch↔ and RA-plans. We now begin with the proofs, starting
with Theorem 2, because it is the simplest of the results, and will
establish a template used in the proofs of the other two results.

Recall that given a schema S0 with constraints and access restric-
tions, the set of constraints AcSch↔(S0) includes all constraints of
AcSch(S0), as well as the additional rules:

∀x1 . . .xn AccessedR(x1 . . .xn)→ R(x1 . . .xn)

and also the rules:

∀x1 . . .xn InferredAccR(x1 . . .xn) ∧
accessible(x j1) . . .accessible(x jm)→ AccessedR(x1 . . .xn)

for every relation R with an access method mt on positions j1 . . . jm.
For simplicity, in this proof, as well as others in the section, we

deal with the case where Q is boolean and there are no constants in
the schema.

We recall several notions from [3]. Given an instance I for schema
S0 the accessible part of I, denote AccPart(I) consists of all the
facts over I that can be obtained by starting with empty relations
and iteratively entering values into the access methods. Formally, it
is a database containing a set of facts AccessedR(v1 . . .vn), where
R is a relation and v1 . . .vn are values in the domain of I such that
R(v1 . . .vn) holds in I, obtained by starting with relations AccessedR0
and accessible0 empty 1, and then iterating the following process
until a fixpoint is reached:

• accessiblei+1 = accessiblei ∪
⋃

R a relation
j<arity(R)

π j(Accessedi(R))

1In the presence of schema constants, we would start with accessible0
consisting of the schema constants

• Accessedi+1(R) = Accessedi(R) ∪⋃
(R,{ j1,..., jm})
a method of S0

{(v1 . . .vn) ∈ I(R) | v ji ∈ accessiblei for all i≤ m}

where π j(Accessedi(R)) is the j-th projection of Accessedi(R).
Above we consider AccPart(I) as a database instance for the

schema with relations accessible and AccessedR. Below we will
sometimes refer to the values in the relation accessible as the ac-
cessible values of I. An immediate observation is that if we ex-
pand the database I with the interpretations of accessible and the
AccessedR from AccPart(I), the result will satisfy all the axioms of
AcSch↔(S0) that relate the original relations R to accessible and the
relations AccessedR.

The following proposition states that an instance and its accessible
part agree on executable FO queries.

PROPOSITION 2. For any instance I of S0, let I′ be the accessible
part of I, seen as a structure for the relations of S0: that is, the
relations R is interpreted in I′ by AccessedR in the accessible part of I.
Then for executable FO formula ρ and any binding b of the variables
in ρ to elements in AccPart(I), ρ is true on I,b iff ρ is true on I′,b.
In particular, I and I′ agree on all executable boolean FO queries.

The proposition can be proven straightforwardly via induction on
ρ , or via the appropriate back-and-forth game.

Q is said to be access-determined over S0 if for all instances I and
I′ satisfying the constraints of S0 with AccPart(I) = AccPart(I′) we
have Q(I) = Q(I′). If a query is not access-determined, it is obvious
that it cannot be answered through any plan, since it is easy to see that
any plan can only read accessible tuples. The following claim restates
our entailment hypothesis in terms of this preservation property.

CLAIM 1. The following are equivalent (for any schema consist-
ing of first-order constraints and access restrictions):
1. Q entails InferredAccQ with respect to the rules in AcSch↔(S0)
2. Q is access-determined over S0

PROOF. We prove that the first item implies the second. Fix I and
I′ satisfying the schema with the same accessible part, and assume I
satisfies Q. Consider the instance I′′ for the accessible schema formed
by interpreting the relations R as in I, each relation AccessedR by
the accessible tuples that R has in I (that is, the relation AccessedR
of the accessible part of I, defined via the fixpoint process described
above), the relation accessible by the accessible values of I, and
each InferredAccR by the interpretation of R in I′. Then one can
easily verify that I′′ satisfies the constraints of AcSch↔(S0). Since
I (and hence I′′) satisfies Q, and we are assuming that Q entails
InferredAccQ with respect to AcSch↔(S0) we can conclude that I′′
must satisfy InferredAccQ. Thus Q holds in I′ as required.

We now argue from the second item to the first, which will com-
plete the proof of the claim. Suppose Q does not imply InferredAccQ
with respect to the rules in AcSch↔(S0). Hence there is an in-
stance IAcSch

↔
satisfying the rules of AcSch↔(S0) and also satisfy-

ing Q∧¬InferredAccQ. Let I1 consist of the restriction of IAcSch
↔

to the original schema relations. Let I2 consist of the inferred acces-
sible relations from IAcSch

↔
, renamed to the original schema. We

first claim that a fact F = R(e1 . . .en) of the accessible part of I1
is in the accessible part of I2. We prove this by induction on the
iteration of the fixpoint where F appears. F must be generated by
an access using elements e j1 . . .e jm which in turn satisfy accessible
facts generated earlier in the fixpoint iteration. Thus by induction
these earlier facts are in the accessible part of I2, and in particular
e j1 . . .e jm are accessible values of I2. Using the axioms we have
that InferredAccR(e1 . . .en) holds, and thus R(e1 . . .en) holds in I2.
Using the definition of accessible part, we conclude that F is in the
accessible part of I2 as required. Arguing symmetrically, we have that
I1 and I2 have the same accessible part, and hence they contradict
access-determinacy.

From this claim, we easily see the “plan-to-proof” direction of
Theorem 2. Suppose Q does not imply InferredAccQ with respect to

the rules in AcSch↔(S0). By Claim 1, Q is not access-determined,
and thus no plan can answer Q.

Note that Claim 1 allows us to restate Theorem 2 as: A query Q
has an RA-plan iff Q is access-determined. Thus, we can think of the
theorem as a kind of preservation theorem (see the comparison with
earlier results below).

We now prove the “proof-to-plan” direction of Theorem 2: assum-
ing Q entails InferredAccQ, we construct an RA-plan that answers
Q.

We can remove the relation accessible from the schema, modifying
the rules of AcSch↔(S0) by breaking up the relation accessible as a
disjunction of relations AccessedS. That is, we could replace every
accessibility axiom∧

i≤m
accessible(x ji)∧R(x)→ AccessedR(x)

by all axioms of the form

α1(x j1)∧·· ·∧αn(x jn)∧R(x)→ AccessedR(x))

where αi(x ji) is of the form AccessedS(y,x ji ,z) for some S and fresh
y,z.

