
Generic Multiset Programming

Fritz Henglein

Department of Computer Science
University of Copenhagen
Email: henglein@diku.dk

SSGEP, Oxford, 2015-07-07

Example problem

Gather, aggregate and interpret bulk data.
Example: A conjunctive join query (in SQL notation)

SELECT depName, acctBalance

FROM depositors, accounts

WHERE depId = acctId

How to evaluate such a query?

2

Standard evaluation

Auxiliary definitions:

(f *** g) (x, y) = (f x, g y)

(p .==. q) (x, y) = (p x == q y)

prod s t = [(x, y) | x <- s, y <- t]

Query:

map (depName *** acctBalance)

(filter (depId .==. acctId)

(depositors ‘prod‘ accounts))

+ Compositional, simple

−− Θ(n2) time complexity (not scalable)

3

Dynamic symbolic computation
Query, with standard evaluation:

map (depName *** acctBalance)

(filter (depId .==. acctId)

(depositors ‘prod‘ accounts))

Query, with dynamic symbolic computation:

map (depName *** acctBalance)

(filter ((depId, acctId) ‘Is‘ eqInt)

(depositors ‘prod‘ accounts)

Difference:

++ Θ(n) time complexity (scalable!)

Note: map, filter, prod, *** have different types.
4

Lazy (symbolic) cross-products and unions
Add constructors for cross-product and union to mulitset datatype:

data MSet a where

O :: MSet a

S :: a -> MSet a

U :: MSet a -> MSet a -> MSet a

X :: MSet a -> MSet b -> MSet (a, b)

list s = ...

O: Empty

S x: Singleton

s1 ‘U‘ s2: Union

s1 ‘X‘ s2: Cartesian product (the new thing)

5

So what?

U: Append lists1.

Constant-time concatenation
Conversion to cons lists ∼= difference lists (efficient! coherent!)
Alternative: Allow pattern-matching on U (efficient! coherent?)

X: Symbolic products

Constant-time Cartesian product
Conversion to append lists ∼= multiplying out (inefficient!
coherent!)
Alternative: Allow pattern-matching on X (efficient!
coherent?)

Idea: Exploit algebraic identities of Cartesian products for

asymptotic performance improvements in some contexts

at most constant-time overhead in all contexts

1Join lists, Boom lists, ropes, catenable lists
6

Example: Count (cardinality)

count :: MSet a -> Int

count O = 0

count (S x) = 1

count (s1 ‘U‘ s2) = count s1 + count s2

count (s1 ‘X‘ s2) = count s1 * count s2

Pattern match on new constructors X and U

Exploitation of algebraic properties (here: homomorphic
property)

No multiplying out of cross-product!

7

Perform: Standard evaluation

Generalized projection

Functor action of MSet on Set-morphisms (fmap)

First try:

perform :: (a -> b) -> MSet a -> MSet b

perform f O = O

perform f (S x) = S (f x)

perform f (s ‘U‘ t) = perform f s ‘U‘ perform f t

perform f s = perform f (norm s)

where

norm :: MSet a -> MSet a

multiplies products out.
8

Perform: Looking for asymptotic speedups

For which f, s, t:

perform f (s ‘X‘ t) = ... (no norm (s ‘X‘ t)) ...?

Example:

perform fst (s ‘X‘ t) = times (count t) s

where

times 0 s = O

times 1 s = s

times n s = s ‘U‘ times (n-1) s

Idea: Turn into evaluation rule. Need to pattern match on fst!

9

Performable functions (symbolic arrows)
data Func a b where

Func :: (a -> b) -> Func a b

Id :: Func a a

(:***:) :: Func a b -> Func c d ->

Func (a, c) (b, d)

Fst :: Func (a, b) a

Snd :: Func (a, b) b

ext :: Func (a b) -> (a -> b)

ext (Func f) x = f x

ext Id x = x

...

