Conclusion
What has all this to do with a
Principle of Least Change
for bidirectional transformations?

Perdita Stevens

University of Edinburgh

SSBX, July 2016

Conclusion
What has all this to do with a
Principle of Least Surprise
for bidirectional transformations?

Perdita Stevens

University of Edinburgh

SSBX, July 2016

Ambitious Plan

explain what everything you've heard this week has to do with
Least Surprise, and lay out a research agenda for the next ten years
based on that

Realistic Plan

©

Why are we here? Why are bx important?

©

Why do we need such a Principle? Very broadly, what do we
mean by it?

©

What approaches have come up this week?

©

What other approaches are there?
What next?

©

plus some remarks that don't fit, because | can

Setting the scene

Model-driven development isn't the only setting where bx matter —
but it is the one | understand best, and | think Least Surprise is

crucial there.
Why?

Model-driven development

Definition
A model is an abstract, usually graphical, representation of some
aspect of a system.

Model-driven development

Definition
A model is an abstract, usually graphical, representation of some
aspect of a system.

Definition
MDD is software development in which models are important.

Model-driven development

Definition
A model is an abstract, usually graphical, representation of some
aspect of a system.

Definition
MDD is software development in which models are important.

But what is the problem MDD aims to solve?

Model-driven development

Definition
A model is an abstract, usually graphical, representation of some
aspect of a system.

Definition
MDD is software development in which models are important.

But what is the problem MDD aims to solve?

Motivation

Manage information overload, by separating concerns and providing
representations suitable for each set of decisions.

Managing information overload means...

...avoiding distracting the expert with information that isn't
relevant to them.

Managing information overload means...

...avoiding distracting the expert with information that isn't
relevant to them.

In an ideal world, their model would contain all and only the
information that's relevant to them

and would change only because of things they need to know
anyway.

Pause for

megalomaniac
world vision

rant

For that to work

bx will have to be trusted and trustworthy

dependable

including: reliable; maintainable; understandable; correct;
available; ...

For that to work

bx will have to be trusted and trustworthy

dependable

including: reliable; maintainable; understandable; correct;
available; ...

Argh! Let us bite off a small chunk and chew hard. Least Change...

Informal idea

Meertens' formulation

The action taken by the maintainer of a constraint after a violation
should change no more than is needed to restore the constraint.

Extreme case is easy to formalise (and, usually, agree on):
Hippocraticness
If nothing needs to be changed, change nothing.

Next step?

Informally the next step after hippocraticness is:
don’t make pointless changes

If changing just x restores consistency, and is reasonable, don't
change both x and y.

Example

M = UML class rectangles
N = JUnit test classes

R(m, n) name of m is the same as name of n, and n contains an
“appropriate” set of tests for each public operation...

If one operation changes, change one test. Don't, for example, add
delete or change other tests, create extra classes...

Example

M = UML class rectangles
N = JUnit test classes

R(m, n) name of m is the same as name of n, and n contains an
“appropriate” set of tests for each public operation...

If one operation changes, change one test. Don't, for example, add
delete or change other tests, create extra classes...

move to the closest consistent place

Example

M = UML class rectangles
N = JUnit test classes

R(m, n) name of m is the same as name of n, and n contains an
“appropriate” set of tests for each public operation...

If one operation changes, change one test. Don't, for example, add
delete or change other tests, create extra classes...

move to the closest consistent place

change should be proportionate: small change leads to small
change

Who said what about Least Surprise or Least Change?

Everything in quotation marks may actually be a paraphrase —
speak up if it's not what you said at all!

Mike

Constant complement as Least Change:

“You have to change the view; don't change anything else”

Anthony

First, a different setting for Least Change:

“Suppose we have a bx, that meets its requirements. Now its
requirements change. We want to be able to make a small change
to the bx to meet the new requirements.”

Least change for the (LtoR privileged!) bx

Requirements «+— Bx

Structure

Extreme case: Richard: “we have a unidirectional MT, and then
we discover we want a bx."”

Anthony

First, a different setting for Least Change:

“Suppose we have a bx, that meets its requirements. Now its
requirements change. We want to be able to make a small change
to the bx to meet the new requirements.”

Least change for the (LtoR privileged!) bx

Requirements «+— Bx

Structure

Extreme case: Richard: “we have a unidirectional MT, and then
we discover we want a bx."”

Also: control...

Anthony

First, a different setting for Least Change:

“Suppose we have a bx, that meets its requirements. Now its
requirements change. We want to be able to make a small change
to the bx to meet the new requirements.”

