
Principle and Practice of Putback-based Bidirectional
Programming in BiGUL

Zhenjiang Hu, Hsiang-Shang Ko

National Institute of Informatics, Japan

BX Summer School, Oxford

July 25-29, 2016

 1

Overview

•  Lecture 1: Introduction to BiGUL

–  Why is putback-based BX?

–  What is its foundation?

–  How to program in BiGUL?

•  Lecture 2: Into BiGUL’s Bidirectionality

–  How is BiGUL implemented?

•  Lecture 3: Three Applications using BiGUL

–  Matching/delta lenses in BiGUL

–  Bidirectionalize relational queries with BiGUL

–  Parsing and reflective printing (BiYacc)

2

https://goo.gl/MdJeyk: lecture notes and codes

Bidirectional Programming (using Functions)

3

Bidirectional Transformation (BX)

4

Bidirectional Computation
BiX: A Bidirectional Tree Transformation Language

Bidirectional Model Transformation: A Compositional Approach
Conclusion

Definition
Basic Properties
Direct Applications

Bidirectional Computation (Bidirectional Transformation)

src tgt

Zhenjiang Hu

Bidirectional Computation
BiX: A Bidirectional Tree Transformation Language

Bidirectional Model Transformation: A Compositional Approach
Conclusion

Definition
Basic Properties
Direct Applications

Bidirectional Computation (Bidirectional Transformation)

src tgt

tgt’

mod

Zhenjiang Hu

Bidirectional Computation
BiX: A Bidirectional Tree Transformation Language

Bidirectional Model Transformation: A Compositional Approach
Conclusion

Definition
Basic Properties
Direct Applications

Bidirectional Computation (Bidirectional Transformation)

src tgt

tgt’

mod

src’

Zhenjiang Hu

Bidirectional Computation
BiX: A Bidirectional Tree Transformation Language

Bidirectional Model Transformation: A Compositional Approach
Conclusion

Definition
Basic Properties
Direct Applications

Bidirectional Computation (Bidirectional Transformation)

src tgt

tgt’

mod

src’

get

put

It consists of a pair of computation forward and backward.

Zhenjiang Hu

[Nate Foster, et al: POPL 2005]

Roundtrip Properties

5

Bidirectional Computation
BiX: A Bidirectional Tree Transformation Language

Bidirectional Model Transformation: A Compositional Approach
Conclusion

Definition
Basic Properties
Direct Applications

Bidirectional Computation (Bidirectional Transformation)

src tgt

tgt’

mod

src’

get

put

It consists of a pair of computation forward and backward.

Zhenjiang Hu

Get-Put:

put s (get s) = s

Put-Get:

get (put s t) = t

Challenges

•  One may “solve” the problem just by sticking
together two arbitrary functions in any
programming language you like.

•  Tricky to get right... and even trickier to maintain

•  Need to find a way of deriving both functions from
a single description.

6

Get-based Approach

7

•  Domain Specific Bidirectional Languages (lens1, lens2, …)

•  Automatic Bidirectionization of ATL, XQuery, UnQL

“get” (forward transformation)

“put” (backward transformation)

Ambiguity of “Put”

8

Bidirectional Computation
BiX: A Bidirectional Tree Transformation Language

Bidirectional Model Transformation: A Compositional Approach
Conclusion

Definition
Basic Properties
Direct Applications

Bidirectional Computation (Bidirectional Transformation)

src tgt

tgt’

mod

src’

get

put

It consists of a pair of computation forward and backward.

Zhenjiang Hu

Since get is generally non-injective, many suitable puts

correspond to one get, each being useful in different context.

9

getHeight (w,h) = h

putHeight1 (w,h) h’ = (w,h’)

PutHeight2 (w,h) h’ = (w*h’/h, h’)

putHeight3 (w,h) h’ | h==h’ = (w,h)

 | otherwise = (3,h’)

One Solution: Enriching “get”

10

Get-based BX Combinator Library Lenses

(Foster et al.: POPL 2005)

Quotient Lenses

(Foster et al.: POPL’08)

Matching Lenses

(Foster et al.: ICFP’10)

…

Enrich “get” with more and more control over “put”

è We will have too many versions of “get” …

Relational Lenses

(Bohannon et al.: PODS’06)

Foundation of Putback-based Bidirectional
Programming

11

Putback is the essence of BX!
•  An important but little-known fact:

12

Bidirectional Computation
BiX: A Bidirectional Tree Transformation Language

Bidirectional Model Transformation: A Compositional Approach
Conclusion

Definition
Basic Properties
Direct Applications

Bidirectional Computation (Bidirectional Transformation)

src tgt

tgt’

mod

src’

get

put

It consists of a pair of computation forward and backward.

