
A

Generating Plans from Proofs

Michael Benedikt, University of Oxford
and Balder ten Cate, LogicBlox and UC-Santa Cruz
and Efthymia Tsamoura, University of Oxford

Categories and Subject Descriptors: H.2.3 [Information Systems]: Database Management—Languages

General Terms: Theory; Languages

Additional Key Words and Phrases: access methods, optimization, hidden web
We present algorithms for answering queries making use of information about

source integrity constraints, access restrictions, and access costs. Our method can ex-
ploit the integrity constraints to find plans even when there is no direct access to
relations appearing in the query. We look at different kinds of plans, depending on the
kind of relational operators that are permitted within their commands. To each type of
plan we associate a semantic property that is necessary for having a plan of that type.
The key idea of our method is to move from a search for a plan to a search for a proof
of the corresponding semantic property, and then generate a plan from a proof. We
provide algorithms for converting proofs to plans, and show that they will find a plan
of the desired type whenever such a plan exists. We show that while discovery of one
proof allows us to find a single plan that answers the query, we can explore alternative
proofs to find lower-cost plans.

1. Introduction
This work concerns translating a declarative source query written in one vocabulary
into a target plan that abides by certain interface restrictions. By a declarative source
query we will always mean a fragment of first-order logic, or its equivalent in SQL.
We will focus on queries given in the language of conjunctive queries, equivalent to
SQL basic SELECT queries. By a plan we may mean a program that constructs query
answers by interfacing with stored data.

What do we mean by an interface restriction on the target plan? The most basic kind
of restriction is a vocabulary-based restriction, where the restriction is on the set of
relations that are allowed to be referenced in the plan. We begin with a queryQwritten
over relations R1 . . . Rj , and want to convert it to query Q′ making use of a different
set of relations V1 . . . Vk. Of course, if conjunctive queries Q and Q′ mention different
relations, Q can not be equivalent to Q′ on arbitrary instances. But our schema will
come with integrity constraints which restrict the possible instances of interest. We
will thus be considering equivalence only on instances satisfying the constraints.

The most basic example of vocabulary-based restriction comes from reformulating
queries over views. We have a collection of view relations V1 . . . Vk, where each Vi is
associated with a query Qi over some other set of relations R1 . . . Rj . Given a query
Q over R1 . . . Rj , the goal is to find a query Q′ that mentions only V1 . . . Vk where Q′
is equivalent to Q over all instances I for R1 . . . Rj , where the instances are extended
to V1 . . . Vk by interpreting each Vi by Qi(I). Such a Q′ is called a reformulation of Q
over the views. Generally, additional restrictions will be put on Q′ —- e.g. it should be a
conjunctive query, or a union of conjunctive queries, or definable in relational calculus.
The view-based query reformulation problem can thus be seen as a special case of
vocabulary-based restriction, where the integrity constraints are of the form

∀x1 . . . ∀xn Vi(x1 . . . xn)↔ Qi(x1 . . . xn)

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

The information available via an interface may or may not be sufficient to answer a
query. The reformulation problem in this case is to determine whether there is suffi-
cient information, and if so to generate a query making use of the view predicates.

Example 1.1. Consider a database with a table Professor containing ids, last names,
and departments of professors, as well as a table Student listing the id and last name
of each students, as well as their advisor’s id.

The database does not allow users to access the Professor and Student table directly,
but instead exposes a view Professor′ where the id attribute is dropped, and a table
Student′ where the advisor’s id is replaced with the advisor’s last name.

That is, Professor′ is a view defined by the query:

{lname, dname | ∃profid Professor(profid, lname, dname)}
or equivalently by the constraints:

∀profid ∀lname ∀dname Professor(profid, lname, dname)→ Professor′(lname, dname)

∀lname ∀dname Professor′(lname, dname)→ ∃profid Professor(profid, lname, dname)

Student′ is a view defined by the query:

{studid, lname, profname |
∃profid ∃dname Student(studid, lname, profid) ∧ Professor(profid, profname, dname)}

or equivalently by constraints:

∀studid ∀lname ∀dname ∀profid ∀profname

Professor(profid, profname, dname) ∧ Student(studid, lname, profid)→
Student′(studid, lname, profname)

∀studid ∀lname ∀profname [Student′(studid, lname, profname)→
∃profid ∃dname Professor(profid, profname, dname) ∧ Student(studid, lname, profid)]

Consider a query asking for the last names of all students that have an advisor in
the history department. This query can not be answered using the information in the
views, since knowing the advisor’s name is not enough to identify the department.

On the other hand, the views are clearly sufficient to answer a query asking for the
last names of students whose advisor has last name Jones, and we can reformulate
that query as a selection over Student′ on profname “Jones”.2

Naturally, constraints need not come from views. A natural use of constraints is to
represent relationships between sources, such as overlap in the data. This overlap can
be exploited to take a query that is specified over a source that a priori does not have
sufficient data, and reformulate it over a source that provides the necessary data.

Example 1.2. We consider an example schema from [Onet 2013] with a relation
Employee where a row contains an employee’s id, the employee’s name, and the id of
the employee’s department, and also a relation Department, with each row containing
the department’s id, the department’s name, and the id of the department’s manager.

The schema also contains the following two constraints:

∀deptid ∀dname ∀mgrid Department(deptid, dname,mgrid)→ ∃N Employee(mgrid, N, deptid)

∀eid ∀ename ∀deptid Employee(eid, ename, deptid)→ ∃D∃M Department(deptid, D,M)

That is, every department has a manager, and every employee works in a depart-
ment. Suppose further that only the relation Department is accessible to a certain class

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

of users. Intuitively, it should still be possible to answer some questions that one could
ask concerning the relation Employee, making use of the accessible relation Department.

For example, suppose a user poses the query asking for all department ids of em-
ployees, writing it like this:

Q = {deptid | ∃eid ∃ename Employee(eid, ename, deptid)}
Renaming the variables, the query can be reformulated as:

Q′ = {deptid | ∃dname ∃mgrid Department(deptid, dname,mgrid)}
2

Access methods and binding patterns. We will look at a finer notion of interface
based on binding patterns, which state that a relation can only be accessed via lookups
where certain arguments must be given. The most obvious example is a relation that
can only be accessed via an indexed lookup on a certain subset of the attributes. An-
other example of restricted interfaces that can be modeled using relations with binding
patterns comes from web forms. Thinking of the form as exposing a virtual table, the
mandatory fields must be filled in by the user, while submitting the form returns all
tuples that match the entered values. A third example comes from web services, where
the mandatory fields correspond to arguments of a function call.

Example 1.3. Consider a Profinfo table containing information about faculty, in-
cluding their last names, office number, and id, but with a restricted interface that
requires giving an id as an input. The query Q asking for ids of faculty named “Smith”
cannot be answered over this schema. That is, there is no query over the schema that
will return exactly the set of tuples satisfying Q.

But suppose another source has a Udirectory table containing the id and last name
of every university employee, with an interface that allows one to access the entire
contents of the table. Then we can reason that Q has a plan that answers it: a plan
would pull tuples from the Udirectory table, select those corresponding to “Smith”, and
check them within the Profinfo table. 2

In the above example, reasoning about access considerations was straightforward,
but in the presence of more complex schemas we may have to chain several inferences,
resulting in a plan that may make use of several auxiliary accesses.

Example 1.4. We consider two telephone directory datasources with overlapping
information. One source exposes information from Direct1(uname, addr, uid) via an ac-
cess requiring a uname and uid. There is also a table Ids(uid) with no access restriction,
that makes available the set of uids (hence a referential constraint from Direct1 into
Ids on uid). The other source exposes Direct2(uname, addr, phone), requiring a uname and
addr, and also a table Names(uname) with no access restriction that reveals all unames
in Direct2 (that is, a referential constraint from Direct2 to Names). There is also a refer-
ential constraint from Direct2 to Direct1 on uname and addr. Consider a query asking for
all phone numbers in the second directory:
Q = {phone | ∃ uname ∃addr Direct2(uname, addr, phone)}.

There is a plan that answers this query: it gets all the uids from Ids and unames from
Names first, puts them into the access on Direct1, then uses the uname and addr of the
resulting tuples to get the phone numbers in Direct2.2

We emphasize that our goal in this work is getting plans which give complete an-
swers to queries. This means that if we have a query asking for the office number of all
professors with last name “Smith”, the plan produced should return all tuples in the
answer, even if access to the Professor relation is limited.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

We will look not just at getting any plan in the target language, but one with low
cost. Examples of access cost include the cost in money of accessing certain services and
the cost in time of accessing data through either web service calls, iteratively inputing
into web forms, or using particular indices.

Plan-generation approach. The paper will overview a general approach that
emerged from mathematical logic (starting with the work of William Craig [Craig
1957]) adapted to the database setting by Segoufin and Vianu [Segoufin and Vianu
2005]. The “meta-algorithm” for plan-generation is as follows:

(1) Isolate a semantic property that any input query Q must have with respect to the
class of target plans and constraints Σ in order to have an equivalent plan of the
desired type.

(2) Express this property as a proof goal (in the language we use later on, an entail-
ment): a statement that formula ϕ2 follows from ϕ1.

(3) Search for a proof of the entailment, within a given proof system. Here we will
focus on chase proofs, a well-known proof system within databases.

(4) From the proof, extract a plan.

We will show that this approach can be applied to a variety of restrictions on the
plan, with different plan targets corresponding to different entailments. We prove a
number of theorems saying that the method is complete: there is a plan exactly when
there is a proof of the property. These completeness theorems give as a consequence a
definability or preservation theorem: a query Q has a certain kind of plan iff it has a
certain semantic property.

Thus our results will link: a semantic property of Q (with respect to T and Σ), the
existence of a certain kind of plan equivalent to Q, and a proof goal such that from a
proof we can generate the desired plan.

Adding on cost considerations. In the setting of overlapping datasources, there
can be many plans with very distinct costs. Consider a variant of Example 1.3 in which
there are two tables Udirectory1 and Udirectory2 that contain the necessary information.
In this case we would have at least three plans: one that first accesses Udirectory1 as
above and then checks the results in Profinfo, another that first accesses Udirectory2,
and a third that accesses both Udirectory1 and Udirectory2 and intersects the results in
middleware before doing the check in Profinfo. Which of these is best will depend on
how costly access is to each of the directory tables, and what percentage of the tuples
in the two directory tables match a result in Profinfo. Notice that these plans are not
variants of one another, and one cannot be obtained from the other by applying al-
gebraic transformations. We will present an algorithm that will find the lowest-cost
plan for a class of cost functions on access plans. The main idea is to explore the full
space of proofs, but guiding the search by cost as well as proof structure. Thus instead
of generating a single proof and then sending the corresponding plan on for further op-
timization, we interleave exploration of proofs with calls to estimate cost (and perhaps
further optimize) the corresponding plans.

Organization. We start by giving preliminaries on database schemas, query lan-
guages, and logics (Section 2), along with the plan language and associated query an-
swering problems that we study in this work. Section 3 justifies the choice of plan
language by showing its equivalence to other formalisms for defining queries that con-
form to access methods. Section 4 provides the proof goals that correspond to each
kind of plan that we will be interested in, along with the corresponding semantic prop-
erty. It then will present the main theorems of the paper, stating the equivalence of a
semantic property, existence of a plan, and existence of a certain kind of proof.

The basic plan-generation algorithms that prove these theorems are presented in
Section 5, which also shows that these algorithms always generate a correct plan from

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

a proof. Coupled with earlier results from Section 4, this gives the main results on
equivalence of proofs and plans in the paper.

In Section 6 we turn to getting plans with low cost. Section 7 gives conclusions, while
8 gives an overview of related work.

Acknowledgements. This work was funded by EPSRC EP/H017690/1 and
EP/M005852/1, the Engineering and Physical Sciences Research Council UK. The au-
thors are extremely grateful to the anonymous referees of TODS for their patient read-
ing of the draft and numerous helpful suggestions.

2. Definitions
Logical notation. We will use standard terminology for describing queries in first-
order logic, including the notion of free variable, quantifiers, connectives, etc. [Abite-
boul et al. 1995].

If ϕ is a formula whose free variables include ~x and ~t is a sequence of constants
and variables whose length matches ~x then ϕ(~x := ~t) denotes the formula obtained by
substituting each xi with ti. We will often omit universal quantifiers from formulas,
particularly for formulas where the only quantifiers are universal. For example, we
will write P (x, y)→ Q(x, y) as a shorthand for ∀x ∀y [P (x, y)→ Q(x, y)].

A relational schema contains a finite collection of schema constants and a finite col-
lection of relations (or tables), each with an associated arity. We assume that distinct
schema constants are associated with distinct value, and will identify the constant
and the value. A database instance (or just instance) I for schema Sch assigns to every
relation R in Sch a collection of tuples I(R) of the right arity, in such a way that any
integrity constraints of Sch are satisfied. We call I(R) the interpretation of R in I. An
association of a database relation R with a tuple ~c of the proper arity will be referred
to as a fact. A database instance can equivalently be seen as a collection of facts. The
active domain of an instance I is the union of the one-dimensional projections of all
interpretations of relations: that is, all the elements that participate in some fact of I.
When evaluating first-order formulas, we always assume the active domain semantics
in which quantifiers range over the active domain of the instance.

In our plan-generation problems we have some “visible” information (e.g. a set of
relations that our programs are allowed to access) and have to consider what underling
instance is consistent with that. The notion of superinstance captures that an instance
I ′ is consistent with the information provided by another instance I. If we have two
instances I and I ′, and for every relation R, I(R) ⊆ I ′(R) we say that I is a subinstance
of I ′, and I ′ is a superinstance of I.

Queries. By a query we mean a mapping from relation instances of some schema
to instances of some other relation. A boolean query is a query where the output is a
relation of arity 0. Since there are only two instances for a relation of arity 0, a boolean
query is a mapping where the output takes one of two values, denoted True and False.
Given a query Q and instance I, Q(I) is the result of evaluating Q on I.

First-order logic sentences clearly can be used to define boolean queries: given an
instance, the result of the query is True exactly when the sentence holds in the instance.
Given a first-order logic formula with its free variables enumerated as v1 . . . vn, we can
associate a non-boolean query whose output relation has arity n, whose output on
an instance I is the set of n-tuples of values ~t in the active domain of I for which
the instance and the corresponding binding v1 := t1 . . . vn := tn satisfies the formula.
For an instance I, formula ϕ and a binding bind for the variables of ϕ, we will write
I, bind |= ϕ to mean that bind satisfies ϕ in I.

Relational algebra. An alternative notation for relations is to consider them as
having named attributes. Relational algebra is a query language that references rela-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

tions by name, using operations selection, projection, renaming, difference, and join,
along with operator for each schema constant (taking no input and producing a single-
attribute table whose sole cell contains that constant). The USPJ fragment disallows
the use of difference, while the USPJ¬ fragment allows the difference operator E −E′
to be applied only when E′ = E ./σ R, where R is a relation symbol and σ is a set
of equality conditions identifying each attribute of R with an attribute of E. In the
USPJ¬ fragment we allow for the use of inequalities in selections and join conditions.
The SPJ fragment further restricts USPJ by not allowing union.

All of our fragments will, by convention, include the empty expression, denoted ∅,
which always returns the empty set of tuples. We will freely move back-and-forth
between logic-based notation and relational algebra notation, and also between po-
sitional and attribute-based notation for components of a tuple.

Relational algebra boolean queries are those which have no attributes as output. It
is well-known that every relational algebra boolean query can be efficiently converted
into an active-domain first-order logic formula and vice versa [Abiteboul et al. 1995].

Queries and constraints of particular interest. The problems we look at will
generally have as inputs both a query and a set of constraints. For queries we will look
at conjunctive queries, logical formula of the form Q(~x) = ∃~y (A1∧· · ·∧An), where Ai is
an atom using a relation of the schema, with arguments that are either variables from
~x and ~y or constants from the schema. Conjunctive queries are equivalent to queries
defined in the SPJ fragment of relational algebra.

Existential formulas are those of the form ∃x1 . . . xn ϕ, where ϕ is built up using the
boolean operators. Existential formulas are equivalent in expressiveness to queries in
the USPJ¬ fragment of relational algebra.

Although some of our results apply to constraints given by arbitrary first-order logic
sentences, we will focus our attention on constraints given by tuple-generating depen-
dencies (TGDs), given syntactically as

∀~x [ϕ(~x)→ ∃~y ρ(~x, ~y)]

where ϕ and ρ are conjunctions of relational atoms, possibly including constants.
A special subclass consists of Guarded TGDs (GTGDs), in which ϕ is of the form

R(~x) ∧ ϕ′ where R(~x) contains all variables of ϕ′. These in turn subsume inclusion
dependencies (IDs): where ϕ and ρ are single atoms in which no variables are re-
peated and there are no constants. IDs are also called “referential constraints”. An
inclusion dependency with ϕ = ∀~x ∀~u R(~x, ~u) → ∃~y S(~x, ~y) can also be written in the
form R[j1 . . . jn] → S[k1 . . . kn], where ji is the positions containing exported variable
xi in R(~x, ~y) and ki is the corresponding position containing xi in the atom S(~x, ~y). For
example, the ID ∀x ∀u R(x, u)→ ∃y S(y, x) would be written R[1]→ S[2].

An access schema consists of:

— A collection of relations, each of a given arity. A position of a relation R is a number
≤ arity(R).