Thus from now on we will assume that accessible does not appear.
We can rephrase the assumption as:

Q∧Σ1 entails (Σ2→ InferredAccQ)

where Σ1 is the set of constraints in AcSch↔(S0) mentioning only
the original relations and the relations AccessedR, while Σ2 contains
all constraints mentioning relations of the form InferredAccR. As
observed above, we can assume that Σ (and hence Σ1,Σ2) do not use
unrestricted quantification.

By the Access interpolation theorem there is a first-order sentence
ϕ using only relations of the form AccessedR such that:
1. Q∧Σ1 entails ϕ

2. ϕ entails Σ2→ InferredAccQ
3. ϕ only uses binding patterns occurring in Q∧ Σ1 or in Σ2 →

InferredAccQ
For a formula ρ using only the relations AccessedR, let deacc(ρ) be
obtained be replacing each relation AccessedR of ρ with R. Note
that since the binding patterns of the accessibility axioms are all
compatible with some method of the schema (inputs of the pattern
are contained in the input positions of the method) deacc(ϕ) is an
executable FO query. Further, Proposition 2 implies that deacc(ϕ)
holds on I iff ϕ holds on AccPart(I).

We claim that deacc(ϕ) is an executable FO rewriting of Q (and
hence can be converted to an RA-plan using Proposition 1). We prove
this by looking at the case where Q holds on an instance I of S0 and the
case where Q does not hold on I. If Q is true on I, then letting I′ be the
extension of I with relations AccessedR interpreted as in AccPart(I),
we have that I+AccPart(I) satisfies Q∧Σ1. So by the first condition
above we will have ϕ is true on AccPart(I), and thus deacc(ϕ) is
true on I. On the other hand, if deacc(ϕ) is true on I then ϕ is true
on AccPart(I). Consider the database instance I′′ interpreting each
AccessedR as in AccPart(I) and each InferredAccR by R in I. I′′
satisfies Σ2. Thus applying the second condition on ϕ to I′′, we get
that InferredAccQ holds in I′′, and hence Q holds in I.

This completes the proof of Theorem 2.
AcSch and USPJ-plans. We now turn to the proof of Theorem 1.

As before, we will assume for simplicity that Q is a boolean query
and there are no schema constants present.

We will again translate entailment in our axiom schema into a
preservation property of models.

We say Q is subinstance-access-determined over S0 if for all in-
stances I and I′ satisfying the constraints of S0 with every fact of
AccPart(I) contained in AccPart(I′) (that is, AccPart(I) is a subin-
stance of AccPart(I′)), if I satisfies Q, then I′ satisfies Q.

That is, we have weakened the hypothesis of access-determinacy to
require only containment of facts, not equality.

The following claim now relates these notions to our axioms,
analogously to Claim 1. Its proof follows along the lines of Claim 1,
and is given in the full paper.

CLAIM 2. The following are equivalent (for any schema consist-
ing of first-order constraints and access restrictions):
1. Q entails InferredAccQ with respect to the rules in AcSch(S0)
2. Q is subinstance-access-determined w.r.t. S0

Assuming this claim, Theorem 1 can be restated as saying that a
query is subinstance-access-determined iff it has a USPJ-plan. The
proof of Theorem 1 follows along the lines of the proof of Theorem 2,
with the direction from plan to proof using Claim 2, and the proof to
plan applying the Access interpolation theorem to the entailment.

The schema AcSch¬ and USPJ¬-plans. Finally, we discuss the
proof of Theorem 3. We need a characterization corresponding to
Claim 1 for AcSch¬.

Recall that given an instance I, an accessible value is an element in
the domain of I that occurs in some fact AccessedR(c) of AccPart(I).
Equivalently, it is an element that satisfies the relation accessible in
AccPart(I).

Given instances I and I′, we say AccPart(I) is an induced subin-
stance of AccPart(I′) if (i) every fact AccessedR(c) of AccPart(I) is
in AccPart(I′) and (ii) for every c with each ci an accessible value of I,
if R(c) is a fact of AccPart(I′) then AccessedR(c) is in AccPart(I).

We say that Q is induced-subinstance-access-determined with
respect to S0 if whenever we have two instances I, I′ satisfying the
constraints of the schema S0, I satisfies Q, and AccPart(I) is an
induced subinstance of AccPart(I′), then I′ satisfies Q.

The following claim, whose proof follows along the lines of the
earlier ones, relates this new preservation property to provability in
the axiom schema AcSch¬.

CLAIM 3. The following are equivalent (for any schema consist-
ing of first-order constraints and access restrictions):
1. Q entails InferredAccQ with respect to the rules in AcSch¬(S0)
2. Q is induced-subinstance-access-determined w.r.t. S0

The proof of Theorem 3 uses the claim above in one direction and
Access interpolation in the other.

Consequences in the case of views, and comparison with
preservation theorems.. We will now look at what the prior theo-
rems say in the simpler case of view-based access restrictions. By this
we mean that there is a subcollection of relations in the schema that
are designated as fully accessible, and the integrity constraints just
state that these relations are equivalent to first-order queries defining
them. We will see that our results in this case are closely-related to
preservation theorems in classical model theory.

Let us start with looking at Theorem 2, concerning RA-plans, in the
setting of view-based access restrictions. In this simpler setting the
notion of access-determinacy degenerates to the notion of query-view
determinacy of Nash, Segoufin, and Vianu [15]. Theorem 2 then
says that if a query is determined (over all instances) it is first-order
rewritable over the views – a basic observation of [15], and one which
is almost a restatement of the Projective Beth Definability Theorem
of first-order logic. The proof of our Theorem 2 follows the proof
of the Projective Beth Theorem via interpolation due to Craig [?].
Note that, unlike [15], the significance of this result for us is not as
a “completeness theorem” (first-order logic suffices to express all
rewritings), but as a way to obtain rewritings: we can begin to explore
proofs, and from the proofs we can efficiently read off the rewritings.

The generalization for access patterns and arbitrary first-order
constraints given in Theorem 2 has not been stated before, but it is
very similar to results already proven in [3]: Theorem 4.5 of [3] starts
with a preservation property of a query and concludes that the query
has an “FO-k-rewriting”, which is syntactically different from having
an RA-plan.

Let us now look at Theorem 1, which concerns USPJ-plans, in
the special case of view-based access restrictions. In this case the
notion of subinstance-access-determinacy is again one considered by
[15], the notion of monotonicity. Given a boolean relational algebra

query Q and a set of relational algebra queries Q1 . . .Qn, we say that
Q is monotone in Q1 . . .Qn, with respect to a set of constraints, if
for any two instances I, I′ satisfying the constraints, if I satisfies Q
and for each i ≤ n, the tuples returned by Qi on I are a subset of
those returned by Qi on I′, then Q is true on I. In the setting of finite
instances, where there are no constraints, the proof of Theorem 5.6
of [15] shows that CQ Q is monotone in CQs Q1 . . .Qn iff there is a
rewriting of Q as a CQ in terms of the Q1 . . .Qn.

