
Modular Edit Lenses

Martin Hofmann
Joint work with Benjamin Pierce and Daniel Wagner (2009-2014)

25th-29th July 2016
Lady Margaret Hall, Oxford, UK

Introduction

Three chapters:
I symmetric lenses,
I symmetric edit lenses (symmetric lenses plus edit language)
I edit languages for XML-like trees

Focus on combinators for the modular construction of lenses:
I Symmetric monoidal structure (sequential and parallel composition)
I Inductive data structures, “folds” & “hylomorphisms”
I Container datatypes, generic edit operations for container types.
I Pattern for lens construction based on list partitioning

Loose ends and suggestions for projects.
Literature:

I Symmetric Lenses (POPL2011)
http://dmwit.com/papers/201009SL_full.pdf, long version in
JACM 2015.

I Edit Lenses (POPL2012) http://dmwit.com/papers/201107EL.pdf
I PhD thesis D. Wagner:

http://dmwit.com/papers/201407SEL_ANFfBL.pdf
I Edit Languages for Information Trees (BX2013)

http://dmwit.com/papers/201107ELfIT_full.pdf

http://dmwit.com/papers/201009SL_full.pdf
http://dmwit.com/papers/201107EL.pdf
http://dmwit.com/papers/201407SEL_ANFfBL.pdf
http://dmwit.com/papers/201107ELfIT_full.pdf

Bidirectional transformation

Synchronising data in different representations:

File systems

Web data

Software models

Data formats

Issues:

Must specify the translation / correspondence between the
representations

Both representations will contain parts that the other one does not
have

Want to have combinators / DSL to write such translations reliably

Reasoning about translations

Setup

Daniel shares cat pictures with his coworkers, but prefers a different
organization scheme than they do.

At home: tree-structured file-system

On the web: flat-list picture gallery with tags

Two Structures

Jan

palindrome.jpg gamer.jpg

May

froghead.jpg

[costume,food]

[costume]

[costume]

Goal, Part 1: Adding to the Web Gallery

Jan

palindrome.jpg gamer.jpg

May

froghead.jpg

???

[costume,food]

[costume]

[costume]

[onlyface]

Goal, Part 2: Fixing the Filename

Jan

palindrome.jpg gamer.jpg

May

froghead.jpg

burrito.jpg

[costume,food]

[costume]

[costume]

[onlyface]

Goal, Part 3: Changing Tags

Jan

palindrome.jpg gamer.jpg

May

froghead.jpg

burrito.jpg

[costume,food]

[costume]

[costume]

[food,onlyface]

Goal, Part 4: Adding to the File System

Jan

palindrome.jpg gamer.jpg

May

froghead.jpg

burrito.jpg withperson.jpg

[costume,food]

[costume]

[costume]

[food,onlyface]

[]

Goal, Part 5: Restructuring

2010

Jan

palindrome.jpg gamer.jpg

May

froghead.jpg

2011

burrito.jpg withperson.jpg

[costume,food]

[costume]

[costume]

[food,onlyface]

[]

Typing “get”

Jan

palindrome.jpg gamer.jpg

May

froghead.jpg

[costume,food]

[costume]

[costume]

data FS = Directory Name [FS]
| File Name Picture

type Web =
[(Picture, [Tag])]

` : FS
?↔Web

Typing “get”

Jan

palindrome.jpg gamer.jpg

May

froghead.jpg

[costume,food]

[costume]

[costume]

data FS = Directory Name [FS]
| File Name Picture

type Web =
[(Picture, [Tag])]

` : Web
?↔ FS

Formalizing the Oddity: Roundtrip Laws

put(get(a), a) = a

get(put(b, a)) = b

Either possibility forbidden!

Towards symmetrization

Symmetric Constraint Maintainers
(Meertens; 1998)

Towards an Algebraic Theory of Bidirectional Transformations
(Stevens; ICGT 2008)

Bidirectional Model Transformations in QVT: Semantic Issues and Open Questions
(Stevens; MoDELS 2007)

Algebraic Models for Bidirectional Model Synchronization
(Diskin; MoDELS 2008)

Supporting Parallel Updates with Bidirectional Model Transformations
(Xiong, Song, Hu, and Takeichi; ICMT 2009)

Yet no composition.

Symmetric lenses

A lens framework with

1 symmetry

2 composition

3 . . . and other nice combinators

Symmetric lenses

A lens framework with

1 symmetry

2 composition

3 . . . and other nice combinators

Starting Point: Asymmetric Lenses

` : A
a↔ B

get : A→ B
put : B × A→ A

get(put(b, a)) = b

put(get(a), a) = a

L/R Symmetry

` : A
a↔ B

putr : A× B → B
putl : B × A→ A

get(put(b, a)) = b

put(get(a), a) = a

Complements

` : A
a↔ B

putr : A× SB → B
putl : B × SA → A

get(put(b, a)) = b

put(get(a), a) = a

I/O Symmetry

` : A
a↔ B

putr : A× SB → B × SA
putl : B × SA → A× SB

get(put(b, a)) = b

put(get(a), a) = a

Unifying Complements

` : A↔ B

putr : A× S → B × S
putl : B × S → A× S

get(put(b, a)) = b

put(get(a), a) = a

Need to initialize

Unlike in asymmetric case now need a special element

init ∈ S

to initiate a “synchronization dialogue”.

