
Mathematical Foundations of Bidirectional
Transformations

Michael Johnson

CoACT (Center of Australian Category Theory)
Macquarie University Sydney

BXSS, Oxford, July 25-29, 2016

Did I say I would “spiral”?

If you lost it on Wednesday it’s ok — I’m going to start again, again

Are state spaces really just sets?

Recall

Lens:

S

V

g

��
V × S

S

p

OO

gs vα
//

s

gs

s s ′s ′

v

Satisfying axioms PutGet, GetPut and PutPut
Such things are exactly the algebras for the monad ∆Σ on Set/V

(Notice that the arrow α : gs // v is not used.)

What should be the domain of p?

A put depends on an old system state s and a new view state v .
So, pairs (s, v)? No — eg v unreachable from gs .

A new view state v comes from (but does not in general determine)
the orginal view state g(s) and the state transition chosen.

So we need (s, v , α : g(s) // v).

We need a domain for p which has as objects, triples of the form

(s, v , α : g(s) // v).

What should be the domain of p?

A put depends on an old system state s and a new view state v .
So, pairs (s, v)? No — eg v unreachable from gs .

A new view state v comes from (but does not in general determine)
the orginal view state g(s) and the state transition chosen.

So we need (s, v , α : g(s) // v).

We need a domain for p which has as objects, triples of the form

(s, v , α : g(s) // v).

What should be the domain of p?

A put depends on an old system state s and a new view state v .
So, pairs (s, v)? No — eg v unreachable from gs .

A new view state v comes from (but does not in general determine)
the orginal view state g(s) and the state transition chosen.

So we need (s, v , α : g(s) // v).

We need a domain for p which has as objects, triples of the form

(s, v , α : g(s) // v).

Comma categories and generalised slice categories

Suppose now G is a functor S // V (not just a function), so G
and 1V are functors with codomain V .

I The comma category (G , 1V) is sometimes denoted G/V
analogously to a slice category

I Objects are triples (s, v ,Gs // v)
s-indexed arrows, but we’ll sometimes just write (Gs // v)

I Arrows are pairs (h, f) making commutative

v v ′
f

//

Gs

v
��

Gs Gs ′
Gh // Gs ′

v ′
��

(G ,H)

Two types of delta-lenses: 1. c-lens

S

V

G

��
G/V

S

P

OO

Gs v
f

//

s

Gs

s s ′s ′

v

Satisfing axioms PutGet, GetPut and PutPut.
Such things are exactly the algebras for the monad R on cat/V
which takes an object G : S // V to the object π : G/V // V .

(Cf the monad (from Monday) on set/V which took G : S // V
to the object π : V × S // V .)

Two types of delta-lenses: 2. d-lens

S

V

G

��
|G/V |

|Arr(S)|

p

OO

Gs v
f

//

s

Gs

s s ′
j // s ′

v

Satisfing axioms PutGet, GetPut and PutPut
Such things turn out to be algebras for a semi-monad on Cat/V
with an extra condition.

Lifting arrows in G/V

I The d-lens Put provides extra information — an arrow j , not
just its codomain s ′

I But what does it do with the arrows of G/V , and what about
functoriality?

(In fact, a d-lens Put for some arrows of G/V , and the
corresponding functoriality, follow from d-lens PutPut.)

The extra arrow is important. Do c-lenses really miss out on it?

Full functoriality of P is good, but so is having arrows like j .

Calculus of squares

Suppose f : Gs // v is an object of G/V , then (1, f)

Gs v
f

//

Gs

Gs

1

��

Gs Gs
G1 // Gs

v

f

��

is an arrow of G/V .

What does a c-lens Put P do to that arrow?

It has to take it to an arrow k : s // P(s, v ,Gs
f // v) = s ′.

Calculus of squares

Suppose f : Gs // v is an object of G/V , then (1, f)

Gs v
f

//

Gs

Gs

1

��

Gs Gs
G1 // Gs

v

f

��

is an arrow of G/V .

What does a c-lens Put P do to that arrow?

It has to take it to an arrow k : s // P(s, v ,Gs
f // v) = s ′.

