
 
BiGUL’s	
Bidirectionality

Zhenjiang	Hu	&	Josh	Ko	
National	Institute	of	Informatics,	Japan

Oxford	Summer	School	on	Bidirectional	Transformations  
27	July	2016

Plan
• Review	well-behavedness,	with	partiality	
explicitly	represented.	

• Get	a	taste	of	putback-based	design	by	
looking	at	several	BiGUL	constructs.	

• Start	with	a	natural	put	semantics,	and	
then	revise	it	so	that	a	corresponding	
get	exists.

(Well-behaved)	Lens
put	::	s	->	v	->	Maybe	s 
get	::	s						->	Maybe	v

PutGet

GetPut

Uniqueness	of	get
For	any	lenses	l	and	r, 
 
		put	l	=	put	r		==>		get	l	=	get	r

Proof

Replace	::	BiGUL	v	v
put	Replace	s	v	=	Just	v

Skip	::	BiGUL	s	v	(?)
put	Skip	s	v	=	Just	s

Skip	::	(s	->	v) 
					->	BiGUL	s	v
put	(Skip	f)	s	v	=	if	v	==	f	s 
																						then	Just	s 
																						else	Nothing

joshko
Sticky Note
courtesy of Robby Findler

Prod	::	BiGUL	sl	vl 
					->	BiGUL	sr	vr 
					->	BiGUL	(sl,sr)	(vl,vr)

put	(l	`Prod`	r)	(sl,	sr)	(vl,	vr)	=	do 
		sl’	<-	put	l	sl	vl 
		sr’	<-	put	r	sr	vr 
		return	(sl’,	sr’)

get	(l	`Prod`	r)	(sl,	sr)	=	do 
		vl	<-	get	l	sl 
		vr	<-	get	r	sr 
		return	(vl,	vr)

PutGet	for	Prod
Assume 
put	(l	`Prod`	r)	(sa,	sb)	(va,	vb)	
		=	Just	(sa’,	sb’)

Prove 
get	(l	`Prod`	r)	(sa’,	sb’)	=	(va,	vb)

(do	sl’	<-	put	l	sa	va 
				sr’	<-	put	r	sb	vb 
				return	(sl’,	sr’))	=	Just	(sa’,	sb’)

(do	vl	<-	get	l	sa’ 
				vr	<-	get	r	sb’ 
				return	(vl,	vr))	=	Just	(va,	vb)

PutGet	for	Prod
(do	sl’	<-	put	l	sa	va 
				sr’	<-	put	r	sb	vb 
				return	(sl’,	sr’))	=	Just	(sa’,	sb’)

∃	sl’.	put	l	sa	va	=	Just	sl’	∧ 
∃	sr’.	put	r	sb	vb	=	Just	sr’	∧ 
Just	(sl’,	sr’)	=	Just	(sa’,	sb’)

put	l	sa	va	=	Just	sa’	∧	put	r	sb	vb	=	Just	sb’

PutGet	for	Prod
Assume	
put	l	sa	va	=	Just	sa’ 
put	r	sb	vb	=	Just	sb’

Prove	
get	l	sa’	=	Just	va 
get	r	sb’	=	Just	vb

Case	(binary)

put	(Case	(pl,	l)	(pr,	r))	s	v	= 
		if						pl	s	v	then	put	l	s	v 
		else	if	pr	s	v	then	put	r	s	v 
		else	Nothing

type	CaseBranch	s	v	=	(s	→	v	→	Bool,	BiGUL	s	v)  

Case	::	CaseBranch	s	v 
					->	CaseBranch	s	v 
					->	BiGUL	s	v

Case	(with	exit	conditions	
and	adaptation)
type	CaseBranch	s	v	= 
		(s	→	v	→	Bool,	BiGUL	s	v,	s	->	Bool) 

type	CaseAdaptiveBranch	s	v	= 
		(s	->	v	->	Bool,	s	->	v	->	s) 

Case	::	CaseBranch	s	v 
					->	CaseBranch	s	v 
					->	CaseAdaptiveBranch	s	v 
					->	BiGUL	s	v

Rearrangement
• $(rearrV	[|	\(Left	(x,y))	->	(y,x)	|])	…	

• Key:	pattern	matching	and	expression	
evaluation	are	invertible	

• Type-safe	implementation	with	Haskell’s	
generalised	algebraic	datatypes