Updated Lens Laws

` : A↔ B

putr : A× S → B × S
putl : B × S → A× S

putr(a, s) = (b, s ′)

putl(b, s ′) = (a, s ′)

putl(b, s) = (a, s ′)

putr(a, s ′) = (b, s ′)

No law needed for init (yet!)

Updated Wiring Diagram

putr

s

putl

a

b’a’

b

Warm-up: Identity Lens

id

()

id

a

a’a’

a

Composition

fk

sk

gk

k

f`

s`

g`

`

k ; `

fk f`

(sk , s`)

gk g`

a

c’

c

a’

Another Composition

fk

sk

gk

k

f`

s`

g`

`

k ; `

fk f`

(s`, sk)

gk g`

a

c’

c

a’

Lens Equivalence

k ≡ ` when there is a relation R ⊂ k .S × `.S and:

sk R s`
k .putr(a, sk) = (bk , s

′
k)

`.putr(a, s`) = (b`, s
′
`)

bk = b` ∧ s ′k R s ′`

sk R s`
k .putl(b, sk) = (ak , s

′
k)

`.putl(b, s`) = (a`, s
′
`)

ak = a` ∧ s ′k R s ′`

`.init R k.init

Symmetric Lenses as a Category

≡ is an equivalence relation (prove that!)

cf. bisimulation / coinduction.

composition is associative up to ≡
We obtain a category whose objects are sets and morphisms are
≡-equivalence classes of symmetric lenses.

Observational equivalence

Put object

Given a lens ` ∈ X ↔ Y , define a put object for ` to be a member of
X + Y . Define a function apply taking a lens, an element of that lens’
complement set, and a list of put objects, by pushing the list’s elements
through the lens beginning with the given element.

Observational equivalence

Lenses k , ` ∈ X ↔ Y are observationally equivalent (written k ≈ `) if, for
every sequence of put objects P ∈ (X + Y)? we have

apply(k , k .init,P) = apply(`, `.init,P).

Theorem

k ≈ ` iff k ≡ `.

Bijective lenses

Every bijective function gives rise to a lens:

f ∈ X → Y f bijective

isof ∈ X ↔ Y

C = Unit
init = ()
putr(x , ()) = (f (x), ())
putl(y , ()) = (f −1(y), ())

Terminal lens

x ∈ X

termx ∈ X ↔ Unit

C = X
init = x
putr(x ′, c) = ((), x ′)
putl((), c) = (c , c)

Opposite lens

` ∈ X ↔ Y

`op ∈ Y ↔ X

C = `.C
init = `.init
putr(y , c) = `.putl(y , c)
putl(x , c) = `.putr(x , c)

Disconnect lens

x ∈ X y ∈ Y

disconnectxy ∈ X ↔ Y

disconnectxy = termx ; termop
y

The disconnect lens does not synchronize its two sides at all. The
complement, disconnect.C , is X × Y ; inputs are squirreled away into one
side of the complement, and outputs are retrieved from the other side of
the complement.

Why disconnect?

putr

putl

froghead.jpg

[costume]froghead.jpg

[]

Lifting Asymmetric Lenses

get

put

a

b’a’

b

` : A
a↔ B

get

a

put

a

b’a’

b

`sym : A↔ B

Projection

putr

b

putl

(a, b)

a’(a’, b)

a

π1 : A× B ↔ A

(π2 is similar)

Tensor Product

k ∈ X ↔ Z ` ∈ Y ↔W

k ⊗ ` ∈ X × Y ↔ Z ×W

C = k .C × `.C
init = (k .init, `.init)
putr((x , y), (ck , c`)) = let (z , c ′k) = k .putr(x , ck) in

let (w , c ′`) = `.putr(y , c`) in
((z ,w), (c ′k , c

′
`))

putl((z ,w), (ck , c`)) = let (x , c ′k) = k.putl(z , ck) in
let (y , c ′`) = `.putl(w , c`) in
((x , y), (c ′k , c

′
`))

Tensor product, pictorially

fk

sk

gk

a

c’a’

c f`

s`

g`

b

d’b’

d

fk

f`

(sk , s`)

gk

g`

(a, b)

(c’, d’)(a’, b’)

(c, d)

k ⊗ `

Naturality

Projections are natural in the following sense.

Xk × X`

Xk × Unit

Xk

Yk × Y`

Yk × Unit

Yk

k ⊗ `

idXk
⊗ termxi idYk

⊗ termyi

k ⊗ idUnit

ρXk
ρYk

k

Symmetric monoidal category

Theorem

Symmetric lenses with their tensor product form a symmetric monoidal
category.

This means, we can regard lenses as wirings

composition corresponds to chaining

tensor product corresponds to juxtaposition

Open question

Does the category have a trace ?

For this, we would need to construct from a lens ` : X × Y ↔ X × Z a
trace tr(`) : Y ↔ Z .

Graphically, this corresponds to joining the two X -ends of ` with a
“feedback” wire.

This trace operation should validate all equations that hold “graphically”
in this sense.