— A finite collection C of schema constants (“Smith”, 3, . . .). Informally, these repre-
sent a fixed set of values that a querier might use as test values in accesses. For
example, if the user is performing a query involving the string “Smith”, we would
assume that “Smith” was a schema constant – but not arbitrary unrelated strings.
In particular, we will assume that all constants used in queries or constraints are
schema constants.

— For each relation R, a collection (possibly empty) of access methods Each method
mt is associated with a collection of positions of R – the input positions of mt.

— integrity constraints, which we will take to be always sentences in first-order logic.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

An access (relative to a schema as above) consists of an access method of the schema
and a binding – a function assigning values to every input position of the method. If
mt is an access method on relation R with arity n, I is an instance for a schema that
includes R, and AccBind is a binding for mt, then the output or result of the access
(mt,AccBind) on I is the set of n-tuples ~t ∈ I(R) such that ~t restricted to the input
positions of mt is equal to AccBind.

We will be looking for programs that interact with a datasource by generating ac-
cesses and manipulating the output with queries. As in most database settings, we will
look for programs that use a restricted set of operators.

An access command over a schema Sch with access methods is of the form

T ⇐OutMap mt⇐InMap E

where: (1) E is a relational algebra expression E over some set of relations not in
Sch (“temporary tables” henceforward) (2) mt is a method from Sch on some relation
R (3) InMap, the input mapping of the command, is a function from the output at-
tributes of E onto the input positions of mt (4) T , the output table of the command,
is a temporary table (5) OutMap, the output mapping of the command, is a bijection
from positions of R to attributes of T . Note that an access method may have an empty
collection of inputs positions. In such a case, the corresponding access is defined over
the empty binding, and an access command using the method must take the empty
relation algebra expression ∅ as input. In other words, the access method makes the
relation freely accessible. In Example 1.3 the Udirectory table was assumed to have
such an “input-free” access method.

A middleware query command is of the form T := Q, where Q is a relational algebra
query over temporary tables and T is a temporary table. A return command is of the
form Return E, where E is a relational algebra expression as above. An RA-plan con-
sists of a sequence of access and middleware query commands, along with at most one
return command.

When writing access commands we will omit the mappings for readability when they
are clear from context. Returning to Example 1.3, a plan that is equivalent to the query
would be represented as follows, with mtUdirectory and mtProfinfo being the methods on the
corresponding tables:

T1 ⇐ mtUdirectory ⇐ ∅
T2 := π1(σ

#2=“Smith”T1)

T3 ⇐ mtProfinfo ⇐ T2

Return πeidT3

A temporary table is assigned in a plan if it occurs on the left side of a command, and
otherwise is said to be free. The semantics of plans is defined as a function that takes
as input an instance I for Sch and interpretations of the free tables. If the plan has no
Return statement, the output consists of interpretations for each assigned temporary
table. If the plan contains a statement Return E, the output is an interpretation of a
relation with attributes for each output attribute of E. In the latter case we refer to
this as the output of the plan. An access command T ⇐OutMap mt ⇐InMap E is executed
by evaluating the expression E on I and “accessing mt on every result tuple”. That
is, each output tuple of E is mapped to a tuple tj1 . . . tjm using the input mapping
InMap. For each tuple ~t = t1 . . . tn ∈ R that “matches” (i.e., that extends) tj1 . . . tjm , ~t is
transformed to a tuple ~t′ using the output mapping OutMap. The interpretation of T
is then the union of all such tuples ~t′. A middleware query command T := E executes

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

query E on the contents of the temporary tables mentioned in E, and assigns the result
to temporary table T .

A plan is evaluated by evaluating each command in sequence, with each command
operating on the instance formed from the input instance by adding the interpreta-
tions of assigned tables produced by earlier commands. For a plan having as its final
command Return E the output of the plan is the evaluation of E on the instance formed
as above.

In RA-plans we allowed arbitrary relational algebra expressions in both the inputs
to access commands and the middleware query commands. We can similarly talk about
SPJ-plans, where the expressions in access and middleware query commands are built
up from relational algebra operators SELECT, PROJECT, and JOIN, along with re-
naming and constant operators for each schema constant. USPJ-plans allow UNION
in addition to SPJ operators.

We define USPJ¬-plans as any RA-plans in which relational algebra’s difference op-
erator only occurs in a non-membership check, which tests whether the tuples in a pro-
jection of a temporary table are not in a given relation R. Formally, a non-membership
check is a sequence of two commands:

T ′ ⇐OutMap mt⇐InMap πaj1 ...ajm (T)

T ′′ := T − (T ./ T ′)

where in the first command: (1) mt is an access method on some relation R with in-
put positions j1 . . . jm, (2) the input mapping InMap maps attribute aji to position ji,
(3) the attributes of the output table T ′ are a subset of the attributes of T and contain
every aji , (4) the output mapping OutMap maps position ji back to aji . In the second
command, the join condition identifies attributes that have the same name.

Plans that answer queries. We now formalize the notion of a plan being “correct”
for a query. Given an access schema Sch a plan answers a query Q (over all instances)
if for every instance I satisfying the constraints of Sch, the output of the plan on I is
the same as the output of Q. We say that the plan answers Q over finite instances if
this holds for every finite instance I satisfying the constraints. Throughout this paper
we will be concerned with plans that answer a query over all instances, and we will just
say the plan answers Q (without qualification) to denote this. However, we will show
that for the constraints we focus on here, there is no difference between answering
over finite instances and answering over all instances.

Cost. A plan cost function associates every plan with a non-negative integer cost.
The minimal cost problem for an access schema Sch and integrity constraints, query
Q , and cost function Cost is the problem of finding a plan which conforms to Sch and
which answers Q (with respect to constraints in Sch) while having minimal value of
Cost.

The general algorithmic approach we describe can be applied with an arbitrary
cost function, but our completeness results will always require strong assumptions
on cost. Given a plan PL whose access commands, ordered by appearance, are
Command1 . . .Commandj , its method sequence denoted Methods(PL) is the sequence of
mt1 . . .mtj , where mti is the method used in Commandi. We say that PL uses no more
methods than PL′, denoted PL �Meth PL′, if the method sequence of PL is a subsequence
(not necessarily contiguous) of the method sequence of PL′. A cost function Cost is sim-
ple if PL �Meth PL′ implies Cost(PL) ≤ Cost(PL′). For example, a function that takes
a weighted sum of the methods used in access commands within a plan would be a
simple cost function.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

2.1. TGDs and the chase
This work will deal with reasoning about logical formulas. A basic reasoning problem
is to determine whether a ϕ1 entails another sentence ϕ2, meaning: in any instance
where ϕ2 holds, ϕ1 holds. We can also talk about a formula ϕ1(~x) entailing another
formula ϕ2(~x): this means that in any instance and any binding of the variables ~x to
elements of the instance, if ϕ1(~x) holds then ϕ2(~x) holds. We write ϕ1 |= ϕ2 to indicate
that ϕ1 entails ϕ2.

We recall that proof systems for logics are formal systems for showing that an en-
tailment holds in the logic. A proof system is complete if every entailment that is true
has a proof. If we use ρ(~x) ` ϕ(~x) to denote that one can prove ϕ(~x) from ρ(~x), for a
complete proof system we have ρ(~x) |= ϕ(~x) iff ρ(~x) ` ϕ(~x).

We will be interested in special kinds of entailments, of the form

Q ∧ Σ |= Q′

where Q and Q′ are conjunctive queries and Σ is a conjunction of TGDs.
This entailment problem is often called “query containment with constraints” in the

database literature. We often say that Q is contained in Q′ w.r.t. Σ. A specialized
method has been developed for these problems, called the chase [Maier et al. 1979;
Fagin et al. 2005].

A proof in the chase consists of a sequence of database instances, beginning with the
canonical database of query Q: the database whose elements are the constants of Q
plus copies c1 of each variable x1 in Q and which has a fact R(c1 . . . cn) for each atom
R(x1 . . . xn) of Q. These databases evolve by firing rules. Given a set of facts I and a
TGD δ = ∀x1 . . . xj ϕ(~x) → ∃y1 . . . yk ρ(~x, ~y) a trigger for δ is a tuple ~e such that ϕ(~e)

holds. An active trigger is one for which there is no ~f such that ρ(~e, ~f) holds in I. A
rule firing for a trigger adds facts to I that make ρ(~e, ~f) true, where f1 . . . fk are new
constants (“chase constants”) distinct from those in the schema. Such a firing is also
called a chase step. If the trigger was an active trigger, it is a restricted chase step.

A chase sequence following a set of dependencies Σ consists of a sequence of instances
configi : 1 ≤ i ≤ n, where configi+1 is obtained from configi by some rule firing of a
dependency in Σ. Thus each 1 ≤ i ≤ n is associated to an instance configi (a chase
configuration), to a rule firing, and to a set of generated facts — the ones produced
by the last rule firing. If Q′ is a conjunctive query and config is a chase configuration
having elements for each free variable of Q′, then a homomorphism of Q′ into config
mapping each free variable into the corresponding element is called a match for Q′ in
config. A chase proof for the entailment Q∧Σ |= Q′ is a chase sequence beginning with
the canonical database of Q, applying chase steps with Σ, ending in a configuration
having a match.

We now have the following well-known result, saying that the chase is a complete
proof system for CQ containment under constraints:

THEOREM 2.1. [Maier et al. 1979; Fagin et al. 2005] For any instance I, for con-
junctive queries Q and Q′ with the same free variables, and any TGD constraints Σ, Q
is contained in Q′ w.r.t. Σ iff there is a chase sequence following Σ beginning with the
canonical database of Q, leading to a configuration that has a match for Q′.

Example 2.2. We recall the schema from Example 1.2, containing information
about employees and departments. The constraints Σ were the following two TGDs:

∀deptid ∀dname ∀mgrid Department(deptid, dname,mgrid)→ ∃N Employee(mgrid, N, deptid)

∀eid ∀ename ∀deptid Employee(eid, ename, deptid)→ ∃D∃M Department(deptid, D,M)

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

Consider the following two queries:

Q = {deptid | ∃eid ∃ename Employee(eid, ename, deptid)}
Q∗ = {deptid | ∃eid ∃ename Department(eid, ename, deptid)}

We claim that Q is contained in Q∗ relative to the constraints of the schema; in the
more general logical terminology, that:

Q ∧ Σ |= Q∗

To do this we perform a chase proof.
We begin our proof with the “canonical database” of our assumption query Q =

∃eid ∃ename Employee(eid, ename, deptid). That is, we fix constants eid0, ename0, deptid0
witnessing the variables to get the “initial database”:

Employee(eid0, ename0, deptid0)

We can now perform a “chase step” with the second integrity constraint, to derive a
new fact:

Department(deptid0, D,M)

where D,M are new constants.
We can now match Q∗ against the set of facts we have produced, with the homomor-

phism mapping the free variable deptid in Q∗ to the corresponding constant deptid0.
This chase proof witnesses that Q is contained in Q∗ w.r.t. Σ.2

One way to find a chase proof is to “chase an initial instance as much as possible”. For
any set of TGDs Σ and initial instance I, we could just fire rules in an arbitrary order,
making sure that any rule that is triggered fires eventually. The union of all facts
generated will give an instance that satisfies the constraints, but it may be infinite.
We refer to this as the result of chasing I with Σ. There will be many such instances
depending on the order of rules fired, but they will all satisfy the same conjunctive
queries by Theorem 2.1.

Sometimes one can fully chase an initial instance and get a finite chase sequence
and finite final configuration. A restricted chase sequence is one that makes only re-
stricted chase steps (i.e. steps using active triggers). A finite restricted chase sequence
terminates if in the final configuration there are no active triggers. That is, eventually
no rules can fire that add new witnesses. If we have a terminating chase sequence
beginning with the canonical database of Q, Theorem 2.1 implies that for any conjunc-
tive query Q′ Q is contained in Q′ w.r.t. the constraints iff Q′ has a match in the final
configuration. If the constraints have the property that every long enough restricted
chase sequence terminates, we will say that the constraints have terminating chase.

3. Expressiveness of plan languages
The language of RA-plans described in the previous section allows one to express “first-
order plans” – plans that perform accesses and manipulate the results in Relational
Algebra, which is known to have the expressiveness of first-order logic. We will review
two other formalisms for defining plans using RA or first-order logic, and show that
they give the same expressiveness as RA-plans. We will make use of this equivalence
later in the paper.

Nested plans. It will sometimes be convenient to program plans with a higher-level
syntax that allows a notion of subroutine. We formalize this by defining an extension
of RA-plans with subroutines, the nested RA-plans. We inductively define the syntax
of nested plans, along with the definition of a temporary table being free or assigned

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

within a nested plan, extending the definition for RA-plans in Section 2. While for RA-
plans, every temporary table mentioned in the plan will be either free or assigned, this
will not be the case for nested plans.

An atomic nested plan is either: (1) an access command T ⇐OutMap mt ⇐InMap E
(2) a middleware query command T := E where E is an RA expression over temporary
tables and T~x. (3) a command Return T , where T is a temporary table. In each case T is
the only assigned temporary table of the plan, and the tables mentioned in E are free
tables.

Nested plans are built up via concatenation and subplan calls.
If PL1 and PL2 are nested plans, then PL2 · PL1 (read as “PL2 followed by PL1”) is a

nested plan. The free tables are the free tables of PL2 along with any free tables of PL1

that are not assigned tables of PL2. The assigned tables of the concatenation are the
assigned tables of PL2 unioned with the assigned tables of PL1.

If PL1 is a nested plan which includes a Return command at “top-level” (not nested
inside a subplan call), T is a free table in PL1, E is an RA expression over temporary
tables disjoint from those of PL1 whose output matches the attributes of T , and T ′ is a
new temporary table whose attributes are those of the output of PL1, then

T ′ ⇐ PL1[T]⇐ E

is a nested plan. The assigned tables of this plan are the assigned tables of PL1 along
with T ′, while the free tables are those of PL1 minus {T} along with any tables men-
tioned in E. Informally, this plan evaluates E to get a set of tuples IE , performs PL1 in
parallel with the table T corresponding to {~t} for each tuple ~t in IE , and sets T ′ to be
the union of each tuple ~o in the output of such a call.

Formally, we can define the result of an assigned temporary table T in a nested plan
PL, along with the output of such a plan, when evaluated with respect to an instance
I for the Sch relations and all free temporary tables of PL. The evaluation of an access
command is as before, the evaluation of a middleware query command is standard,
and the evaluation of PL2 · PL1 is via evaluating PL1 on the expansion of the input via
the evaluation of tables in PL2. The evaluation of T ′ ⇐ PL1[T]⇐ E is⋃

~t∈E(I)

PL1(I, T := {~t})

where I, T := {~t} is the instance formed from I by interpreting T as {~t}.
Executable queries. We now introduce another approach to describing plans. In

the prior literature on querying with access methods the emphasis has been on iden-
tifying syntactic restrictions on queries that guarantee that they can be implemented
via access defined in an access schema. We review these notions of executable query
below.

The notion of executability was first defined for conjunctive queries. A conjunctive
queryQwith atomsA1 . . . An is executable relative to a schema with access patterns [Li
and Chang 2000] if there is an annotation of each atom Ai = Ri(~xi) with an access
method mti on R such that for each variable x of Q, for the first Ai containing x, x
occurs only in an output position of mti. A UCQ

∨
iQi where Qi is a CQ is said to be

executable if each disjunct is executable.
Every executable UCQ is clearly “implementable with access commands that use the

given methods”. In fact, every executable conjunctive query Q can be converted naïvely
to an SPJ-plan PlanOf(Q).

PROPOSITION 3.1. Every executable CQ can be converted to an SPJ-plan, where
the number of access commands of the plan is equal to the number of atoms in the
query. Similarly every executable UCQ can be converted to a USPJ-plan.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

PROOF. We inductively translated conjunctions of atoms to plans, with the base
case translating the empty conjunction to the empty plan. The inductive rule will re-
move the Return command in PlanOf(A1 . . . Ai−1) and append on (1) the access com-
mand T ′i ⇐ mti ⇐ Ei(Ti−1) where mti is the method annotating Ai and Ei consists
of SPJ operations that project onto the input positions of mti and enforce repetition
of variables and schema constants in input positions of mti, (2) the middleware com-
mand Ti := E′i(T

′
i) ./ Ti−1 where Ti−1 is the output table of PlanOf(A1 . . . Ai−1), which

will have attributes for all variables of A1 . . . Ai, and E′i consist of selections that en-
force repetition of variables and schema constants in output positions of mti, (3) the
command Return Ti A final projection operation will enforce any projections in Q. By
translating one disjunct at a time, we see that every executable UCQ translates into a
USPJ-plan.

We wish to extend the notion of executability to first-order queries. Although a prior
definition exists in the literature [Nash and Ludäscher 2004a], we will find it useful to
build our own.

An FO formula is executable for membership checks (relative to an access schema Sch)
if it is built up from equalities and the formula True using arbitrary boolean operations
and the quantifiers:

∀~y [R(~x, ~y)→ ϕ(~x, ~y, ~z)]

∃~y R(~x, ~y) ∧ ϕ(~x, ~y, ~z)

and for any such quantification above, if R is an Sch relation, then R has an access
method mt such that all of the input positions of mt are occupied by some xi (that is:
by a variable or constant).

