
1 

Architecture, Design (and a little 
Verification) for BX 

Richard Paige 
Dept of Computer Science, University of York 

@richpaige 



2 



3 Contents 

•  What is architecture and design for 
transformations and BX? 

•  Architecture specification for BX. 
•  Detailed design specification for BX. 
•  Design patterns for BX. 
•  (just a little on…) Verification for BX. 
 



4 Motivation 

•  Large and complicated BX are like large 
and complicated software systems: 
– Many parts 
– Complex interrelationships and dependencies 
– Sophisticated behaviour (often implicit) 
– Difficult to get right, difficult to verify. 

•  Large software is seldom monolithic. 
– Decomposed into interdependent components 



5 Motivation 

•  Architecture for BX and transformations is 
complicated: 
– What are the constituent blocks? 
– How can they be related? (ports, protocols, 

buffers) 
– How can a transformation architecture be 

integrated with other components 
•  e.g., code generators, visualisations (e.g., non-

MDE). 



6 Architecture 
in transML 



7 Architecture 
in transML 
•  Components	and	connectors	that	interact	via	
direc1onal	interfaces.	
– Architectural	components	can	be	transforma1ons,	
so9ware	(black	box),	actors	(human	interven1on),	or	
composites	

•  BX	do	not	exist	in	a	vacuum!	
–  Types	(of	interfaces,	ports,	components)	given	by	
metamodels,	event	types,	artefacts	or	architectural	
components.	

•  Contracts	can	be	imposed	to	restrict	expected	
inputs	and	outputs,	and	to	enable	conformance	
checking.	



8 Architecture 
Example 

•  Transforma1on	centric	view	
•  Unidirec1onal:	OO->DB->op1mise->SQL	



9 Architecture 
Example 

•  Transforma1on	centric	view	
•  Bidirec1onal	components:	OO->DB->op1mise-
>SQL	



10 Architecture 
Example 

•  Transforma1on	centric	view	
•  Bidirec1onal	components:	OO->DB->op1mise-
>SQL	



11 Architecture 
Example 

•  Type	centric	view	(is	this	a	slightly	different	
architecture?)	

•  BX:	OO2DB,	Normalise,	GenSchSQL	could	be	run	
individually	in	either	direc1on.	

•  Similar	to	a	megamodel,	where	components	are	
visualised	as	arrows	connec1ng	interfaces.	
–  Useful	for	bridging	grammars	and	models.	

UML	 DB	
SQL	

Grammar	
ISO	9075	OO2DB	 GenSchSQL	

Normalise	



12 Architecture 
Styles? 

•  Are	there	BX	equivalents	to	typical	so9ware	
architectural	styles?	
– Pipe-and-Filter	
– Model-View-Controller	
– Layered	
– Pub-Sub	
– Data-Centric	



13 BX Design 

•  The	architecture	of	a	transforma1on	indicates	
the	key	components	and	their	connectors.	

•  Engineering	of	BX	con1nues	with	design.	
– High-level	design:	what	is	transformed	into	what?	
– Low-level	design:	how	is	the	transforma1on	
carried	out?	

•  Take	each	in	turn	



14 BX High-Level 
Design 

•  Mapping	diagram.	
•  Captures	the	mappings	between	arbitrary	
elements	in	the	transforma1on.	

•  transML	uses	a	concrete	syntax	inspired	by	
TGGs.	
– However,	mappings	are	not	meant	to	be	used	as	a	
tracing	mechanism	to	guide	execu1on	of	code.	

•  Don’t	address,	e.g.,	execu1on	flow.	



15 BX Mapping 
Metamodel 



16 BX Mapping 
Example 



17 BX Mapping Example – 
Adding Constraints 



18 BX Low-
Level Design 

•  Indicates	how	the	BX	is	to	be	implemented.	
•  Could	use	a	BX	programming	language	here.	

– But	transML	provides	low-level	design	languages	
to	try	to	support	plaaorm	independence,	focus	on	
essen1als	

– Essen1als:	rule	structure,	control	flow,	blocks	
(some	not	present	in	programming	languages).	

•  transML:	rule	structure	model	and	rule	
behaviour	model.	



19 Rule Structure 
Metamodel 

•  Describes	structure	of	rules	(input,	output),	
execu1on	flow,	and	data	dependencies	



20 Rule Structure 
Models 

•  These	refine	mapping	diagrams.	
•  A	rule	can	contribute	to	the	implementa1on	
of	several	mappings.	

•  Rules	may	be	uni-	or	bidirec1onal.	
•  Execu1on	flow	may	be	explicit	(e.g.,	a	subclass	
of	Flow)	or	non-determinis1c:	
– A	set	of	rules	can	be	placed	inside	a	non-
determinis1c	block	



21 Example 



22 Example 
transforma1on	Tree2Graph	{	

	nondeterminis1c	RuleBlockForward	{	
			 	bidirec1onal	Tree2Node	{..};	
	 	bidirec1onal	TreeEdge2GraphEdge	{..}	;	
	}	
	nondeterminis1c	RuleBlockBackward	{	
	 	bidirec1onal	TreeLabelsfromNodeLabels	{..};	
	 	bidirec1onal	TreeEdgesfromGraphEdges{..};	
	}	

}	
	



23 Rule Structure 
Model 

•  With	rule	structure,	the	par1cular	
implementa1on	language	of	choice	needs	to	
be	considered.	