Sum lens

k ∈ X ↔ Z ` ∈ Y ↔W

k ⊕ ` ∈ X + Y ↔ Z + W

C = k .C × `.C
init = (k.init, `.init)
putr(inl(x), (ck , c`)) = let (z , c ′k) = k .putr(x , ck) in

(inl(z), (c ′k , c`))
putr(inr(y), (ck , c`)) = let (w , c ′`) = `.putr(y , c`) in

(inr(w), (ck , c
′
`))

putl(inl(z), (ck , c`)) = let (x , c ′k) = k.putl(z , ck) in
(inl(x), (c ′k , c`))

putl(inr(w), (ck , c`)) = let (y , c ′`) = `.putl(y , c`) in
(inr(y), (ck , c

′
`))

This yields another symmetric monoidal structure.

Tensor Sum

fk

sk

gk

a

c’a’

c f`

s`

g`

b

d’b’

d

fk

f`

(sk , s`)

gk

g`

inl a

inl c’inl a’

inl c

k ⊕ `

Tensor Sum

fk

sk

gk

a

c’a’

c f`

s`

g`

b

d’b’

d

fk

f`

(sk , s`)

gk

g`

inr b

inr d’inr b’

inr d

k ⊕ `

Injection lens

Exercise: define a reasonable lens:

inlx ∈ X ↔ X + Y

Note: × is not a categorical product; + is not a categorical coproduct.

Injections are funny. Cannot be made natural with respect to ⊕.

Using sums for Anthony’s special cases

Suppose we have two lenses `, k : X ↔ Y and would like to use `
most of the time, but for those x ∈ U ⊆ X use k .

What extra data / axioms / properties do we need ?

We certainly can use the sum: `⊕ k : X + X ↔ Y + Y .

How to synch between X ,Y and X + X ,Y + Y ?

List mapping

` ∈ X ↔ Y

map(`) ∈ X ? ↔ Y ?

C = (`.C)ω

init = (`.init)ω

putr(x , c) = let 〈x1, . . . , xm〉 = x in
let 〈c1, . . .〉 = c in
let (yi , c

′
i) = `.putr(xi , ci) in

(〈y1, . . . , ym〉 , 〈c ′1, . . . , c ′m, cm+1, . . .〉)
putl (similar)

Folding

Given ` : Unit + X × Z ↔ Z can define fold(`) : X ∗ ↔ Z such that

Unit + X × X ?

Unit + X × Z

X ?

Z

iso

idUnit ⊕ (idX ⊗ fold(`)) fold(`)

`

. . . provided that we have some kind of weight function on Z that goes
down by doing `.

Exercise: complete this.
Exercise: show that fold(`) is even unique.

Synchronizing Tree Leaves/List Elements

putr

putl

froghead.jpg [costume]

disconnect ⊗ id

Useful Folds

leaves : TreeA↔ [A]

concat : [[A]]↔ [A]

partition : [A] B]↔ [A]× [B]

map : (A↔ B)→ ([A]↔ [B])

pictures : FS↔ [Name× Picture]

Exercise: define those!

Final Lens

FS

[Filename × Picture]

[[Tag] × Picture]

pictures

map(disconnect ⊗ id)

Forgetful sums and lenses

The version of sums and lists described is called retentive

When we change sides or extend list length we use the “retained”
values from the last time we were on that side / had that length.

There is also a forgetful version where upon shortening or changing
sides we throw data away.

Further things on datatypes

Since lenses are self-dual can easily define hylomorphisms: from
k : Z ↔ Unit + X × Z and ` : Unit + X ×W ↔W obtain
Hy(`, k) : Z ↔W such that Namely, we define Hy(`, k) =
Exercise: fill in the

Can define iterators over more than one list.

Can generalize from lists to other inductive datatypes like binary trees
etc.

Containers

A general framework for datastructures with positions holding data is
given by Containers (Joyal, Cockett, Altenkirch, Hasegawa, Ghani,
. . .):

Inductive types like lists or trees are also containers, but not vice
versa, e.g. labelled graphs are containers but not inductive types.

A container consists of
I a set I of shapes, e.g. I = N for lists
I for each shape i ∈ I a set B(i) of positions, e.g. B(i) = {0, . . . , i − 1}

for lists

A container (I ,B) defines a functor on Sets: F (X) =
∑

i∈I X
B(i). An

element of F (X) consists of a shape i and for each position p ∈ B(i)
an element of X .

Graphs with X -labelled nodes: I=unlabelled graphs, B(i) nodes of i .

If f : X → Y we get a function F (f) : F (X)→ F (Y). Generalizes
“map” on lists and trees.

Container lens?

Would like to generalize F (f) to F (`) with ` a lens.

If the shape doesn’t change just apply the lens position-wise.

What if the shape changes (from i to i ′)?

Ordered containers

we require a partial ordering with binary meets on shapes.

i ≤ i ′ means “subshape”, e.g., subtree or shorter list.

If i ≤ i ′ need B(i) ↪→ B(i ′).

If p ∈ B(i) and p′ ∈ B(i ′) are equal in B(j), thus, i ≤ j , i ′ ≤ j then
there must exist unique q ∈ B(i ∧ i ′) such that . . . I.e. B is a pullback
preserving functor from I to Sets.

E.g. meet of two trees = largest common subtree.

Container lens!

