'L(‘ UNIVERSITAT PADERBORN

Die Universitdt der Informationsgesellschaft

BX with Triple Graph Grammars

PART 2: SYMMETRIC
DELTA LENSES

'L(‘ Delta Propagation

forward propagation
“‘completes the square”

- J

Anthony Anjorin: An Introduction To Triple Graph Grammars

-

_

Nodes are models,
arrows are deltas,

dashed outline indicates

derived elements

~N

J

Note: This is NOT a

pushout square!

~

'L(‘ Delta Propagation

I
A |< > B
|
. fpg |
|
v r. v
A le oo > B

this (model synchronisation) is of
course a simplification — we’ll have to

deal with concurrent delta propagation
one day (model integration)

Anthony Anjorin: An Introduction To Triple Graph Grammars

-

_

Nodes are models,
arrows are deltas,

dashed outline indicates

derived elements

~N

J

>| B
b

\4

--->| B

'L(‘ Symmetric Delta Lenses (SDL)

-

_

Nodes are sets, arrows |
are total functions

~N

J

/\AB X AB

=

STrcp \

Src A Ap trg M

<\
BQ/AB

irgp

_J

-

_

iIndicated on previous slide

... with all incidence conditions

.

/ Lf M

N\

pair of fpg and bpg functions

forms a “lens” shape

~

J

R (with some imagination)
A+—DB ¢

Anthony Anjorin: An Introduction To Triple Graph Grammars

'L(‘ Specifying SDLs

we specify an SDL?

A+ B \
(> ﬁgiven a triple space, how do

J

r r
A B A
Idea 1: T e 5 -
Enumerate all squares: - ’&9 b a ! {y‘ :
Y r —yﬂ —yﬂ r
Al le ———————- >:L___: N >

Anthony Anjorin: An Introduction To Triple Graph Grammars

'L(‘ Exhaustive Enumeration

source :HospitalTo target
DosagePlan

:Hospital < >| :DosagePlan

name = "Springfield
General Hospital"
I

doctors patients
/ pharmaceuticals
:Doctor > —
: — Aspirin
name = "Nick Riviera" P
\t' 1
patients
~N v
:Patient

name = "Lisa"

Anthony Anjorin: An Introduction To Triple Graph Grammars

source :HOSpitalTO target
DosagePlan

:Hospital < >| :DosagePlan

name = "Springfield
General Hospital"

doctors patients
pharmaceuticals

:Doctor \? —
name = "Nick Riviera" -ASPITN

patients

\4
:Patient

name = "Lisa’ fp g

. . source :HOSpitaITo target _
:‘Hospital DosagePlan > :DosagePlan
name = "Springfield
General Hospital"
doctors patiLnts dosages
/ pharmaceuticals
:Doctor ? — source | :MedicationTo target 'Do\s/age
, — Aspirin S :
name = "Nick Riviera" P Dosage —
— A Brand = Ascriptin
patients prescribed
vV /~
:Patient

name = "Lisa"

Exhaustive enumeration
A

Idea 1:

Enumerate all squares: ’%9 b

not really feasible...
but why not?

we typically have infinitely
many such squares

Anthony Anjorin: An Introduction To Triple Graph Grammars

Simultaneous, exhaustive enumeration
A

r

Idea 2: A S > B
Enumerate all squares representing] : . i
combined fpg and bpg squares \:v bpg ngpg :

Al tsiB

Anthony Anjorin: An Introduction To Triple Graph Grammars

‘Hospital

name = "Springfield

General Hospital"

:Doctor

<

source

:HospitalTo

name = "Nick Riviera"

doctors patients
pharmaceuticals
N\
:Aspirin
patients V
:Patient

name = "Lisa"

‘Hospital

name = "Springfield
General Hospital"

bpg

source

DosagePlan

target

:HospitalTo
DosagePlan

:DosagePlan

fpg

source

=

doctors patients
‘éf/, pharmaceuticals
:Doctor ? —
. . . -ASPIrIN
name = "Nick Riviera" &
~ .//)3'
patients prescribed
vV ~
:Patient

name = "Lisa"

:MedicationTo
Dosage

t 1
ki >| :DosagePlan
dosages
t \4
arget
> :Dosage

Brand = Ascriptin

Simultaneous, exhaustive enumeration
A

:Hospital

name = "Springfield
General Hospital"

doctors patients

&

:Doctor

patients

name = "Nick Riviera"

pharmaceuticals

source

‘Patient

name = "Lisa"

|

— source | :MedicationTo target :
w Dosage > :Dosage
Brand = Ascriptin

prescribed

TRVl

:HospitalTo
DosagePlan

:DosagePlan

dosages

¢

) —

let's use green (and red) to merge both
corners of the square now in a single diagram

.