•  This	is	because	these	models	capture	the	rules	
and	their	execu1on	flow	(which	is	language	
seman1cs-specific).	
– For	example,	execu1on	flow	in	ETL:	each	rule	is	
executed	once	at	each	instance	of	input;	for	graph	
transforma1on	it’s	“as	long	as	possible”.	



24 Rule Behaviour 
Diagram 

•  The	rule	structure	models	treat	rules	as	black-
boxes,	ignoring	behaviour:	
– Ajribute	computa1on,	object	and	link	crea1on.	

•  Specified	using	rule	behaviour	diagrams:	
– Ac1on	language	
– Declara1ve	graphical	pre/post	
– Object	diagrams	annotated	with	opera1ons	
(similar	to	Catalysis	snapshots)	



25 Example 



26 

Design	Pajerns	for	BX	



27 Design Patterns 

•  Capture	recurring	design	problems	and	their	
solu1ons	(which	must	be	instan1ated).	

•  Many	different	pajerns	in	the	literature,	
including	some	for	model	transforma1on	
design.	
– Some	of	these	pajerns	are	applicable	to	the	
design	of	uni-	or	bidirec1onal	transforma1ons.	

– Some	specific	for	BX.	
– Several	examples.	



28 Auxiliary 
Correspondence Model 

•  Weaving	tools	(such	as	AMW,	EML)	can	be	used	to	
propagate	changes	from/to	models	in	a	BX.	
–  They	do	or	can	make	use	of	an	auxiliary	correspondence	
(weaving)	model.	

•  Pajern:	defines	auxiliary	model	elements	and	
associa1ons	that	link	source	and	target	elements.	

•  Why:	used	to	record	mappings	performed	by	a	BX,	and	
to	propagate	modifica1ons	when	one	model	changes.	

•  Benefits:	separa1on	of	concerns,	helps	to	ensure	
correctness	

•  Disadvantages:	must	maintain	an	addi1onal	model.	



29 Unique Instantiation 

•  Why:	Avoids	crea1on	of	unnecessary	elements	of	
models	and	helps	to	resolve	nondeterminis1c	
choice	in	reverse	mappings.	
–  E.g.,	in	check-before-enforce	in	QVT-R:	new	elements	
are	not	created	if	there	are	elements	that	sa1sfy	the	
rela1ons.	

•  Benefits:	helps	to	establish	hippocra1cness	
•  Disadvantages:	must	test	for	existence,	adds	to	
cost	(but	other	pajerns	like	indexing	can	help).	



30 Map Objects Before 
Links 

•  Why:	Separates	the	rela1on	between	elements	in	
target	and	source	models	from	the	rela1on	between	
links	in	the	models.	
–  That	is,	first	map	“nodes”,	then	map	“edges”	(largely	
useful	for	models	with	self-associa1ons	or	circular	
dependencies)	

•  Benefits:	modular	specifica1on,	e.g.,	if	new	associa1on	
is	added	to	languages,	new	rela1on	can	be	added	more	
easily.	

•  Disadvantages:	edges	modular,	features	may	not	be!	
– We’ve	seen	this	type	of	trade-off	before!	



31 

Verifica1on	of	BX	



32 Verification of BX 

•  Many	approaches,	including	correctness	by	
construc1on,	unit	tes1ng,	etc.	
–  transML	includes	a	model-based	tes1ng	approach	
where	tests	can	be	automa1cally	generated	from	
transforma1on	scenarios	

•  Will	talk	about	one	specific	and	different	
approach.	



33 BX: is there another 
way? 

if a framework existed in which it were possible to 
write the directions of a transformation separately 
and then check, easily, that they were coherent, we 
might be able to have the best of both worlds

Stevens, P.:  A landscape of bidirectional model transformations. In: GTTSE 2007.



34 “Faking” BX in 
Epsilon 

•  Epsilon	is	a	plaaorm	of	interoperable	model	
management	languages	

•  No	direct	support	for	BX,	but:	
		=>	languages	for	unidirec1onal	transforma1ons	(ETL,	
EWL,	EOL)	
		=>	an	inter-model	consistency	language	(EVL)	

•  BX	can	be	faked	in	Epsilon	by:	
		(1)	defining	pairs	of	unidirec1onal	transforma1ons	
		(2)	defining	consistency	via	inter-model	constraints	

constraint violation repair transformationupdate transformation



35 OO2RDBMS 

•  two	metamodels:	class	diagram	and	rela1onal	DB	
•  consistency	defined	in	terms	of	a	correspondence	between	

the	data	(ajributes)	in	the	models	

class diagram relational DB

• two metamodels: class diagram and relational DB

• consistency defined in terms of a correspondence 
between the data in the models

Class Diagrams to Relational Databases
(the forbidden example)

iar object-oriented concepts (e.g. classes, attributes, relationships), whereas relational
database models conform to a language describing how databases are constructed (e.g.
tables, columns, primary keys). Here, consistency is defined in terms of a correspon-
dence between the data in the models, e.g. every table n corresponds to a class n, and
every column m corresponds to an attribute m. Figure 1 contains two simple models
that are consistent in this sense (we omit the metamodels for lack of space).