A corollary of the proof of Theorem 1 is the following variant for
arbitrary RA queries in the presence of first-order constraints (where
monotonicity is required over all instances):

COROLLARY 1. Q is monotone in Q1 . . .Qn iff there is a USPJ-
rewriting of Q in terms of Q1 . . .Qn.

That is, queries monotone in a set of views are USPJ-rewritable.
For RA queries and arbitrary FO constraints, this requirement of
monotonicity over all instances is needed. But when Q and the Qi
are CQs and the constraints come only from view definitions, we
will see later that it can be weakened. Again, we want to emphasize
the effective aspect of this: from a proof witnessing monotonicity,
we can derive a rewriting.

As with the results on views, our theorem and also the special case
above for views are closely related to a theorem in classical model
theory, the Lyndon Preservation Theorem, which states that formulas
preserved under surjective homomorphism are equivalent to positive
formulas. Roughly speaking, the special case above is a version of
Lyndon’s Theorem that deals with the active domain semantics (which
is what allows us to move from “positive” to “positive existential”) and
which is “projective” – allowing Q to be preserved under mappings
preserving only a subset of the relations, and concluding that it has a
nice rewriting using only the subset.

We now turn to Theorem 3. To our knowledge, the notion of
preservation/determinacy considered in this theorem does not have
any analog in in the earlier literature on views. But as with Theorem 1,
the proof of Theorem 3 can be applied to characterize queries that are
USPJ¬-rewritable in terms of a distinguished set of view relations in
the presence of constraints. We modify the definition of monotonicity
to require that, for each i≤ n, Qi(I′) is obtained from Qi(I) by adding
facts, but never adding facts all of whose elements lie in some Q j(I)
for j ≤ n. If we call such queries induced-subinstance-monotone we
can then conclude:

COROLLARY 2. A conjunctive query is induced-subinstance-
monotone over a set of queries {Q1 . . .Qn} exactly when it is USPJ¬
rewritable over relations Vi for each Qi.

Again, there is an analogous result to Theorem 3 in classical
model theory, namely the Łoś-Tarski Theorem, which characterizes
existential formulas as those that are preserved under the notion of
“model extension” used in classical model theory. Compared to this
classical theorem, the corollary of Theorem 3 for views given just
above differs in being “projective”, and being used in the context of
active-domain semantics.

Alternative proofs of the main first-order theorems. We men-
tion here that all of these theorems can be proven directly from Otto’s
relativized interpolation theorem [16] and the compactness theorem
of first-order logic. Applying Otto’s theorem to the entailment of
InferredAccQ by Q, what we obtain is that Q can be answered by a
first-order sentence ϕ of the appropriate form (e.g. existential for The-
orem 3) that is to be evaluated over the accessible part of the instance.
Computing the accessible part requires a recursive query, but the
compactness theorem can be applied to show that only k “levels” of
the accessible part are necessary (see the notion of “k-accessible part”
in [3]). There is an EUSPJ-plan Pk that will produce this truncation
of the accessible part: P simply performs k rounds of making every
possible access with values produced by the previous round. Since
RA-plans are allowed to run arbitrary RA queries in the middleware,
the composition of a first-order query ϕ with Pk is also given by an
RA-plan. Similar reasoning shows that an existential query composed
with Pk is implementable by a USPJ plan, and so forth.

In fact, if we apply this alternative approach to the most basic
result, Theorem 2, we see that for this theorem we do not need Otto’s
theorem but only the determinacy-implies-rewriting theorem of Nash,
Segoufin, and Vianu (Theorem 3.1 of [15]), whose proof in turn makes
use of Otto’s theorem.

One drawback of this alternative approach is that it is non-
constructive, since the proof of Otto’s result in [16] is non-constructive,
and also because it appeals to the compactness theorem. But even with
a constructive proof of Otto’s result and a bound on k, it has limitations:
even when one can find short proofs effectively, the plans resulting
from this technique will begin by doing every possible access up to
k iterations, which is certainly not feasible. We thus find the approach
via Access interpolation more promising for implementation, and also
closer to the direct algorithms used for TGDs. In addition, we believe
that the Access interpolation theorem is of independent interest.

Finite instances and restricted constraints. The results above
related existence of a plan for a query Q that works over all in-
stances that satisfy the constraints of schema S0 with entailment of
InferredAccQ from Q relative to a schema derived from S0. But
suppose we want a method that will check existence of a plan that
answers Q only over all finite instances? One can construct example
schemas, even using TGD constraints, where there is an RA-plan that
works over finite instances, but no plan that works over all instances.

Using standard counterexamples in finite model theory, we can
show that if we restrict to finite instances Theorem 1, Theorem 2, and
Theorem 3 all fail. Indeed, there can not even be any effective semi-
decision procedure that will check given a schema with first-order
constraints and a CQ Q, whether Q has a plan (RA, USPJ, etc.) over
finite instances. Thus the problem here is intrinsic to the hardness of
reformulating queries in the presence of first-order logic constraints
over finite structures, not specific to our approach via proofs. This
follows easily from the fact that the valid first-order sentences can not
be computably enumerated.

If we restrict our constraints to “finitely controllable” fragments (e.g.
Guarded TGDs, Guarded Fragment), then we can regain completeness
in the finite. For example, if the constraints of a schema are inclusion
dependencies and our CQs are boolean, then Theorem 1–3 all hold
when only finite instances are considered, and the method of plans-
from-proofs will always generate a plan for any query that has a
plan over finite instances. The key observation here is that when the
constraints of S0 are in these finitely-controllable fragments, then
AcSch(S0) is as well.

Decidability and complexity. The correspondences in Theorem 1,
Theorem 2, and Theorem 3 deal with arbitrary first-order constraints,
where both existence of a proof and the existence of a plan are
undecidable. But since access interpolation can be done effectively,
it follows that for any subclass S of first-order logic, we can decide
if a plan exists whenever containment of CQs is decidable in the
corresponding class of accessible schemas. Using this we can get
decidability for “tame” integrity constraint classes studied in the
literature. For example, for Guarded TGDs, which we will deal
with later on in the paper, the derived schema AcSch↔ also consists
only of Guarded TGDs, and a 2EXPTIME upper bound follows
from bounds on querying with respect to Guarded TGDs. On the
other hand, a reduction from query answering can be used to show
that when constraints are Guarded TGDs deciding if a plan exists is
2EXPTIME-hard.