` ∈ X ↔ Y

FI ,B(`) ∈ FI ,B(X)↔ FI ,B(Y)

C =
{t ∈

∏
i∈I B(i)→ `.(C) |

∀i , i ′. i ≤ i ′ ⊃ ∀b∈B(i). t(i ′)(b|i ′) = t(i)(b)}
init(i)(b) = `.init
putr((i , f), t) =
let f ′(b) = fst(`.putr(f (b), t(i)(b))) in
let t ′(j)(b) =

if ∃b0 ∈ B(i ∧ j). b0|j = b
then snd(`.putr(f (b0|i), t(j)(b)))
else t(j)(b)

in

((i , f ′), t ′)
putl (similar)

Asymmetric to symmetric

Every asymmetric lens, i.e., a classical lens in the sense of Foster et al.,
gives rise to a symmetric lens.

` ∈ X
a↔ Y

`sym ∈ X ↔ Y

C = {f ∈ Y → X | ∀y ∈ Y . `.get(f (y)) = y}
init = `.create
putr(x , f) = (`.get(x), fx)
putl(y , f) = let x = f (y) in (x , fx)

But not all lenses are of that form.

Spans of lenses

However, for any lens ` we can find asymmetric lenses k1, k2 such that

(ksym1)op; ksym2 = `

Intermediate “type”: set of consistent triples:

S` = {(x , y , c) ∈ X × Y × `.C | `.putr(x , c) = (y , c)}

If ` : X ↔ Y then k1 : S` → X and k2 : S` → Y .

Exercise: complete this.

Summary “symmetric lenses”

Generalize asymmetric lenses to become truly bidirectional

Can be seen as stateful back-and-forth functions

best understood modulo bisimulation

bisimulation coincides with observational equivalence

began to explore the type and combinator structure of the category of
lenses

sums, product, lists, trees, iterators, hylomorphisms, containers.

Can alternatively be presented as spans of asymmetric lenses.

Further work, open problems

Integration with programming / frameworks

Definition of lenses by recursion

Higher-order functions

Edit lenses

Add monoid action to sets (monoid elements = edit operation)

Lens transports edit operations preserving composition and identity
(stateful homomorphism).

State-based lenses arise as special case

Fold combinators don’t work; replaced with powerful mapping and
plumbing combinators for containers

Advantages of edit-based vs. state-based:
I bandwidth
I better alignment

First-class edits

Edits are a monoid M:

1M ·m = m · 1M = m

m1 · (m2 ·m3) = (m1 ·m2) ·m3

With a partial monoid action � ∈ M × X → X :

1M � x = x

(m1 ·m2)� x = m1 � (m2 � x)

Editing lists

Set ∂X are edits for X .
Define atomic edits E for X ∗:

modify(p,dx) where p ∈ N , dx ∈ ∂X
resize(i ,j ,x) where i , j ∈ N , x ∈ X

reorder(i ,f) where f permutes {0, . . . , i}
Take E ∗ (words of atomic edits) for list edits ∂(X ∗).

Edits = Monoids

We model edits as a monoid: set M, binary associative operation
· · ·M , neutral element 1M ,

m ·M m′ represents the combined edit comprising first m′ then m,

1M is the neutral edit that does nothing,

Often we use the free monoid over a set of primitive edits, i.e., an
edit is just a list of primitive edits to be executed in sequence,

Sometimes, however, we may want to optimize concatenations of
edits non-free monoids.

Two sequences that are equal in the monoid must behave the same
and may be represented identically

Simple examples: overwrite monoid (state-based lenses), product
monoid.

Modules

Module

A module is a tuple 〈X , initX , ∂X , �X 〉 comprising a set X , an element
initX ∈ X , a monoid ∂X , and a monoid action �X of ∂X on X .

If X is a module, we refer to its first component by either |X | or just X ,
and to its last component by � or simple juxtaposition.

Product module

Consider modules X and Y .

A primitive edit to a pair in |X | × |Y | is either an edit to the X part or an
edit to the Y part.

G⊗X ,Y = {left(dx) | dx ∈ ∂X} ∪ {right(dy) | dy ∈ ∂Y }

Define |X ⊗ Y | = |X | × |Y | and ∂(X ⊗ Y) = (G⊗X ,Y)∗.

Questions:

Define the action

what about imposing equations on ∂(X ⊗ Y) ?

Sum module

Primitive edits to elements of |X ⊕ Y | = |X |+ |Y |:

G⊕X ,Y = {switchiL(dx) | i ∈ {L,R},dx ∈ ∂X}
∪ {switchiR(dy) | i ∈ {L,R},dy ∈ ∂Y }
∪ {stayL(dx) | dx ∈ ∂X} ∪ {stayR(dy) | dy ∈ ∂Y }
∪ {fail}

Define |X ⊗ Y | = |X | × |Y | and ∂(X ⊗ Y) = (G⊗X ,Y)∗.

Again, we leave the action as an exercise.
Question: what about imposing equations on ∂(X ⊗ Y) ?
Odd phenomenon: no matter how you do it, you don’t seem to get
X ⊕ (Y ⊕ Z) ' (X ⊕ Y)⊕ Z .

List module

Primitive edits to elements of |X ∗| = |X |∗:

G list
X = {mod(p,dx) | p ∈ N+, dx ∈ ∂X}

∪ {ins(i) | i ∈ N} ∪ {del(i) | i ∈ N}
∪ {reorder(f) | ∀i ∈ N.f (i) permutes {1, . . . , i}}
∪ {fail}

Define ∂(X ∗) = (G list
X)∗.