:Class

name = "users"

:Attribute

pkey = True
name = "id"

:Attribute

pkey = False
name = "username"

feature feature

:Table

name = "users"

:Column

name = "id"

:Column

name = "username"

pkey column

Fig. 1. Two consistent CD and RDB models

Users of the models should
be able to create new classes (or
tables) whilst maintaining inter-
model consistency. A bx would
be well suited for this: upon the
creation of a new class (resp. ta-
ble), a table (resp. class) should
be created with the same name
to restore consistency. We can
fake this simple bx in Epsilon with a pair of unidirectional transformations (one for
updating the class diagram model, one for updating the relational database) and a set of
EVL constraints. For the former, we can use the Epsilon Wizard Language (EWL) to de-
fine a pair of update-in-place transformations, AddClass and AddTable (for simplicity,
here we assume the new class/table name newName to be pre-determined and unique,
but Epsilon does support the capturing and sharing of such data between wizards).
wizard AddClass {

do {
var c : new Class ;
c .name = newName ;
self .Class .all .first ( ) .contents .add (

c ) ;
}}

wizard AddTable {
do {
var table : new Table ;
table .name = newName ;
self .Table .all .first ( ) .contents .add (

table ) ;
}}

Using the Epsilon Validation Language (EVL), we express the relevant notion of inter-
model consistency: that for every class n, there exists a table named n (and vice versa).
If one of the constraints is violated, Epsilon can automatically trigger the relevant trans-
formation to attempt to restore consistency. For example, after executing the transfor-
mation AddClass, the constraint TableExists will be violated, indicating that the
transformation AddTable should be executed to restore consistency.
context OO !Class {
constraint TableExists {

check : DB !Table .all .select (t |t .name
= self .name ) .size ( ) > 0

}}

context DB !Table {
constraint ClassExists {

check : OO !Class .all .select (c |c .name
= self .name ) .size ( ) > 0

}}

This example of a bx, “faked” in Epsilon, is a deliberately simple one chosen to illustrate
the concepts. Note even that the CD2RDBM problem can lead to more interesting (i.e.
less symmetric) bx, e.g. manipulating inheritance in the class model.

3 Checking Compatibility of the Transformations

The critical difference between the “faked” bx in the previous section and a true bx is
the absence of guarantees about the compatibility of the transformations: upon the vio-
lation of TableExists, for example, does the execution of AddTable actually restore
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36 Example BX “faked” 
in Epsilon 

•  users	of	the	models	should	be	able	to	create	new	classes	(or	
tables)	whilst	maintaining	consistency	

•  first,	we	specify	a	pair	of	unidirec1onal	transforma1ons	in	
Epsilon’s	update-in-place	language	

• users of the models should be able to create new 
classes (or tables) whilst maintaining consistency

• first, we specify a pair of unidirectional 
transformations in Epsilon’s update-in-place language

Example bx “faked” in Epsilon

iar object-oriented concepts (e.g. classes, attributes, relationships), whereas relational
database models conform to a language describing how databases are constructed (e.g.
tables, columns, primary keys). Here, consistency is defined in terms of a correspon-
dence between the data in the models, e.g. every table n corresponds to a class n, and
every column m corresponds to an attribute m. Figure 1 contains two simple models
that are consistent in this sense (we omit the metamodels for lack of space).
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pkey = True
name = "id"

:Attribute

pkey = False
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feature feature

:Table

name = "users"

:Column

name = "id"

:Column

name = "username"

pkey column

Fig. 1. Two consistent CD and RDB models

Users of the models should
be able to create new classes (or
tables) whilst maintaining inter-
model consistency. A bx would
be well suited for this: upon the
creation of a new class (resp. ta-
ble), a table (resp. class) should
be created with the same name
to restore consistency. We can
fake this simple bx in Epsilon with a pair of unidirectional transformations (one for
updating the class diagram model, one for updating the relational database) and a set of
EVL constraints. For the former, we can use the Epsilon Wizard Language (EWL) to de-
fine a pair of update-in-place transformations, AddClass and AddTable (for simplicity,
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transformation AddTable should be executed to restore consistency.
context OO !Class {
constraint TableExists {

check : DB !Table .all .select (t |t .name
= self .name ) .size ( ) > 0

}}

context DB !Table {
constraint ClassExists {

check : OO !Class .all .select (c |c .name
= self .name ) .size ( ) > 0

}}
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less symmetric) bx, e.g. manipulating inheritance in the class model.

3 Checking Compatibility of the Transformations
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the absence of guarantees about the compatibility of the transformations: upon the vio-
lation of TableExists, for example, does the execution of AddTable actually restore



