
What is the quantum state?

Jonathan Barrett

QISW, Oxford, March 2012

Terry RudolphMatt Pusey



But our present QM formalism is not purely

epistemological; it is a peculiar mixture

describing in part realities of Nature, in part

incomplete human information about

Nature --- all scrambled up by Heisenberg

and Bohr into an omelette that nobody has

seen how to unscramble. Yet we think that

the unscrambling is a prerequisite for any

E. T. Jaynes

the unscrambling is a prerequisite for any

further advance in basic physical theory. For,

if we cannot separate the subjective and

objective aspects of the formalism, we

cannot know what we are talking about; it

is just that simple.



Classical Mechanics

p
State of system at 

• Consider a single particle in 1 dimension. 

• Particle has position and momentum. State of particle is completely detemined by 

the values of x,p. 

• Other physical properties of the particle are functions of x,p, e.g., energy H(x,p).

x

State of system at 

time t is a point in 

phase space.

Motion determined by 

Hamilton’s equations

q̇ =
∂H

∂p

ṗ = −∂H
∂q

x(t), p(t)



Liouville Mechanics

p
Probability 

• Sometimes we don’t know the exact microstate of a classical system. 

• The information we have defines a probability distribution ρ over phase space.

• ρ is not a physical property of the particle. The particle occupies a definite point in 

phase space and does not care what probabilities I have assigned to different states.

x

p
Probability 

distribution on 

phase space
Evolution of the probability 

distribution is given by the Liouville

equation:



Liouville Mechanics

p
Probability 

• Sometimes we don’t know the exact microstate of a classical system. 

• The information we have defines a probability distribution ρ over phase space.

• ρ is not a physical property of the particle. The particle occupies a definite point in 

phase space and does not care what probabilities I have assigned to different states.

x

p
Probability 

distribution on 

phase space

Terminology:

(x,p)  ontic state

ρ epistemic state



What is the quantum state?

Ontic ?

• A quantum wave function is a real 

physical wave. 

• Quantum interference most easily 

understood this way.

• Defined on configuration space ??



Epistemic ?

What is the quantum state?

• A quantum state encodes an 

ψψψψ
• A quantum state encodes an 

experimenter’s knowledge or 

information about some aspect of 

reality.



Arguments for ψ being epistemic

Collapse! just Bayesian updating

The wave function is not a thing which lives in the world. It is a

tool used by the theory to make those inferences from the

known to the unknown. Once one knows more, the wave

function changes, since it is only there to reflect within the

theory the knowledge one assumes one has about the world.

-----Bill Unruh



Arguments for ψ being epistemic

• Non-orthogonal quantum states cannot reliably be distinguished 

– just like probability distributions.

• Quantum states are exponential in the number of systems – just 

like probability distributions. 

• Quantum states  cannot be cloned, can be teleported  etc – just 

like probability distributions.  



I will show that...

• If ψmerely represents information about the 

objective physical state of a system, then 

predictions are obtained that contradict 

quantum theory.quantum theory.



In more detail, suppose that... 

• A system has an ontic state -- an objective physical state, 

independent of the experimenter, and independent of which 

measurement is performed. Call this state λ.
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In more detail, suppose that... 

• A system has an ontic state -- an objective physical state, 

independent of the experimenter, and independent of which 

measurement is performed. Call this state λ.

• Probabilities for measurement outcomes are determined by λ.• Probabilities for measurement outcomes are determined by λ.

• A quantum state ψ describes an experimenter’s information 

about λ

ψ corresponds to a distribution µψ(λ)

Pr(k|M,λ)



λ M

k

ψψψψ

Pr(k|Mλ)

µψ(λ)

Recover quantum predictions:

Pr(k|Mλ)

|〈ψ|k〉|2 =
∫
Pr(k|M,λ)µψ(λ)dλ



So far these assumptions are similar to those of Bell’s theorem...

But I will not assume locality. Instead assume

Preparation independence

λλλλ1 λλλλ2

• Consider independent preparations, of quantum states ψ and 

φ, producing ψ⊗ φ

ψψψψ

µψ(λ)
λλλλ1

φφφφ

µφ (λ)
λλλλ2

• Overall distribution is   µψ⊗φ(λ,λ) = µψ(λ)× µφ(λ)



The ψ-ontic case

Λ

µφ

Suppose that for every pair 

of distinct quantum states φ

and ψ, the distributions µφ
and µψ do not overlap:

µψ

• The quantum state can be inferred from the ontic state.