Least change for the (LtoR privileged!) bx

Requirements «+— Bx

Structure

Extreme case: Richard: “we have a unidirectional MT, and then
we discover we want a bx."”

Also: control...

who needs control?

Zhenjiang

Opening example about rectangles:

if get: (w, h) — h

and a 4x4 square's height is changed to 2,
what should happen to the rectangle?

Least change to what: width? aspect ratio? area?

Zhenjiang

Opening example about rectangles:

if get: (w, h) — h

and a 4x4 square's height is changed to 2,

what should happen to the rectangle?

Least change to what: width? aspect ratio? area?

Suggests bx developer needs control.

Zhenjiang

Opening example about rectangles:

if get: (w, h) — h

and a 4x4 square's height is changed to 2,

what should happen to the rectangle?

Least change to what: width? aspect ratio? area?
Suggests bx developer needs control.

Solution in the asymmetric case: define the put, derive the get: but
in the symmetric case, neither direction is derivable from the other.

Aside: what first?

get first?

putback first?

think bidirectionally?

be able to add bidirectionality as an afterthought?

consistency first

Richard

Trace links as important-to-be-kept things: partly, to preserve
alignment, to support least change?

Partly, for direct use, cf Anthony: “users seldom care about bx, but
they care about traceability a lot, because they have to do that”.

(Here be dragons.)

Richard

Trace links as important-to-be-kept things: partly, to preserve
alignment, to support least change?

Partly, for direct use, cf Anthony: “users seldom care about bx, but
they care about traceability a lot, because they have to do that”.

(Here be dragons.)

“Want tools that evidently implement the theory” —i.e., in
practice, can dependably explain themselves?

Anthony again

pushouts as “don’'t make unnecessary changes”

difficulty of finding shortest path...that's much harder than
guaranteeing no unnecessary steps...

Martin

Least surprise lurking throughout, e.g.:

Martin

Least surprise lurking throughout, e.g.:

o symmetric lenses: complements allow smooth retention of
information — avoidance of surprising information loss

Martin

Least surprise lurking throughout, e.g.:

o symmetric lenses: complements allow smooth retention of
information — avoidance of surprising information loss

o edit lenses: each change on one side is justified by a change
that was actually, intensionally made on the other

Martin

Least surprise lurking throughout, e.g.:

o symmetric lenses: complements allow smooth retention of
information — avoidance of surprising information loss

o edit lenses: each change on one side is justified by a change
that was actually, intentionally made on the other

Naive approach

Let X be how much we need to change to restore the constraint.
Let Y be how much the bx actually changes.

Require Y < X.

Oh,so Y = X.

Now: how do we measure X and Y7

Metrics

Given m and m’, need to be able to say how much changed from
mto m'.

A sensible way to do this is called a metric.

Definition

A metricon Misd: M x M — R
satisfying

dm,m')=0iff m=nm'

d(m,m') = d(m’', m)
d(m,m')+d(m',m") > d(m,m")

E.g. minimal edit distance (typically).

Metric least change

Assume given:
%
o abx (R, R, R): M N,
o metrics dy, dy on M and N.
Then
Definition
R is metric-least if for all m € M and for all n,n" € N

R(m,n") = dn(n,n") > dn(n ﬁ(m n)

and dually.

Implementing metric least change

Macedo and Cunha implemented this approach, providing a new
semantics to the syntax of QVT-R.

Given consistency relation R, and models m, n, with the task to
find a new n’ consistent with m:

@ setd =0;
@ search exhaustively for consistent n’ € N at distance d from n;
@ if there are any, present them all to the user as options;

@ else, increment d and goto 2.

Problems with metric least change

@ Scalability.

@ Usability: no easy way to ensure unique closest model, or to
allow bx programmer to specify the choice.

@ Doesn't compose (even where that makes sense).
@ Inflexibility (+/—7).

Can mitigate inflexibility by allowing bx programmer to choose
metrics: but hmm.

Why the metric approach doesn't scale

Let S be a database, Q a PJ-query, constant size, 2 relns, so Q(S)
is a view.

Given: t € Q(S)
Question: Isthere T C Ssit. Q(S\T) = Q(S)\{t} 7

Buneman, Khanna, Tan (PODS’02): this is NP hard. (And we
can't efficiently approximate, either.)

Why the metric approach doesn't scale

Let S be a database, Q a PJ-query, constant size, 2 relns, so Q(S)
is a view.