37 Example BX “faked” 
in Epsilon 

•  then,	we	specify	and	monitor	inter-model	constraints	that	
express	what	it	means	to	be	consistent	
• then, we specify and monitor inter-model constraints 

that express what it means to be consistent
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model consistency. A bx would
be well suited for this: upon the
creation of a new class (resp. ta-
ble), a table (resp. class) should
be created with the same name
to restore consistency. We can
fake this simple bx in Epsilon with a pair of unidirectional transformations (one for
updating the class diagram model, one for updating the relational database) and a set of
EVL constraints. For the former, we can use the Epsilon Wizard Language (EWL) to de-
fine a pair of update-in-place transformations, AddClass and AddTable (for simplicity,
here we assume the new class/table name newName to be pre-determined and unique,
but Epsilon does support the capturing and sharing of such data between wizards).
wizard AddClass {

do {
var c : new Class ;
c .name = newName ;
self .Class .all .first ( ) .contents .add (

c ) ;
}}

wizard AddTable {
do {
var table : new Table ;
table .name = newName ;
self .Table .all .first ( ) .contents .add (

table ) ;
}}

Using the Epsilon Validation Language (EVL), we express the relevant notion of inter-
model consistency: that for every class n, there exists a table named n (and vice versa).
If one of the constraints is violated, Epsilon can automatically trigger the relevant trans-
formation to attempt to restore consistency. For example, after executing the transfor-
mation AddClass, the constraint TableExists will be violated, indicating that the
transformation AddTable should be executed to restore consistency.
context OO !Class {
constraint TableExists {

check : DB !Table .all .select (t |t .name
= self .name ) .size ( ) > 0

}}

context DB !Table {
constraint ClassExists {

check : OO !Class .all .select (c |c .name
= self .name ) .size ( ) > 0

}}

This example of a bx, “faked” in Epsilon, is a deliberately simple one chosen to illustrate
the concepts. Note even that the CD2RDBM problem can lead to more interesting (i.e.
less symmetric) bx, e.g. manipulating inheritance in the class model.

3 Checking Compatibility of the Transformations

The critical difference between the “faked” bx in the previous section and a true bx is
the absence of guarantees about the compatibility of the transformations: upon the vio-
lation of TableExists, for example, does the execution of AddTable actually restore
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“faked” 

•  fake	BX	lack	the	consistency	guarantees	that	true	BX	have	
by	construc1on	
	

•  what	does	this	mean?	
		=>	compa6bility	of	the	direc6ons	might	not	be	maintained	
	(e.g.,	discovered	when	checking	consistency)	

							=>	repair	transforma6ons	might	not	actually	restore	consistency	
	

•  our	example	is	obviously	compa1ble,	but	we	should	be	able	
to	check	this	easily	and	automa1cally	
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•  graph	transforma1on	(GT)	is	a	computa1on	abstrac1on	
		=>	state	is	represented	as	a	graph	
		=>	computa6onal	steps	represented	as	GT	rule	applica6ons	
	

Exploit	graph	transforma1on	verifica1on	
techniques	to	check	compa1bility	

Our proposal 
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Our proposal 

• graph transformation (GT) is a computation abstraction
  => state is represented as a graph
  => computational steps represented as GT rule applications

Our proposal: exploit graph 
transformation verification techniques to 

check compatibilityr,R correspond to rule (resp. rule set) application, returning H if there exists
some G ⇒r H (resp. G ⇒R H); otherwise fail. Program P ;Q denotes sequential
composition. Program P ! denotes as-long-as-possible iteration of P . Finally, the
conditional programs execute the first or second branch depending on whether
executing C returns a graph or fail, with the distinction that the if construct
does not retain any effects of C, whereas the try construct does.

Example 2. Consider the program init; grow! defined by the rules:

init : grow :

∅ ⇒
1

⇒
1

acL = ¬tc

where tc is an (unspecified) M-condition over L expressing some termination
condition for the iteration (proving termination is not our concern here, see
e.g. [19]). The program, if executed on the empty graph, nondeterministically
constructs and returns a tree. It applies the rule init exactly once, creating an
isolated node. It then iteratively applies the rule grow (each application adding
a leaf to the tree) until the termination condition tc holds. An example program

run, with tc = ∃(
1

), is:

∅ ⇒ ⇒ ⇒ ⇒
⊓%

5 Constructing a Weakest Liberal Precondition

In this section, we present a construction for the weakest liberal precondition
relative to a rule r and a postcondition c (which is an M-constraint). In our
terminology, if a graph satisfies a weakest liberal precondition, then: (1) any
graphs resulting from applications of r will satisfy c; and (2) there does not exist
another M-constraint with this property that is weaker. (Note that we do not
address termination or existence of results in this paper.)

The construction is adapted from the one for nested conditions in [7], and as
before, is broken down into a number of stages. First, a translation of postcon-
ditions into M-conditions over R (transformation “A”); then, from M-conditions
over R into M-conditions over L (transformation “L”); and finally, from M-
conditions over L into an M-constraint expressing the weakest liberal precondi-
tion (via transformations “App” and “Pre”).

First, we consider transformation A, which constructs an M-condition over
R from a postcondition (an M-constraint) by computing a disjunction over all
the ways that the M-constraint and comatches might “overlap”.

Theorem 2 (M-constraints to M-conditions over R). There is a transfor-
mation A, such that for all M-constraints c, all rules r with right-hand side R,
and all injective morphisms h : R ↪→ H,

h |=I∅ A(r, c) if and only if H |= c.
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43 GT Verification 

•  func1onal	correctness	of	GT	rules	can	be	verified	in	a	
weakest	precondi1on	style	

•  pre-	and	postcondi1ons	are	expressed	in	the	graph-based	
logic	of	nested	condi1ons,	equiv.	to	FO	logic	

•  roughly,	to	verify	{pre}	P	{post}:	

GT rules�
P

nested conditions�
pre & post

calculate WP(P, post)

Does  pre => WP(P, post)?