Func f: Ordinary function as performable function

f :***: g: Parallel composition of f, g

ext f: Ordinary function represented by performable function

10

Perform: Definition

perform :: Func a b -> MSet a -> MSet b

perform f (s1 ‘U‘ s2) = perform f s1 ‘U‘ perform f s2

perform (f1 :***: f2) (s1 ‘X‘ s2) =

perform f1 s1 ‘X‘ perform f2 s2

perform Fst (s1 ‘X‘ s2) = count s2 ‘times‘ s1

perform Snd (s1 ‘X‘ s2) = count s1 ‘times‘ s2

perform f s = perform f (norm s) -- default clause

...

Clauses for X represent algebraic equalities that avoid
multiplying out cross-product.

Default clause corresponds to standard evaluation.

Catches all cases not caught by special matches.

11

Symbolic representation of scaling operator

Idea: Introduce lazy constructor for times.

data MSet a where

O :: MSet a

S :: a -> MSet a

U :: MSet a -> MSet a -> MSet a

X :: MSet a -> MSet b -> MSet (a, b)

(:.) :: Integer -> MSet a -> MSet a

perform Fst (s1 ‘X‘ s2) = count s2 ‘:.‘ s1

perform Snd (s1 ‘X‘ s2) = count s1 ‘:.‘ s2

Plus additional clauses for perform, select, count, when applied
to (:.)-constructor terms.

12

Reduction

We also need to aggregate and interpret multisets; e.g.
compute sum, maximum, minimum, product.

Reduction = unique homomorphism from (MSet(S),∪, ∅) to
commutative monoid (S , f , n)

reduce :: ((a, a) -> a, a) -> MSet a -> a

reduce (f, n) O = n

reduce (f, n) (S x) = x

reduce (f, n) (s ‘U‘ t) = f (reduce f n s, reduce f n t)

reduce (f, n) (k ‘:.‘ s) = ...?

reduce (f, n) (s ‘X‘ t) = ...?

Problem: What to do about X and (:.)?

13

Useful algebraic properties for reduction
Notation:

S ⊕̂T = map⊕ (S × T) for binary ⊕
f (S) = map f (S) if f : U → V , S ⊆ U

Σ = reduce(+, 0)

Algebraic identities for certain functions mapped over
cross-products:

Σ (S +̂ T) = |T | · Σ S + |S | · Σ T

Σ (S ∗̂T) = Σ S ∗ Σ T

Σ (S +̂ T)2 = |T | · Σ S2 + |S | · Σ T 2 + 2 · (Σ S) ∗ (Σ T)

Σ (S ∗̂T)2 = Σ S2 ∗ Σ T 2

14

Reduction

Add constructors for +, ∗,2 , . . . to Func a b

Add constructor :$ for mapping symbolic arrows over
Cartesian products

reduce :: (Func (a, a) a, a) -> MSet a -> a

reduce (f, n) O = n

reduce (f, n) (S x) = x

reduce (f, n) (s ‘U‘ t) =

ext f (reduce f n s, reduce f n t)

reduce ((:+:), 0) ((:+:) :$ (s ‘X‘ t)) =

count t * reduce (+, 0) s +

count s * mreduce (+, 0) t

... -- more algebraic simplifications

reduce (f, n) s = reduce (f, n) (norm s) -- default

15

Application: Finite probability distributions

Represent finite probability spaces (“distributions”) with rational
probabilities as multisets:

type Probability = Rational

type Dist a = MSet a

Probability of element x : # occurrences of x in s
|s|

Probabilistic choice between two distributions:

choice :: Probability -> Dist a -> Dist a -> Dist a

choice p s t =

let v = numerator p * count t

w = (denominator p - numerator p) * count s

in (v ‘:.‘ s) ‘U‘ (w ‘:.‘ t)

16

Computing mean and variance

msum = reduce ((:+:), 0)

mean p = msum p / count p

variance p =

let n = count p -- sum X^0

s = msum p -- sum X^1

s2 = msum (perform Sq p) -- sum X^2

in (n * s2 - s^2) / n^2

+ Compositional, simple

+ Linear time for independent random variables (products of
distributions)

17

Fuzzy sets
Idea: Extend admissible range of numbers to scale with; e.g.