Calculus of squares

Suppose f : Gs // v is an object of G/V , then (1, f)

Gs v
f

//

Gs

Gs

1

��

Gs Gs
G1 // Gs

v

f

��

is an arrow of G/V .

What does a c-lens Put P do to that arrow?

It has to take it to an arrow k : s // P(s, v ,Gs
f // v) = s ′.

Least change
What’s more, if h : s // s ′′ was an alternative suggestion for the
explicit arrow provided by a d-lense (a different lift), that is
if Gh = f : Gs // v (and so Gs ′′ = v),
then (h, f) is an arrow of G/V and

Gs v
f

//

Gs

Gs

1

��

Gs Gs ′′
Gh // Gs ′′

v

1

��

factors as (1, f) ; (h, 1)

Gs v
f

//

Gs

Gs

1

��

Gs Gs
G1 // Gs

v

f

��
v

1
//

Gs ′′
Gh // Gs ′′

v

1

��

A (relabelled) diagram from Wednesday

s
k=P(1,f) //

h
**

s ′

s ′′

Gs
f //

Gh=f **

v $$
1

$$
Gs ′′ = v

A (least change) diagram from Wednesday

s
k=P(1,f) //

h
**

s ′ ##
k ′=P(h,1)

##
s ′′

Gs
f //

Gh=f **

v $$
1

$$
Gs ′′ = v

Summarising this first part

1. Categories and codiscrete categories (sets)
I Sets are usually thought of as discrete categories
I Sets in classical lenses are really codiscrete categories

More in Part 3 about this

2. d-lenses
I Pay proper attention to state spaces
I Can have a lot of freedom to choose

More in Part 3 about this too

3. c-lenses seemed to provide less info than d-lenses
I In fact, same (k),
I and even least change (more)
I and even uniquely so (opfibrations)

Take note of

1. The calculus of squares and its power

2. Universal updates are an emergent property

3. PutPut is fundamental (more in Parts 2 and 3)

4. Lens versus pragmatic updates (Wednesday)

5. Least change

And avoid being confused by the use of the term “delta”.

Part 2

Yes, in a way, I’m going to start again, again

Can we work with oriented state spaces (eg info order)?

PutPut State Space Version

We’ve had some good discussions this week about PutPut. I noted
down that

I PutPut is not in general the same as history ignorance

I But PutPut usually doesn’t remember everything

I A PutPut framework:

Put(Put(s, α), α′) = Put(s, α · α′)

(where of course the operation · and the precise parameters
depend upon the context (the type of lens for example))

When we have Gs
α // v

α′
// v ′, or indeed v ′ α′

// v
α // Gs, we

say the situation is monotonic

PutPut State Space Version

We’ve had some good discussions this week about PutPut. I noted
down that

I PutPut is not in general the same as history ignorance

I But PutPut usually doesn’t remember everything

I A PutPut framework:

Put(Put(s, α), α′) = Put(s, α · α′)

(where of course the operation · and the precise parameters
depend upon the context (the type of lens for example))

When we have Gs
α // v

α′
// v ′,

or indeed v ′ α′
// v

α // Gs, we
say the situation is monotonic

PutPut State Space Version

We’ve had some good discussions this week about PutPut. I noted
down that

I PutPut is not in general the same as history ignorance

I But PutPut usually doesn’t remember everything

I A PutPut framework:

Put(Put(s, α), α′) = Put(s, α · α′)

(where of course the operation · and the precise parameters
depend upon the context (the type of lens for example))

When we have Gs
α // v

α′
// v ′, or indeed v ′ α′

// v
α // Gs, we

say the situation is monotonic

Compound Operations
Taking Tony’s approach of labelling deletes red and inserts green,
but orienting the arrows always in the information order we obtain
appropriate domains for puts shaped like

v

v ′b ��

Gs

v

CCa
Gs

v ′

(an object of the domain of RLG) and the following (an object of
the domain of LRG)

w ′

w

CC
d

Gs

w ′
c
��

Gs

w

(The other compounds involving two arrows compose and satisfy
monotonic PutPut: Gs // v // v ′ or v ′ // v // Gs.)