44 Rigorous “faking” 

•  translate	the	unidirec1onal	transforma1ons	to	GT	rules	
		=>	denoted	PS	and	PT	
	

•  translate	the	inter-model	constraints	to	nested	condi1ons	
		=>	denoted	evl	
	

•  automa1cally	discharge	the	following	specifica1ons	using	
the	weakest	precondi1on	calculi	

{evl} PS; PT {evl} {evl} PT; PS {evl}



45 
PS PT

evl

Proving consistency of our CD/DB bx

"faked" BX 
in Epsilon

EVL constraints to 
nested conditions

model transformations 
to graph programs

WLP 
construction

PS
FO validity

FO validity

evl �
Wlp(PS ;PT , evl)

evl �
Wlp(PT ;PS , evl)

compatible
yes

yes

??

??
no / loop

no / loop
evl

PT

Fig. 2. Overview of the process for checking compatibility of the transformations

metamodels). Similar concerns must be addressed for the translations of EVL to nested
conditions (we can take inspiration from recent work on such translations for core OCL
[2]). For the challenge of checking validity, we aim to leverage existing FO theorem
provers (e.g. Vampire) as much as possible, adapting existing translations of nested
conditions to FO logic [7,14]. Given the undecidability of FO validity, we also aim to
explore the use of the GROOVE model checker [6] in finding counterexamples when
the theorem provers respond with “no”, or do not appear to terminate.

Our example bx for the CD2RDBM problem is easily translated into graph programs
and nested conditions, as given in Figure 3. The programs PS , PT are the individual
rules creating respectively a class or table node labelled newName (here, ⇤ denotes the
empty graph, indicating that the rules can be applied without first matching any struc-
ture, i.e. unconditionally). The nested condition evl, given on the right, expresses that
for every class (resp. table) node, there is a table (resp. class) node with the same name
(we do not define here a formal interpretation, but note that x, y are variables, and that
the numbers indicate when nodes are the same down the nesting of the formula). Were
the weakest liberal preconditions to be constructed, we would find:

Wlp(PS ;PT , evl) � Wlp(PT ;PS , evl) � evl.

Since evl ⇥ evl is clearly valid, both {evl} PS ; PT {evl} and {evl} PT ; PS {evl}
must hold, and—assuming correctness of the abstractions—the original EWL transfor-
mations are therefore compatible with respect to the EVL constraints.

�( , �( )):Class
name = x

:Class
name = x

:Table
name = x

1 1

�( , �( )):Table
name = y

:Table
name = y

:Class
name = y

2 2

:Class
name = newName� �

:Table
name = newName� � �
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metamodels). Similar concerns must be addressed for the translations of EVL to nested
conditions (we can take inspiration from recent work on such translations for core OCL
[2]). For the challenge of checking validity, we aim to leverage existing FO theorem
provers (e.g. Vampire) as much as possible, adapting existing translations of nested
conditions to FO logic [7,14]. Given the undecidability of FO validity, we also aim to
explore the use of the GROOVE model checker [6] in finding counterexamples when
the theorem provers respond with “no”, or do not appear to terminate.

Our example bx for the CD2RDBM problem is easily translated into graph programs
and nested conditions, as given in Figure 3. The programs PS , PT are the individual
rules creating respectively a class or table node labelled newName (here, ⇤ denotes the
empty graph, indicating that the rules can be applied without first matching any struc-
ture, i.e. unconditionally). The nested condition evl, given on the right, expresses that
for every class (resp. table) node, there is a table (resp. class) node with the same name
(we do not define here a formal interpretation, but note that x, y are variables, and that
the numbers indicate when nodes are the same down the nesting of the formula). Were
the weakest liberal preconditions to be constructed, we would find:

Wlp(PS ;PT , evl) � Wlp(PT ;PS , evl) � evl.
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�( , �( )):Class
name = x

:Class
name = x

:Table
name = x

1 1

�( , �( )):Table
name = y

:Table
name = y

:Class
name = y

2 2

:Class
name = newName� �

:Table
name = newName� � �

Fig. 3. Our CD2RDBM bx expressed as graph transformation rules and a nested condition

4 Next Steps

After further exploring the CD2RDBM example, we will identify a selection of bx case
studies—from the community repository [4] and beyond—that exhibit a broader range
of characteristics and challenges to address. We will implement these bx using EWL
transformations and EVL constraints, then manually translate them into graph trans-
formations and nested conditions. These will serve as a proof of concept, but also as

evl

Proving consistency of our CD/DB bx

"faked" BX 
in Epsilon

EVL constraints to 
nested conditions

model transformations 
to graph programs

WLP 
construction

PS
FO validity

FO validity

evl �
Wlp(PS ;PT , evl)

evl �
Wlp(PT ;PS , evl)

compatible
yes

yes

??

??
no / loop

no / loop
evl

PT

Fig. 2. Overview of the process for checking compatibility of the transformations

metamodels). Similar concerns must be addressed for the translations of EVL to nested
conditions (we can take inspiration from recent work on such translations for core OCL
[2]). For the challenge of checking validity, we aim to leverage existing FO theorem
provers (e.g. Vampire) as much as possible, adapting existing translations of nested
conditions to FO logic [7,14]. Given the undecidability of FO validity, we also aim to
explore the use of the GROOVE model checker [6] in finding counterexamples when
the theorem provers respond with “no”, or do not appear to terminate.