4. PLANS FROM TGD PROOFS
The previous results give a correspondence between entailment of

InferredAccQ from Q and the existence of a query that abides by the
access restrictions. We will now focus on making this transformation
from proofs more concrete, and also making the corresponding proof
search more practical, restricting our attention now to constraints in
the form of TGDs. For TGDs we can make use of a “forward-chaining”
proof system known in the database literature as the chase. A proof
can be rephrased as a sequence of database instances, beginning with
the canonical database of query Q: the database whose elements
are the constants of Q plus copies c1 of each variable x1 in Q and
which has a fact R(c1 . . .cn) for each atom R(x1 . . .xn) of Q. These

databases evolve by firing rules. Given a set of facts I and a TGD
δ = ∀x1 . . .x jϕ(x)→∃y1 . . .ykρ(x,y) a candidate match for δ is a
e such that ϕ(e) holds but there is no f such that ρ(e, f) holds in I. A
rule firing for this candidate match adds facts to I that make ρ(e, f)
true, where f1 . . . fk are new constants (“chase constants”).

A chase sequence following a set of dependencies Σ consists of
a sequence of instances Fi : 1≤ i≤ n, where Fi+1 is obtained from
Fi by some rule firing of a dependency in Σ. Thus each 1≤ i≤ n is
associated to a set of facts Fi (which we sometimes refer to as a chase
configuration), to a rule firing, and to a set of newly-generated facts –
the ones produced by the last rule firing. A homomorphism of a query
Q′ into the configuration of a chase sequence is called a match for Q′
in the configuration.

We now have the following well-known result: for any conjunc-
tive queries Q and Q′ (with the same free variables), and any TGD
constraints Σ, Q entails Q′ w.r.t. Σ iff there is a chase sequence fol-
lowing Σ beginning with the canonical database of Q, leading to a
configuration that has a match for Q′, mapping the free variables of
Q′ to the same constants corresponding to the free variables of Q.
In particular Q entails InferredAccQ exactly when there is a chase
sequence beginning with the canonical database of Q leading to an
element that has a match for InferredAccQ.

We know from the previous section that for schemas S0 with
arbitrary first-order constraints, applying interpolation to a proof of
InferredAccQ from Q using AcSch(S0) gives a query that can be
converted to a USPJ-plan for Q. We will show that when S0 has only
TGDs, and we use forward-chaining proofs as our proof system, we
can generate SPJ-plans directly from a proof using AcSch(S0).

Given a chase sequence, let C∞ be the set of chase constants
generated by firings of original constraints of S0 within this sequence.
Our plans will make use of temporary tables Tj whose attributes
correspond to a subset C j of C∞; informally, rows of these tables will
store possible homomorphisms that map the chase constants into the
instance being queried. The C j will be monotonic in j under inclusion
as j increases.

We will construct the commands in the plan by induction on the
number of rule firings of an accessibility axiom in the chase sequence.

We will maintain as an invariant that the set of attributes C j are
exactly the set of constants c ∈C∞ such that accessible(c) holds in
the configuration of the last element of the sequence. We will also
restrict to eager proofs: those which do not have a firing at some
step i of an accessibility axiom, and then at a later step a rule firing
involving the initial integrity constraints or their copies on the relations
InferredAccR that was already applicable at step i. Informally, in
eager proofs, we always perform “cost-free rules” before we perform
a rule firing that corresponds to an access. It is clear that any proof
can be turned into an eager proof by re-arranging the proof steps.

In the induction step, we consider an eager chase sequence ending
with the firing of a rule:

accessible(c j1)∧ . . .accessible(c jm)∧R(c1 . . .cn)

→ AccessedR(c1 . . .cn)

associated with method mt on relation R having input positions
j1 . . . jm. Let v j−1 be the chase configuration prior to the firing of
this rule. Note that by the inductive invariant, each c ji must be an
attribute of table Tj−1 associated to the sequence prior to the firing.
We define the commands that correspond to this rule firing, denoted
Comms(v j−1,R(c1 . . .cn),mt). We will focus on the case where no
c ji are schema constants, no constant is repeated in R(c1 . . .cn), and
R(c1 . . .cn) is the unique R-fact of v j−1 that has c ji at position ji for
each i≤ m; we defer the additional cases to the full paper. We first
generate an access command whose input expression is the projection
of Tj−1 onto c j1 . . .c jm , with the input mapping bin taking column c ji
of Tj−1 to input position ji of mt. The command’s output relation
will be a table Tj with attributes C j =C j−1∪{c1 . . .cn}. We follow
the access command by a middleware query command that sets Tj to
the join of itself with Tj−1, again using the mapping associating the
ith position in an output tuple with the attribute ci in Tj .

Let Cret be the set of chase constants c corresponding to the free
variables of Q. If the configuration of the element v has a match for
InferredAccQ in its configuration, we will add a query that will set a
final table Tf in to the projection of Tj on Cret . In the special case that
Q is boolean, the final query amounts to checking that the table Tj is
non-empty.

EXAMPLE 4. Consider the same schema as in Example 1. Let
Q = ∃eid onum lname Profinfo(eid,onum, lname). Using the
chase, we get the following proof:
1. Create the canonical database, which in this case contains the

single fact Profinfo(eid0,onum0, lname0)
2. One of the initial integrity constraints matches

Profinfo(eid0,onum0, lname0), and by firing the rule, we
derive Udirect(eid0, lname0).

3. Udirect(eid0, lname0) matches an accessibility axiom, and
the rule firing generates AccessedUdirect(eid0, lname0),
which in turn generates InferredAccUdirect(eid0, lname0) and
accessible(eid0).

4. An accessibility axiom matches Profinfo(eid0,
onum0, lname0) ∧ accessible(eid0), creating the fact
AccessedProfinfo(eid0,onum0, lname0), which in turn
generates InferredAccProfinfo(eid0,onum0, lname0).

5. We now have a match for InferredAccQ, so we have a successful
sequence.
Here is the generated plan:

1. The firing of the accessibility axiom on the third line above gen-
erates access command T1⇐mtUdirect⇐ /0, where T1 is a table
with attributes for eid0 and lname0.

2. The accessibility axiom on the fourth line generates commands
T2⇐mtProfinfo⇐ T1 and T2 := T2 ./ T1.

3. The match at the end generates the command output π /0(T2), which
returns non-empty if T2 is non-empty.
That is, we do an input-free access on Udirect and put all the

results into Profinfo.