Notice that the definition of executable UCQ enforces restrictions related to the ac-
cess methods on both quantification and the free variables. However, for formulas ex-
ecutable for membership checks we enforce restrictions on quantification but impose
no restriction on the free variables. Thus we cannot be sure that such formulas can be
implemented using the access methods. However, if we are given a tuple, we can check
whether it satisfies the formula using the access methods.

Let ϕ(~x) be a first-order formula using the schema relations and additional tables ~T .
Let PL be an RA-plan which has output attributes for each variable in ~x, and has free
temporary tables contained in ~T ∪{T~x} where T~x is an additional temporary table with
attributes for each variable in ~x. We say that such a plan PL filters ϕ if

PL(I∗) = {~o∗ | ~o ∈ I(T~x) ∧ I, ~o |= ϕ}

where for a variable binding ~o with free variables x1 . . . xn, ~o∗ is the corresponding
tuple with attributes a1 . . . an, and I∗ is the same as I except that free tables T with
arity k are considered as tuples with attributes #1 . . .#k.

PROPOSITION 3.2. There is a linear time procedure taking as input a first-order
formula ϕ with free variables xa1 . . . xan that is executable for membership checks and
producing an RA-plan with output attributes a1 . . . an that filters it. Furthermore, if
the FO query is existential the result is a USPJ¬-plan while if the query is positive
existential, the result is a USPJ plan.

PROOF. We create a function ToPlan(ϕ(~x)) that returns a plan that filters it. For
simplicity we will assume that formula ϕ does not contain constants. The definition of
ToPlan will be via induction on the structure of ϕ.

ToPlan(True) will be the plan that just returns T~x while ToPlan(xi = xj) performs a
selection on T~x. ∧ and ∨ will translate to join and union in the usual way.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

Consider the formula ψ = ∃~y R(~x, ~y) ∧ ϕ(~x, ~y, ~z). For the active-domain semantics, it
suffices to consider such “relativized quantifications”, since a general existential quan-
tification can be broken up into a union of these. Assume for simplicity that R(~x, ~y)
has no repetition of variables. ToPlan(ψ) will be a plan that takes as input T~x∪~z with
attributes corresponding to ~x ∪ ~z, and consists of the concatenation of the following
commands:

T1 ⇐OutMap mtR ⇐InMap π~xT~x∪~z
T2 := T1 ./ T~x∪~z
T3 := ToPlan(ϕ)(T~x∪~y∪~z := T2)

Return π~x,~zT3

Above (1) mtR is any access method on R such that all of its input positions are occu-
pied by an xi from R(~x, ~y). Such a method exists since ϕ is executable for membership
checks. (2) T3 := ToPlan(ϕ)(T~x∪~y∪~z := T2) is the set of commands in ToPlan(ϕ) with the
table T2 substituted for T~x∪~y∪~z and an assignment to T3 replacing the Return command.
(3) InMap maps attribute axi

of T~x∪~z to the position of R containing xi. (4) OutMap maps
position i of R to attribute xaj or yaj , where xaj or yaj is in position i of R in R(~x, ~y) .
The case where variables are repeated is handled by inserting additional middleware
query commands that enforce these repetitions.

To compute ToPlan(∀~y R(~x, ~y) → ϕ(~x, ~y, ~z)), it suffices to get a plan for its negation
∃~y R(~x, ~y) ∧ ¬ϕ(~x, ~y, ~z)). Thus we give a construction for the case of general negation.

ToPlan(¬ϕ) returns T~x−ToPlan(ϕ), where T~x has attributes corresponding to the free
variables of ϕ. This can be implemented by a plan that first performs the commands
in ToPlan(ϕ), with the output in some table T ′, and then does a middleware query
command subtracting T ′ from T~x. When ϕ is a relational atom, this can be implemented
as a non-membership check.

The properties of the translation are easily verified.

An executable FO query will be a query that performs an executable UCQ to get a
set of tuples, and then filters it using a formula executable for membership checks.
Formally such a query consists of:

(i) a set x1 . . . xk of variables
(i) a first order formula τ(x1 . . . xl) using a distinguished relation T~x, containing as free

variables each x1 . . . xk, whose arity matches the number of free variables in τ , with
τ executable for membership checks;

(i) an executable UCQ ε(x1 . . . xl);

To evaluate an executable FO query on an instance I, we proceed as follows: (1) eval-
uate ε over I to get a set of tuples I~x (2) evaluate τ over the instance formed from I by
making I~x the interpretation of T~x to get a subset I ′~x of the tuples in I~x (3) project I ′~x on
x1 . . . xk We refer to x1 . . . xk as the return variables, ε as the output envelope and τ as
the filter formula.

Expressive equivalence. We now compare the languages we have introduced.
From Propositions 3.1 and 3.2 we see that

PROPOSITION 3.3. Every executable FO query can be converted into an RA-plan.

We will now explain that, conversely, nested RA-plans can be translated into ex-
ecutable FO queries, and thus the same is true for RA-plans. This will imply that
RA-plans, nested RA-plans, and executable FO queries have the same expressiveness.

In the electronic appendix, we show:

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

THEOREM 3.4. Nested RA plans, RA plans, and executable FO queries have the
same expressiveness, and there are computable transformations going from each for-
malism to an equivalent query in the other.

We also show in the electronic appendix that every USPJ¬-plan has an equivalent
USPJ¬-query, and hence (by prior results) an equivalent existential formula. We also
show, using results of [Deutsch et al. 2007], that the notion captures all existential
formulas that have a plan.

4. Axiomatizing access patterns
We will now present “proof goals that capture the existence of a plan”. That is, we will
give a set of axioms and a proof goal using those axioms such that proofs that realize
the proof goal can be converted to plans. We will need different proof goals for different
kinds of plans. We will start with a proof goal that will correspond to plans that do not
use negation, the SPJ-plans.

Given schema Sch, the forward accessible schema for Sch, denoted AcSch(Sch), is the
schema without any access restrictions, such that:

— The constants are those of Sch.
— The relations are those of Sch, a unary relation accessible(x) (x is an accessible value)

plus a copy of each relation R of Sch called InfAccR (the inferred accessible version
of R).

— The constraints are those of Sch (referred to as “Sch constraints” below) along with
the following constraints
— accessibility axioms: for each access method mt on relation R of arity n with

input positions j1 . . . jm we have a rule:

accessible(xj1) ∧ . . . ∧ accessible(xjm) ∧R(x1 . . . xn)→

InfAccR(x1 . . . xn) ∧
∧
j

accessible(xj)

In addition, we have accessible(c) for each constant c of Sch.
— A copy of each of the original integrity constraints, with each relationR replaced

by InfAccR. We refer to these as “InfAccCopy constraints” below.

Informally, accessible(c) indicates that the value c can be returned by some se-
quence of accesses. The inferred accessible relations represent facts that can be de-
rived from facts exposed via the access methods using reasoning. Thus the forward
accessible schema represents the rules that allow one to move from a “hidden fact”
(e.g. R(c1 . . . cn)) to an inferred accessible fact (e.g. InfAccR(c1 . . . cn)), and from there
— using the constraints — to other inferred accessible facts (e.g. InfAccS(c1 . . . cn, d)
for a new chase constant d, witnessing the right-hand side of a rule firing requiring
∃y InfAccS(c1 . . . cn, y). From the structure of the rules one sees that an InfAccCopy con-
straint can fire based upon facts generated by other kinds of rules, but the firing of an
InfAccCopy constraint can not trigger either accessibility axioms or Sch constraints.

Given a query Q, its inferred accessible version InfAccQ is obtained by replacing each
relation R by InfAccR. Informally, InfAccQ represents the fact that the existence of a
witness to Q can be obtained through making accesses and reasoning.

We will overload AcSch(Sch) to refer to the conjunction of axioms in this schema
AcSch(Sch). For a positive existential plan we will be interested in the entailment:

Q ∧ AcSch(Sch) |= InfAccQ

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

Informally, this means that we can infer from Q holding in a hidden database that Q’s
truth must be visible to a user via accesses and reasoning with constraints.

Example 4.1. Recall the setting of Example 1.3. We had a Profinfo table containing
information about faculty, including their last name, office number, and their id, with
a restricted interface that requires giving an id of an employee as an input. We also
had a Udirectory table containing the id and last name of every university employee,
with an input-free access method.

We were interested in the query asking for ids of faculty named “Smith”. That is:
Q = ∃onum Profinfo(eid, onum, “Smith”)

In this case we have:
InfAccQ = ∃ onum InfAccProfinfo(eid, onum, “Smith”).

The forward accessible schema includes rules

- Profinfo(eid, onum, lname)→ Udirectory(eid, lname)
- Udirectory(eid, lname) → InfAccUdirectory(eid, lname)∧accessible(lname)∧accessible(eid)
- Profinfo(eid, onum, lname) ∧ accessible(eid) → InfAccProfinfo(eid, onum, lname) ∧

accessible(onum) ∧ accessible(lname)

One can check that Q is contained in InfAccQ w.r.t. AcSch(Sch). 2

In AcSch(Sch) we only had rules going from the original relations R to InfAccR. Going
back to the informal intuition, we can think of this as capturing the positive informa-
tion revealed in an access, but not the negative information (that a certain tuple is not
in the answer). We will later prove that this entailment is equivalent to existence of an
SPJ-plan. To capture first-order plans, we should have axioms capturing both positive
and negative information returned by accesses. We give such an extension now.

Let AcSch↔(Sch) extend the axioms of AcSch(Sch) with the following axioms (univer-
sal quantifiers omitted):∧

i≤m

accessible(xji) ∧ InfAccR(x1 . . . xn)→ R(x1 . . . xn) ∧
∧
i≤n

accessible(xi)

Above, R is a relation of Sch having an access method with input positions j1 . . . jm.
Notice that these rules are obtained from those of AcSch(Sch) by switching the roles of
InfAccR and R, resulting in a rule set where the original schema and the InfAcc copy
are treated symmetrically. We will now be interested in the entailment:

Q ∧ AcSch↔(Sch) |= InfAccQ

We can think informally of AcSch↔(Sch) as capturing both positive and negative infor-
mation revealed from an access.

4.1. Statement of the main results
We are now ready to state our main results on the relationship between the entail-
ments mentioned before and plans. We will also explain how each entailment is stating
a semantic property of the query Q.

RA-plans and the schema AcSch↔. For RA-plans, our main result is:

THEOREM 4.2. For any conjunctive query Q and access schema Sch with TGD
constraints, there is an RA-plan answering Q (over databases in Sch) if and only if
Q ∧ AcSch↔(Sch) |= InfAccQ.

Further, from any chase proof witnessing Q ∧ AcSch↔(Sch) |= InfAccQ we can extract
(in linear time) an RA-plan for Q over Sch.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

We now wish to explain the semantic property, which we will denote as access-
determinacy, that corresponds to the proof goal Q∧AcSch↔(Sch) |= InfAccQ, and (as we
will later show) to the existence of an RA-plan.

Given an instance I for schema Sch the accessible part of I, denote AccPart(I) con-
sists of all the facts over I that can be obtained by starting with empty relations and
iteratively entering values into the access methods. Formally, it is a database contain-
ing a set of facts AccessedR(v1 . . . vn), where R is a relation and v1 . . . vn are values in
the domain of I such that R(v1 . . . vn) holds in I, obtained by starting with relations
AccessedR0 and accessible0 empty1, and then iterating the following process until a fix-
point is reached:

accessiblei+1 = accessiblei ∪
⋃

R a relation
j<arity(R)

πj(AccessedRi)

and

AccessedRi+1 = AccessedRi ∪ ⋃
(R,{j1,...,jm})

there is a method of Sch on R with inputs j1, . . . , jm

{(v1 . . . vn) ∈ I(R)| vj1 . . . vjm ∈ accessiblei}

Above πj(Accessedi(R)) denotes projection of Accessedi(R) on the jth position. For fi-
nite instances a fixpoint will be reached after |I| steps, where |I| denotes the number
of facts in I. For arbitrary instances the limit of these instances over all i will be a
fixpoint.

Above we consider AccPart(I) as a database instance for the schema with relations
accessible and AccessedR. Below we will sometimes refer to the values in the relation
accessible as the accessible values of I.

In the case of vocabulary-based access-restrictions, the accessible part of an instance
just represents the restriction of the instance to the visible relations (e.g. view tables).
We now are ready to give the semantic property.

Definition 4.3 (Access-determinacy). Q is said to be access-determined over Sch if for
all instances I and I ′ satisfying the constraints of Sch with AccPart(I) = AccPart(I ′) we
have Q(I) = Q(I ′).

If a query is not access-determined, it is obvious that it cannot be answered through
any plan, since it is easy to see that any plan can only read tuples from the accessible
part. In the case of interface restrictions given by a collection of views, each associated
with a view definition, access-determinacy just says that for instance of the schema
where the views are evaluated according to their definitions, the query result is a func-
tion of the view images. This is the notion of determinacy whose study was initiated
by Segoufin and Vianu [Segoufin and Vianu 2005] and by Nash, Segoufin, and Vianu
[Nash et al. 2010].

The following claim relates our entailment hypothesis and this preservation prop-
erty.

CLAIM 1. The following are equivalent, for any first order query Q and any access
schema with first-order constraints:

(1) Q entails InfAccQ with respect to the rules in AcSch↔(Sch)

1In the presence of schema constants, we would start with accessible0 consisting of the schema constants.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

(2) Q is access-determined over Sch

PROOF. For simplicity we assumeQ is a boolean conjunctive query. The non-boolean
case is a straightforward generalization.

We prove that the first item implies the second. Fix I and I ′ satisfying the schema
with the same accessible part, and assume I satisfies Q. Consider the instance I ′′ for
AcSch↔(Sch) formed by interpreting the relations R as in I, the relation accessible by
the accessible values of I, and each InfAccR by the interpretation of R in I ′. Then one
can easily verify that I ′′ satisfies the constraints of AcSch↔(Sch).

Since I (and hence I ′′) satisfies Q, and we are assuming that Q entails InfAccQ with
respect to AcSch↔(Sch) we can conclude that I ′′ must satisfy InfAccQ. Thus Q holds in
I ′ as required.

We now argue from the second item to the first, which will complete the proof of the
claim. Suppose Q is not contained in InfAccQ with respect to the rules in AcSch↔(Sch).
Hence there is an instance IAcSch↔ satisfying the rules of AcSch↔(Sch) and also satis-
fying Q ∧ ¬InfAccQ. Let I1 consist of the restriction of IAcSch↔ to the original schema
relations. Let I2 consist of the inferred accessible relations from IAcSch↔ , renamed to
the original schema. We first claim that a fact F = R(e1 . . . en) of the accessible part of
I1 is in the accessible part of I2. We prove this by induction on the appearance point
of F , the lowest i such that F appears in AccessedRi. Since AccessedR in the accessible
part is the union of these relations, a minimal i must exist for each F . F appears in
AccessedRi due to an access using elements ej1 . . . ejm that satisfy accessible facts that
had a strictly smaller appearance point. Thus by induction these earlier facts are in
the accessible part of I2, and in particular ej1 . . . ejm are accessible values of I2. Using
the axioms we have that InfAccR(e1 . . . en) holds, and thus R(e1 . . . en) holds in I2. Us-
ing the definition of accessible part, we conclude that F is in the accessible part of I2
as required. Arguing symmetrically, we have that I1 and I2 have the same accessible
part, and hence they contradict access-determinacy.

Using the above claim, we can restate Theorem 4.2:
For any conjunctive query Q and access schema Sch with TGD constraints there is

an RA-plan answering Q (over databases in Sch) if and only if Q entails InfAccQ with
respect to the rules in AcSch↔(Sch) if and only if Q is access-determined.

Note that in the direction from right to left we are moving from a preservation prop-
erty to a syntactic restriction.

We will return to the algorithm that proves Theorem 4.2 later.
SPJ-plans and the schema AcSch. We now state an analogous result for SPJ-

plans.

THEOREM 4.4. For any conjunctive query Q and access schema Sch with TGD
constraints, there is an SPJ-plan answering Q (over instances in Sch) if and only if
Q ∧ AcSch(Sch) |= InfAccQ.

Further, for every chase proof witnessing Q ∧ AcSch(Sch) |= InfAccQ, we can extract a
SPJ-plan.

We will again translate the entailment into a preservation property of the query Q.

Definition 4.5 (Access monotonic determinacy). We say Q is access-monotonically-
determined over Sch if for all instances I and I ′ satisfying the constraints of Sch with
every fact of AccPart(I) contained in AccPart(I ′) (that is, AccPart(I) is a subinstance of
AccPart(I ′)), then Q(I) ⊆ Q(I ′).

That is, we have weakened the hypothesis of access-determinacy to require only con-
tainment of facts, not equality. This definition also generalizes one studied by Nash,

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

Segoufin, and Vianu [Nash et al. 2010] in the context of constraints associated to view
definitions, denoted there as monotonicity.

The following claim now relates these notions to our axioms, analogously to Claim
1.

CLAIM 2. The following are equivalent (for any first order query Q and access
schema with first-order constraints):

(1) Q entails InfAccQ with respect to the constraints in AcSch(Sch)
(2) Q is access-monotonically-determined w.r.t. Sch

PROOF. Again, we assume Q is boolean for simplicity.
We prove that the first item implies the second, using the same template as in the

proof of Claim 1. Fix I and I ′ satisfying the schema with the same accessible part, and
assume I satisfies Q. Consider the instance I ′′ for the accessible schema formed by
interpreting the relations R as in I, accessible by the accessible values of I, and each
InfAccR by the interpretation of R in I ′. Access-monotonicity implies that I ′′ satisfies
the constraints of AcSch(Sch). Since I (and hence I ′′) satisfies Q, the assumption tells
us that I ′′ must satisfy InfAccQ, and thus Q holds in I ′ as required.

