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Lens

(Asymmetric, set-based: S and V are sets, g and p are functions,
and s, s ′ ∈ S and v , v ′ ∈ V .)

S

V

g

��
V × S

S

p

OO

gs v� //

s

gs
�
�
�
�s s ′s ′

v

Satisfying axioms
PutGet: g(p(v , s)) = v
GetPut: p(g(s), s)) = s and
PutPut: p(v ′, p(v , s)) = p(v ′, s).

(Notice that the arrow gs // v is not used.)



The axioms diagramatically

V × S

V

π ��:::::V × S S
p // S

V

g��������
S

S
1 ��::::::S V × S
〈g ,1〉 // V × S

S

p�������
PUTGET GETPUT

V × S Sp
//

V × V × S

V × S

π0,2
��

V × V × S V × S
V×p // V × S

S

p
��

PUTPUT



Adjoints (Functional Programming)

You’re most likely familiar with

(C × A // B)

(A // BC )

which comes from

C C
(−)C

77C Cww
C×−

⊥

and adjoints come with a unit (boring) and a counit (important)

ε : C × XC // X



Adjoints (Algebra)

Now think of free monoids (free groups, free . . . )

(FA // B)

(A // UB)

which comes from (F free, U underlying)

Alg Set
U

55Alg Set
uu

F

⊥

and adjoints come with a unit

ηA : A // UFA

and a counit
εB : FUB // B



Monads (Universal Algebra)

Any adjunction

D C
U

77D Cvv
F

⊥

gives rise to an endofunctor T = UF : C // C with units

ηA : A // UFA

amounting to a natural transformation η : 1C // UF .
Furthermore, TT reduces to T (terms of terms are terms) by a
natural transformation µ : T 2 // T (setting µ = UεF ).

So . . .



Monad (definition)

A monad is one of the three standard ways of presenting
(specifying) a universal algebra (a class of algebras).

A monad consists of an endofunctor T : C // C together with
natural transformations

µ : T 2 // T ,

called the multiplication, and

η : 1C // T ,

called the unit, satisfying. . .



Monad axioms

(Remember: T : C // C, µ : T 2 // T and η : 1C // T )

T T 2ηT //T

T

1

##GGGGGGGGGGGGG T 2

T

µ

��

T 2 Too Tη
T 2

T
��

T

T

1

{{wwwwwwwwwwwww

T 2 Tµ
//

T 3

T 2

Tµ

��

T 3 T 2µT // T 2

T

µ

��

called left-ientity, right-identity and associativity, respectively.



Algebras

Monads are just ways of forming and managing terms. What we
really work with (even if you’re a functional programmer) is
algebras.
An algebra for the monad T : C // C is an object C of C along
with a morphism a : TC // C of C, called the action, rendering
commutative

C

C
1 ��::::::C TC

ηC // TC

C

a��������

TC Ca
//

T 2C

TC

µC
��

T 2C TC
Ta // TC

C

a
��

These are (also) called the identity and associativity laws
respectively (but for the algebra now).



Monadicity

Suppose we have an adjunction F a U.
Are the algebras for the monad UF the ones you might expect?
Usually, yes. When they are, we say that the right adjoint U is
monadic.

But sometimes, no. For example, Categories are not monadic over
the category of sets. This isn’t really surprising: The data for
building a free category shouldn’t be just a set of objects, or a set
of arrows, or even a pair of sets of objects and arrows. The basic
(non-categorical) structure needs to be pre-specified.
Categories are indeed monadic over the category of directed
(multi-) graphs.

The moral here is that we need to be thoughtful about what is the
appropriate base category for our monads.



Defining categories

Now might be a good time to give a brief formal definition of a
category.

A category is a

I directed graph whose nodes are called objects and edges are
called arrows, together with

I a specified composition which is associative and has identities.

(A pair of arrows is composable if and only if they line up head to
tail: A // B // C .)



Time for a short pause

And congratulate yourself: Very few people learn about adjunctions and monadicity before defining categories!



Let’s compare
Lens axioms

V × S

V

π ��:::::V × S S
p // S

V

g��������
S

S
1 ��::::::S V × S
〈g ,1〉 // V × S

S

p�������
PUTGET GETPUT

V × S Sp
//

V × V × S

V × S

π0,2
��

V × V × S V × S
V×p // V × S

S

p
��

PUTPUT

Monad algebra axioms

C

C
1 ��::::::C TC

ηC // TC

C

a��������

TC Ca
//

T 2C

TC

µC
��

T 2C TC
Ta // TC

C

a
��

IDENT
ASSOC



Slice category

Given a category C and an object V in C, the slice category C/V
has as objects arrows of C with codomain V and as arrows from
f : C // V to g : C ′ // V arrows of C from C // C ′ making the
triangle

C

V
f ��::::::C C ′// C ′

V

g��������

commute.

For example, if set is the category of sets, and V is a set (for
example the set of states of a system) then set/V denotes a slice
category whose objects one might think of as potential gets for
lenses.
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Lenses are algebras

Note that R = V ×−, fibred by the projection, is a monad on
set/V .

Theorem
An algebra for the monad R is a (set-based asymmetric) lens
satisfying the three lens axioms (PutGet, GetPut and PutPut).

More precisely, R = ∆Σ where Σ : set/V // set is the projection
from the slice category (“sum up the fibres” to get just a set) and
∆ : set // set/V takes X to ∆X = π : V × X // V (called
“fibred over V by the projection of the product”).
Furthermore Σ a ∆ and, provided V is non-empty, ∆ is monadic.
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Constant complement

Corollary

Every set-based asymmetric lens satisfying the three lens axioms is
isomorphic to one of the form g = π : V × C // V with p given
by the constant complement updating strategy

p(v , s) = p(v , (v ′, c)) = (v , c).

This is important and valuable (for example, the updating strategy
in SQL is entirely based on this), but not very interesting and quite
restricted.
For some time people wanting more interesting lenses said “let’s
give up PutPut — it looked overly strong anyway” but life is much
more interesting than that(!).

Stay tuned. . .
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End of Monday lecture

Would you like some lunch?