The following theorem shows the soundness of this approach to
generating plans from proofs:

THEOREM 5. For every chase sequence proving InferredAccQ
from conjunctive query Q using the rules above, the corresponding
SPJ-plan produced by the translation above answers Q.

Thus every query that is completely answerable can be answered
by a proof-based plan. We want to emphasize that this approach does
not depend on any acyclicity condition on the constraints – thus the
set of possible chase sequences can be infinite.

The proof, deferred to the full paper, proceeds by showing an
invariant on the intermediate chase configurations Fj and associated
partial plans PL j produced by the algorithm, each of which outputs
a temporary table Tj . Focusing on the case where Q is boolean, let
Accessed(Fj) be the conjunctive query formed by taking the conjunc-
tion of all facts of the form InferredAccR(c) in Fj and turning them
into an existentially quantified conjunction of facts R(w), changing
the chase constants c that satisfy accessible(c) to free variables and
the other chase constants to existentially quantified variables. Note
that if Fj has a match for InferredAccQ, then AccessedFj entails
Q. The attributes C j of Tj will be all chase constants such that the
relation accessible holds in Fj – hence these match the free variables
of Accessed(Fj). Let Tj(I) be the instance of table Tj produced by
PL j when run on an instance I of schema S0. The key invariant is
that the following holds for any instance I of the schema:
1. If Q returns a non-empty result on I, then Tj(I) is non-empty.
2. Tj(I) is a subset of the tuples in Accessed(Fj)(I).
This implies the theorem, since on the final configuration,
Accessed(Fj) entails Q, as noted above. The two assertions above
can be thought of as saying that PL j interpolates between Q and
Accessed(Fj), in the sense of the Craig Interpolation Theorem.

Decidability, the case of views, and finite instances. For gen-
eral TGDs, one cannot decide the existence of a proof or a plan, just as

for general FO constraints: thus there is no advantage in “worst-case
effectiveness” by restricting to TGDs. But whenever the class of
accessible schemas is tame enough, we get decidability. For many
restricted classes the chase on the accessible schema terminates (see,
[?] for a survey) – there is a point after which no rules can add new
facts. One important case is where the access restrictions in schema
S0 are given by a set of view relations which are fully accessible, with
the constraints merely relating each view relation Vi to a conjunctive
query Qi that defines it. In this case the TGDs in the generated schema
AcSch(S0) will terminate after polynomially many steps.

Thus we can search for a chase-based proof to decide if Q can
be conjunctively reformulated over the views. One can also show
that whenever the chase terminates in the schema AcSch(S0), our
technique for determining a plan is complete for finite instances.
Thus in particular, we have the following corollary, which implies the
seminal result of Levy et. al. [?] on finding conjunctive reformulations
over a set of views:

THEOREM 6. Let schema S0 have TGD constraints stating that
each view relations Vi is equivalent to the result of a conjunctive
query Qi over some base signature B, for i ≤ k. Then for any con-
junctive query Q over B, we can determine whether or not Q can be
rewritten as a conjunctive query over Vi : i≤ n (over finite instances,
equivalently over all instances) by performing the chase on Q using
AcSch(S0) until it terminates, and then checking InferredAcc(Q) on
the result.

RA-plans for schemas with TGDs. The proof-to-plan algorithm
above focused on generating SPJ-plans. It is known [15] that there are
conjunctive queries that have rewritings over a set of views defined by
conjunctive queries, but the rewritings require the relational difference
operator. From this it follows that there are schemas S0 consisting
of access restrictions and TGDs and conjunctive queries Q that have
RA-plans but no SPJ-plans. From Theorem 2, we know that Q has an
RA-plan with respect to S0 iff Q entails InferredAccQ with respect to
AcSch↔(S0). We now give a slight extension of the prior algorithm to
read off a RA-plan from a chase proof using the rules of AcSch↔(S0).
For convenience we assume that our queries are boolean, our con-
straints contain no schema constants, and that our queries and con-
straints contain no repeated variables in atoms – thus the chase proofs
will not produce any configurations that contain such facts.

Algorithm Description. The algorithm proceeds by backward
induction on the size of the proof. We group proofs into
• the firing of integrity constraints from the schema or their copies

on the InferredAccR relations are fired.
• the firing of rules R(x) ∧

∧
i accessible(x ji) → AccessedR(x),

where there is at least one method mt with input j1 . . . jm on
relation R. We assume these are immediately followed by the cor-
responding firing of the rule AccessedR(x)→ InferredAccR(x),
and consider this to be a single step. If such a rule is applied to R(c)
we refer to this as “a positive accessibility axiom firing exposing
fact R(c)”.

• the firing of rules InferredAccR(x) ∧
∧

i accessible(x ji) →
AccessedR(x), which we assume are immediately followed by
the corresponding firing of the rule AccessedR(x)→ R(x). If such
a rule is applied to R(c) we refer to this as “a negative accessibility
axiom firing and exposing fact InferredAccR(c)”.
The algorithm takes as input a proof beginning with some con-

figuration Ci and produces an executable FO query Pi(x), where x
are variables indexed by the accessible constants in Ci. If the proof
is trivial (only one configuration), the algorithm returns a plan that
always returns true. Otherwise the algorithm analyzes the first rule
firing in the proof.
• No commands are generated by rules of the first type above, so the

algorithm just proceeds to the remaining rules.
• We consider a proof Ci . . . where the transition from Ci to Ci+1 is

formed via a positive accessibility axiom firing exposing fact R(c).
We generate the executable query that does an access to R using
the projection of x to the chase constants c j1 . . .c jm , then returns
true only if for some tuple w in the result, w joins with x to give u
and Pi+1(u) returns true.

• We now consider a proof Ci . . . where the transition from Ci to Ci+1
is formed via a negative accessibility axiom firing exposing fact
InferredAccR(c). We generate an executable rewriting that does an
access to R with the projection of x to the chase constants c j1 . . .c jm ,
and returns true only if, for every tuple w in the result of the access
that joins with x giving joined tuple u, Pi+1(u) returns true.

The reader should note that this algorithm is extremely close to the one
given in the view case by Nash, Segoufin, and Vianu (page 21:29 of
[15]). But the proof of correctness introduces several new subtleties:
one needs a much more complex invariant than that used in the proof
of Theorem 5.

In the case of views given by conjunctive queries, the chase using
the constraints in AcSch↔(S0) does not necessarily converge, since
facts propagate in both directions. Indeed, the question of deciding
whether a query can be reformulated using a relational algebra query
over a set of views is open.