Our example bx for the CD2RDBM problem is easily translated into graph programs
and nested conditions, as given in Figure 3. The programs PS , PT are the individual
rules creating respectively a class or table node labelled newName (here, ⇤ denotes the
empty graph, indicating that the rules can be applied without first matching any struc-
ture, i.e. unconditionally). The nested condition evl, given on the right, expresses that
for every class (resp. table) node, there is a table (resp. class) node with the same name
(we do not define here a formal interpretation, but note that x, y are variables, and that
the numbers indicate when nodes are the same down the nesting of the formula). Were
the weakest liberal preconditions to be constructed, we would find:

Wlp(PS ;PT , evl) � Wlp(PT ;PS , evl) � evl.

Since evl ⇥ evl is clearly valid, both {evl} PS ; PT {evl} and {evl} PT ; PS {evl}
must hold, and—assuming correctness of the abstractions—the original EWL transfor-
mations are therefore compatible with respect to the EVL constraints.

�( , �( )):Class
name = x

:Class
name = x

:Table
name = x

1 1

�( , �( )):Table
name = y

:Table
name = y

:Class
name = y

2 2

:Class
name = newName� �

:Table
name = newName� � �

Fig. 3. Our CD2RDBM bx expressed as graph transformation rules and a nested condition

4 Next Steps

After further exploring the CD2RDBM example, we will identify a selection of bx case
studies—from the community repository [4] and beyond—that exhibit a broader range
of characteristics and challenges to address. We will implement these bx using EWL
transformations and EVL constraints, then manually translate them into graph trans-
formations and nested conditions. These will serve as a proof of concept, but also as

"faked" BX 
in Epsilon

EVL constraints to 
nested conditions

model transformations 
to graph programs

WLP 
construction

PS
FO validity

FO validity

evl �
Wlp(PS ;PT , evl)

evl �
Wlp(PT ;PS , evl)

compatible
yes

yes

??

??
no / loop

no / loop
evl

PT

Fig. 2. Overview of the process for checking compatibility of the transformations

metamodels). Similar concerns must be addressed for the translations of EVL to nested
conditions (we can take inspiration from recent work on such translations for core OCL
[2]). For the challenge of checking validity, we aim to leverage existing FO theorem
provers (e.g. Vampire) as much as possible, adapting existing translations of nested
conditions to FO logic [7,14]. Given the undecidability of FO validity, we also aim to
explore the use of the GROOVE model checker [6] in finding counterexamples when
the theorem provers respond with “no”, or do not appear to terminate.

Our example bx for the CD2RDBM problem is easily translated into graph programs
and nested conditions, as given in Figure 3. The programs PS , PT are the individual
rules creating respectively a class or table node labelled newName (here, ⇤ denotes the
empty graph, indicating that the rules can be applied without first matching any struc-
ture, i.e. unconditionally). The nested condition evl, given on the right, expresses that
for every class (resp. table) node, there is a table (resp. class) node with the same name
(we do not define here a formal interpretation, but note that x, y are variables, and that
the numbers indicate when nodes are the same down the nesting of the formula). Were
the weakest liberal preconditions to be constructed, we would find:

Wlp(PS ;PT , evl) � Wlp(PT ;PS , evl) � evl.

Since evl ⇥ evl is clearly valid, both {evl} PS ; PT {evl} and {evl} PT ; PS {evl}
must hold, and—assuming correctness of the abstractions—the original EWL transfor-
mations are therefore compatible with respect to the EVL constraints.

�( , �( )):Class
name = x

:Class
name = x

:Table
name = x

1 1

�( , �( )):Table
name = y

:Table
name = y

:Class
name = y

2 2

:Class
name = newName� �

:Table
name = newName� � �

Fig. 3. Our CD2RDBM bx expressed as graph transformation rules and a nested condition

4 Next Steps

After further exploring the CD2RDBM example, we will identify a selection of bx case
studies—from the community repository [4] and beyond—that exhibit a broader range
of characteristics and challenges to address. We will implement these bx using EWL
transformations and EVL constraints, then manually translate them into graph trans-
formations and nested conditions. These will serve as a proof of concept, but also as

PS PT

"faked" BX 
in Epsilon

EVL constraints to 
nested conditions

model transformations 
to graph programs

WLP 
construction

PS
FO validity

FO validity

evl �
Wlp(PS ;PT , evl)

evl �
Wlp(PT ;PS , evl)

compatible
yes

yes

??

??
no / loop

no / loop
evl

PT

Fig. 2. Overview of the process for checking compatibility of the transformations

metamodels). Similar concerns must be addressed for the translations of EVL to nested
conditions (we can take inspiration from recent work on such translations for core OCL
[2]). For the challenge of checking validity, we aim to leverage existing FO theorem
provers (e.g. Vampire) as much as possible, adapting existing translations of nested
conditions to FO logic [7,14]. Given the undecidability of FO validity, we also aim to
explore the use of the GROOVE model checker [6] in finding counterexamples when
the theorem provers respond with “no”, or do not appear to terminate.