Composing Compound Operations

An object of the domain of RLRLG is a “zig-zag”:

v

v ′b ��

Gs

v

CCa
Gs

v ′

v ′′

v ′′′d ��

v ′

v ′′

CCc
v ′

v ′′′

This provides the ingredients for composing mixed operations (and
ultimately for another PutPut law).
The composite span is formed by taking the pullback of the cospan
in the middle, assuming that pullbacks exist in V.

The Composed Spans

The composite span is

w

v ′′c ′ ��

v

w

CCb′
v

v ′′

v

Gs
a CC

v ′′

v ′′d ��

where w is a pullback of b and c . And then the legs themselves
are composed in the usual way

(using the multiplication µL for the top leg (which is an instance of

LLG), and the multiplication µR for the bottom leg (which is by then an

instance of RRLG)).

The Short Story
If monotonic PutPut holds (for both information increasing and
information decreasing updates along the information order) then
the test for PutPut is how updates are propagated in the two ways
around a pullback.
If the result is the same either way around, as it is for universal
updates for keyed databases, then PutPut holds for atomic updates
of the span form. (Cf Tony’s work yesterday)

v

v ′j
��

Gs

v

??i
Gs

v ′

v

v ′

??
m

Gs

v

k
��

Gs

v ′

Notice what this means: The result of propagating an insert
followed by a delete is the same as the result of propagating a
particular delete followed by an insert (the least changing one – viz
the pullback (or what Tony called yesterday “the one that stays
furthest from empty”)).

The longer story follows (six slides for aficionados)

A distributive law

We seek conditions on G : S // V to guarantee that G supports
compatible updates for both (formal) inserts and deletes.

Now assume that V has pullbacks.

We define a distributive law

LR
λ // RL

between the monads making RL a monad

The algebras for RL are lenses whose updates treat a span of
ordered updates as an atomic update.

The composites LR and RL

Both R and L are endofunctors on cat/V.

For G : S // V the domain of RG : (G , 1V) // V has objects

GS
a // V in V with RG (GS

a // V) = V .

Apply L to RG giving LR(G) : (1V,RG) //V which has objects of

the form GS
a // V oo

b
V ′ in its domain, i.e. cospans (a, b) from

GS to V ′. Furthermore LR(G)(a, b) = V ′

Similarly, RLG is a functor (LG , 1V) // V. Objects in its domain
are spans (c, d) from GS to W ′ in V having form

GS oo
c

W
d //W ′ and RL(G)(c , d) = W ′.

Defining λ

The G ’th component of the natural transformation λ will be a
(pseudo-)functor λG : (1V,RG) // (LG , 1V) (fibred over V).

At an object GS
a // V oo

b
V ′ in the domain (1V,RG) of LRG

(LRG is a functor from the iterated comma category to V)

take the pullback in V (and on arrows take the induced maps).

Thus λG (a, b) is a span in V from GS to V ′, an object in the
domain of RLG .

Theorem
The transformation LR

λ // RL is a pseudo-distributive law.

Algebras for RL

If G : S //V is the carrier for both an R-algebra and an L-algebra
then both universal inserts and universal deletes are available.

BUT we have no information about how the delete and insert
liftings interact. However, if G is an RL algebra then all is well.

Recall that G is an RL algebra exactly if G is an L-algebra and an
R-algebra and the L algebra structure is a homomorphism of R
algebras.

We can also use condition what is essentially Beck-Chevalley:

A BC Condition

Suppose G : S //V and RG
r //G , LG

` //G are R-, L-algebras.

For k : GS //W an object of G/V, denote r image by r(S , k).
For i : V // GS an object of V/G , denote ` image by `(S , k).

Condition (*) is satisfied if
for all S an object of S and for any pullback (in V)

V

V ′
j ��

GS

V

??
i

GS

V ′

W

V ′

??

m

GS

W

k

��

GS

V ′

it is the case that r(l(i ,S), j) ∼= l(r(S , k),m).

Updating an insert along k and then a delete along m is equivalent
to updating a delete along i and then an insert along j .