Also note that the algorithm will produce a USPJ¬ plan in the
case where the proof used only accessibility axioms in the restricted
schema AcSch¬(S0). Hence we have:

THEOREM 7. For any schema S0 using TGDs and CQ Q, for
every chase proof using AcSch↔(S0), the algorithm above produces
an RA-plan that completely answers Q. If the proof uses only rules in
AcSch¬(S0), the result is a USPJ¬-plan.

5. LOW-COST PLANS VIA PROOFS
We now look at finding efficient plans, focusing for the remainder of

the paper on generating SPJ-plans with respect to schemas consisting
of TGDs, and letting the function Plan be the one described using
AcSch in the beginning of the previous section. We first note that the
proof-based plans that were generated by the SPJ algorithm are as
access-efficient as arbitrary plans, and thus we can focus on these.

A plan PL makes fewer accesses than plan PL′ if for every pair con-
sisting of a method mt and method input t that is executed in running
PL on instance I of the schema, the same pair is also accessed in run-
ning PL′ on I. Thus “fewer” means “no more than”. The following re-
sult captures the claim proof-based plans are no more costly than gen-
eral plans; it is proven by first finding a proof-based plan PL′ that mim-
ics the given plan PL on the chase, then using universality properties
of the chase to argue that PL′ behaves as well as PL on all instances.

THEOREM 8. For conjunctive query Q and schema with TGD
constraints Σ and access restrictions, for every SPJ-plan Plan that
answers Q, there is a chase sequence v proving InferredAccQ from
Q, such that Plan(v) makes fewer access than Plan.

Note that this theorem does not imply anything about the cost of
proof-based plans versus arbitrary plans according to particular cost
functions, since cost functions look at plans statically, and are thus not
necessarily monotone in the set of (method, input) pairs produced at
runtime. For example, what we call simple cost functions are based on
the set of access commands (that is, bulk accesses) that are performed.

The proof works by taking a plan PL and constructing a chase
proof that mimics its behavior, in terms of accesses that are made and
facts exposed, when applied to the canonical database for the input
query Q. This plan is constructed inductively, firing one accessibility
axiom at a time until all the facts exposed by PL are present in the
chase proof. We then argue, using the universality of the chase, that
the plan generated from this proof will make fewer access than PL on
arbitrary inputs.

Adding cost to plan search. Theorem 8 implies that the plans
produced from proof-to-plan algorithms are optimal in a certain sense.
Moreover the SPJ algorithm of Section 4 generates physical plans
directly, rather than going via queries, with the structure of the plans
directly reflecting the structure of the firing of accessibility axioms.
We can thus apply a plan cost function to partial plans while searching
for a proof, thus merging the proof search with the search for a low
cost plan. This is the last main idea of the paper: we can find low-cost
plans by exploring the space of proofs.

Our search will maintain a partial proof tree – a tree consisting of
chase sequences, ordered by extension. We refer to the configuration
(set of facts) of the final element in the chase sequence associated with
a node v as config(v). The plan associated with v is the one generated
by the proof-to-plan algorithm given previously, while by the cost of
v we mean the cost of the associated plan. We now give an algorithm
for extending the tree to find new proofs.

For node v if there is a fact R(c1 . . .cm) in config(v) with
AccessedR(c1 . . .cm) not yet in config(v) and there is an ac-
cess method mt on R with input positions j1 . . . jm such that
accessible(c j1) . . .accessible(c jm) all hold in config(v), then we call
R(c1 . . .cm) a candidate for exposure at v, and mt an exposing method
for R(c1 . . .cm). Note that if a fact is a candidate for exposure, then
firing an accessibility axiom will add that fact to the associated chase
sequence.

When we explore the impact of making an access, we want to
include all relevant consequences that do not involve further accesses,
thus producing an eager proof (as defined in Section 4). This corre-
sponds to the following requirements on the configurations in a partial
proof tree:
• (Original Schema Reasoning First) The configuration of the root

node (henceforward “initial configuration”) corresponds to the
canonical instance of Q plus the result of firing integrity constraints
of the original schema S0 until a termination condition is reached –
the termination condition will be explained further below.

• (Fire Inferred Accessible Rules Immediately) For a non-root node
v, there is a candidate fact for exposure R(c1 . . .cm) in its parent
with exposing method mt such that config(v) is obtained from the
parent by
– adding the facts induced by firing mt with c j1 . . .c jm – that is,

all facts AccessedR(d1 . . .dm) such that R(d1 . . .dm) is in the
parent configuration and d agrees with c on the input positions
of mt. Note that there may be several such facts, but they will
include R(c1 . . .cm).

– firing inferred accessible axioms on the result until some termi-
nation condition is reached.

Thus the successive configurations are connected by firing a rule asso-
ciated with an accessibility axiom, firing additional accessibility rules
corresponding to the other facts exposed by the same access and explor-
ing the cost-free consequences. Thus we can also characterize a node
v by the sequence of rule firings of accessibility axioms leading to it.

We also label a node as successful if InferredAccQ holds in the
corresponding configuration (preserving free variables in the non-
boolean case).

The idea is that we have labelled each node with a configuration of
the proof, and whenever we choose an access to fire, after firing we
immediately fire all the relevant rules that do not generate accesses.

We explore downward from a node v of a partial proof tree by
choosing a candidate fact for exposure at config(v) along with the
methods that expose the fact. A node is terminal if it is either success-
ful or has no candidate facts. Note that non-terminal nodes do not
have to be leaves of the tree.

The basic search structure is outlined in Algorithm 1. At each
iteration of the while loop at line 5 we have a partial proof/plan tree
satisfying the properties above. We look for a node v corresponding
to a partial proof that is not yet successful, has not yet exhausted the
maximum number of accesses we allow, and for which the firings
of accessibility axioms can add new facts. We non-deterministically
choose such a path and such a rule (lines 6-7), and calculate both the
new configuration that comes from firing the rule, the commands that
will be added to the corresponding plan, and the cost via a call to
the “blackbox” cost function, denoted AtomicCost (lines 8-9). We
update the candidate list (line 11) and determine whether the new path
is successful, recording whether this gives the new lowest cost plan
(lines 12-15).

Search order and termination conditions. The non-deter-
ministic algorithm above leaves open a number of issues. The first
is how the non-terminal node is chosen. Our policy is to do this
depth-first: always pick the leaf of the leftmost branch (where left is
defined using some ordering on facts) as long as it does not go past a

Algorithm 1: generic search
Input: query Q, schema S, depth d
Output: plan BestPlan

1 ProofTree := an initial node v0 labelled with the configuration
obtained by firing original integrity constraint rules up to
termination condition.