Given: t € Q(S)

Question: Isthere T C Ssit. Q(S\T) = Q(S)\{t} 7

Buneman, Khanna, Tan (PODS’02): this is NP hard. (And we
can't efficiently approximate, either.)

Corollary: if “models” are expressive enough to include sets of
tuples (with set symmetric difference as the metric) and
“consistency relations” language expressive enough to permit
PJ-queries, e.g. Rg(m, n) should hold iff Q(m) C n, then

Theorem
Computing metric-least consistency restoration is NP-hard.

Why the metric approach doesn’'t compose

Why the metric approach doesn’'t compose

Why the metric approach doesn’'t compose

Why the metric approach doesn’'t compose

2 [z

Why the metric approach doesn’'t compose

Why the metric approach doesn’'t compose

Why the metric approach doesn’'t compose

Why the metric approach doesn’'t compose

Why the metric approach doesn’'t compose

Why the metric approach doesn’'t compose

Why the metric approach doesn’'t compose

Why the metric approach doesn’'t compose

Why the metric approach doesn’'t compose

Why the metric approach doesn’'t compose

Example where inflexibility bites

Extent earlier example:
M = UML models
N = test suite (in JUnit say)

R(m, n) iff every ((persistent)) class in m has a test class of the
same name in n, containing an “appropriate” set of tests for each
public operation...

Example where inflexibility bites

Extent earlier example:
M = UML models
N = test suite (in JUnit say)

R(m, n) iff every ((persistent)) class in m has a test class of the
same name in n, containing an “appropriate” set of tests for each
public operation...

You modify the test class for a ((persistent)) class: int — long
throughout.

Example where inflexibility bites

Extent earlier example:
M = UML models
N = test suite (in JUnit say)

R(m, n) iff every ((persistent)) class in m has a test class of the
same name in n, containing an “appropriate” set of tests for each
public operation...

You modify the test class for a ((persistent)) class: int — long
throughout.

Propagate back to UML model. What happens?

o int — long throughout?

Example where inflexibility bites

Extent earlier example:
M = UML models
N = test suite (in JUnit say)

R(m, n) iff every ((persistent)) class in m has a test class of the
same name in n, containing an “appropriate” set of tests for each
public operation...

You modify the test class for a ((persistent)) class: int — long
throughout.

Propagate back to UML model. What happens?

o int — long throughout?

o remove ((persistent)) 7

Mitigation attempt 1

Use a different metric: make removing the ((persistent)) be seen as
an enormously expensive change.

But now we have a metric defined specifically for this bx.

Mitigation attempt 2

Why do we feel that removing ((persistent)) is not as cheap as it
looks?

Because it disrupts the connection between the two models: breaks
links.

It's a small change to the model, but a large change to the witness
structure explaining their consistency?

Witness structures

Definition

A witness structure is a structure whose intention is to capture
something about the relationship between the models being kept
consistent.

o Relational bx: “they’re consistent because | say so”

o TGGs: “they're consistent because this is how they are built
up together using the TGG rules”

o MDD with trace links: “they're consistent because this part of
this links to that part of that”

o QVT-R game: “they're consistent because here’s how Verifier
wins a consistency game on them”

o Or even: “they're consistent because Coq gave me this proof
that they are”.

So metric least change may yet be useful

in some settings, or when its deficiencies can be mitigated as
mentioned.

But it does not deserve to be seen as the sole Right Answer.

Back to the drawing board.

Principle of Least Surprise

or Least Astonishment, for user interface design, adapted to
language design, etc. E.g.

Saltzer and Kaashoek, via Wikipedia

People are part of the system. The design should match the user's
experience, expectations, and mental models.

Principle of Least Surprise

or Least Astonishment, for user interface design, adapted to
language design, etc. E.g.
Saltzer and Kaashoek, via Wikipedia

People are part of the system. The design should match the user's
experience, expectations, and mental models.

The essential point is not that user should always know what will
be on the next screen.
Rather, that they should seldom be surprised, i.e., taken aback.

Despite “least”, we really seek reasonable, rather than optimal,
behaviour.

Q>

OINIY,

Q>

Continuity

Definition
f:S — T is continuous at s iff

Ve >0.36 > 0.Vs' .ds(s,s’) < § = dr(f(s),f(s')) < e

We say just “f is continuous” if it is continuous at all s.

Continuity of R at (m, n)

Definition

R is continuous at (m, n) iff
Ve >0.30 >0.Vm' .dy(m,m') <é= dN(ﬁ(m, n), ﬁ(m’, n)) <e

i.e. iff ﬁ(,, n) : M — N is continuous at m.