J

Anthony Anjorin: An Introduction To Triple Graph Grammars

11

Simultaneous, exhaustive enumeration
A

Idea 2: f\
Enumerate all squares representing | .
combined fpg and bpg squares \:v fpgégbpg

still infeasible, but
quite a nice idea...

Why?

- promotes “symmetrical” thinking and avoids
favouring either fpg or bpg

- easier to enforce “good” lens specifications

- we obviously only have to enumerate half of
all squares (still typically infinitely many)

Anthony Anjorin: An Introduction To Triple Graph Grammars

'L(‘ Simultaneous rules

Idea 3:
specify infinitely many deltas using finitely many rules
(precondition and postcondition graph patterns)

Anthony Anjorin: An Introduction To Triple Graph Grammars

13

'L(‘ Simultaneous rules

:Hospital

<

source

name = "Springfield]
General Hospital"

doctors

yd

patients

:Doctor

" name = "Nick Riviera"i

S\

patients

pharmaceuticals

N\

:‘HospitalTo
DosagePlan

target

:Aspirin

source

< —

A

prescribed

~N Vo

_:Patient

name = "Lisa"

‘MedicationTo
Dosage

target

> :DosagePlan

dosages

v

we just have to represent these
concrete values as variables

N

:Dosage

Brand = Ascriptin

Anthony Anjorin: An Introduction To Triple Graph Grammars

14

'L(‘ Simultaneous rules

:Hospital

<

source

about the doctor?

ya

:Doctor

N

patients

why do we care J

/ patients

pharmaceuticals

\

:Aspirin

A

prescribed

N VS

‘Patient

:‘HospitalTo
DosagePlan

target

Anthony Anjorin: An Introduction To Triple Graph Grammars

source | :MedicationTo target
Dosage

>| :DosagePlan

dosages

v

Brand = Ascriptin

we should not fix the
mapping to a brand

_

~

J

15

'L(‘ Simultaneous rules

:Hospital

<

source

V ~

:Patient

patients \

pharmaceuticals

N

:Aspirin

A

prescribed

:HospitalTo
DosagePlan

target

Anthony Anjorin: An Introduction To Triple Graph Grammars

source| :MedicationTo target
Dosage

:DosagePlan

dosages

v

16

'L(‘ Simultaneous rules

Idea 3:
specify infinitely many deltas using finitely many rules
(precondition and postcondition graph patterns)

very important idea, as

we’ve finally made the jump
to a finite specification

specifying all deltas this way
is still a lot of work ...

Anthony Anjorin: An Introduction To Triple Graph Grammars 17

Simultaneous, monotonic rules
A

Idea 4:

only specify monotonic rules, i.e., only
describing purely creating deltas

source

source

:Hospital |<
patients
pharmaceuticals
:Aspirin
prescribed
\
:Patient

:‘HospitalTo
DosagePlan

target

4)
composite deltas are

decomposed into steps we
know how to deal with

:MedicationTo
Dosage

target

N 2 o
N
> :DosagePlan
dos%es
>| :Dosage deletion is handled by “rolling

back” rule applications

\

Anthony Anjorin: An Introduction To Triple Graph Grammars

18

_
precondition

(LHS)

source

:Hospital

:‘HospitalTo

pharmaceuticals

DosagePlan

:DosagePlan

[rule (production)

name = "Springfleld
General Hospital"

doctors
/ pppppppp glc als
:Doctor
- — :Aspirin
name = "Nick Riviera" |I|

patients
N V.
:Patient

name = "Lisa"

match
m< (morphism)
|
:‘Hospital a 5%2:82?3';% ‘‘‘‘‘‘ :DosagePlan

"\
ﬁost graph I

postcondition

(RHS)