2 Set Candidates(v0) = all pairs (R(c1 . . .cn),mt), R(c1 . . .cn) a
fact in the original configuration, mt a method on R.

3 BestPlan :=⊥
4 BestCost := ∞

5 while there is a non-terminal node v at depth at most d in
ProofTree do

6 Choose such a node v.
7 Choose a candidate fact and method

(R(c1 . . .cn),mt) ∈ Candidates(v) with
accessible(c j1) . . .accessible(c jm) ∈ config(v) and mt
having inputs j1 . . . jm.

8 Add a new node v′ as a child of v with configuration formed
by adding all the accessible facts induced by exposing
R(c1 . . .cn) with mt and then closing under sufficiently many
firings of the “inferred accessible rules”.

9 Set Cost(Plan(v′)) using call to AtomicCost.
10 Remove (R(d1 . . .dn),mt) with d extending c j1 . . .c jm from

Candidates(v), marking v as terminal if it has no more
candidates.

11 Determine if v′ is successful by checking if InferredAccQ
holds, and if so also mark it as terminal.

12 if v′ is successful and Cost(Plan(v′))< BestCost then
13 BestPlan := Plan(v′)
14 BestCost := Cost(Plan(v′))

15 return BestPlan;

threshold d on access commands that is assumed to be provided as an
input. In this way we explore the paths with the most accesses, which
maximizes our chances of finding a match. The second question is
which candidate fact to choose when there is more than one at a node.
One policy chooses a candidate node of minimal derivation depth,
where the derivation depth of a fact represents the number of rule
firings needed to generate in it within this sequence– that is, its depth
in the dependency graph associated with the chase sequence. Finally,
we must determine the order with which we choose the exposure
method mt for relations where there is more than one method. Here
we assume some fixed priority for the methods – e.g. based on some
notion of expected cost.

Algorithm 1 describes firing “all” rules that involve only reasoning
with constraints – but such rules can fire a large number of times, even
infinitely often for cyclic collections of referential constraints. For
Guarded TGDs, we do not require any chase termination condition on
our constraints, but instead rely on a “local blocking condition” for
safely terminating such rules, a variant on the technique used within
theorem-proving for guarded sublogics of first-order logic (see, e.g.
[10, 13]). We organize every configuration into a tree of “guarded
bags” – sets of facts B such that there is an atom R(c) containing
every chase constant appearing in B. We consider only rule firings
that match within a single bag B. Any fact generated from this firing
that contains a fresh constant will be added into a new child B′ of B,
while facts F(c) containing only constants of B will be both added to
B′ and propagated back up the tree, added recursively to any other
elements that contain all elements of c. We abort the rule firing if the
generated bag B′ is “blocked” by a previously existing B′′ – that is,
there is a homomorphism h of B′ into B′′ such that for every query
Q′ based on quantifying a subset of the conjuncts of InferredAccQ,
if Q′ is satisfied in the configuration by constants c of B′, then it is
satisfied by h(c) in the configuration. We refresh the set of rule firings
that need to be considered whenever the state (facts and subqueries of
InferredAccQ) of the parent bag B changes.

The blocking condition guarantees that any rule firing that occurs
in B′ would have also occurred in B′′, and that these firings will
lead to a match for some c in B′ iff they lead to a match for h(c) in
B′′. The approach is very naive compared to the optimized blocking
strategies available in the description logic community (which study
logics incomparable in expressiveness with Guarded TGDs). But even
this simple version suffices to guarantee termination, since a bound
on the number of guarded bags implies a bound on the depth of a path
with no blocked nodes.

The algorithm given before can be applied to any cost function.
But we will need assumptions on the cost to prove that it obtains
the optimal plan. In this work, we state an optimality result only for
simple cost functions:

THEOREM 9. For all schemas S consisting of access restrictions
and Guarded TGDs, for all simple cost functions, for all conjunctive
queries Q, and for all numbers d, Algorithm 1 will always return a
plan with the lowest cost, among all those SPJ plans that completely
answer Q w.r.t. S and which make at most d access commands.

Note that one important class of constraints, those generated from
view definitions, are generally not expressible as Guarded TGDs. But
for the constraints generated via view definitions over CQs, the chase
on AcSch(S0) will terminate quickly (see comments before Theorem
6). Thus we can avoid using blocking in this case.

Optimizations. The prior algorithm performs exhaustive search
of proofs up to some level. We defer a discussion of a more realistic
implementation to a later paper, but make a few observations about
pruning the search space.

Notions of reducing the search space must consider at proof
structure and cost analysis, both individually and in combination.
Looking at proof structure in isolation, we should prune paths that
cannot lead to a valid proof while preferring ones that are more likely
to lead to a proof. As an example of an optimization related only to
cost, we always assume monotonicity of cost functions, and exploit it
by aborting exploration of a node if the corresponding partial plan has
cost that is already worse than the cost of a known successful plan.

As an example of the interaction of proof structure and cost analysis,
we will wish to abort the search below a node if it is “worse than”
another node in the search tree. Consider the case where we are at
a node v in the search space, and have a candidate fact c at v and
method mt for exposing c, such that when we generate a new node v′
from c we find that there is a node v′′ already in ProofTree such that
config(v′′) has “at least as many useful facts” as config(v′) and we
know that Plan(v′′) is “at least as efficient” than Plan(v′). Then there
is no need to generate v′, since if a sequence of further accesses added
on to the actions of v′ generates a complete plan, the same sequence
will generate a complete plan with no higher cost when added on to
the actions of v′′. The notion “at least as many useful facts” can be
formalized via the existence of a mapping from chase constants of v′
to those of v′′ that preserves facts over relations of the original schema
and those of the form InferredAccR. For simple cost functions, the
notion of efficiency is captured by the notion of having lower cost.
For general cost functions the notion of “worse plan” must be more
complex, since v′ might produce some temporary relations that are
smaller than those of v′′, and the size of these relations may diminish
the cost of later accesses. In our follow-up work, we investigate
heuristic notions of comparison for more general cost-functions, and
their relationship with notions used in traditional query optimization.

EXAMPLE 5. Let us return to the setting of Example 1, assum-
ing we have 3 directory sources Udirect1,Udirect2,Udirect3. The
integrity constraints contain:

Profinfo(eid,onum, lname)→ Udirecti(eid, lname)

for i = 1,2,3, with Profinfo having an access that requires all argu-
ments to be given and each Udirecti having unrestricted access. Con-
sider the query Q = ∃eid onum lname Profinfo(eid,onum, lname).