Our example bx for the CD2RDBM problem is easily translated into graph programs
and nested conditions, as given in Figure 3. The programs PS , PT are the individual
rules creating respectively a class or table node labelled newName (here, ⇤ denotes the
empty graph, indicating that the rules can be applied without first matching any struc-
ture, i.e. unconditionally). The nested condition evl, given on the right, expresses that
for every class (resp. table) node, there is a table (resp. class) node with the same name
(we do not define here a formal interpretation, but note that x, y are variables, and that
the numbers indicate when nodes are the same down the nesting of the formula). Were
the weakest liberal preconditions to be constructed, we would find:

Wlp(PS ;PT , evl) � Wlp(PT ;PS , evl) � evl.

Since evl ⇥ evl is clearly valid, both {evl} PS ; PT {evl} and {evl} PT ; PS {evl}
must hold, and—assuming correctness of the abstractions—the original EWL transfor-
mations are therefore compatible with respect to the EVL constraints.

�( , �( )):Class
name = x

:Class
name = x

:Table
name = x

1 1

�( , �( )):Table
name = y

:Table
name = y

:Class
name = y

2 2

:Class
name = newName� �

:Table
name = newName� � �

Fig. 3. Our CD2RDBM bx expressed as graph transformation rules and a nested condition

4 Next Steps

After further exploring the CD2RDBM example, we will identify a selection of bx case
studies—from the community repository [4] and beyond—that exhibit a broader range
of characteristics and challenges to address. We will implement these bx using EWL
transformations and EVL constraints, then manually translate them into graph trans-
formations and nested conditions. These will serve as a proof of concept, but also as

evl

Proving consistency of our CD/DB bx

"faked" BX 
in Epsilon

EVL constraints to 
nested conditions

model transformations 
to graph programs

WLP 
construction

PS
FO validity

FO validity

evl �
Wlp(PS ;PT , evl)

evl �
Wlp(PT ;PS , evl)

compatible
yes

yes

??

??
no / loop

no / loop
evl

PT

Fig. 2. Overview of the process for checking compatibility of the transformations

metamodels). Similar concerns must be addressed for the translations of EVL to nested
conditions (we can take inspiration from recent work on such translations for core OCL
[2]). For the challenge of checking validity, we aim to leverage existing FO theorem
provers (e.g. Vampire) as much as possible, adapting existing translations of nested
conditions to FO logic [7,14]. Given the undecidability of FO validity, we also aim to
explore the use of the GROOVE model checker [6] in finding counterexamples when
the theorem provers respond with “no”, or do not appear to terminate.

Our example bx for the CD2RDBM problem is easily translated into graph programs
and nested conditions, as given in Figure 3. The programs PS , PT are the individual
rules creating respectively a class or table node labelled newName (here, ⇤ denotes the
empty graph, indicating that the rules can be applied without first matching any struc-
ture, i.e. unconditionally). The nested condition evl, given on the right, expresses that
for every class (resp. table) node, there is a table (resp. class) node with the same name
(we do not define here a formal interpretation, but note that x, y are variables, and that
the numbers indicate when nodes are the same down the nesting of the formula). Were
the weakest liberal preconditions to be constructed, we would find:

Wlp(PS ;PT , evl) � Wlp(PT ;PS , evl) � evl.

Since evl ⇥ evl is clearly valid, both {evl} PS ; PT {evl} and {evl} PT ; PS {evl}
must hold, and—assuming correctness of the abstractions—the original EWL transfor-
mations are therefore compatible with respect to the EVL constraints.

�( , �( )):Class
name = x

:Class
name = x

:Table
name = x

1 1

�( , �( )):Table
name = y

:Table
name = y

:Class
name = y

2 2

:Class
name = newName� �

:Table
name = newName� � �

Fig. 3. Our CD2RDBM bx expressed as graph transformation rules and a nested condition

4 Next Steps

After further exploring the CD2RDBM example, we will identify a selection of bx case
studies—from the community repository [4] and beyond—that exhibit a broader range
of characteristics and challenges to address. We will implement these bx using EWL
transformations and EVL constraints, then manually translate them into graph trans-
formations and nested conditions. These will serve as a proof of concept, but also as

"faked" BX 
in Epsilon

EVL constraints to 
nested conditions

model transformations 
to graph programs

WLP 
construction

PS
FO validity

FO validity

evl �
Wlp(PS ;PT , evl)

evl �
Wlp(PT ;PS , evl)

compatible
yes

yes

??

??
no / loop

no / loop
evl

PT

Fig. 2. Overview of the process for checking compatibility of the transformations

metamodels). Similar concerns must be addressed for the translations of EVL to nested
conditions (we can take inspiration from recent work on such translations for core OCL
[2]). For the challenge of checking validity, we aim to leverage existing FO theorem
provers (e.g. Vampire) as much as possible, adapting existing translations of nested
conditions to FO logic [7,14]. Given the undecidability of FO validity, we also aim to
explore the use of the GROOVE model checker [6] in finding counterexamples when
the theorem provers respond with “no”, or do not appear to terminate.