Question: can we get this automatically from the initial algebra definition
of X ∗?

Points for discussion

Why should application of edits be partial?

Why distinguish between monoid element and the induced function?

Lawful vs. free monoid

Stateful monoid homomorphisms

Definition

Given monoids M and N and a complement set C , a stateful monoid
homomorphism from M to N over C is a function h ∈ M × C → N × C
satisfying two laws:

h(1M , c) = (1N , c)

h(m, c) = (n, c ′) h(m′, c ′) = (n′, c ′′)

h(m′ ·M m, c) = (n′ ·N n, c ′′)

Exercise / question: try to reformulate that as a standard homomorphism
between a different kind of monoids.

Lens definition

Definition

Edit lens ` : 〈M,X 〉 ↔ 〈N,Y 〉 has:

a complement set C of private data

consistency relation K ∈ X × C × Y

stateful monoid homomorphisms

V : M × C → N × C

W : N × C → M × C

that preserve consistency

Exercise: what does “preserve consistency” mean?

A glimpse at a later slide

inl(Schumann)
inl(Beethoven)

inr(Kant)
inr(Frege)
inl(Dvorak)

Schumann
Beethoven
Dvorak

Kant
Frege

L L R R L

Consistency vs. round-trip laws

Round-trip laws:
“There exists an invariant restored by the lens.”

Consistency relations:
“There exists an invariant restored by the lens,
and that invariant is K .”

Behavioural equivalence

As before, we may consider lenses up to equivalence thus obtaining a
category.

Definition (Lens equivalence)

Two lenses k , ` : X ↔ Y are equivalent (written k ≡ `) if, there exists a
relation S ⊆ X × k .C × `.C × Y such that

(initX , k.init, `.init, initY) ∈ S ;

if (x , c, d , y) ∈ S and dx x is defined, then if (dy1, c
′) = k .V(dx , c)

and (dy2, d
′) = `.V(dx , d), then dy1 = dy2 and

(dx x , c ′, d ′,dy1 y) ∈ S ; and

analogously for W.

Again, there is an equivalent definition with dialogues (exercise!)

Product lens

k ∈ X ↔ Z ` ∈ Y ↔W

k ⊗ ` ∈ X ⊗ Y ↔ Z ⊗W

C = k .C × `.C
init = (k .init, `.init)
K = { ((x , z), (ck , c`), (y ,w)) |

(x , ck , y) ∈ k.K
∧ (z , c`,w) ∈ `.K }

Sum lens

k ∈ X ↔ Y ` ∈ Z ↔W

k ⊕ ` ∈ X ⊕ Z ↔ Y ⊕W

C = k .C + `.C
init = inl(k .init)

K = {(inl(x), inl(c), inl(y))
| (x , c , y) ∈ k.K}

∪ {(inr(z), inr(c), inr(w))
| (z , c ,w) ∈ `.K}

ck = k .init
c` = `.init
. . .

Sum lens, cont’d

. . .

. . .
Vg (switchLL(dx), inl(c)) = let (dy , c ′) = k.V(dx , ck)

in (switchLL(dy), inl(c ′))
Vg (switchRL(dx), inr(c)) = let (dy , c ′) = k.V(dx , ck)

in (switchRL(dy), inl(c ′))
Vg (switchLR(dz), inl(c)) = let (dw , c ′) = `.V(dz , c`)

in (switchLR(dw), inr(c ′))
Vg (switchRR(dz), inr(c)) = let (dw , c ′) = `.V(dz , c`)

in (switchRR(dw), inr(c ′))
Vg (stayL(dx), inl(c)) = let (dy , c ′) = k.V(dx , c)

in (stayL(dy), inl(c ′))
Vg (stayR(dz), inr(c)) = let (dw , c ′) = `.V(dz , c)

in (stayR(dw), inr(c ′))
Vg (e, c) = (fail, c) in all other cases

Wg is analogous

List mapping lens

` ∈ X ↔ Y

`∗ ∈ X ∗ ↔ Y ∗

C = `.C ∗

init = ε
K = {(x , c , y) | |x | = |c | = |y | ∧

∀1≤p≤|x |. (xp, cp, yp) ∈ `.K}
Vg (mod(p,dx), c) = let (dy , c ′p) = `.V(dx , cp) in

(mod(p,dy), c[p 7→ c ′p]))
when p ≤ n

Vg (mod(p,dx), c) = (fail, c) when p > n
Vg (fail, c) = (fail, c)
Vg (dx , c) = (dx , dx c) in all other cases
W similar

Synchronising composers

Schubert, 1797-1828
Shumann, 1810-1856

Schubert, Austria
Shumann, Germany

(a) initial replicas

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Shumann, Germany

ins(3);
mod(3, (“Monteverdi”, “1567-1643”))

(b) a new composer is added to one replica

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Shumann, Germany

Monteverdi, ?country?

ins(3);
mod(3, (“Monteverdi”, 1))

(c) the lens adds the new composer to the other replica

Schubert, 1797-1828
Shumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

mod(3, (1, "Italy"));
mod(2, ("Schumann", 1))

(d) the curator makes some corrections

Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, 1567-1643

Schubert, Austria
Schumann, Germany
Monteverdi, Italy

1;
mod(2, ("Schumann", 1))

some text(e) the lens transports a small edit

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, ?country?
Schubert, Austria
Schumann, Germany

del(3); ins(1);
mod(1, (“Monteverdi”, “1567-1643”))

del(3); ins(1);
mod(1, (“Monteverdi”, 1))

Monteverdi, 1567-1643
Schubert, 1797-1828
Schumann, 1810-1856

Monteverdi, Italy
Schubert, Austria
Schumann, Germany

reorder(3,1,2) reorder(3,1,2)
(f) two different edits with the same effect on the left

Partition lens

We seek a lens of the form

partition ∈ (X ⊕ Y)∗ ↔ X ∗ ⊗ Y ∗

. . .