Figure 1 illustrates the exploration. The canonical database of Q
consists of the fact Profinfo(eid0,onum0, lname0). The proof config-
uration of the initial node n0 will then add Udirecti(eid0, lname0) for

Profinfo(eid0,onum0, lname0)

 Access
ProfInfoMatch for

Inferred
AccQ

Access
 UDirect2

 Access
UDirect3

 Access
UDirect2

 Access
UDirect1

Udirect1(eid0,onum0, lname0)
Udirect2(eid0,onum0, lname0)
Udirect3(eid0,onum0, lname0)

n0

n1

n2

n3
 Access
UDirect3

Figure 1: Exploration in the running example

i= 1,2,3. There are thus three candidates facts to expose, correspond-
ing to firing accessibility axioms that expose Udirecti(eid0, lname0) :
i = 1,2,3 in the initial node.

Assuming that we have a heuristic that tells us to prefer to explore
access to Udirecti before access to Udirect j for i < j, we will choose
fact Udirect1(eid0, lname0) to expose first. This creates a child proof
configuration n1. The transition from parent to child is associated
with a plan command performing input-free access to Udirect1,
putting the output into a table T1 with attributes {eid0, lname0}. The
associated proof configuration for n1 (shown as a box to the upper
left) adds the exposed fact AccessedUdirect1(eid0, lname0), and
then immediately the fact InferredAccUdirect1(eid0, lname0).

In n1 there are three candidate facts to expose via accessibility
axioms: Udirect2(eid0, lname0),Udirect3(eid0, lname0) and now
also Profinfo(eid0,onum0, lname0), since there is an accessibility
axiom that would expose this last fact now. The highest priority one
is Udirect2(eid0, lname0). Thus a child n2 will be generated (again
including the exposed fact AccessedUdirect2(c0) and one inferred
fact). The transition to n2 will be associated with an input-free access
command on Udirect2 and a command joining the results with the
previous table.

The node n2 will have the facts Udirect3(eid0, lname0) and
Profinfo(eid0,onum0, lname0) as candidates for exposure, of which
Udirect3(eid0, lname0) has highest priority. We will thus generate
a child n3, whose configuration adds the exposed fact and the
corresponding inferred accessible fact.

The node n3 will have only one candidate fact, corresponding
to Profinfo(eid0,onum0, lname0), so a child n4 will be generated.
The access associated with the edge from n3 to n4 will be of the
form T4⇐mtProfinfo⇐ T3, where T3 will be a table with attributes
eid0, lname0 containing the intersection of the outputs of the 3 prior
accesses. The query InferredAccQ matches the configuration of n4,
so it is designated a success node, and hence is terminal.

Now the search can go back up the tree to a node with more
candidates to explore – e.g. following the “depth-first on nodes”
approach, it will move to n3, and pick the highest priority child of n3
to explore. Note that at some point in the process, the tree extension
process will consider creating a node n′′′ corresponding to firing the
first two axioms in the reverse order than in the path above – exposing
first fact Udirect2(eid0, lname0) then Udirect1(eid0, lname0). This
chase node would have the same configuration as the node n2 above;
assuming it has no larger cost, n′′′ will be determined to be “no
better than” n2, and hence would not be generated.

6. CONCLUSIONS AND FUTURE WORK
The main goal of this work is to introduce a means for generating

query plans from “proofs of answerability of a query”. By exploring
many proofs, one can guide the search for good query plans by the
structure of proofs. The technique is particularly useful in the presence
of rich integrity constraints, which cannot be exploited by traditional

query planners. The further presence of access restrictions can make
the use of constraints essential for finding any plan, and crucial for
finding a good plan.

We have stressed the continuity between the general technique
based on interpolation and the direct algorithms for TGDs based on the
chase. We have implemented a proof-to-plan generator in the setting
of forward-chaining proofs. While we gave a flavor of the system here,
an overview of the prototype and a full description of the system are
in preparation. But note that proof systems exist that are very different
from forward-chaining ones, such as those used in proving the Access
interpolation theorem – e.g. tableaux,backward-chaining systems,
saturation-based procedures that compute all provable sequences of a
given form. We wish to investigate how the correspondence between
proofs and plans works for each of these proof schemes.

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.
[2] C. Areces, P. Blackburn, and M. Marx. Hybrid logic:

Characterization, interpolation and complexity. J.Symb. Log.,
66(3):977–1010, 2001.

[3] V. Bárány, M. Benedikt, and P. Bourhis. Access restrictions and
integrity constraints revisited. In ICDT, 2013.

[4] P. Blackburn and M. Marx. Constructive interpolation in hybrid
logic. J. Symb. Log., 68(2):463–480, 2003.

[5] A. Deutsch, B. Ludäscher, and A. Nash. Rewriting queries
using views with access patterns under integrity constraints.
TCS, 371(3):200–226, 2007.

[6] A. Deutsch, L. Popa, and V. Tannen. Physical data
independence, constraints, and optimization with universal
plans. In VLDB, 1999.

[7] A. Deutsch, L. Popa, and V. Tannen. Query reformulation with
constraints. SIGMOD Record, 35(1):65–73, 2006.

[8] O. Duschka, M. Genesereth, and A. Levy. Recursive query
plans for data integration. The Journal of Logic Programming,
43(1):49 – 73, 2000.

[9] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query
optimization in the presence of limited access patterns. In
SIGMOD, 1999.

[10] C. Hirsch and S. Tobies. A tableau algorithm for the clique
guarded fragment. In Adv. Modal Logic, 2000.

[11] C. Li. Computing complete answers to queries in the presence
of limited access patterns. VLDB Journal, 12(3):211–227, 2003.

[12] C. Li and E. Chang. Answering queries with useful bindings.
TODS, 26(3):313–343, 2001.

[13] T. Lukasiewicz, A. Cali, and G. Gottlob. A general
datalog-based framework for tractable query answering over
ontologies. J. Web Sem., 14(0), 2012.

[14] Roger C. Lyndon. An interpolation theorem in the predicate
calculus. Pacific J. Math., 9:129–142, 1959.

[15] A. Nash, L. Segoufin, and V. Vianu. Views and queries:
Determinacy and rewriting. TODS, 35(3), 2010.

[16] M. Otto. An interpolation theorem. B. Symb. Log.,
6(4):447–462, 2000.

[17] L. Popa. Object/Relational Query Optimization with Chase and
Backchase. PhD thesis, U. Penn., 2000.

[18] D. Toman and G. Weddell. Fundamentals of Physical Design
and Query Compilation. Morgan Claypool, 2011.