Zhenjiang Hu

put uniquely determines get

Derived “get”: Uniqueness

Lemma: Given a put function, there exists at most one
get function such that GetPut and PutGet hold.

13

Proof:

Suppose we have two get functions, say get and get′.

 get s

=> { GetPut }

 get (put s (get′ s))

== { PutGet }

 get′ s

Derived “get”: Uniqueness

Lemma: Given a put function, there exists at most one
get function such that GetPut and PutGet hold.

14

Proof:

Suppose we have two get functions, say get and get′.

 get s

=> { GetPut }

 get (put s (get′ s))

== { PutGet }

 get′ s

Derived “get”: Existence

Lemma: Given a surjective put function (for any s, there
exist s’, v, such that s = put s’ v), the get function defined
by

 get s = v such that put s v = s

satisfies GetPut and PutGet.

15

Proof:

 get (put s v)

= { condition for put }

 get s

= { definition of get}

 v

 put s (get s)

= { definition of get }

 put s v

= { condition for put }

 s

Derived “get”: Existence

Lemma: Given a surjective put function (for any s, there
exist s’, v, such that s = put s’ v), the get function defined
by

 get s = v such that put s v = s

satisfies GetPut and PutGet.

16

Proof:

 get (put s v)

= { condition for put }

 get s

= { definition of get}

 v

 put s (get s)

= { definition of get }

 put s v

= { condition for put }

 s

Remark

Lemma: if there exists a v satisfying put s’ v = s, then
so does put s v = s.

17

Proof:

 put s’ v = s

=> { put }

 put (put s’ v) v = put s v

== { PutTwice: forall s v. put (put s v) v = put s v }

 put s’ v = put s v

== { Assumtion: put s’ v = s }

 s = put s v

Well-behaved “put”

Definition: A “put” function is said to be well-behaved,
if there exists a (unique) “get” function such that
GetPut and PutGet hold.

18

Exercise

Which of the following puts are well-behaved?

①  put1 s v = s

②  put2 s v = v

③  put2 s v = v+1

Well-behaved “put”

Lemma:

put is well-behaved, iff

1.  View-deterministic

 put s1 v1 = put s2 v2 è v1 = v2

2.  View-stable

 for any s, there exists a v, such that put s v = s

19

Sebastian Fischer, Zhenjiang Hu, Hugo Pacheco, Pearl: A Clear Picture of
Lenses, MPC 2015.

20

Validity Check of “Put”

Theorem:

Well-behavedness of a put defined in treeless languages is
decidable.

Validation Algorithm:

(Soundness): A validated put is well-behaved.

(Completeness): Any well-behaved put can be validated.

Zhenjiang Hu, Hugo Pacheco, Sebastian Fischer, Validity Verification of Putback
Transformations in Treeless Languages in Bidirectional Programming, FM 2014.

Putback-based Bidirectional Programming in BiGUL

•  Full control of bidirectional behavior

•  Put is not that difficult to write

21

http://www.prg.nii.ac.jp/bx/

22

Installing BiGUL

•  1. Get the Glasgow Haskell Compiler (GHC) version
7.10.3. The easiest way is to install the Haskell
Platform:

 https://www.haskell.org/platform/

•  Use Haskell's default build system "cabal" to

install BiGUL 1.0 (as a library). Start your
terminal and run

 > cabal update

 > cabal install BiGUL

23

Test.hs

24

Put and Its Bidirectional Interpretation

•  A putback function:

 px :: BiGUL s v

desrcibes how to use the view to update the source.

•  Bidirectional Interpretation:

get px :: s à Maybe v

put px :: s à v à Maybe s

25

26

-- hello: _ <-> Hello!

hello :: Show a => BiGUL a String

hello = Skip (_ -> "Hello!")

*Main> get hello 1

Just "Hello!”

*Main> get hello 2

Just "Hello!”

*Main> put hello 2 "Hello!"

Just 2

*Main> put hello 2 "Hello!!!"