Once we have it, we can compose many important lenses on lists
from it:

I Use mapping to go from Z∗ to (X ⊕ Y)∗,
I Transform to X ∗ ⊗ Y ∗ by partitioning,
I Work on both parts separately using tensor lens,
I Go back to Z∗.

Partition: the code view

High-level view

Complement: C = {L,R}∗. Tells where the positions of the LHS belong.

A consistent triple:

inl(Schumann)
inl(Beethoven)

inr(Kant)
inr(Frege)
inl(Dvorak)

Schumann
Beethoven
Dvorak

Kant
Frege

L L R R L

Partition: the consistency view

K = {(z , · · · , (lefts(z), rights(z)))}

K ⊂ (A + B)∗ × C × (A∗ × B∗)

Propagating edits

Figure out how to propagate these edits from left to right:

mod(5, stayL(dn)), i.e., change “Dvorak” to “Dvǒrák”.

Insert or delete a person on the left,

Reorderings

Switching sides, e.g. replace Beethoven with Plato
mod(2, switchLR(dn))

What about similar edits from right to left?

inl(Schumann)
inl(Beethoven)

inr(Kant)
inr(Frege)
inl(Dvorak)

Schumann
Beethoven
Dvorak

Kant
Frege

L L R R L

Example

inl(Schumann)
inr(Kerouac)
inr(Tolstoy)

inl(Beethoven)

Schumann
Beethoven

Kerouac
Tolstoy

inl, inr, inr, inl

Notice L↔ inl and R↔ inr

inl(Schumann)
inr(Kerouac)
inr(Tolstoy)

inl(Beethoven)

Schumann
Beethoven

Kerouac
Salinger
Tolstoy

inl, inr, inr, inl

(1, (ins(2); mod(2, “Salinger”)))

(b) an element is added to one of the partitions

inl(Schumann)
inr(Kerouac)
inr(Salinger)
inr(Tolstoy)

inl(Beethoven)

Schumann
Beethoven

Kerouac
Salinger
Tolstoy

inl, inr, inr, inr, inl

ins(3); mod(3, inr(“Salinger”))

(c) the complement tells how to translate the index

Container type

A module I of shapes (can edit the shapes!) additionally endowed
with a partial order (as before).

A fixed set P of positions

For each shape i a subset live(i) ⊆ P.

Can recover B(i) = {p | p ∈ live(i)}.

Position edits

Allowed edits

Let T = 〈I ,P, live〉 be a container type. An edit di ∈ ∂I is an insertion if
di i ≥ i whenever defined. It is a deletion if di i ≤ i whenever defined. It
is a rearrangement if |live(di i)| = |live(i)| (same cardinality) whenever
defined.

We only employ edits from these three categories as ingredients of
container edits; any other edits in the module will remain unused.

This division of container edits into “pure” insertions, deletions, and
rearrangements facilitates the later definition of lenses operating on
such edits.

Q: Should we allow more edits?

Container edits

We define the monoid of edits for a container type 〈I ,P, live〉 as the free
(for now!) monoid generated by

Modifications: mod(p, dx) where p ∈ P and dx ∈ ∂X ,

Insertions: ins(di) with di an insertion,

Deletions: del(di) with di a deletion,

Rearrangements: rearr(di , f) with di a rearrangement and
f : live(i) ' live(di i).

Fail: fail :-)

Action of container edits

fail (i , f) is always undefined
mod(p,dx) (i , f) = (i , f [p 7→ dx f (p)]) when p ∈ live(i)
ins(di) (i , f) = (di i , f ′)

where f ′(p) = if p ∈ live(i) then f (p) else initX

del(di) (i , f) = (di i , f �live(di i))
rearr(di , f) (i , g) = (di i , g ′)

where g ′(p) = g(f (i)(p))

Container mapping lens

` ∈ X ↔ Y T = 〈I ,P, live〉 a container type

T (`) ∈ T (X)↔ T (Y)

C = T (`.C)

init = (init I , λp. `.init)

Vg (mod(p,dx), (i , f)) = (mod(p, dy), (i , f ′))
when p ∈ live(i) and where
f ′ = f [p 7→c ′], (dy , c ′) = `.V(dx , f (p))

Vg (mod(p,dx), (i , f)) = (fail, (i , f)) if p 6∈ live(i)
Vg (ins(di), (i , g)) = (ins(di),

(di i , g [p 7→`.init]))
when di i is defined

Vg (del(di), (i , g)) = (del(di), (di i , g�live(di i)))
when di i is defined

Vg (rearr(di , h), (i , g)) = (rearr(di , h),
(di i , λp.g(h(i)(p))))
when di i is defined

Vg (dz , c) = (fail, c) in all other cases

Wg (−,−) = analogous

K = {((i , f), (i , g), (i , f ′)) | i ∈ I
∧ (f (p), g(p), f ′(p)) ∈ `.K}

Container restructuring lens

T = 〈I ,P, live〉 a container type
T ′ =

〈
I ′,P ′, live′

〉
a container type

` ∈ I ↔ I ′

[T ,T ′](`) ∈ T (X)↔ T ′(X)

. . .