Arguing from the second item to the first is also analogous. Suppose Q does not im-
ply InfAccQ with respect to the rules in AcSch(Sch). Hence there is an instance IAcSch

satisfying the rules of AcSch(Sch) and also satisfying Q ∧ ¬InfAccQ. Let I1 consist of
the restriction of IAcSch to the original schema relations. Let I2 consist of the inferred
accessible relations from IAcSch, renamed to the original schema. We claim that a fact
R(e1 . . . en) of the accessible part of I1 is again in the accessible part of I2. This proof
is as in Claim 1, since in this part of the argument we only used the “forward acces-
sibility axioms”. From this, we can see that I1 and I2 witness that Q is not access-
monotonically-determined, which completes the argument.

Thus Theorem 4.4 can be restated as:

For any conjunctive query Q and access schema Sch with TGD constraints, there is
a SPJ-plan answering Q (over instances in Sch) if and only if Q entails InfAccQ with
respect to AcSch(Sch) iff Q is access-monotonically-determined.

USPJ¬-plans. We now investigate the situation for USPJ¬-plans. For arbitrary
first-order constraints, there can be conjunctive queries that have USPJ¬-plans, but
which do not have plans without use of negation. For example, consider query (x),
constraints asserting R(x) ↔ A(x) ∧ ¬B(x), and assume we have input-free access
methods on {A,B}. Then there is a USPJ¬-plan that is equivalent to A(x) ∧ ¬B(x),
but there is no SPJ-plan.

In the conference version [Benedikt et al. 2014] we give another variant of the ac-
cessible schema that is geared towards USPJ¬-plans. This variant restricts the “back-
ward accessibility axiom” so that it only applies to facts InfAccR(~d) with each d1 . . . dn
all satisfying accessible. Since this paper does not deal with general first-order con-
straints, we do not give a proof of this result. Instead, we will focus on the TGD case,
and will show that for these constraints whenever we can obtain a USPJ¬-plan, we
can actually get an SPJ-plan as well. That is we prove, assuming Theorem 4.4,

THEOREM 4.6. For any conjunctive query Q and access schema Sch with TGD con-
straints, if there is a USPJ¬-plan answering Q w.r.t. Sch, then there is an SPJ-plan
answering Q w.r.t. Sch.

Clearly the second item implies the first. Our proof that the second implies the first
will make use of the following result:

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

LEMMA 4.7. For CQ Q and access schema with TGD constraints Sch, if there is
USPJ¬-plan answering Q, then there is an USPJ-plan answering Q.

Assuming this lemma, Theorem 4.6 will follow from Theorem 4.4, since USPJ-plans
are access-monotonically-determined (since all of their operations are monotone) and
Theorem 4.4 states that access-monotonically-determined queries have SPJ-plans.

PROOF OF LEMMA 4.7. Let PL be a USPJ¬-plan for Q. Let PL′ be obtained
from PL simply by dropping all non-membership tests.That is, eliminating any non-
membership check

T ′ ⇐ mt⇐ πaj1 ...ajm (T)

T ′′ := T − (T ./ T ′)

and replacing any reference to T ′′ with a reference to T .
A straightforward induction shows that, on all instances I, we have that PL′ returns

(at least) all tuples returned by PL. Therefore, it suffices to show that, on all instances
I satisfying Σ, every tuple a returned by PL′ is returned also by PL.

We may assume that all occurrences of the union operator in PL are at the top-most
level, i.e., the only occurrence of union is in a final query middleware command that
creates the output table of PL, and the tables T1 . . . Tn unioned are formed by disjoint
subplans PLi of PL. This is argued by the same technique of pulling unions to top level
in USPJ queries. The plans PL1 . . .PLn will be called components of PL. Likewise let
PL′1, . . . ,PL′n be the components of PL′. We see that each PL′i is obtained from PLi by
dropping all non-membership checks. PL′ is a USPJ-plan that returns every tuple of
PL. Thus to prove the lemma it suffices to show that for any I satisfying the constraints,
the output of each PL′i on I is contained in the output of PLi. Recalling that PL was
assumed to answer Q, it is sufficient to show that the output of PLi is contained in that
of Q. Let Q′i be the conjunctive query associated with PL′i. Since Q′i and Q are both CQs,
the completeness of the chase, Theorem 2.1, tells us that to show containment of Q′i in
Q we must show that in the instance Î ′i formed by chasing the canonical database I ′i of
Q′i with the constraints Σ, Q holds on the tuple x corresponding to the free variables
of Q′i in I ′i.

Let Qi be the existential query associated with PLi (including all negated atoms).
Suppose for any of the negated atoms ¬Aj of Q′i, Aj(x) held in Î ′i. Then by Theorem 2.1
again, Q′i entails that atom relative to the constraints. But then PLi would be equiva-
lent to false w.r.t. Σ, and could have been removed from the list of components of PL.
Thus we can assume without loss of generality that the existential query Q′i holds of x
in the chase instance Î ′i, as required.

Thus we have shown that Q has a USPJ-plan.

4.2. Summary
We have now presented a semantic property (access-monotonic-determinacy) and an
entailment (entailment of InfAccQ from Q in the schema AcSch(Sch)) and we have
shown they are equivalent. We have also stated a theorem that for TGDs, both of these
properties are equivalent to the existence of an SPJ-plan.

Similarly, we have presented the semantic property of access-determinacy along
with an entailment with respect to AcSch↔(Sch), and shown they are equivalent, again
for arbitrary constraints and queries. We have stated a theorem that these are equiv-
alent to the existent of an RA-plan.

Finally, we have shown, assuming the characterization theorem stated for SPJ-
plans above, that the existence of a USPJ¬-plan is equivalent to the existence of an
SPJ-plan.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

The proofs of the main theorems stated but not proven in this section, Theorem
4.2 and Theorem 4.4, will be given in the next section of the paper. While the claims
relating entailments and semantic properties in this section held for general first-order
constraints, the next section will be focused on TGDs, and will use methods specific to
them.

Alternative Axiomatization of AcSch↔. Before closing this section, we present a
slight alteration of the axiom schema AcSch↔, denoted AltAccSch↔ in which the pred-
icate accessible does not appear. This axiomatization will be useful later on, and also
gives insight into what the predicate accessible “really” means.

In every forward accessibility axiom an atom accessible(x) on the left is replaced (in
all possible ways) by a relation InfAccR(~z), where ~z contains x in at least one position
(and the other variables are universally quantified), while the occurrences on the right
are dropped. For example, the axiom accessible(x)∧R(x, y)→ InfAccR(x, y)∧accessible(y)
would be replaced by many axioms, including InfAccS(x,w, z)∧R(x, y)→ InfAccR(x, y).

In every backward accessibility axiom, we similarly replace accessible(x) on the left
by an atom in the original schema containing x, while dropping occurrences on the
right.

PROPOSITION 4.8. Q proves InfAccQ using the axioms of AcSch↔ iff Q proves
InfAcc(Q) in the modified schema AltAccSch↔.

PROOF. In one direction, suppose that Q does not prove InfAccQ using the axioms
of AcSch↔. Then by Claim 1, Q is not access-determined. Fix I and I ′ instances for
the original schema satisfying Σ with the same accessible part, but disagreeing on
the output of Q. Fix ~d that is returned by Q in I but not returned by Q in I ′. By
applying an isomorphism to non-accessible values of I ′ and I, we can assume that
every non-accessible value of I ′ is not in I and vice versa. Let I∗ be the instance for the
augmented schema in which relations R are interpreted as in I and relations InfAccR
are interpreted as in I ′.

We claim that I∗ satisfies AltAccSch↔. Clearly both the original relations and the
relations InfAccR satisfy Σ. Consider a modified forward axiom (universal quantifiers
omitted):

InfAccRj1(. . . xj1 . . .) ∧ . . . InfAccRjm(. . . xjm . . .) ∧R(~x)→ InfAccR(~x)

where R has an access method on positions j1 . . . jm. Suppose we have a tuple c1 . . . cm
in I∗ satisfying the left-hand side of this implication. Then cj1 . . . cjm must be accessible
values of I and I ′. Since the fact R(~c) holds in I, it must be in the accessible part of
I, and hence in the accessible part of I ′. Thus InfAccR(~c) holds in I∗ as required. The
backward accessibility axioms are argued symmetrically.

Clearly, the formula Q(~d) is true on I∗, since it is true in I and Q is a formula using
the relations in the original schema. ~d does not satisfy Q in I ′, thus does not satisfy
the formula obtained by interpreting each relation R by InfAccR in I ′. Thus it can not
be returned by InfAccQ on I∗.
I∗ therefore is a witness that Q does not prove InfAccQ in AltAccSch↔.
In the other direction, suppose we have I∗ witnessing thatQ does not prove InfAcc(Q)

in AltAccSch↔. Expand I∗ to an instance I+ for the signature extended with accessible,
by interpreting accessible by all values that lie in the domain of some InfAccR relation
and in the domain of some relation of the original schema. We claim that the resulting
instance satisfies the constraints of AcSch↔. The accessibility axioms follow directly
from the corresponding axioms of AltAccSch↔. Similarly, we see that the output of Q in
I+ is the same as the output of Q in I, while the output of InfAccQ on I+ is the same as
the output of InfAccQ on I∗. Thus we see that Q does not prove InfAccQ in AcSch↔.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

5. Algorithms transforming proofs to plans
Recall from Subsection 2.1 that for query containment problems using conjunctive
queries and TGDs, we can use the proof system known as the chase. In the chase, a
proof can be rephrased as a sequence of database instances, beginning with the canon-
ical database of query Q, evolving by firing rules – that is, grounding the TGDs. By
a full proof we mean a chase sequence beginning with the canonical database of the
source query Q and ends with a configuration having a match for the target query.

We also have seen a collection of proof goals that capture semantic properties of
queries, with respect to TGD constraints Σ. These proof goals are all of the form.

Q ∧ Γ |= InfAccQ

where Q is the query we are trying to reformulate, InfAccQ is a query obtained from
copying Q on the “inferred accessible” relations and Γ consists of two copies of Σ — the
Sch constraints and InfAccCopy constraints — along with accessibility axioms relating
the two copies. In particular, we have a problem of conjunctive query containment with
respect to TGD constraints (namely Γ), and hence in seeing whether these properties
hold, we can restrict our attention to chase proofs.

We will show that these semantic properties are equivalent to the existence of plans.
In each case, we show that from any proof of a proof goal, we can read off a plan. We
focus first on the case of SPJ-plans and the forward accessible schema AcSch(Sch).

Given a chase sequence config1 . . . configk corresponding to a full proof, let CSeqConsts be
the set of chase constants generated by firings of Sch constraints within this sequence.

We will convert prefixes of our full proof config1 . . . configk into plans by induction on
the number of accessibility axioms fired in the prefix. We will generate plans PLi for
any prefix config1 . . . configk that ends with the firing of an accessibility axiom, where
The generated plan PLi will assign tuples to a temporary table Tj whose attributes
correspond to a subset Ci of CSeqConsts. Informally, rows of these tables will store pos-
sible homomorphisms that map the chase constants into the instance being queried.
Therefore, we interchangeably talk about constants or attributes when referring to
the elements of Ci hereafter. The Ci will be monotonic under inclusion as i increases.
We will maintain as an invariant that the attributes in Ci are exactly the constants
c ∈ CSeqConsts such that accessible(c) holds in the configuration of the last element of the
sequence.

Our final plan will correspond to the trivial prefix config1 . . . configk.
The induction step for rule firings other than accessibility axioms will append noth-

ing to the plan. In the induction step, we consider a chase sequence ending with the
firing of an accessibility axiom:

accessible(cj1) ∧ . . . accessible(cjm) ∧R(c1 . . . cn)

→ InfAccR(c1 . . . cn) ∧
∧
j

accessible(cj)

associated with method mt on relation R having input positions j1 . . . jm. We say that
the rule firing exposes fact R(c1 . . . cn). Let configi−1 be the chase configuration prior to
the firing of this rule. Note that by the inductive invariant, each cj1 . . . cjm must be an
attribute of table Ti−1 associated to the sequence prior to the firing. We will define the
commands that correspond to this rule firing.

We will explain the induction step first in the case where none of cj1 . . . cjm are
schema constants and no constant is repeated in R(c1 . . . cn). We defer the additional
cases until the next subsection. We first generate an access command whose input ex-
pression is the projection of Ti−1 onto cj1 . . . cjm , with the input mapping InMap taking
columns cj1 . . . cjm of Ti−1 to input positions j1 . . . jm of mt. The command’s output will

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

be a table T ′i with attributes Ci = Ci−1 ∪ {c1 . . . cn}, with the output mapping taking
position d to cd. We follow the access command by a middleware query command that
sets Ti to the join of T ′i with Ti−1.

If we have a full chase proof, the final configuration must have a match for InfAccQ.
Let V be the set of chase constants corresponding to the free variables of Q. We add a
last Return command that will return the projection of Ti on V . In the special case that
Q is boolean, the final query amounts to checking that the table Ti is non-empty.

Algorithm 1: Chase-Proof-to-SPJ-Plan algorithm
1 Input: full chase proof with configurations config1 . . . configk
2 V = attributes for free variables of Q;
3 Plan := ∅;
4 T0 = table with no columns ;
5 numsteps = 0;
6 for i = 1 to k do
7 if configi is obtained by firing an accessible axiom exposing fact F = R(c1 . . . cn) via

method mt with inputs j1 . . . jm then
8 Append to Plan command T ′i ⇐ mt ⇐ πcj1 ...cjm (Ti−1) ;
9 Append to Plan command Ti = T ′i ./ Ti−1;

10 numsteps++

11 Add command “Return πV (Tnumsteps)” to Plan ;
12 Return Plan

Example 5.1. Consider a variant of Example 1.3, using the same schema and the
query Q = ∃eid ∃onum ∃lname Profinfo(eid, onum, lname). Using the chase, we get the
following proof:
(1) Create the canonical database, containing the single fact
{Profinfo(eid0, onum0, lname0)}

(2) One of the initial integrity constraints matches Profinfo(eid0, onum0, lname0), and
firing the rule infers Udirect(eid0, lname0).

(3) Udirect(eid0, lname0) matches an accessibility axiom, and the rule firing generates
InfAccUdirect(eid0, lname0) and accessible(eid0).

(4) An accessibility axiom matches Profinfo(eid0, onum0, lname0) ∧ accessible(eid0) creat-
ing fact InfAccProfinfo(eid0, onum0, lname0).

(5) We now have a match for InfAccQ, so we have a successful proof.

Here is the generated plan:

(1) The firing of the accessibility axiom in the third step above generates access com-
mand T1 ⇐ mtUdirect ⇐ ∅, where T1 is a table with attributes for eid0 and lname0.

(2) The accessibility axiom on the fourth line generates commands T2 ⇐ mtProfinfo ⇐
πeid0T1 and T2 := T2 ./ T1.

(3) The match at the end generates the command output π∅(T2), which returns non-
empty if T2 is non-empty.

That is, we do an input-free access on Udirect and put all the results into Profinfo.2

5.1. Full definition of SPJ -plan generation algorithm
In the first presentation of the algorithm we did not deal with several “corner cases”
concerning these rule firings:

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

— the fact F = R(c1 . . . cn) may contain not only constants that are produced in the
chase proof (“chase constants”) but also constants from the schema (e.g. “Smith”, 3,
etc.),

— the fact may have some chase constants repeated.

Here we complete the description to cover these cases.
We first discuss schema constants and repetition of chase constants in input posi-

tions. If R(c1 . . . cn) has some chase constants repeated in an input position and possi-
bly some of cj1 . . . cjm are schema constants, then in our input expression we perform
a projection of Ti−1 onto the attributes corresponding to the distinct chase constants
in cj1 . . . cjm and then transform every tuple t into a corresponding tuple t′ that can
be used as an input to the access method mt. We do this transformation by repeating
values or filling in positions with constants, using R(c1 . . . cn) as a template. That is,
if ji is such that cji is a chase constant c, then set t′ji to be c, while if cji is a schema
constant d, then set t′ji to be d. This transformation can be done with an SPJ query.

Example 5.2. Consider an accessibility axiom rule firing at step j of the form

accessible(c1) ∧ accessible(“Smith”) ∧R(c1, c1, “Smith”, c2, c2, “Jones”)→
InfAccR(c1, c1, “Smith”, c2, c2, “Jones”)

Suppose that this rule firing was associated with access method mt on R having in-
puts on the first three positions of R. Note that the axioms guarantee that schema
constants, like “Smith” are always in accessible.

If Ti−1 is the temporary table produced by the commands associated with the i− 1th

firing, then Ti−1 will have an attribute for c1. We create an SPJ expression Ei that will
take as input Ti−1 and produce a table Ti with

{(c1 = v1, c
′
1 = v1, c“Smith” = “Smith”)|v1 ∈ πc1(Ti−1)}

Such an Ei can be expressed using projection, a self-join, and a constant operator. We
then generate an access command to mt using Ei as input. 2

The modification of the algorithm that deals with repetition and schema constants in
output positions (that is, non-input positions of the accessed relation) is similar, being
done by post-processing, using a middleware query command to filter the output table
down to those tuples that have constants in the proper positions and repeated values
as found in the fact F . We then apply a projection to obtain a table whose attributes
are the distinct chase constants in F .