Nothing

A Quick Tour of BiGUL

1.  Skip

2.  Replace

3.  Product

4.  Source/View Rearragement

5.  Case

27

1. Skip

28

Skip :: (s à v) à BiGUL s v

*Main> put (Skip square) 10 100

Just 10

*Main> put (Skip square) 10 250

Nothing

*Main> get (Skip square) 5

Just 25

Disallow any change on the view

skip1 :: BiGUL s ()

skip1 = Skip (const ())

2. Replace

29

Replace :: BiGUL s s

*Main> put Replace 1 100

Just 100

*Main> put Replace (1,1) (100,200)

Just (100,200)

Use the view to completely replace the source

3. Prod: Production of two puts

30

Prod :: BiGUL s1 v1 à BiGUL s2 v2

 à BiGUL (s1,s2) (v1,v2)

*Main> put (skip1 `Prod` Replace) (5,1) ((),100)

Just (5,100)

*Main> put ((skip1 ‘Prod‘ Replace) ‘Prod‘ Replace) ((5,1),2) (((),100),200)

Just ((5,100),200)

4. Source/View Rearrangements

31

Rearrange the source/view through a natural transformation
tau to make the view and the source have the same structure.

$(rearrS [| tau :: s1 -> s2 |]) :: BiGUL s2 v -> BiGUL s1 v

$(rearrV [| tau :: v1 -> v2 |]) :: BiGUL s v2 -> BiGUL s v1

putPairOverNPair :: (Show s1, Show s2) => BiGUL ((s0,s1),s2) (s1,s2)

putPairOverNPair = $(rearrS [| \((s0,s1),s2) -> (s1,s2) |]) Replace

putPairOverNPair' :: (Show s0, Show s1, Show s2) => BiGUL ((s0,s1),s2) (s1,s2)

putPairOverNPair' = $(rearrV [| \(v1,v2) -> (((),v1),v2) |]) $

 (skip1 `Prod` Replace) `Prod` Replace

A syntactic sugar:

32

$(update [p| source-pattern |]

 [p| view-pattern |]

 [d| updating-strategy |])

putPairOverNPair’’ :: (Show s1, Show s2) => BiGUL ((s0,s1),s2) (s1,s2)

putPairOverNPair’’ = $(update [p| ((_,s1),s2) |]

 [p| (s1,s2) |]

 [d| s1 = Replace; s2 = Replace |])

33

Exercise:

Define pHead to use the view to replace to first element of

the source list.

 pHead :: BiGUL [s] s

pHead :: Show s => BiGUL [s] s

pHead = $(rearrS [| \(s:_) -> s |]) Replace

pHead :: Show s => BiGUL [s] s

pHead = $(update [p| s:_ |] [| s |] [d| s = Replace |]

34

Exercise:

Define pNth to use the view to replace to the ith element of

the source list.

 pNth :: Int à BiGUL [s] s

pNth :: Show s => Int -> BiGUL [s] s

pNth i = if i == 0 then pHead

 else $(rearrS [| \(x:xs) -> (x,xs) |]) $

 $(rearrV [| \v -> ((), v) |]) $

 skip1 `Prod` pNth (i-1)

*PBasic> put (pNth 3) [1..10] 100

Just [1,2,3,100,5,6,7,8,9,10]

*PBasic> get (pNth 3) [1..10]

Just 4

5. Case

35

Case [$(normal [| enteringCond1 :: s -> v -> Bool |] [|exitCond1 :: s -> Bool |])

 ==> (bx1 :: BiGUL s v)

 , $(adaptive [| enteringCond1' :: s -> v -> Bool |])

 ==> (f1 :: s -> v -> s)

 , ...

 , $(normal [| enteringCondn :: s -> v -> Bool |] [|exitCond1 :: s -> Bool |])

 ==> (bxn :: BiGUL s v)

 , ...

 , $(adaptive [| enteringCondm' :: s -> v -> Bool |])

 ==> (fm :: s -> v -> s)

]

 :: BiGUL s v

36

pHead :: Show s => BiGUL [s] s

pHead = $(rearrS [| \(s:_) -> s |]) Replace

repHead :: BiGUL [Int] Int

repHead = Case [

 $(normal [| \s v -> length s > 0 |] [| \s -> length s > 0 |])

 ==> $(rearrS [| \(x:_) -> x |]) Replace,

 $(adaptive [| \s v -> length s == 0 |])

 ==> \s v -> [0]

]

Exercise

Define a safe embedding of a pair of well-behaved
get and put as a putback transformation.

37

emb :: Eq v => (s -> v) -> (s -> v -> s) -> BiGUL s v

emb g p = Case [$(normal [| \s v -> g s == v |] [p| _ |])

 ==> Skip g

 , $(adaptive [| \s v -> {- g s /= v -} True |])

 ==> p

]

distSum :: BiGUL (Int, Int) Int

distSum = emb g p

 where g (x,y) = x+y; p (x,y) v = (v-y,y)