Container restructuring lens, cont’d

. . .

C = `.K

init = (init I , `.init, init I ′)

K = {((i , f), (i , c, i ′), (i ′, f ′))
| (i , c , i ′) ∈ `.K ∧ ∀p∈live′(i ′).f (fi ,c,i ′(p)) = f ′(p)}

Vg (mod(p, dx), (i , c , i ′)) = (mod(f −1i ,c,i ′(p), dx), (i , c , i ′)

when p ∈ live(i)
Vg (ins(di), (i , c , i ′)) = (rearr(1, fi)ins(di ′),

(di i , c ′, di ′ i ′))
Vg (del(di), (i , c, i ′)) = (rearr(1, fd)del(di ′),

(di i , c ′, di ′ i ′))
Vg (rearr(di , f), (i , c , i ′)) = (rearr(di ′, fr),

(di i , c ′, di ′ i ′))

in the last three clauses: (di ′, c ′) = `.V(di , c)

Container restructuring lens, cont’d

Three families of bijections fi , fd , fr .
must be chosen in such a way that the container edits in which they
appear are well-formed (this is possible since di ′ is an insertion, deletion,
or restructuring as appropriate) and such that the following three
constraints are satisfied: in each case i , i ′, etc., refer to the current values
from above and p ∈ live′(di ′ i ′) is an arbitrary position.

fi (di
′ i ′)(p) = f −1i ,c,i ′(fdi i ,c ′,di ′ i ′(p))

when fdi i ,c ′,di ′ i ′(p) ∈ live(i)

fd(di ′ i ′)(p) = f −1i ,c,i ′(fdi i ,c ′,di ′ i ′(p))

fr (di ′ i ′)(p) = f −1i ,c,i ′(f (i)(fdi i ,c ′,di ′ i ′(p)))

Exercise / open question: give a more uniform treatment of restructuring.

Container plumbing in action

Restructuring lens models “in-order” flattening.

be 0 da

be ma

na

0

ε

1

11

da 1
ma 2
na 3

be 0 da

be ma

na

0

ε

1

11

da 1
ma 2
na 3
?
?

4
5

?00 ?01

be 0 na

da ?

?

0

ε

1

11

da 1
ma 2
na 3
?
?

4
5

be00 ma01

Inserting two fresh nodes at the end of the list, propagation and
restoration of consistency.

Loose end: Typed edit language

An typed edit language (tentative!) comprises

a set T of “types”

for each t ∈ T a set X (t) with distinguished element initX (t) ∈ X (t)

for any two types t, t ′ a set of edits ∂X (t, t ′) with composition and
identities, i.e. a category!

an action of ∂X on X : if e ∈ ∂X (t, t ′) and x ∈ X (t) then
e.x ∈ X (t ′). I.e. X (−) becomes a set-valued functor (presheaf).

Example: T = list lengths or abstraction thereof, e.g. = 0, > 0. Removes
partiality of hd, tl.

Idea: Use types to distinguish inl’s and inr’s in a sum. Solution to
associativity conundrum.

Sets to modules

Let X be a set. The free monoid X ∗ acts on X by

(xn . . . x1)x = xn

For x ∈ X define module Xx as Xx = (X , x ,X ∗).

State-based to edit-based

Let ` : X ↔ Y be a state-based symmetric lens and
`.putr(x , `.missing) = (y , `.missing) be a consistent triple for `.

Exercise: Define an edit based lens between Xx and Yy .

Edit-based to state-based

Let X be a module. A differ for X is a binary operation
dif ∈ X × X → ∂X satisfying dif (x , x ′)x = x ′ and dif (x , x) = 1.

Thus, a differ finds, for given states x , x ′, an edit operation dx such that
dx x = x ′ and dx is “reasonable” at least in the sense that if x = x ′ then
the produced edit is minimal, namely 1.

Exercise: discuss possible differs for X ∗.
Exercise: explain how to obtain a state-based lens from an edit-based lens
with differ.

Summary edit lenses

Modelled editing as sets with a partial monoid action. Idea: aaply a
apatch to a state.

Edit lenses are (total!) back-and-forth functions translating edits. As
before stateful. Stateful monoid homomorphism. In addition, a
consistency relation to be preserved.

Folding replaced by container mapping, container restructuring, and
list partitioning.

What’s missing?

We seek edit lens primitives for trees and (later on) graphs with
unordered children as in XML or WWW.

Various options beyond hand-crafting from the definitions: Containers
“modulo”, a.k.a. combinatorial species (Joyal).

Use tree automata to describe well-formed unordered trees

Use wp-calculation to delineate edit operations preserving
well-formedness.