Our example bx for the CD2RDBM problem is easily translated into graph programs
and nested conditions, as given in Figure 3. The programs PS , PT are the individual
rules creating respectively a class or table node labelled newName (here, ⇤ denotes the
empty graph, indicating that the rules can be applied without first matching any struc-
ture, i.e. unconditionally). The nested condition evl, given on the right, expresses that
for every class (resp. table) node, there is a table (resp. class) node with the same name
(we do not define here a formal interpretation, but note that x, y are variables, and that
the numbers indicate when nodes are the same down the nesting of the formula). Were
the weakest liberal preconditions to be constructed, we would find:

Wlp(PS ;PT , evl) � Wlp(PT ;PS , evl) � evl.

Since evl ⇥ evl is clearly valid, both {evl} PS ; PT {evl} and {evl} PT ; PS {evl}
must hold, and—assuming correctness of the abstractions—the original EWL transfor-
mations are therefore compatible with respect to the EVL constraints.

�( , �( )):Class
name = x

:Class
name = x

:Table
name = x

1 1

�( , �( )):Table
name = y

:Table
name = y

:Class
name = y

2 2

:Class
name = newName� �

:Table
name = newName� � �

Fig. 3. Our CD2RDBM bx expressed as graph transformation rules and a nested condition

4 Next Steps

After further exploring the CD2RDBM example, we will identify a selection of bx case
studies—from the community repository [4] and beyond—that exhibit a broader range
of characteristics and challenges to address. We will implement these bx using EWL
transformations and EVL constraints, then manually translate them into graph trans-
formations and nested conditions. These will serve as a proof of concept, but also as

PS PT

"faked" BX 
in Epsilon

EVL constraints to 
nested conditions

model transformations 
to graph programs

WLP 
construction

PS
FO validity

FO validity

evl �
Wlp(PS ;PT , evl)

evl �
Wlp(PT ;PS , evl)

compatible
yes

yes

??

??
no / loop

no / loop
evl

PT

Fig. 2. Overview of the process for checking compatibility of the transformations

metamodels). Similar concerns must be addressed for the translations of EVL to nested
conditions (we can take inspiration from recent work on such translations for core OCL
[2]). For the challenge of checking validity, we aim to leverage existing FO theorem
provers (e.g. Vampire) as much as possible, adapting existing translations of nested
conditions to FO logic [7,14]. Given the undecidability of FO validity, we also aim to
explore the use of the GROOVE model checker [6] in finding counterexamples when
the theorem provers respond with “no”, or do not appear to terminate.

Our example bx for the CD2RDBM problem is easily translated into graph programs
and nested conditions, as given in Figure 3. The programs PS , PT are the individual
rules creating respectively a class or table node labelled newName (here, ⇤ denotes the
empty graph, indicating that the rules can be applied without first matching any struc-
ture, i.e. unconditionally). The nested condition evl, given on the right, expresses that
for every class (resp. table) node, there is a table (resp. class) node with the same name
(we do not define here a formal interpretation, but note that x, y are variables, and that
the numbers indicate when nodes are the same down the nesting of the formula). Were
the weakest liberal preconditions to be constructed, we would find:

Wlp(PS ;PT , evl) � Wlp(PT ;PS , evl) � evl.

Since evl ⇥ evl is clearly valid, both {evl} PS ; PT {evl} and {evl} PT ; PS {evl}
must hold, and—assuming correctness of the abstractions—the original EWL transfor-
mations are therefore compatible with respect to the EVL constraints.

�( , �( )):Class
name = x

:Class
name = x

:Table
name = x

1 1

�( , �( )):Table
name = y

:Table
name = y

:Class
name = y

2 2

:Class
name = newName� �

:Table
name = newName� � �

Fig. 3. Our CD2RDBM bx expressed as graph transformation rules and a nested condition

4 Next Steps

After further exploring the CD2RDBM example, we will identify a selection of bx case
studies—from the community repository [4] and beyond—that exhibit a broader range
of characteristics and challenges to address. We will implement these bx using EWL
transformations and EVL constraints, then manually translate them into graph trans-
formations and nested conditions. These will serve as a proof of concept, but also as

evl

Proving	consistency	of	
our	CD/DB	bx 

compatible:   WP(PS;PT,evl) ≡ WP(PT;PS,evl) ≡ evl



47 

exploit existing theorem provers here

we need to do this bit

Putting it all 
together 
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•  iden1fy	a	selec1on	of	BX	case	studies		
•  fake	them	in	Epsilon,	manually	translate	them	into	GT	

rules	and	nested	condi1ons,	and	verify	compa1bility	
•  implement	the	transla1ons	for	an	expressive	subset	of	

the	Epsilon	languages;	implement	the	WP	calcula1on	
•  challenges	and	open	ques1ons:	

		=>	finding	counterexamples	(e.g.	using	GROOVE)	
		=>	theore6cal	/	prac6cal	limita6ons	(e.g.	is	FO	expressive	
enough?)	

Our next steps 
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•  State	of	the	art	in	MDE	for	BX.	
•  Requirements	engineering	for	BX.	
•  Architecture	and	design	for	BX.	
•  (A	lijle)	Verifica1on	of	BX.	
•  What	are	the	future	challenges	from	a	SE/MDE	
perspec1ve?	
–  QVT-R:	the	bugbear.	
–  Value	proposi1on	of	BX	versus	two	unidirec1onal	transforma1ons	

(Empirical	studies!	Empirical	studies!)	
–  When	does	the	requirement	for	a	BX	“emerge”	in	the	engineering	

process?	(Work	bojom	up,	top	down…)	

Wrap-up 