Where do we want continuity?

Well, at the points where we want guarantees... e.g.

o Everywhere: strong continuity
o Only at consistent (m, n): weak continuity
o Something else? Where we can get it? On “good” subspace

pair?
In the history ignorant (vwb, PUTPUT) case, strong = weak.

+ Strongly (rsp. weakly) continuous bx compose, where
composition makes sense.

The problem with continuity

— Every function is continuous at an isolated point :-(

The problem with continuity

— Every function is continuous at an isolated point :-(

Variants with better overall behaviour? See Bx15 paper. Holder
continuity promising.

Holder continuity

idea: systematically bound the amount of change in the result of a
function, in terms of the amount of change in the argument to the
function.

Holder continuity

idea: systematically bound the amount of change in the result of a
function, in terms of the amount of change in the argument to the
function.

Definition

R is Hslder continuous (with respect to C,«) at (m, n) i ff
V' . dy(R(m, n), R(m', n)) < Cdps(m, m')®

Prediction: way too strong to expect it everywhere in realistic bx,
but nevertheless, Holder continuity may be worthwhile to think
about.

Problem

as usual, we want more than we can have

Our least surprise properties are too strong to expect them to hold
on realistic bx.

Problem

as usual, we want more than we can have

Our least surprise properties are too strong to expect them to hold
on realistic bx.

Identify where they do hold, and build a

Tool that Goes Beep

The Tool that Goes Beep

The tool knows its own limitations.

The Tool that Goes Beep

The tool knows its own limitations.

From some states of the world — e.g. pairs (m, n) of models — it
knows how to restore consistency in an unsurprising way.

If asked to, it will do so silently.

The Tool that Goes Beep

The tool knows its own limitations.

From some states of the world — e.g. pairs (m, n) of models — it
knows how to restore consistency in an unsurprising way.

If asked to, it will do so silently.

From other states of the world, it doesn't, or isn't confident, so it
will beep.

The user may want to check, perhaps even amend, what the tool
did — or the tool may have given up and done nothing.

Subspace pairs as good states of the world

Why use subspace pairs?

The states of the world from which the tool knows a good thing to
do needn’t form an ssp — why is it useful to think about ssps?

o Bx restrict to bx on ssps:

Why use subspace pairs?

The states of the world from which the tool knows a good thing to
do needn’t form an ssp — why is it useful to think about ssps?

o Bx restrict to bx on ssps:

o may behave better (less surprisingly) on an ssp than on the
whole space

Why use subspace pairs?

The states of the world from which the tool knows a good thing to
do needn’t form an ssp — why is it useful to think about ssps?

o Bx restrict to bx on ssps:

o may behave better (less surprisingly) on an ssp than on the
whole space

@ no surprising exit from an ssp: exit only when the user causes
it.

Why use subspace pairs?

The states of the world from which the tool knows a good thing to
do needn’t form an ssp — why is it useful to think about ssps?

Qo

Qo

Bx restrict to bx on ssps:

may behave better (less surprisingly) on an ssp than on the
whole space

no surprising exit from an ssp: exit only when the user causes
it.

so in particular, if your organisation can agree to stay in an
ssp where the bx is good enough, your beeping tool need
never beep.

Why use subspace pairs?

The states of the world from which the tool knows a good thing to
do needn’t form an ssp — why is it useful to think about ssps?

o Bx restrict to bx on ssps:

o may behave better (less surprisingly) on an ssp than on the
whole space

@ no surprising exit from an ssp: exit only when the user causes
it.

o so in particular, if your organisation can agree to stay in an
ssp where the bx is good enough, your beeping tool need
never beep.

o (and you can have special procedures for when you do exit an
ssp...)

Atlases of subspace pairs

Collection of ssps that covers both model spaces is called an atlas.
NB this means every m € M occurs in some pair (m, n) in some ssp

does not mean every pair (m, n) is in some ssp.

Example

Classic trouble-maker: if.

If class C is stereotyped persistent, then its methods must be
matched by appropriate tests. Otherwise, C is not relevant to
consistency.

Consider atlas of subspace pairs {(Mp, Np) : P C Classes}
(exactly these classes stereotyped; at least those test classes exist)

Bx behaviour on an ssp is relatively straightforward and can have
good properties.

What to do otherwise is more dangerous...

Tool beeps if set of persistent classes in the UML model has
changed, or set of test classes has got too small.

Questions, comments?

It only remains for me to say...

Thank you Jeremy!