Example 5.3. In the case of Example 5.2, the output table T ′i of the access command
could have attributes c1, c′1, cSmith, c2, c

′
2, cJones, and the output mapping would map the

positions of R to these attributes. We then post-process by performing the middleware
query command T ′′i = πc1,c2σc2=c′2∧cJones=“Jones”T

′
i . 2

5.2. Properties of SPJ -plan generation and Proof of Theorem 4.4
We will now show that the prior algorithm proves Theorem 4.4: it takes any chase
proof and produces an SPJ-plan that answers Q.

That is, we will prove:

PROPOSITION 5.4. For every chase proof config1 . . . configk proving InfAccQ from Q
the corresponding plan PL generated by Algorithm 1 answers Q.

If configi denotes the ith configuration in the chase proof, then let InfAccQuery(configi)
be the conjunctive query formed by taking the conjunction of all facts of the form
InfAccR(~c) in configi and turning them into an existentially quantified conjunction of

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

factsR(~w), changing the chase constants c that satisfy accessible(c) to free variables and
the other chase constants to existentially quantified variables. Note that if configi has
a match for InfAccQ, then InfAccQuery(configi) entails Q. Recall that our algorithm gen-
erated commands for every firing of an accessibility axiom, producing a corresponding
plan PLi, which produces a temporary table Ti. The attributes of Ti will be all chase
constants in the interpretation of accessible within configi — hence these match the
output attributes of InfAccQuery(configi).

Given an instance I, a mapping from the chase constants present in the chase con-
figuration configi produced by the ith step of the algorithm to I which preserves all
facts in configi within the original schema will be called a Sch configi-tuple of I. As the
notation implies, we will consider such elements as tuples with attributes from the
constants of configi.

We let Ti(I) be the instance of table Ti produced by the plan PLi when run on an
instance I of schema Sch. Although the notation omits the dependence on PLi, the
value of Ti in PLj , whenever it is well-defined, is independent of j.

We claim that the following “universality properties” hold for any instance I of Sch:

— For every Sch configi-tuple of I, its projection on to those constants of configi satis-
fying accessible is in Ti(I).

— Ti(I) is a subset of the tuples in InfAccQuery(configi)(I).

We explain why these two assertions together imply Proposition 5.4. First consider a
tuple t returned by Q on a database instance I satisfying the Sch integrity constraints.
I can be extended, just via duplicating its relations, to an instance I∗ satisfying the
accessible schema AcSch(Sch). Since t is returned by Q, there is a homomorphism h1
of the canonical database of Q to t. In I∗, we can mimic each rule firing that produced
the facts of configi, and thus for each i we can extend h1 to a mapping hi that preserves
all facts of configi. Restating in the terminology of this section, for each configi we can
extend t to a Sch configi-tuple t′. Now by the first assertion above, the projection of t′
on the constants satisfying accessible is in Ti(I). So, in particular, t, the projection of t′
onto the constants corresponding to free variables of Q, is in the projection of Tk(I),
which is the final result of the top-level plan generated by the algorithm. Conversely,
consider that for the final configuration configk, InfAccQuery(configk) entails Q, as noted
above. Thus by the second assertion, any tuple in the projection of Tk(I) must satisfy
Q on I.

The two assertions above are proven by induction on i.
We consider the inductive step for both assertions corresponding to an application

of an accessibility axiom. We first give the argument for the basic version of the algo-
rithm, ignoring repetition of variables and schema constants, and then discuss how to
extend to incorporate the full version.

We consider the inductive case for firing on an accessibility axiom. Fix a Sch configi-
tuple t and let ti be its projection on the constants satisfying the predicate accessible. By
induction the projection of t on the accessible constants of configi−1 is in Ti−1(I). In the
absence of repetition of variables and constants, we know Ti(I) is formed from Ti−1(I)
by “joining on the access”: projecting tuples in Ti−1(I) on the attributes corresponding
to inputs to the access, performing the access, and joining the corresponding outputs
to Ti−1(I). We need to show that t extends some tuple returned by this join.

Assume that the accessibility axiom fired in the inductive step was associated with
the exposure of some fact R(c1 . . . cn), where cj1 . . . cjm satisfied accessible relations in
the chase sequence up that point. Let tInp be the projection of t on these input at-
tributes, and t′ be the projection on all the c1 . . . cn. We claim that t′ would be returned
by an access on mt using tInp. This is clear, since for the corresponding accessibility

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

axiom to fire, R(c1 . . . cn) must hold in configi−1, and thus the c1 . . . cn attributes of a
Sch configi-tuple like t must satisfy R in I.

This completes the argument for the first assertion in the inductive case for firing an
accessibility axiom, the argument under the assumption of no repetition of variables
and no schema constants. In the general case, we let tInp be formed from t as above, but
incorporating selections and repetition of variables on the input positions correspond-
ing to the fact being exposed. Let t′ be formed by taking a tuple in the accessed relation
R consistent with tInp and applying operations enforcing repetitions and constants in
the output positions. We again see that t′ would be returned by the pre-processing,
method access, and post-processing operations generated in the inductive step of the
algorithm. This is because t is a Sch configi-tuple and the corresponding fact added in
configi must have obeyed these selections in order for the corresponding accessibility
axiom to fire.

We now turn to verifying the second assertion in the inductive case for the firing
of an accessibility axiom. Consider an arbitrary database instance I satisfying the
constraints of the schema, and let ti be a tuple of Ti(I). We show that ti is returned by
InfAccQuery(configi).

InfAccQuery(configi) is an existentially quantified conjunction. We first consider the
basic case of the algorithm, with no repetition of variables or schema constants. In this
case the axiom firing is of the form:

accessible(cj1) ∧ . . . accessible(cjm) ∧R(c1 . . . cn)→

InfAccR(c1 . . . cn) ∧
∧
j

accessible(cj)

Recall that the access command produced by this rule firing would be

T ′i ⇐ mt⇐ π{cj1 ...cjm}(Ti−1)

where mt is an access method on R with input positions j1 . . . jm. To obtain Ti(I), we
joined T ′i with Ti−1.

By induction we know that ti−1, the projection of ti on the accessible constants of
configi−1, satisfies InfAccQuery(configi−1), since ti−1 must be in Ti−1(I). We consider
the first interesting “new” conjunct being added at this stage, corresponding to the
fact produced by the firing of an accessibility axiom. Since ti is in Ti(I), its projec-
tion to {c1 . . . cn} must satisfy R. Therefore the atom corresponding to R(c1 . . . cn) in
InfAccQuery(configi) is satisfied by ti. Thus we have proved the second assertion in the
inductive step for an accessibility axiom, for the simplified version of the algorithm.

In the general case with constants and repetition, the argument is similar, but we
argue that the pre- and post-postprocessing operations guarantee that ti must reflect
the repetitions and schema constants present in the fact exposed by the access.

We now turn to the inductive cases corresponding to the firing of Sch and InfAccCopy
rules. Note that the first assertion is preserved by these rules, since the set of Sch
configi-tuples can only become smaller or stay the same, as we are required to pre-
served more facts.

For the second assertion, there is nothing to prove when a Sch rule is fired.
In an inductive step for the InfAccCopy constraint rules, conjuncts are added to
InfAccQuery(configi). These can easily be seen to hold because the instance I satisfies
the integrity constraints of the schema.

This finishes the proof of the second assertion. It also completes the proof of Propo-
sition 5.4.

We are now ready to give the proof of Theorem 4.4.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

In one direction, suppose we have an SPJ-plan that answers query Q with respect
to the constraints in Sch. Since SPJ-plans are monotone in the accessible data, Q is
monotonically-access-determined. Thus by Claim 2, Q entails InfAccQ with respect to
the constraints in AcSch(Sch). By completeness of chase proofs, this means that there
is a chase proof.

In the other direction, suppose that Q entails InfAccQ with respect to the constraints
in AcSch(Sch). By completeness of chase proof, we have a chase proof witnessing this.
By Proposition 5.4 Algorithm 1 produces an SPJ-plan that answers Q.

This completes the proof of Theorem 4.4.

5.3. RA-plans for schemas with TGDs
We have proven Theorem 4.4 by giving a proof-to-plan algorithm that takes a proof
that query Q is access-monotonically-determined, and produces an SPJ-plan. One can
show that there are conjunctive queries and TGD constraints for which there is an
RA-plan but no USPJ-plan. In fact, [Nash et al. 2010] shows that even in the case
of constraints that define conjunctive query views, there are conjunctive queries that
have reformulations over the views, but the reformulations require the relational dif-
ference operator. We will discuss a witness of this in Example 5.5 in the next section.

From this it follows that there are access schemas with TGD constraints and con-
junctive queries that have RA-plans over the schema but no SPJ-plans. We now turn
to devising an algorithm that proves Theorem 4.2, taking as input a chase proof using
AcSch↔(Sch), thus “proving that Q is access-determined”, and outputting an RA-plan.

For ease of exposition we assume that our constraints contain no constants from
the schema, and that our queries and constraints contain no repeated variables in
atoms. Thus the chase proofs will not produce any configurations that contain such
facts. The algorithm is generalized to the case where constants are present and there
is repetition along the same lines as the algorithm for SPJ-plans, by introducing pre-
and post-processing middleware query commands around access commands.

Algorithm Description. Our algorithm will proceed not by forward induction on
proofs, as was the case with SPJ-plan generation, but by a backward induction. The
algorithm takes as input a suffix configi . . . configj of a full proof consisting of chase
configurations config1 . . . configj , and produces a nested plan PLi, where nested plans
are as defined in Section 3. The plan PLi generated from suffix configi . . . configj will
include a distinguished temporary table T~xi with attributes ~xi that are the accessible
chase constants in configi, denoted accessible(configi): those that satisfy the predicate
accessible in configi. In the further inductive steps, PLi will only be used in subplan
calls with T~xi being the table substituted. We will thus write PLi(~xi) to indicate that
PLi is a a nested plan with distinguished table T~xi , referring to T~xi as the parameter
table of the plan, and ~xi as the parameters.

The output of the plan PLi will be a table having attributes for chase constants that
are either in accessible(configi) or which correspond to free variables of the query.

The algorithm proceeds by downward induction on i.
If j = i (so only one configuration in the proof suffix), the algorithm produces the sin-

gle command Return T~xj . Note that in this case accessible(configj) must already contain
the free variables of Q.

The pseudo-code for the inductive cases of the algorithm is listed in Figure 1.
We can verify that the algorithm indeed returns tuples with attributes for all
accessible(configi) ∪ Free(Q)-constants. Thus for a full proof the output will have at-
tributes corresponding to the free variables of the query Q. For a full proof, the set of
parameters ~x1 is empty, since no attributes in the initial configuration satisfy accessible.
We take the top-level output of our plan-generation algorithm to be the result of sub-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

— For Sch or InfAccCopy constraints, the algorithm just returns PLi+1. Note that
accessible(configi) = accessible(configi+1) in this case.

— We consider a suffix configi . . . configj where the transition from configi to
configi+1 is formed via a forward accessibility axiom firing via access mt ex-
posing fact R(~c). We will generate the nested plan:

T i+1
0 ⇐ mt⇐ πcj1 ...cjmT~xi

T i+1
1 := T i+1

0 ./ T~xi

Ti+1 ⇐ PLi+1[T~xi+1]⇐ T i+1
1

Return πFree(Q)∪accessible(configi)
Ti+1

— We now consider a suffix configi . . . configj where the transition from configi
to configi+1 is formed via a backward accessibility axiom firing exposing fact
InfAccR(~c). We will generate a plan the differs from the plan in the forward
case by replacing the last line by commands returning empty if T i+1

0 is empty,
and otherwise returning:

{~u ∈ πFree(Q)∪accessible(configi)
(Ti+1) | ∃~t ∈ T~xi

~u ∈
⋂

~w∈T i+1
1 π~xi ~w=~t

πFree(Q)∪accessible(configi)
({~z ∈ Ti+1 | πaccessible(configi+1)

~z = ~w})}

Although we have written the last expression in a mixture of relational alge-
bra and logic, the generation of the last expression from Ti+1 and T i+1

1 can be
performed in relational algebra.

Fig. 1. Pseudo-code for generating RA-plans for schemas with TGDs

stituting for the parameter table the singleton instance with only the empty tuple. We
denote this instance by ∅ below. Thus when the input is the maximal suffix consist-
ing of a full proof starting from the canonical database of a query Q, we will produce
an ordinary relational algebra plan without reference to T~x1 , and one whose output
constants will be exactly the free variables of Q.

We now give some intuition for the above steps. In the case of a forward accessibility
axiom, we generate a nested plan which, given an instance of the parameter table T~xi

consisting of a single tuple ~t, acts as follows: it does an access to R using the projection
of ~t to the chase constants cj1 . . . cjm . For each result tuple ~w that joins with ~t, the plan
calls PLi+1(~w ./ ~t), where the join is on the common attributes, and projects the results
back to the constants in accessible(configi)∪Free(Q). Finally, the plan returns the union
of all of these projections.

In the step for the backward accessibility axiom, our goal is to generate a plan
that is similar, but performing an intersection rather than a union. That is, our plan
should behave as follows, given an instance of T~xi consisting of a single tuple ~t: it
does an access to R using the projection of ~t to the chase constants cj1 . . . cjm , then re-
turns the intersection of the projections of the sets PLi+1(~w ./ t) to the constants in
accessible(configi) ∪ Free(Q), where ~w ranges over tuples in the result that join with t.
We define the intersection to be empty if there are no such tuples.

In the electronic appendix, we will show that the nested plan generated by the algo-
rithm answers the query Q. By Theorem 3.4 we can “flatten” the output to an ordinary
RA-plan.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

We can now complete the proof of Theorem 4.2, using the same argument as in The-
orem 4.4. If Q has an RA-plan, then it is access-determined, and Claim 1 implies that
Q entails InfAccQ with respect to AcSch↔(Sch). In the other direction, if the entailment
holds, we get an RA-plan that answer Q using the algorithm described above.

Example 5.5. We consider a variant of an example due to Afrati [Afrati 2011]. Our
base signature consists of a binary relation R.

We have views V3 storing the set of pairs of nodes connected by a path of length 3,
and V4 storing the set of pairs connected by a path of length 4.

That is, we have constraints that are universal quantifications of the following rules,
which give definitions for the view tables:

V3(x, y)→ ∃x2 ∃x3 R(x, x2) ∧R(x2, x3) ∧R(x3, y)

R(x, x2) ∧R(x2, x3) ∧R(x3, y)→ V3(x, y)

V4(x, y)→ ∃x2 ∃x3 ∃x4 R(x, x2) ∧R(x2, x3) ∧R(x3, x4) ∧R(x4, y)

R(x, x2) ∧R(x2, x3) ∧R(x3, x4) ∧R(x4, y)→ V4(x, y)

Our query Q asks for all pairs x1, x6 such that x1 reaches x6 via a path of length 5.
Afrati showed that Q can be rewritten over the views as:

∃y5 [V4(x1, y5) ∧ ∀y2 V3(y2, y5)→ V4(y2, x6)]

Afrati also argued that Q is not monotone in the views: we can have two instances such
that for each view table the second instance has all the facts of the first instance, but
the query result over the second instance does not contain the query result over the
first. Hence there can not be any USPJ-plan.

Consider an access schema having the constraints above, with the view relations
having input-free access and the base tables have no access. We can derive an RA-plan
equivalent to the above rewriting through our proof-based method.

The proof begins with the canonical database of query Q:

C1 = {R(x1, x2), R(x2, x3), R(x3, x4), R(x4, x5), R(x5, x6)}
We then apply a chase step with the last constraint above, one part of the definition of
V4, obtaining configuration C2 which adds the fact:

V4(x1, x5)

We can now apply a “forward accessibility axiom” to obtain a configuration C3 with the
additional fact:

InfAccV4(x1, x5)

We can now apply the copy of the third constraint above, to obtain configuration C4

adding additional facts:

InfAccR(x1, z2), InfAccR(z2, z3), InfAccR(z3, z4), InfAccR(z4, x5)

From this we can apply the copy of the second constraint, to obtain configuration C5

adding fact:
InfAccV3(z2, x5)

Applying a “backward accessibility axiom” we obtain configuration C6 with the fact:

V3(z2, x5)

And then applying a chase step with the first constraint above leads to configuration
C7 adding facts:

R(z2, w3), R(w3, w4), R(w4, x5)

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:29

We can then apply the last constraint to get to configuration C8 adding fact:

V4(z2, x6)

After this we can apply another “forward accessibility axiom” to obtain configuration
C9 adding fact:

InfAccV4(z2, x6)

Finally, we apply a copy of the third constraint, reaching configuration C10 with addi-
tional facts:

InfAccR(z2, q3), InfAccR(q3, q4), InfAccR(q4, q5), InfAccR(q5, x6)

We now have a match for InfAccQ.
Applying the proof-to-nested-RA-plan algorithm we will find that it generates a

nested RA-plan that corresponds to this rewriting. We give the interesting steps in
the inductive construction, ignoring steps that only call the next inductively-defined
program.
— From the final configuration C10, we generate a plan P10 that takes as input a table

with tuples having values for x1, x5, x6, and z2 and simply returns the table.
— From the suffix of the proof beginning at configuration C8 we generate P8 which

takes a table Tx1,z2,x5
and performs an access on V4, naming the output results

z2, x6 and joining them with Tx1,z2,x5
, returning a table with all joined tuples with

attributes x1, x5, x6 and z2.
— From the suffix beginning with configuration C5 we generate a plan P5 that takes

as input a table with tuples having attributes x1 and x5. P5 performs an access on
V3 and selects all tuples (z2, x5) matching the input value for x5, calls P8 on each
corresponding x1, z2, x5 and intersects the projection of the results to x1, x5, x6.
Thus P5(x1, x5) returns

⋂
z2|V3(z2,x5)

{x1, x5, x6|V4(z2, x6)}.
— From the suffix beginning with configuration C2 we generate P2 that has no input

parameters. P2 performs an access to V4, calls P5 on all the resulting tuples x1, x5,
and then unions the projection of the results on to x1, x6.
The plan P1 returned as the top-level result of the algorithm will be equal to P2.
2

5.4. Finite instances and tame constraints
Our results have provided a characterization of when a query can be answered (rela-
tive to TGD constraints) over all instances, in terms of proofs of certain entailments.
We have also provided a procedure that converts a proof to a plan that answers the
query over all instances. It is easy to show that these proof-based characterizations do
not hold when the plans are required only to be correct over finite instances.