\ Concrete deltas are derived via rule application

-

result is constructed via a
disjoint union of the RHS and
host graph, and a subsequent

gluing of all elements with

common image in the LHS

described
creating delta

7
e
. . ‘HospitalTo .
:Hospital DosagePlan :DosagePlan
pati(lents\
pharmaceutcals . dosages
\ source . 1 1 r
[Aspirin J<— Moot | >["Dosage |
Dosage
i
rrrrrrrrrr
"y
1y
LI |
\ 1
1y
LI |
1y
1y
LI |
[I] ,
1y m
LI |
1y
1y
LI |
1y
1y
LI |
| Yl J
L'
LY
\ W)
x// w
) . :HospitalTo .
:Hospital DosagePlan :DosagePlan

name = "Springfield
General Hospital"

doc

tttttttttttt
aaaaaaaaaaaaaaa

g :Doctor N\
name = "Nick Riviera" /

patients prescribed

M

:Patient

name = "Lisa"

source . 1 H
:MedicationTo

Dosage

sssssss

|

xxxxxx
—— > :Dosage

Anthony Anjorin: An Introduction To Triple Graph Grammars

19

'L(‘ Concrete deltas are derived via rule application

4)

Nodes are triple graphs, arrows |-
are triple graph morphisms

- J

R
|
|
|
|
|
V p' _ \l/_] N\
! this construction is a pushout
- in the category of (typed,
attributed) triple graphs and
triple graph morphisms
J

B e

all you need to know:

rule application is formal, always possible,
and is unique up to isomorphisms

A e e A

Anthony Anjorin: An Introduction To Triple Graph Grammars 20

'L(‘ Implicit ignore rules

Idea 5:

derive some “boring” rules by convention, i.e.,
assume they are specified implicitly

target

. _ ‘HospitalTo
1 -HOS |ta| source
p . P < DosagePlan
_ | source :HospitalTo
:Hospital DosagePlan

p2;

presc
:Patient

pharmaceuticals

>

:DosagePlan

SSSSSS

:MedicationTo
Dosage

tttttt

:DosagePlan

derive a minimal rule
to create every object

4) ~—

for every element in p3:
the metamodel, that is 4
not created by any rule p%-
Y
l/ p5:
| :Hospital | | :Hospital | | :Hospital |
| [|
:Patient :Doctor :Aspirin :Patient
p6 p/ pS P9

and a minimal rule to
create every link

[

Anthony Anjorin: An Introduction To Triple Graph Grammars

\
these rules are called

ignhore rules as they are
only in one domain

21

| h L
'L(‘ From Triple Graph Grammars to Lenses

-

N

R

MediSoft <«

> MediSupply
_J

><Luser supplies a triple space

\

(via a triple of metamodels)
J

+

_

p1:

‘Hospital

:Hospital | €————ol

:HospitalTo
DosagePlan

SSSSSS

u pharmaceuticals
2 . \

prescr
:Patient

:‘HospitalTo
DosagePlan

tttttt

:DosagePlan

SSSSSS

:MedicationTo
Dosage

tttttt

:DosagePlan

sssssss

Il

/ and a finite set of monotonic,

simultaneous triple rules, i.e., a
triple graph grammar

\

J

Anthony Anjorin: An Introduction To Triple Graph Grammars

22

| h L
'L(‘ From Triple Graph Grammars to Lenses

a TGG tool does
some “magic”

R
[MediSoft 4> MediSupply}

eMoflon and produces a
symmetric delta lens!

R — A S

coming up: we’ll take a closer look
at the “magic” involved and some
formal properties used to control D

e e e

Anthony Anjorin: An Introduction To Triple Graph Grammars

23

'L(‘ Task 2: Your first Triple Graph Grammar

3. Open VM, start Eclipse with shortcut on desktop

4. Choose workspaces/task?2 as your workspace

5. Follow instructions from https://db.tt/g9uGurls

......
.......

Anthony Anjorin: An Introduction To Triple Graph Grammars 24

https://www.virtualbox.org
https://db.tt/gYgQMShZ
https://db.tt/g9uGurIs