Natural instance of typed edit languages

Information trees

. . . are unordered trees whose edges are labeled by Σ∗ with Σ a finite
alphabet.

use braces {||} and 7→ to denote trees.

{|name 7→ {|John 7→ {||}|}, email 7→ {|john@example.com 7→ {||}|}

same in abbreviated form:

{|name 7→ John, email 7→ john@example.com|}

Edit language for trees

e ::= insert(t) |
hoist(m, n) |
delete(m) |
rename(m, n) |
at(n, e)

where m, n are names, t is a tree.
Action on trees omitted (guess from names of edits :-)

Sheaves automata (Lugiez et al)

Define tree types (document types) by a special kind of automata (sheaves
automata).

Intuitively, a sheaves automaton has a set of states Q and for each q ∈ Q
a sheaves formula which partitions the allowed subtrees into disjoint
classes (recursively using states) and specifies an arithmetic constraint
between the numbers of subtrees falling into each class.

E.g. two states “person”, “address”. A “person” has one “address”
labelled address and many “persons” labeled friend. An “address” has
subtrees labelled Street, Town, etc. some of them optional

More examples

File systems
FS ::= (.∗ → F | D)∗

F ::= f→ .∗

D ::= d→ FS

Special naming conventions, filenames starting with dot or ending
with bin, . . .)

Tree-structured representation of program text

Tree representation of game states (SGF)

Known results about sheaves automata

Inclusion and nonemptiness of sheaves automata is decidable; boolean
operations are computable.

Presentation of sheaves automata as type system by Pierce & Foster.

Weakest preconditions

Our result (BX2013):
For sheaves automaton A and tree edit e can compute sheaves automaton
e.A such that

t ∈ L(e.A) ⇐⇒ e.t fails ∨ e.t ∈ L(A)

Write e : A→ B to mean that ∀t ∈ L(A). e.t defined⇒ e.t ∈ L(B).

We have e : A→ B ⇐⇒ L(A) ⊆ L(e.B) (decidable!)

Weakest preconditions

Our result (BX2013):
For sheaves automaton A and tree edit e can compute sheaves automaton
e.A such that

t ∈ L(e.A) ⇐⇒ e.t fails ∨ e.t ∈ L(A)

Write e : A→ B to mean that ∀t ∈ L(A). e.t defined⇒ e.t ∈ L(B).

We have e : A→ B ⇐⇒ L(A) ⊆ L(e.B) (decidable!)

e : A→ B ⇐⇒ L(A) ⊆ L(e.B)

“⇒”: Suppose e : A→ B and t ∈ L(A). If e.t is undefined then
e.t ∈ L(e.B) by definition of e.B. So, assume e.t defined. By assumption
e.t ∈ L(B) and, again by definition of e.B, we have t ∈ L(e.B).

“⇐”: Suppose L(A) ⊆ L(e.B) and t ∈ L(A) and e.t defined. Then,
t ∈ L(e.B) and, since e.t defined, e.t ∈ L(B), QED.

Construction of e.B

For every edit e define (by induction on e) a sheaves automaton De

such that L(De) = {t | e.t undefined}.
For every edit e define (by induction on e) a sheaves automaton e ?B
such that whenever e.t is defined then t ∈ L(e ? B) ⇐⇒ e.t ∈ L(B)
(by anticipating the action of e). If e.t is undefined then t may or
may not be in e ? B.

Then put e.B = De ∨ e ? B with ∨ denoting union construction for
sheaves automata.

Unfortunately, union requires product construction (blowup).
Should consider nondeterministic automata.

Example e = insert(t ′)

Recall: inserts t ′ at the root assuming toplevel labels of t ′ are not
present.

Thus, De checks that one of the toplevel labels of t ′ is present
(cardinality ≥ 1).

e ? B: Add a new initial state s ′0. Label s ′0 just like s0 (initial state of
B but “as if t ′ is present”. E.g. if t ′ has an a label and s has an
expression matching a then replace count variable x by x + 1. (
example for the need for arithmetic constraints).

Edit languages for information trees

If A is a sheaves automaton can define an edit language A′ with
|A′| = L(A) and ∂A′ = {e | e : A→ A}.
Can check (using WP) that e ∈ ∂A′.
Lends itself naturally to a typed generalisation: Types = sheaves
automata (finite subset thereof), ∂(A,B) = {e | e : A→ B}.
Cf. “sum conundrum”.

Conclusion and next steps

First steps towards editing and synchronising unordered trees defined
by tree automata.

Integrates smoothly with existing edit lenses framework and
combinators.

Typed edit lenses can be seen as synthesis with Diskin et al sd/delta
lenses.

WP-calculus for basic edits and sheaves automata.

Possible projects

Further investigate categorical structure of lenses and edit lenses

Explore equations and optimizations, e.g., “deforestation”

Further develop lenses based on information trees

Study connections with logic. Can we transport formulas across a
lens?

Make connections to recent work from the databases community, e.g.
by R. Rodriguez

	Introduction
	Symmetric Lenses
	Motivation
	Lenses
	Symmetric lenses
	Composition and equivalence
	Useful Lenses
	Sums and lists
	Containers
	Spans of lenses

	Edit Lenses
	Monoids of edits
	Examples of modules
	Definition of edit lens
	The partition lens
	Containers
	State-based to edit-based and back

	Information trees & Conclusion
	Possible projects