• The quantum state is a physical property of the system, and is not 

mere information.



The ψ-epistemic case

Λ

µφ

λ

• µφ and µψ can overlap.

• Given the ontic state λ above, cannot infer whether the quantum 

state φ or ψ was prepared.

µψ



Harrigan and Spekkens, Found. Phys. 40, 125 (2010).

L. Hardy, priv. comm.

See also: 

These distinctions were first made rigorously by:

Montina, Phys. Rev. A 77, 022104 (2008).



A no-go theorem

Suppose there are distinct quantum 

states φ0 and φ1, and an ontic state λ0

such that:
µ

λ

Pr( λ | φ0 ) ≥ q > 0,

Pr( λ | φ1 ) ≥ q > 0.

µ

µ



Move lever left or right to 

prepare either |φ0〉 or |φ1〉.

|φx1〉 ⊗ |φx2〉 ⊗ · · · ⊗ |φxn〉• 2n possible joint states:

• Each is prepared in either the state |φ0〉 or the state |φ1〉.

Prepare n systems independently...

|φx1
〉

λ 1 λ 2 λ 3 λ 4 λ 5 λ 6

|φx2
〉 |φx4

〉|φx3
〉 |φx5

〉 |φx6
〉



|φx1
〉 |φx2

〉 |φx4
〉|φx3

〉 |φx5
〉 |φx6

〉

For any                                                 there is some chance that 

every one of the n systems has the ontic state λ0 . 

|φx1〉 ⊗ |φx2〉 ⊗ · · · ⊗ |φxn〉

λ 0 λ 0 λ 0 λ 0 λ 0 λ 0

Pr(λ× λ×L× λ) ≥ qn



• Now here’s the problem...

• For large enough n there is an entangled measurement across the n systems, 

with 2n outcomes corresponding to projectors P1, ... , P2n and 

〈φ0| ⊗ · · · ⊗ 〈φ0| ⊗ 〈φ0| P1 |φ0〉 ⊗ · · · ⊗ |φ0〉 ⊗ |φ0〉 = 0
〈φ0| ⊗ · · · ⊗ 〈φ0| ⊗ 〈φ1| P2 |φ0〉 ⊗ · · · ⊗ |φ0〉 ⊗ |φ1〉 = 0

A `PP-measurement`

Cf Caves, Fuchs, Schack, Phys. Rev. A 

66, 062111 (2002).

〈 | ⊗ · · · ⊗ 〈 | ⊗ 〈 | | 〉 ⊗ · · · ⊗ | 〉 ⊗ | 〉
...

〈φ1| ⊗ · · · ⊗ 〈φ1| ⊗ 〈φ1| P2n |φ1〉 ⊗ · · · ⊗ |φ1〉 ⊗ |φ1〉 = 0

• For any of the preparations there is a non-zero probability that the ontic state is 

λ×L× λ.

• Must have  Pr(Pi|λ×L× λ) = 0 for any i. But probs must sum to 1!



Zβ =

(
1 0
0 eiβ

)

Choose n such that  21/n -1 ≤ tan(θ/2) . 

Wlog, write |φ0〉 = cos(θ/2) |0〉 - sin(θ/2) |1〉
|φ1〉 = cos(θ/2) |0〉 + sin(θ/2) |1〉

The measurement

Zβ =

(

0 eiβ

)

Rα|00 · · · 0〉 = eiα|00 · · · 0〉
Rα|b〉 = |b〉,

on all other basis states |b〉 .



Suppose that in a real experiment, the measured probabilities 

are within ε of the quantum predictions. Then

δ(µ , µ ) ≥ 1− 2 n
√
ε

Approximate case

δ(µ0, µ1) ≥ 1− 2 n
√
ε

Classical trace 

distance



A comparison

Bell’s theorem

Systems have an 

objective physical state

New theorem

Systems have an 

objective physical state

Experimenter free will

Quantum theory

Nonlocality

Preparation independence

Quantum theory

ψ-ontic



What now?

• A quantum state is not “experimenter’s information about the 

objective physical state of a system”.

3 possibilities

Systems don’t have 

“objective physical 

states”. Quantum state 

is “experimenter’s 

information about 

measurement 

outcomes”.

The state vector is a 

physical property of a 

quantum system.

Collapse is mysterious.

S’s cat is mysterious.

Undercut the assumptions 

of the theorem. 

Retrocausal influences?

Relational properties?