Algebra criterion

Theorem

If RLG
ξ // G is an RL-algebra then r = ξRηLG and ` = ξηRLG

define R-, L-algebras satisfying condition (*).

Conversely, suppose RG
r // G and LG

` // G are R-, L-algebras
satisfying (*). Define

ξ : RLG // G by ξ(GS oo
i

V
j // V ′) = r(l(i , S), j).

Then ξ is an RL algebra structure on G .

In other words, insert updates satisfy monotonic PutPut, delete
updates satisfy monotonic PutPut, and jointly they satisfy (*) if
and only if we have an algebra of mixed updates satisfying span
PutPut. In that case atomic updates are spans of directed
(eg information order) updates.

Part 3

Yes I’m going to start again, but for the last time. . .

Can we systematise and simplify through mathematical
foundations?

An Alpabet Soup of Lenses

Origin

c-lens Category
d-lens Delta
e-lens Edit
. . .
p-lens Projection
q-lens Quotient
r-lens Relational
. . .
u-lens Update
v-lens Very Well Behaved
w-lens Well Behaved

Many come in at least two variants (symmetric and asymmetric).

Known Relationships

1. State spaces can all be seen as categories.

2. Among those lenses
I Symmetrics can be derived from asymetrics via the span

construction
I Edit lenses can be converted to Delta lenses by the category of

elements construction
I Set-based lenses are special cases of Delta lenses using

codiscrete categories of states
I And c-lenses are a special case of d-lenses (Part 1 today)

3. The Puts are usually functorial
I That is they satisfy appropriately phrased GetPut and PutPut

laws

A “Grand” Unification (well. . . , a pretty good one)

Lens Origin Asymmetric Symmetric PutPut Type

c-lens Category // Yes delta
d-lens Delta // −�−� Yes delta
e-lens Edit // −�−� Yes edit

p-lens Projection extant
q-lens Quotient extant
r-lens Relational extant

u-lens Update // Yes edit
v-lens VeryWB // −�−� Yes set-based
w-lens WB’haved // −�−� No set-based

NULLs

Take home opportunities

Exercises

You don’t have to do them, but if you want to learn this stuff you need to play

Would you like some?

Exercises

1. “Prove” the folk theorem that g is surjective in any
asymmetric set-based lens satisfying the three axioms. Which
axioms do you really need in your proof?

2. Now fix it — the folk theorem is false. Why? State the correct
theorem, and check that your proof is really a proof now.

3. What is the free category on a directed graph? Compare it
with the free monoid on a set. How is the free category a “set
of terms”?

4. What is the free category on a directed graph which has only
one object? It’s something you know already.

Exercises continued

5. First, describe a finite monoid M of your choice. The counit
of the free monoid adjunction F a U is a monoid morphism
from the free monoid on the elements of M to M itself.
Describe the effect of the counit in your case explicitly.
If M did not have cardinality greater than 1 then do the
question again.

6. Show that, as claimed, Σ a ∆. Is that true even when V is
empty?

7. State the axioms PutGet, GetPut and PutPut for d-lenses.

8. Repeat the previous question for c-lenses.

Exercises continued further

9. Prove that if

B Cg
//

A

B

j
��

A B
j // B

C

g
��

PULLBACK

is a pullback, then g is monic (that is, whenever gh = gk it
necessarily follows that h = k).
This is how pullback squares can be used to specify that
arrows in EA-sketches are required to be monic in models.

10. Prove that a natural transformation between models of keyed
EA-sketches has components which are all monic.
This demonstrates that keyed databases have categories of
models which are partial orders (there exists at most one
arrow (one update) between any two states). The ordering is
the information order.

Exercises continued further further

11. Choose your favourite kind of asymmetric lens. Consider the
pullback of the Gets of two such lenses and show how the
given lenses determine lens structures on the pullback
projections.
(Hint: Use the fact that a pullback in set or cat can be
represented as a collection of pairs (of elements, or of objects
and of arrows, respectively)

End of these lectures

Would you like some morning tea?

	Friday lecture