We will show that for “tame” constraints classes, answerability over all instances
and answerability over finite instances coincide, and in particular the characterization
theorems and algorithms relating answerability to entailment still hold in the finite.
We also show that the existence of a plan of the appropriate type is decidable. Our
proof-to-plan algorithms do not suffice to show this, since they depend upon having
already found an appropriate proof.

We will first show these results below for constraints given by GTGDs. Recall from
Section 2 that these are TGDs where all the variables occurring on the left appear in
a single atom of the left. We will show that similar results hold for constraints that
satisfy chase termination, such as the weakly acyclic constraints of [Deutsch et al.
2008]. Indeed, such results will hold for constraints in other fragments of first-order
logic that have the finite model property, such as the Guarded Negation Fragment
[Bárány et al. 2011].

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30

THEOREM 5.6. Let Sch be a schema whose constraints are GTGDs and let Q be a
conjunctive query. Then if PL is a USPJ-plan that answers Q over finite instances, then
PL answers Q over all instances.

PROOF. We first give the argument when Q is a boolean query. Fix USPJ-plan PL
for Q. Clearly there is an USPJ query that holds true on an instance exactly when PL
does. Consider the following assertion: for every instance I satisfying the constraints of
Sch, I satisfies the query given by PL iff satisfies the query Q. The property is a pair of
query containments of conjunctive queries with respect to GTGD constraints. Results
of Bárány, Gottlob, and Otto [Bárány et al. 2010] imply that such containments have a
decidable satisfiability property, and have the finite model property:

if such a containment holds on all finite instances, it holds on all instances.
Hence PL answers Q over all instances.
The extension to the non-boolean case can be done by converting the free variables

of Q into constants.

Note that Theorem 5.6 implies that statements made about our proof-to-plan algo-
rithms for SPJ plans over constraints consisting of GTGDs or TGDs with terminating
chase within this paper still hold if plans are only required to answer a query over
finite instances.

In the case of RA-plans, the situation is more complex. First, the analog of Theorem
5.6 fails: we can not say that for any RA-plan PL that answers a boolean query Q over
finite instances, PL answers it over all instances. For example, an RA-plan may return
true on all finite instances (and hence answer a tautological query Q) but return false
on some infinite instance. However, for GTGDs, we can transfer between the existence
of an RA-plan over finite instances and the existence arbitrary instances, and can still
decide if this property holds.

THEOREM 5.7. Let Sch be a schema whose constraints are GTGDs and let Q be a
conjunctive query. Then there is an RA-plan that answers Q over finite instances iff
there is an RA-plan that answers Q over all instances. Furthermore, we can decide
whether this property holds.

PROOF. Suppose that Q has an RA-plan that works over finite instances, consisting
of k access commands. Consider the following property of two instances I and I ′ for
schema Sch: I and I ′ both satisfy the constraints of the schema, they agree on every
fact that can be extracted via at most k successive accesses (k iterations of the fixpoint
process used to generate the accessible part), but they disagree on the truth value of
Q(~c) for some ~c.

The property can be expressed as a boolean combination of conjunctive queries and
GTGD constraints. But it is easy to see that the output of a plan consisting of k access
command depends only on the data that can be returned by k iterations of the fixpoint.
Thus γ has no finite instance satisfying it. Since γ is unsatisfiable over finite instances,
it is unsatisfiable over all instances (by [Bárány et al. 2010] again). Hence Q is access-
determined over all instances. From Claim 1, we conclude that Q entails InfAccQ over
all instances, and hence by Theorem 4.2 Q has an RA-plan over all instances.

Decidability follows since whether Q entails InfAccQ over all instances is a contain-
ment between CQs with respect to GTGD constraints, hence decidable by the results of
[Bárány et al. 2010].

We now turn to decidability of questions related to RA-plans for TGDs with termi-
nating chase. Unlike AcSch, the bidirectional schema AcSch↔ does not preserve the
terminating chase property. However, one can check that for many well-known classes

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:31

with terminating chase, such as weakly acyclic TGDs, the schema AcSch↔ is also in
the same class. Hence the analog of Theorem 5.7 holds for such classes as well.

6. Low-cost plans via proof search
We have seen that proofs of an entailment can lead us to some successful plan when-
ever one exists.

We now look at finding efficient plans, focusing for the remainder of the paper on
generating SPJ-plans with respect to schemas consisting of TGDs.

Example 6.1. We return to the variant of Example 1.3 mentioned in the introduc-
tion. We have a Profinfo(eid, onum, lname) datasource with one access method mtProfinfo

requiring an eid as an input. There are also tables Udirectory1(eid, lname) with input-free
access method mt1 and Udirectory2(eid, lname) with input-free access method mt2. The
constraints include two inclusion dependencies:

∀eid ∀onum ∀lname Profinfo(eid, onum, lname)→ Udirectoryi(eid, lname)

for i = 1, 2. Our goal is to generate an SPJ-plan for query Q =
Profinfo(eid, onum, “Smith”).

The corresponding auxiliary schema will add tables InfAccUdirectory1,
InfAccUdirectory2, and InfAccProfinfo. The axioms will be the Sch constraints, InfAccCopy
constraints, and “accessibility axioms” that include the following axioms, labelled
(UAi), for i = 1, 2:

∀eid ∀lname Udirectoryi(eid, lname)→
InfAccUdirectoryi(eid, onum, lname) ∧ accessible(eid) ∧ accessible(lname)

Also included will be the accessibility axiom (PA)

∀eid ∀onum ∀lname accessible(eid) ∧ Profinfo(eid, onum, lname)→
InfAccProfinfo(eid, onum, lname) ∧ accessible(onum) ∧ accessible(lname)

and the ground accessibility axiom:

accessible(“Smith”)

A chase proof will begin with the canonical database of Q, namely:

Profinfo(eid0, onum0, “Smith”)

Our general strategy will be that before looking for accessibility axioms to fire, we look
first for any non-accessibility axioms we can apply first. Thus we apply the two original
inclusion dependencies to add facts:

Udirectory2(eid0, onum0, lname0),Udirectory2(eid0, onum0, lname0)

We also fire the axiom generating fact accessible(“Smith”), representing the fact that
“Smith” is a known constant. If we model this accessibility axiom as corresponding to a
special kind of “access method” it would clearly be a method with no cost.

Continuing from this are several possible proofs. One proof will apply a chase step
with the rule (UA1) to add facts

InfAccUdirectory1(eid0, onum0, “Smith”), accessible(eid0)accessible(onum0)

followed by a chase step with (PA) to add fact

InfAccProfinfo(eid0, onum0, “Smith”)

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32

At this point we have a match for InfAccQ, and hence a complete chase proof.
Instantiating the TGD-based plan-generation algorithm (as in Figure 1, modified as

in Subsection 5.1 to account for constants) we will generate the plan:

T1 ⇐ mt1 ⇐ ∅
T2 := σ

lname=“Smith”T1
T3 ⇐ mtProfinfo ⇐ πeid(T2)
Return πonum(T3)

A second proof would be similar, but using (UA2) rather than (UA1). This would
generate a plan that corresponded to an access to Udirect2 rather than Udirect1.

A third proof would first fire (UA1) and then (UA2), followed by (PA). Applying the
TGD-based algorithm would automatically generate the plan:

T1 ⇐ mt1 ⇐ ∅
T2 := σ

lname=“Smith”T1
T3 ⇐ mt2 ⇐ ∅
T4 := σ

lname=“Smith”T3
T5 := T2 ./ T4
T6 ⇐ mtProfinfo ⇐ πeid(T5)
Return πonum(T5)

What we see is that each “interesting plan” is captured by a distinct proof. Which
of these plans has the lowest cost will depend on, e.g., the relative efficiency of the
access methods mt1 and mt2, along with the amount of tuples each returns. Thus we
can not make a decision on which plan is most efficient simply by looking at the proof.
What we can do is explore this space of proofs while measuring the efficiency of the
corresponding plans.2

How good are proof-based plans?. We now consider our first question about cost.
Are proof-based plans as “cheap” as general plans?

We first consider a cost comparison between plans and conjunctive queries.
Recall from Section 3 that a conjunctive query Q with atoms A1 . . . An is executable

relative to a schema with access patterns [Li and Chang 2000] if there is an annotation
of each atom Ai = Ri(~xi) with an access method mti on R such that for each variable x
of Q, for the first Ai containing x, x occurs only in an output position of mti. Proposition
3.1 provides a function that converts every executable CQ Q to an SPJ-plan PlanOf(Q)
such that the number of accesses equals the number of atoms in Q, and conversely a
function taking a plan PL to an executable query CQOf(PL) such that the number of
atoms in the query equals the number of accesses in PL.

The following proposition shows that proof-based plans perform as well as exe-
cutable CQs, for any notion of cost that is based on the set of methods called.

PROPOSITION 6.2. For every CQ Q, schema Sch, and executable query Q′ equivalent
to Q there is a proof v such that if PLv is the SPJ-plan produced by the proof-to-plan
algorithm, then CQOf(PLv) has at most the number of atoms as Q′, and PLv uses no
more methods than PlanOf(Q′).

In particular the cost of PLv will be no more than that of PlanOf(Q′) under any simple
cost function.

PROOF. Let Q′ be an executable query as above, with atoms A1 . . . An, Ai = Ri(~xi),
and let Q′i be the subquery conjoining atoms A1 . . . Ai. Let config∞ be a (possibly infi-
nite) instance resulting from chasing the canonical database of Q with the constraints
of Sch. Q has a match on the elements in config∞ corresponding to free variables of Q,

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:33

and since Q′ is equivalent to Q on instances satisfying the constraints, Q′ must have
such a match on config∞ as well.

There is thus a finite subinstance config0 of config∞ on which Q′ returns the elements
corresponding to the free variables of Q. Although Q′ consisted of n atoms, when eval-
uating PlanOf(Q′) on config0 we may have exposed many more than n facts. We can
choose a single tuple Fi matching atom Ai so that there is a match of Q′ on F1 . . . Fn.

We begin our chase proof by building config0 and then firing the accessibility ax-
ioms that correspond to expose each Fi. Using the fact that Q′ was executable, we can
see that after exposing F1 . . . Fi−1, all values occurring in Fi within input positions of
method mti will satisfy accessible. Note that the facts F1 . . . Fn may not be distinct, in
which case it will be unnecessary to fire n accessibility axioms to expose F1 . . . Fn.

We now argue that we can complete the chase sequence into a proof by firing
InfAccCopy rules. Consider the instance consisting of facts F1 . . . Fn, with each rela-
tion R renamed to InfAccR, and let config′∞ result from chasing this instance with the
InfAccCopy rules. config′∞ clearly satisfies all the InfAccCopy constraints. Since F1 . . . Fn
led to a match for Q′, the query InfAccQ′ has a match on config′∞. As Q and Q′ are equiv-
alent on instances satisfying the Sch constraints, InfAccQ′ and InfAccQ are equivalent
on instances satisfying the copy of the constraints. Therefore there is a finite subin-
stance config′0 of config′∞ containing a match for InfAccQ. We complete our chase proof
by firing InfAccCopy rules to generate config′0. Because the resulting chase sequence v
consists of firing Sch constraints, accessibility axioms, and InfAccCopy constraints, be-
ginning with the canonical database of Q and leading to a configuration with a match
for InfAccQ, it represents a chase proof of our entailment. Therefore the corresponding
plan PLv is equivalent to Q. The access commands in PLv correspond to the accessi-
bility axioms needed to expose F1 . . . Fn, which will in turn be a subsequence of the
method sequence used in PlanOf(Q′).

A similar argument shows that any plan that has a “left-deep” structure, joining on
one access at a time, there is a proof-based plan that uses no more methods than it.

Example 6.3. The following example shows a case where proof-based plans are not
as efficient as general plans.

Consider the query

Q = ∃xyz S(x) ∧ S(y) ∧R(x,w) ∧R(y, z) ∧ U(w) ∧ V (z)

and a schema where

— there is an input-free access mtS on S
— there is an access method mtR accessing R on the first position
— there are access methods mtU and mtV requiring the sole position on U and V ,

respectively

This is an executable CQ with 6 atoms. However, one can obtain the following plan
PL to answer Q which uses only 4 access commands:

U1(x)⇐ mtS ⇐ ∅
U2(y) := rename U1

U3(x,w)⇐ mtR ⇐ U2

U4(y, z) := rename U3

U5(w)⇐ mtU ⇐ πw(U3)

U6(z)⇐ mtV ⇐ πz(U4)

Return U1 ./ U2 ./ U3 ./ U4 ./ U5 ./ U6

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34

Above the renaming operations are syntactic sugar to make the variables clearer.
The plan first accesses S to get possible values of x and y, then uses the resulting
values in R. The output is then put in U and in V , and then the results are stitched
together using a join. The plan answers Q.

Note that this plan does not have the “left-deep” shape produced by either proof-
based plans or the naïve translation of executable queries. And indeed there is no
proof-based plan that generates a plan with this number of access commands.

Let the initial configuration of the chase contain

{S(x0), S(y0), R(x0, w0), R(y0, z0), U(w0), V (z0)}

A chase-based proof along the lines above would proceed via the following rule firings:

— S(x0)→ InfAccS(x0)
— S(y0)→ InfAccS(y0) as well as generating accessible(x0), accessible(y0).
— R(x0, w0) ∧ accessible(x0)→ InfAccR(x0, w0)
— R(y0, z0) ∧ accessible(x0)→ InfAccR(y0, z0)
— U(w0) ∧ accessible(w0)→ InfAccU(w0)
— V (z0) ∧ accessible(z0)→ InfAccV (z0)

These rules generate inferred accessible facts that match InfAccQ. Note that there are
two rule firings on relation R.

If we put the proof sequence above into our plan-generation algorithm, we get a plan
that will have 6 access commands, one for each firing. The plan PL′ will still generate
two calls to access method R, unlike the one above. These calls will use the same
inputs, and in an intelligent wrapper that caches the results of prior accesses made,
the second call will require no tuples. Related observations about the superiority of
“bushy-plans” to left-deep plans in the presence of access restrictions have been known
for some time: see, for example, [Florescu et al. 1999] Example 3.2.

One can see that the two plans generate exactly the same concrete accesses. But the
number of “bulk method calls” is larger in PL′, hence a cost function that counts the
number of calls will give a higher cost to PL′ than to PL. 2

We now compare proof-based plans and general (not necessarily left-deep) plans in
terms of the set of accesses made at runtime. An SPJ-plan PL uses no more runtime ac-
cesses than SPJ-plan PL′, denoted PL �RTA PL′ if for every pair consisting of a method
mt and method input ~t that is executed in running PL on instance I of the schema, the
same pair is also executed in running PL′ on I.

We show that proof-based plans are optimal with respect to arbitrary plans when
runtime accesses are considered:

THEOREM 6.4. For conjunctive queryQ and access schema with TGD constraints Σ,
for every SPJ-plan PL that answers Q, there is a chase sequence v proving InfAccQ, such
that, letting PLv be the SPJ-plan PLv generated from v via the proof-to-plan algorithm,
PLv �RTA PL.

Note that this theorem does not imply anything about the cost of proof-based plans
versus arbitrary plans according to particular cost functions, since cost functions look
at plans statically, and are thus not necessarily monotone in the set of (method, input)
pairs produced at runtime.

The proof of this result is deferred to an electronic appendix available via the ACM
Digital Library.

Summarizing, if we are interested only in the number of accesses generated at run-
time, it suffices to look at proof-based plans. In addition, if we measure cost via some
function of the set of access commands (ignoring middleware cost), then proof-based

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:35

plans are as good as arbitrary “left-deep” plans. Although most realistic cost functions
would consider more than just the set of commands, we take this as a rough justifica-
tion for restricting to proof-based plans.

6.1. Simultaneous proof and plan search
We now turn to algorithms that search for a low-cost proof-based plan.

Note that in the algorithm that generated SPJ-plans from proofs, the plans were
generated inductively on the number of steps in a prefix of a proof. Consequently, we
can associate a partial plan to a partial proof. This allows us to measure the cost of the
corresponding partial plan during proof exploration. These two observations underlie
the idea that we can find low-cost plans by exploring the space of proofs.

