Basic Mapping Theorem

THEOREM. $\quad \Lambda_{\varepsilon|\beta|}(\alpha I+\beta A)=\alpha+\beta \Lambda_{\varepsilon}(A)$ for all $\alpha, \beta \in \mathbb{C}$.

Notation. Set addition is defined componentwise: $S_{1}+S_{2}=\left\{s_{1}+s_{2}: s_{1} \in S_{1}, s_{2} \in S_{2}\right\}$. This result holds for any norm.

Proof. Suppose $z \in \Lambda_{\varepsilon|\beta|}(\alpha I+\beta A)$. The result is trivial if $\beta=0$ or $\varepsilon=0$. Otherwise, the definition of pseudospectra implies that

$$
\begin{aligned}
\frac{1}{\varepsilon|\beta|} & \leq\left\|(z I-(\alpha I+\beta A))^{-1}\right\| \\
& =\frac{1}{|\beta|}\left\|\left(\frac{z-\alpha}{\beta} I-A\right)^{-1}\right\|
\end{aligned}
$$

Thus, $z \in \Lambda_{\varepsilon|\beta|}(\alpha I+\beta A)$ is equivalent to $(z-\alpha) / \beta \in \Lambda_{\varepsilon}(A)$.

History. These basic identities appeared in [Tre99b]. This result does not simply generalize to higher degree polynomials.

Bibliography.

[Tre99b] L. N. Trefethen. Spectra and pseudospectra: The behavior of non-normal matrices and operators. In The Graduate Student's Guide to Numerical Analysis, M. Ainsworth, J. Levesley, and M. Marletta, eds., Springer-Verlag, Berlin, 1999.

PSEUDOSPECTRA