data MSet a where

O :: MSet a

S :: a -> MSet a

U :: MSet a -> MSet a -> MSet a

X :: MSet a -> MSet b -> MSet (a, b)

(:.) :: Float -> MSet a -> MSet a

Allow instead of Float

Booleans: sets;
nonnegative integers: multisets;
integers: hybrid sets;
reals in [0 . . . 1]: fuzzy sets;
reals in [0 . . .∞]: fuzzy multisets;
all reals: fuzzy hybrid sets

Wait a minute: “Hybrid sets”? “Fuzzy hybrid sets?”
18

Summary: Dynamic symbolic computation

Method for adding symbolic processing step by step to base
implementation:

1 Identify (asymptotically) expensive operation

2 Introduce symbolic data constructor for its result
3 Exploit algebraic properties during evaluation

Not just lazy evaluation

4 This may lead to new needs/opportunities for applying
dynamic symbolic computation: Repeat!

19

Relation to query optimization
Implementation performs classical algebraic query optimizations,
including

filter promotion (performing selections early)

join introduction (replacing product followed by selection by
join)

join composition (combining join conditions to avoid
intermediate multiplying out)

Observe:

Done at run-time

No static preprocessing

Data-dependent optimization possible.

Deforestatation of intermediate materialized data structures
not necessary due to lazy evaluation.

20

Staged symbolic computation
1 Static symbolic computation

All operations treated as constructors (“abstract syntax tree”)
Rewriting on open terms (unknown/parametric input)
Rewriting by interpretation

2 Standard evaluation
Few operations treated as constructors (only value
constructors)
Rewriting on ground terms only
Compiled evaluation (“normalization by evaluation”)

+ : Staging: Symbolic operations executed only once

− : Narrowing or no narrowing for free variables? (Lots of
rewrite rules)

− : Standard evaluation steps implemented twice

− : Interpreted symbolic computation

− : Compositionality?

21

. . . and dynamic symbolic computation

1 Symbolic and standard computation steps intermixed

Some operations treated as constructors (driven by asymptotic
performance)
Ground terms only
Compiled symbolic computation and evaluation

− : Unstaged: Symbolic operations incur (constant-time)
run-time overhead

− : Ground terms only: No need for narrowing (Few rewrite
rules)

− : Standard evaluation steps implemented only once

− : Compiled symbolic computation

− : Compositionality!

22

Compositionality: Functional abstraction

module AccountManagement where

accts = ...

deps = ...

countFilter :: Pred (Account, Depositor) -> Int

countFilter pred =

count (select pred (accts ‘X‘ deps))

module Run where

res = (countFilter ((acctId, depId) ‘Is‘ eqInt32),

countFilter TT)

23

Related work

Henglein, Optimizing relational algebra operations using
generic partitioning discriminators and lazy products, PEPM
2010

Henglein, Larsen, Generic multiset programming for
language-integrated querying, WGP 2010

Henglein, Larsen, Generic Multiset Programming with
Discrimination-based Joins and Symbolic Cartesian Products,
HOSC 2010

Henglein, Dynamic Symbolic Computation for
Domain-Specific Language Implementation, LOPSTR 2011
(also XLDI 2012)

Olteanu, Závodný, Factorised Representations of Query
Results: Size Bounds and Readability, ICDT 2012, journal
version to appear in TODS; see Factorised Databases,
http://www.cs.ox.ac.uk/projects/FDB/

24

Future work (“Homework”)
Conjectures:

Subsumes all static algebraic relational algebra optimizations.
Is subsumed by SQL-query optimization for SPJ-queries.
Properly improves upon SQL-query optimization (for some
systems) for nested SQL-queries

Predictable performance: Compositional performance analysis
by abstract interpretation?

Robust performance: Performance closed under which local
transformations?

Willard-Goyal-Paige query optimization for complex join
queries on more than 2 multisets

High-performance implementation for querying distributed
data sources

Scalable data-parallel algorithms and implementations; key
problem: join (discriminination)

25

Where are we?

1 Yesterday: Generic discrimination

2 Today: Generic multiset programming

3 Thursday: Fuzzing the counts and going negative

Thank you!

26