Our search will maintain a partial proof tree – a tree consisting of chase sequences,
ordered by extension. We refer to the configuration of the final element in the chase
sequence associated with a node v as config(v) The plan associated with v is the one
generated by the proof-to-plan algorithm given previously, while by the cost of v we
mean the cost of the associated plan. We now give an algorithm for extending the tree
to find new proofs.

Definition 6.5 (Candidate facts for exposure). Consider a node v such that there
is a fact R(c1 . . . cm) in config(v) with InfAccR(c1 . . . cm) not yet in config(v) and
there is an access method mt on R with input positions j1 . . . jm such that
accessible(cj1) . . . accessible(cjm) all hold in config(v). Then we call R(c1 . . . cm) a candi-
date for exposure at v, and mt an exposing method for R(c1 . . . cm).

Note that if a fact is a candidate for exposure, then firing an accessibility axiom will
add that fact to the associated chase sequence.

When we explore the impact of making an access, we want to include all relevant
consequences that do not involve further accesses, thus producing an eager proof which
corresponds to the following requirements on the configurations in a partial proof tree:

— (Original Schema Reasoning First) The configuration of the root node (hencefor-
ward “initial configuration”) corresponds to the canonical instance of Q plus the
result of firing of a sufficient sequence of Sch integrity constraints until a termi-
nation condition is reached — the notion of sufficient sequence will be explained
further below.

— (Fire Inferred Accessible Rules Immediately) For a non-root node v, there is a can-
didate fact for exposure R(c1 . . . cm) in its parent with exposing method mt such that
config(v) is obtained from the parent by
— adding the fact induced by firing mt with cj1 . . . cjm , namely InfAccR(d1 . . . dm).
— firing a sufficient set of inferred accessible axioms on the result.

Thus the successive configurations are connected by firing a rule associated with an
accessibility axiom and exploring the “cost-free” consequences. Thus we can also char-
acterize a node v by the sequence of rule firings of accessibility axioms leading to it.
It is easy to see that an arbitrary proof can be converted into an eager proof via re-
ordering.

We also label a node as successful if InfAccQ holds in the corresponding configuration
(preserving free variables in the non-boolean case).

The idea is that we have labelled each node with a configuration of the proof, and
whenever we choose an accessibility axiom to fire, after firing we immediately fire all
the relevant rules that do not generate accesses.

We explore downward from a node v of a partial proof tree by choosing a candidate
fact for exposure at config(v) along with the methods that expose the fact. A node is ter-
minal if it is either successful or has no candidate facts. Note that non-terminal nodes

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36

Algorithm 2: plan search
Input: query Q, schema S
Output: plan BestPlan

1 ProofTree := an initial node v0 labelled with the configuration obtained by a sufficient
number of firings of Sch constraints.

2 Set Candidates(v0) = all pairs (R(c1 . . . cn),mt) with R(c1 . . . cn) a fact in the original
configuration and mt a method on R.

3 BestPlan := ⊥
4 BestCost := ∞
5 while there is a non-terminal node v ∈ ProofTree do
6 Choose such a node v.
7 Choose a candidate fact and method (R(c1 . . . cn),mt) ∈ Candidates(v) with

accessible(cj1) . . . accessible(cjm) ∈ config(v) and mt having inputs j1 . . . jm.
8 Add a new node v′ as a child of v with configuration formed by adding

InfAccR(c1 . . . cn) a sufficiently large closure by firings of the InfAccCopy constraints.
9 Remove (R(c1 . . . cn),mt) from Candidates(v), marking v as terminal if it has no more

candidates.
10 Determine if v′ is successful by checking if InfAccQ holds, and if so also mark it as

terminal.
11 if v′ is successful and Cost(Plan(v′)) < BestCost then
12 BestPlan := Plan(v′)
13 BestCost := Cost(Plan(v′))

14 return BestPlan;

do not have to be leaves of the tree. We continue until a sufficient set of accessibility
axioms have been fired.

The basic search structure is outlined in Algorithm 2. At each iteration of the while
loop at line 5 we have a partial proof/plan tree satisfying the properties above. We look
for a node v corresponding to a partial proof that is not yet successful, and for which the
firings of accessibility axioms can add new facts. We non-deterministically choose such
a path and such an axiom (lines 6-7), and calculate the new configuration that comes
from firing the rule, along with the commands that will be added to the corresponding
plan (line 8). We update the candidate list (line 9) and determine whether the new
path is successful, recording whether this gives the new lowest cost plan (line 11).

Termination. In Algorithm 2 there are several points where we limit the search to
achieve termination. Formally, we need: (1) A finite sequence v0 formed by closing the
canonical query Q under firings of Sch rules. We use this set in the step of chasing with
the Sch constraints in line 1. Given v0, we have a bound on termination of the while
loop of line 5, since we only expose facts from v0. (2) For each chase sequence w0, an
extension v′(w0) of w0 by firing InfAccCopy constraints, used within every step of the
while loop on line 8.

For classes with terminating chase, we set v0 to be any set of firings of Sch rules such
that there are no active triggers of Sch constraints. We let v′(w) to be any extension of
w by InfAccCopy constraints with no active triggers among InfAccCopy constraints.

We can show that this algorithm will solve the low-cost plan problem for proof-based
plans.

THEOREM 6.6. Consider any simple cost function Cost, access schema Sch whose
constraints are TGDs with terminating chase, and conjunctive query Q. Then Algo-
rithm 2, instantiated with the sufficient sets above and the cost function Cost, will al-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:37

ways return a plan with the lowest cost among all those proof-based plans that com-
pletely answer Q w.r.t. Sch, or return ⊥ if there is no plan that answers Q.

PROOF. Consider any chase proof w that Q entails InfAccQ. Such a w can be ex-
tended so that there are no active triggers among Sch or InfAccCopy constraints, with-
out changing the resulting plan. Let PLw be the plan and mt1 . . .mtn the sequence
of access methods within the access commands of PLw. Let v0 be the chase sequence
described by chasing the canonical database with Sch rules, as described above, and
config0 be the final chase configuration in v0. When PLw is run on config0, it will exe-
cute access commands Command′1 . . .Command′n with inputs I1 . . . In, with the output of
the access being O1 . . . On. As in the proof of Proposition 6.2, we can find facts F1 . . . Fn
with corresponding tuples ~t1 ∈ O1 . . .~tn ∈ On accessed by PLw on config0 such that these
outputs suffice to return the tuple corresponding to the free variables of Q. Let v′ be
the chase sequence corresponding to firings of accessibility axioms exposing F1 . . . Fn
on config0. Arguing as in the proof of Proposition 6.2, we can see that this represents a
valid sequence of firings, since the values of ~ti lying within the input positions of mti
will satisfy accessible. Arguing as in Proposition 6.2 again, we see that v0 · v′ can be ex-
tended by the firing of some collection of InfAccCopy constraints v3, giving a proof of the
entailment of InfAccQ from Q. Letting v = v0 · v′ · v3, we claim that the corresponding
plan PLv will be discovered by the algorithm. Since PLv uses no more methods than
PLw, and our cost function is simple, the cost of PLv will be no higher than that of PLw.
Thus if PLv is discovered by the algorithm, we have proven optimality.

Consider the chase sequence v∗ formed from v0 · v′ · v3 by removing v3 and inserting
after each prefix p3 of v0 ·v′ a chase sequence of InfAccCopy constraints that are applica-
ble after that prefix, until there are no InfAccCopy constraints that can apply. PLv

∗
and

PLv are the same, since the accessibility axiom firings in both sequences are identical.
We can also see that v∗ will have a match for InfAccQ. This holds because both v∗ and
v extend the sequence v0 · v′ by firing InfAccCopy constraints until there are no active
triggers by InfAccCopy constraints, hence they both satisfy exactly the CQs that are
implied by the final configuration of v0 · v′ and the InfAccCopy constraints.

We argue that in every iteration of the while loop (i) if v∗ has not been discovered
then the while loop at line 5 will not yet terminate, (ii) v∗ will always have a prefix in
ProofTree with a non-empty set of candidates. Since candidates are removed in each
iteration of the while loop, eventually such an ancestor prefix will be chosen to be
expanded, and thus v∗ will be discovered.

Such sufficient sets also exist for classes without terminating chase, such as GT-
GDs. Instead of firing the rules until termination, it is enough to fire them a sufficient
number of times. The details of this result are given in the online appendix.

Example 6.7. Let us return to the setting of Example 1.3, assuming we have three
directory sources Udirect1,Udirect2,Udirect3. The integrity constraints contain:

Profinfo(eid, onum, lname)→ Udirecti(eid, lname)

for i = 1, 2, 3, with Profinfo having an access that requires the first argument to
be given and each Udirectoryi having unrestricted access. Consider the query Q =
∃eid onum lname Profinfo(eid, onum, lname).

The behavior of our exploration is illustrated in Figure 2. The canonical database of
Q consists of the fact Profinfo(eid0, onum0, lname0). The configuration of the initial node
n0 will then add Udirecti(eid0, lname0) for i = 1, 2, 3. There are thus three candidates
facts to expose, Udirecti(eid0, lname0) : i = 1, 2, 3 in the initial node.

We might choose Udirect1(eid0, lname0) to expose first. This creates a child
n1 with transition from parent to child associated with an access on Udirect1,

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38

Profinfo(eid0,onum0, lname0)

Access
ProfInfo

Match
for

Inferred
AccQ

Access
UDirect2

Access
UDirect3

Access
UDirect2

Access
UDirect1

Udirect1(eid0,onum0, lname0)
Udirect2(eid0,onum0, lname0)

Udirect3(eid0,onum0, lname0)
n0

n1

n2

n3

Access
UDirect3

Access
UDirect1

Fig. 2. Exploration in the running example

putting the output into a table T1 with attributes {eid0, lname0}. The configura-
tion for n1 adds the fact InfAccUdirect1(eid0, lname0), and then immediately the fact
InfAccUdirect1(eid0, lname0), accessible(eid0), and accessible(lname0).

In n1 there are three candidates to expose: Udirect2(eid0, lname0),Udirect3(eid0, lname0)
and now also Profinfo(eid0, onum0, lname0), since there is an accessibility axiom that
would expose this last fact now. Again, based on some ordering policy we might choose
Udirect2(eid0, lname0) to expose, and a child n2 will be generated (again including the
exposed fact InfAccUdirect2(eid0, lname0) and one inferred fact). The transition to n2 will
be associated with an access command on Udirect2 and a command joining the results
with the previous table.

The node n2 will have two candidates to expose, Udirect3(eid0, lname0)
and Profinfo(eid0, onum0, lname0). Assuming our policy chooses to expose
Udirect3(eid0, lname0) next, we will generate a child n3, whose configuration adds
the exposed fact and the corresponding inferred accessible fact.

The node n3 will have only one candidate fact, corresponding to
Profinfo(eid0, onum0, lname0). Selecting this fact a child n4 will be generated. The
access associated with the addition of n4 will be of the form T4 ⇐ mtProfinfo ⇐ T3, where
T3 will be a table with attributes eid0, lname0 containing the intersection of the outputs
of the 3 prior accesses. The query InfAccQ matches the configuration of n4, so it is
designated a success node, hence is a leaf in the search.

Now the search can go back up the tree to a node with more candidates to explore —
e.g. it might move to pick a child of n3 to explore.

Note that at some point in the process, the extension process will consider creat-
ing a node n′′′ corresponding to the sequence of commands T1 ⇐ mtUdirect2 ⇐ ∅;T2 ⇐
mtUdirect1 ⇐ ∅, and continuing on this way will explore all left-deep join trees between
the Udirecti datasources. 2

7. Conclusions and Future Work
The main goal of this work is to introduce a means for generating query plans from
proofs that a certain semantic property holds for the query. We show that the proof
goals can be modified for different kinds of target plans. We give some evidence that
the plans that are generated by proofs are as good as general plans under some metrics,
and show that exploring many proofs, one can arrive at optimal proof-based plans.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:39

In follow-on work, we discuss implementation of a system based on generating plans
from proofs [Benedikt et al. 2014; 2015]. In current work we are extending the system
to more general constraints beyond TGDs, using a tableau-based proof system.

8. Related Work
Work on querying in the presence of access patterns without integrity con-
straints. Work on access patterns was initially motivated by the goal of finding index-
only plans over a fixed set of indices in traditional databases [Ullman 1989; Rajaraman
et al. 1995]. Li and Chang [Li and Chang 2001; Li 2003] later explored the complex-
ity of determining when a query could be answered in the presence of access patterns,
where answering the query referred to coming up with an executable query. Extensions
to richer queries were considered by Nash and Ludäscher in [Nash and Ludäscher
2004a; 2004b]. Florescu et al. [Florescu et al. 1999] look at integrating access restric-
tions into a cost-based optimizer.

In the absence of integrity constraints, querying with access patterns amounts to a
limitation on the search space, restricting the ordering of atoms within a query plan.
In contrast, schemas with integrity constraints and access patterns can simultane-
ously restrict the search space (via access restrictions) and extend it (via integrity
constraints, which allow relations outside of the query to become relevant).

Comparison to work of Nash, Segoufin, and Vianu. The departure point for
this paper is the work of Segoufin and Vianu [Segoufin and Vianu 2005] and Nash,
Segoufin, and Vianu [Nash et al. 2010], which introduce the idea of relating a semantic
property of a query relative to an interface restriction — in their case, determinacy of
a query by views —- with the existence of a reformulation of the query over the views.

This idea is not phrased in terms of algorithms going from proofs of the semantic
property to reformulations, since [Nash et al. 2010] does not work by default in the
setting of unrestricted instances (as we do), but in the setting of finite instances, and
over finite instances semantic entailment is not necessarily the same as the existence
of a proof. Indeed, [Nash et al. 2010] investigates the question of determinacy vs. re-
formulation in the finite in detail.

[Nash et al. 2010] discovered that even in the setting of conjunctive query views, con-
junctive queries may have a relational algebra reformulation but no conjunctive query
reformulation. They defined the corresponding semantic property for positive existen-
tial reformulation, the analog of our access-monotonic-determinacy definition in the
view case. However, there is no investigation of the different notions of determinacy
that correspond to different kinds of target queries in [Nash et al. 2010].

We give theorems not for reformulation as a query but for plan-generation using
access methods. We emphasize the semantic property and proof goal that corresponds
to each notion of plan, stressing that one can go effectively from the proof to the plan.
Although this correspondence relies on considering equivalence over all instances, we
show that it can be “pushed down” to equivalence over finite instances for many classes
of constraints considered in practice (e.g. those with terminating chase).

In short our work can be seen as generalizations of [Nash et al. 2010] to the set-
ting with access patterns and constraints, stressing the relationship between semantic
properties, proofs, and plans.

Our algorithm for generating RA-plans is extremely close to the construction in the
case of reformulation over conjunctive query view definitions by Nash, Segoufin, and
Vianu on page 21:29 of [Nash et al. 2010]. The construction of [Nash et al. 2010] is
quite specific to the conjunctive query view case.

Comparison with the Chase and BackChase. The Chase and Backchase (C&B)
is a common technique for reformulating a conjunctive query Q. It originated in pa-
pers of Popa [Popa 2000], Tannen, and Deutsch (e.g., [Deutsch et al. 2006; 1999]). The

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40

technique exists in various forms, but a frequently cited version of it matches our SPJ-
plan algorithm in the special case of “vocabulary-based access restrictions”: we have
a distinguished set of predicates T which the reformulated query should be over, and
we desire a conjunctive query reformulation QT. In terms of constraints, there are ver-
sions of the C&B for constraint sets including both tuple-generating dependencies, but
also equality-generating dependencies (EGDs). The main assumption is that we have
a notion of the chase which terminates. Such a variant is well-known for TGDs and
EGDs, but the requirements for termination of the chase become very strong [Onet
2013]. Below we will explain the connection between the C&B and the results in this
paper only for TGDs.

The idea of the C&B is to first produce a “universal plan” by chasing the canonical in-
stance of query Q with the constraints to get a collection of facts U : this is the “chasing
phase”. Then we search for a smaller plan that uses only the distinguished predicates
from T. We do this by selecting a set S of such facts within the chase, re-chasing it by
tracing out the closure of S in U under the dependencies. If this closure has a match
of the query Q (that is, a homomorphism mapping the free variables of Q to the corre-
sponding constant) then we know that the set of atoms S, when converted to a query
QS , is in fact equivalent to Q under the constraints. This is the “back-chasing” phase.
Ideally, it will select a set S that is minimal with respect to having a chase-closure
with a match for Q, thus producing a QS that is a minimal reformulation [Ileana et al.
2014]. By maintaining auxiliary information about the way in which the atoms in U
are generated in the chase, the back-chasing phase can be made more efficient. For
example, in Ileana et al. [Ileana et al. 2014], provenance information is maintained to
speed up the back-chasing phase.

We have looked not at generating a query, but at plan-generation in the presence of
access restrictions and constraints, and the technique given here — auxiliary schemas,
two copies of the relation symbols, etc. —- may seem very distinct from the C&B. But
we will explain here that in the case where the methods overlap — that is, where one
is interested in generating an SPJ query over a subset of the relations, for constraints
having a terminating chase — our approach is a variation of the C&B.

