Pseudospectral Bound on the Norm of a Matrix Function

THEOREM. Let f be a function that is analytic on A.(A) for a fixed € > 0. Then provided the
boundary dA-(A) of A.(A) consists of a finite union of Jordan curves,
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where L(90A-(A)) denotes the arc length of A (A).

Notation. This result holds for any norm.

Proof. Given our assumptions on f and JA.(A), we can write f(A) as the Dunford integral,
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see Theorem VII.9.4 of [DS58]. The result follows by coarsely bounding this integral,
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History. This result (with f taken to be a polynomial), was first presented by Trefethen as part
of a pseudospectral bound for convergence of the GMRES algorithm for solving linear systems
[Tre90]. Greenbaum has further analyzed this bound for arbitrary analytic functions f when each
connected component of A.(A) contains no more than one (possibly repeated) eigenvalue [Gre00].
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