Recall that in Algorithm 2 we first form an initial chase using the Sch constraints Σ,
and then apply steps consisting of firing an accessibility axiom followed by “follow-up
rules” – the application of copies of the constraints. Instead of firing an accessibility
axiom to explicitly generate a fact of the form InfAccR(~c), we could simply decorate
the fact R(~c) by a special predicate B (for “back-chased”) and then propagate pred-
icate B through the initial chase. Thus choosing a path of accessibility axioms cor-
responds exactly to choosing a sequence of distinct atoms s1 . . . sn. The result of our
plan-generation algorithm is a physical plan implementing the conjunctive query cor-
responding to the underlying set of atoms {s1 . . . sn}. If we take as a cost metric the
number of access commands then our cost-based method will automatically minimize
this among proof-based plans. Proposition 6.2 argues that the resulting plan will min-
imize the number of atoms in the corresponding query. Thus in particular, this will
allow us to produce a minimal reformulation.

In summary, from a high-level the C&B method corresponds to our approach as
follows: the chasing phase corresponds to applying the Sch constraints, a choice of
atoms corresponds to firing accessibility atoms, while the back-chasing phase can be
seen as applying the InfAccCopy constraints.

There are some distinctions between Algorithm 2 and the C&B:

— Algorithm 2 explores different chase sequences, while the C&B takes an unordered
view of the chase, producing a set of atoms which are turned into a query. For
binding pattern-based access-restrictions, the ordering of the chase corresponds

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:41

to the ordering of accesses, which is critical to making the plan executable. For
“vocabulary-based restrictions”, where a subset of the relations are made accessible
(as in the setting of views), Algorithm 2 can explore plans corresponding to different
join orders, as discussed in Example 6.7.

— Algorithm 2 is cost-based. While the classic C&B algorithm deals only with getting
minimal reformulations, this is not a fundamental limitation of the C&B approach,
and cost-based extensions are considered in Popa’s thesis [Popa 2000]

— By considering the back-chasing phase as a re-tracing of the original chase graph,
the C&B can speed up the process of checking equivalence of S. This viewpoint is
critical to the optimizations performed in C&B papers, such as Meier’s [Meier 2014]
and Ileana et al.’s [Ileana et al. 2014]. This optimization is usually presented in the
setting of terminating chase, although it could be modified in the same we as we do
to the setting of broader classes (e.g. GTGDs), creating the chase up to a point suf-
ficiently large that a proof will be found if there is one. Although C&B usually cou-
ples a “proof-to-reformulation” algorithm with a particular algorithmic strategy of
forming the full universal chase first, these two could also be decoupled, as our algo-
rithms are presented here. For instance, one could interleave chasing the canonical
database and “back-chasing” (choosing some atoms and seeing their consequences),
and this might have advantages when the full chase is large or infinite.

The usual presentation of the C&B, as well as Algorithm 2, are focused on CQ
reformulations/SPJ-plans. The C&B has been extended to deal with unions of con-
junctive queries with atomic negation (see the discussion of [Deutsch et al. 2007] in
this section), but not to relational algebra reformulation. In this work we have con-
sidered existential plan-generation, but have shown that it collapses to the SPJ-plan-
generation when inputs are constraints are TGDs. We have also considered relational
algebra plan-generation.

In considering the entailments and semantic properties corresponding to different
kinds of plans, we have underscored the connection between semantic properties like
determinacy, proofs of their entailments, and plan-generation. This connection is the
main contribution of our paper. The conference paper [Benedikt et al. 2014] extends
this approach presented here to first-order constraints, while the later work [Benedikt
et al. 2015] discusses implementation and experiments. We defer a comparison of the
C&B with these later developments to another work.

Comparison with [Deutsch et al. 2007]. The first paper on querying with in-
tegrity constraints and access patterns is Deutsch, Ludäscher, and Nash [Deutsch
et al. 2007].

[Deutsch et al. 2007] does not define a plan language, but rather deals with getting
an “executable UCQ”: a UCQ query that can be executed using the access patterns
in the obvious way. We have shown in the electronic appendix that these correspond
to our notion of USPJ¬-plan in expressiveness. Our Theorem 4.6 shows that if one
starts with a CQ and the constraints consist only of TGDs, negation and union are
not necessary to answer the query. But [Deutsch et al. 2007] allow the source query Q
to be a USPJ¬ query, and allow constraints with disjunction and atomic negation on
both sides. Thus our result does not apply to their setting. Although the constraints
and source queries considered in [Deutsch et al. 2007] are richer than those dealt with
here, the algorithms are specific to the case where the chase terminates.

[Deutsch et al. 2007] deal with the existence problem of determining whether a query
has an equivalent USPJ¬ executable query, as well as the problem of finding such a
query if it exists.

In Section 4 of the paper they define an algorithm for the existence problem:

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42

(1) Apply the chase procedure to the original query Q with the constraints until termi-
nation. [Deutsch et al. 2007] chase the queries directly to get another query, rather
than dealing with the corresponding canonical database to get an instance. Thus for
them the result of the chase is another query Q1.

(2) Form a query Q2 as the “answerable part” of Q1: this is (informally) a maximal
subquery of Q1 that can be generated using the access patterns.

(3) Chase Q2 to get a new query Q3, and check whether Q3 is contained in the original
query Q.

In the case of TGDs with terminating chase, this procedure matches our approach
for SPJ-plans. The first step, chasing Q, corresponds in our setting to generating con-
sequences using chase steps for the canonical database of Q0 with the original copy
of the constraints. The second step corresponds to applying our “forward accessibil-
ity axioms”, or equivalently to taking the accessible part of the instance generated in
the first step. The final step corresponds to applying the InfAccCopy constraints and
checking for a match of the copy of Q.

Note that [Deutsch et al. 2007] utilize the algorithm above in the setting of their
more general constraints, by defining a variant of the chase with disjunction and nega-
tion, and a notion of “answerable part” of a query that applies to USPJ¬ queries. This
extension is not subsumed by the approach in this paper, since we do not deal with dis-
junction and negation in constraints. However, it is closely related to the approach for
USPJ¬-plans in [Benedikt et al. 2014]. The extended definition of “answerable part” to
handle atomic negation corresponds to applying both the forward accessibility axioms
and a restriction of the backward accessibility axioms, with the restriction being that
all variables xi in the atom R(x1 . . . xn) must satisfy accessible. This variation of the
accessible schema and its relationship to USPJ¬-plans is investigated in [Benedikt
et al. 2014].

In Section 7 of [Deutsch et al. 2007], the authors provide another algorithm for the
problem, which proceeds by augmenting the constraints with a new set of auxiliary
axioms capturing accessibility (denoted ΣD), and a derived query (denoted there as
dext(Q)). The main result says that for some classes of constraints (those with “strati-
fied witnesses”) a source queryQ has an executable USPJ¬ rewriting iffQ is contained
in dext(Q) with respect to the enhanced schema. Again, in the case of TGDs with ter-
minating chase, this coincides with our technique. [Deutsch et al. 2007] emphasize the
second algorithm as a way of reducing rewriting with access patterns and constraints
to rewriting under constraints alone.

First-order/relational algebra rewritings, and their distinction from positive existen-
tial or SPJ rewritings, are not covered in [Deutsch et al. 2007]. Neither do they con-
sider the relationship of rewritability to semantic properties. However, the semantics-
to-syntax approach we take here is related to results and discussions in Section 9
of [Deutsch et al. 2007]. In Theorem 22, they prove that their notion of executable
query covers all USPJ¬ queries that could be implemented using the access meth-
ods. Although the theorem is phrased using a Turing Machine model, the proof shows
that every access-determined USPJ¬ query has a rewriting that is executable in their
sense. We make use of this result in our analysis of expressiveness in Section 3.

Relationship to [Bárány et al. 2013]. The work of Bárány et al. [Bárány et al.
2013] deals also with integrity constraints and access patterns. Instead of plans, as
here, it targets a relational algebra query that runs over the accessible part. Thus
executing a rewriting will always require exhaustively generating the accesses. It de-
fines the notion of access-determinacy used in this paper and obtains tight bounds on
the complexity of detecting access-determinacy for constraints in guarded logics (e.g.
the guarded negation fragment, inclusion dependencies). It also shows that access-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:43

determined conjunctive queries over guarded constraints always have rewritings that
are in the guarded negation fragment. The distinction between relation algebra, exis-
tential, and positive existential rewriting is not studied in [Bárány et al. 2013]. Indeed,
it is incorrectly claimed in [Bárány et al. 2013] that the notions coincide for GTGD con-
straints.

Comparison to [Benedikt et al. 2014; Benedikt et al. 2014; 2015]. This paper
is an extension of the extended abstract [Benedikt et al. 2014]. That paper introduced
a method for generating plans from proofs in the presence of general first-order con-
straints, with the general technique being based on interpolation, which we explain
below. This paper deals with a special case of the method, which was emphasized in
[Benedikt et al. 2014], in the case of constraints given by TGDs. Full proofs were not in-
cluded in [Benedikt et al. 2014]. The scope of several theorems has been enlarged (e.g.
covering non-boolean queries), while several new results — Theorem 4.6, concerning
the collapse of USPJ¬-plans to SPJ-plans for TGDs, and Proposition 6.2 concerning
dominance with respect to executable queries — have been added in this paper.

[Benedikt et al. 2014] briefly discussed heuristic optimization for search. In later
work, [Benedikt et al. 2015] , the authors explored methods for making the generation
of proofs from plans more efficient. The demonstration paper [Benedikt et al. 2014]
applies the ideas in this paper to querying over web services.

Chase-based plan-generation and Interpolation-based plan-generation. The
Craig Interpolation theorem [Craig 1957] states that whenever we have first-order
formulas ϕ1, ϕ2 and ϕ1 entails ϕ2, there is a formula ϕ such that

— ϕ1 entails ϕ, ϕ entails ϕ2

— ϕ uses only relation symbols occurring in both ϕ1 and ϕ2, and only constants occur-
ring in both ϕ1 and ϕ2

Such a ϕ is said to be an interpolant for the entailment of ϕ2 by ϕ1.
Craig showed that interpolation could be used to transform proofs of a certain se-

mantic property of a query into a syntactic representation that enforces that property.
Craig did this for a property called “implicit-definability”, which is related to the no-
tion of determinacy used in the later work of Segoufin and Vianu [Segoufin and Vianu
2005]. This idea of using interpolation to go from “semantics to syntax” has since been
applied to a number of semantic properties by logicians (e.g. [Otto 2000]), but without
addressing algorithmic concerns.

We explain briefly how interpolation can be used to generalize the proofs-to-plan
approach we provide here. Consider the inductive algorithm given to create SPJ-plans
from chase proofs, Algorithm 1. If we translate the plans to formulas, we see that the
output of the algorithm is an interpolant for the entailment

Q ∧ Σ |= (AxFor ∧ Σ′ → InfAccQ),

where Σ is a conjunction of the Sch constraints, Σ′ a conjunction of the InfAccCopy
constraints, and AxFor is a conjunction of the forward accessibility axioms. Consider
the case of “vocabulary-based restrictions”, where every relation either has no access
methods or is an input-free access methods. The common non-schema constants are
exactly the ones corresponding to free variables, and the common relations are those
that have an access method. Therefore an interpolant will be a formula using only the
relations that have an access method. Thus an interpolation algorithm can allow us
to get reformulations in the vocabulary-based setting. The RA algorithm can similarly
be seen as computing an interpolant for an entailment involving both forward and
backward accessibility axioms, and for vocabulary-based restrictions such interpolants
correspond to first-order reformulations over the relations that have an access.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44

The relationship between plan-generation and interpolants suggest that an alter-
native approach to our results would be to prove an appropriate interpolation theo-
rem and argue that for any access schema the interpolants could be converted into
plans. The advantage of an interpolation-based approach is that it could be applied
to arbitrary first-order constraints, where chase proofs are not available. We do not
have space to explain this in detail here, but such an approach is possible. One re-
quires a proof system that generalizes the chase to arbitrary first-order constraints,
and tableau proofs provide such a system. One also requires a strengthening of Craig’s
interpolation theorem guaranteeing that the interpolant can be converted to a plan
making use of the access methods. In the conference paper [Benedikt et al. 2014] such a
theorem is stated and its proof is sketched. Using this interpolation theorem, [Benedikt
et al. 2014] derives theorems relating semantic properties, proofs, and plans, some of
them generalizing the ones given here.

Comparison with [Toman and Weddell 2011]. Chapter 5 of the book of Toman
and Weddell [Toman and Weddell 2011] outlines an approach to reformulating queries
with respect to a physical schema that is based on proofs. They discuss proofs using
the chase algorithm, as well as an extended proof system connected to Craig Interpo-
lation, remarking that the latter can synthesize plans that are not conjunctive. Access
methods are not the focus of the work, but [Toman and Weddell 2011] outline an ap-
proach for handling them heuristically, by post-processing formulas so that they can
be executed using the access methods.

Other related work. Several other works provide algorithms for querying in the
presence of both access patterns and integrity constraints. Duschka et al. [Duschka
et al. 2000] include access patterns in their Datalog-based approach to data integra-
tion. They observe, following [Li 2003], that the accessible data can be “axiomatized”
using recursive rules. We will make use of this axiomatization (see the “accessibility
axioms” defined later on) but establish a tighter relationship between proofs that use
these axioms and query plans.

REFERENCES
ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley.
AFRATI, F. N. 2011. Determinacy and query rewriting for conjunctive queries and views. Theoretical Com-

puter Science 412, 11, 1005–1021.
BÁRÁNY, V., BENEDIKT, M., AND BOURHIS, P. 2013. Access restrictions and integrity constraints revisited.

In ICDT.
BÁRÁNY, V., GOTTLOB, G., AND OTTO, M. 2010. Querying the guarded fragment. In LICS.
BÁRÁNY, V., TEN CATE, B., AND SEGOUFIN, L. 2011. Guarded negation. In ICALP.
BENEDIKT, M., LEBLAY, J., AND TSAMOURA, E. 2014. Proof-driven query answering over web-based data.

In VLDB.
BENEDIKT, M., LEBLAY, J., AND TSAMOURA, E. 2015. Querying with access patterns and integrity con-

straints. In VLDB.
BENEDIKT, M., TEN CATE, B., AND TSAMOURA, E. 2014. Generating low-cost plans from proofs. In PODS.
CRAIG, W. 1957. Linear reasoning. a new form of the Herbrand-Gentzen theorem. The Journal of Symbolic

Logic 22, 03, 250–268.
DEUTSCH, A., LUDÄSCHER, B., AND NASH, A. 2007. Rewriting queries using views with access patterns

under integrity constraints. Theoretical Computer Science 371, 3, 200–226.
DEUTSCH, A., NASH, A., AND REMMEL, J. 2008. The chase revisited. In PODS.
DEUTSCH, A., POPA, L., AND TANNEN, V. 1999. Physical data independence, constraints, and optimization

with universal plans. In VLDB.
DEUTSCH, A., POPA, L., AND TANNEN, V. 2006. Query reformulation with constraints. SIGMOD

Record 35, 1, 65–73.
DUSCHKA, O., GENESERETH, M., AND LEVY, A. 2000. Recursive query plans for data integration. The

Journal of Logic Programming 43, 1, 49 – 73.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:45

FAGIN, R., KOLAITIS, P. G., MILLER, R. J., AND POPA, L. 2005. Data exchange: Semantics and query
answering. Theoretical Computer Science 336, 1, 89–124.

FLORESCU, D., LEVY, A. Y., MANOLESCU, I., AND SUCIU, D. 1999. Query optimization in the presence of
limited access patterns. In SIGMOD.

ILEANA, I., CAUTIS, B., DEUTSCH, A., AND KATSIS, Y. 2014. Complete yet practical search for minimal
query reformulations under constraints. In SIGMOD.

LI, C. 2003. Computing complete answers to queries in the presence of limited access patterns. VLDB
Journal 12, 3, 211–227.

LI, C. AND CHANG, E. 2000. Query planning with limited source capabilities. In ICDE.
LI, C. AND CHANG, E. 2001. Answering queries with useful bindings. ACM Transactions on Database Sys-

tems 26, 3, 313–343.
MAIER, D., MENDELZON, A. O., AND SAGIV, Y. 1979. Testing implications of data dependencies. ACM Trans.

Database Syst. 4, 4, 455–469.
MEIER, M. 2014. The backchase revisited. VLDB Journal 23, 3, 495–516.
NASH, A. AND LUDÄSCHER, B. 2004a. Processing first-order queries under limited access patterns. In

PODS.
NASH, A. AND LUDÄSCHER, B. 2004b. Processing union of conjunctive queries with negation under limited

access patterns. In EDBT.
NASH, A., SEGOUFIN, L., AND VIANU, V. 2010. Views and queries: Determinacy and rewriting. ACM Trans-

actions on Database Systems 35, 3.
ONET, A. 2013. The chase procedure and its applications in data exchange. In Data Exchange Intregation

and Streams.
OTTO, M. 2000. An interpolation theorem. Bulletin of Symbolic Logic 6, 4, 447–462.
POPA, L. 2000. Object/relational query optimization with chase and backchase. Ph.D. thesis, U. Penn.
RAJARAMAN, A., SAGIV, Y., AND ULLMAN, J. D. 1995. Answering queries using templates with binding

patterns. In PODS.
SEGOUFIN, L. AND VIANU, V. 2005. Views and queries: determinacy and rewriting. In PODS.
TOMAN, D. AND WEDDELL, G. 2011. Fundamentals of Physical Design and Query Compilation. Morgan

Claypool.
ULLMAN, J. D. 1989. Principles of Database and Knowledge-Base Systems, V2. Comp. Sci. Press.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

