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The ‘Hilbert space’ quantum formalism

Hilber space stuff: continuum, field structure of com-
plex numbers, vector space over it, inner-product, etc.

WHY?

von Neumann: only used it since it was available.

Model theory: one can do almost anything with it.

Schrödinger (1935): the stuff which is the true soul of
quantum theory is ‘how quantum systems compose’.
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tensor product structure
the other stuff = ?

Conceptually: not about properties of the individual,
but about relationships among the individuals

Mathematically: axiomatize an ‘abstract tensor prod-
uct’ without reference to underlying spaces

1. Game plan: Which assumptions (i.e. which struc-
ture) on ⊗ is needed to deduce physical phenomena?

2. Additional question: Does such an interaction struc-
ture appear elsewhere in “our classical reality”?
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tum World through Mathematical Innovation, Cambridge University Press.
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Outcome 1b: Exposing this structure has already helped
to solve open problems elsewhere.

Outcome 1c: Simple intuitive (but rigorous) dia-
grammatic language, meanwhile adopted by others:

“... we join the quantum picturalism revolution [1]”

Lucien Hardy (2010) A formalism-local framework for general probabilistic
theories including quantum theory. arXiv:1005.5164

[1] Coecke (2010) Quantum picturalism. Contemporary Physics 51, 59–83.
arXiv:0908.1787 (survey)



— R. Duncan & S. Perdrix (2010) Rewriting measurement-based
quantum computations with generalised flow. ICALP.
⇒ Ross Duncan’s talk

— B. Coecke & A. Kissinger (2010) The compositional structure
of multipartite quantum entanglement. ICALP. arXiv:1002.2540.
⇒ DEMO

— C. Horsman (2011) Quantum picturalism for topological cluster-
state computing. NJP. arXiv:1101.4722.

— S. Boixo & C. Heunen (2012) Entangled and sequential quan-
tum protocols with dephasing. PRL. arXiv:1108.3569

— B. Coecke, R. Duncan, A. Kissinger & Q. Wang (2012) Strong
complementarity and non-locality in categorical quantum me-
chanics. LiCS. arXiv:1203.4988
⇒ Aleks Kissinger’s talk
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Abramsky & Coecke (2004) A categorical semantics of quantum protocols.
LiCS’04. arXiv:quant-ph/0402130
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Coecke, Sadrzadeh & Clark (2010) Mathematical Foundations for a Compo-
sitional Distributional Model of Meaning. arXiv:1003.4394
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Knowledge updating :
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Coecke & Spekkens (2011) Picturing classical and quantum Bayesian infer-
ence. Synthese. arXiv:1102.2368



Outcome 2b: The structure is a true (quantum) logic:

Lucas Dixon, Ross Duncan, Ben Frot, Aleks Kissinger, Alex Merry



A MINIMAL LANGUAGE
FOR QUANTUM PROCESSES

Samson Abramsky & Coecke (2004) A categorical semantics for quantum pro-
tocols. In: IEEE-LiCS’04. quant-ph/0402130

Coecke (2005) Kindergarten quantum mechanics. quant-ph/0510032



— graphical notation for processes —

g ◦ f ≡
g

f
f ⊗ g ≡ f fg

Roger Penrose (1971) Applications of negative dimensional tensors.
In: Combinatorial Mathematics and its Applications. Academic Press.

André Joyal & Ross Street (1991) The geometry of tensor calculus I.
Advances in Mathematics 88, 55–112.



— kinds of systems —
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— merely a new notation? —

(g ◦ f )⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h)

=
f h

g k

f h

g k

peel potato and then fry it,
while,

clean carrot and then boil it
=

peel potato while clean carrot,
and then,

fry potato while boil carrot



— adjoint —

f : A→ B
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— adjoint —

f† : B → A
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— asserting (pure) entanglement —
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quantum

classical
=

=
=

⇒ introduce ‘parallel wire’ between systems:

subject to: only topology matters!



— quantum-like —
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In QM: cups = Bell-states, caps =Bell-effects, π-rotations = transpose
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⇒ quantum teleportation



Applying “decorated” normalization 3
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⇒ Entanglement swapping
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— dagger compact categories —

Thm. [Kelly-Laplaza ’80; Selinger ’05] An equa-
tional statement between expressions in dagger com-
pact categorical language holds if and only if it is
derivable in the graphical notation via homotopy.

Thm. [Selinger ’08] An equational statement between
expressions in dagger compact categorical language
holds if and only if it is derivable in the category of
finite dimensional Hilbert spaces, linear maps, tensor
product, and adjoints.



— dagger compact categories —

In words: Any equation involving:

• states, operations, effects

• unitarity, adjoints (e.g. self-adjoint), projections

• Bell-states/effects, transpose, conjugation

• inner-product, trace, Hilbert-Schmidt norm

• positivity, completely positive maps, ...

holds in quantum theory if and only if it can be derived
in the graphical language via homotopy.



A SLIGHTLY DIFFERENT LANGUAGE
FOR NATURAL LANGUAGE MEANING

Coecke, Sadrzadeh & Clark (2010) Mathematical Foundations for a Compo-
sitional Distributional Model of Meaning. arXiv:1003.4394



— the from-words-to-a-sentence process —
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— the from-words-to-a-sentence process —

I.e. how do we/machines produce meanings of sentences?

word 1 word 2 word n...
grammar

Gerald Gazdar (1996) Paradigm merger in natural language processing. In:
Computing tomorrow: future research directions in computer science, eds.,
I. Wand and R. Milner, Cambridge University Press.
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Information flow within a verb:

verb

object subject

Again we have:
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— experiment: word disambiguation —
E.g. what is “saw”’ in: “Alice saw Bob with a saw”.

Edward Grefenstette & Mehrnoosh Sadrzadeh (2011) Experimental support
for a categorical compositional distributional model of meaning. Accepted
for: Empirical Methods in Natural Language Processing (EMNLP’11).



Mehrnoosh Sadrzadeh Edward Grefenstette



AN EXTENDED LANGUAGE:
CLASSICALITY & OBSERVABLES



— observables —
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— observables —

Theorem 1. (‘folklore’ - Kock’s TQFT ’03; Lack ’04)
In any dagger symmetric monoidal category such fam-
ilies of spiders and dagger special commutative Frobe-
nius algebras are in canonical bijective correspondence.

Theorem 2. (Coecke-Pavlovic-Vicary) In FdHilb dag-
ger (special) commutative Frobenius algebra are ex-
actly ortho(normal) bases, nl. those of copyable elts.

Coecke & Pavlovic (2007) Quantum measurement without sums. In: Mathe-
matics of Quantum Computing and Technology. quant-ph/0608035

Coecke, Pavlovic & Vicary (2008) A new description of orthogonal bases.
Mathematical Structures in Computer Science. 0810.0812
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— complementary observables —

Coecke & Ross Duncan (2008) Interacting quantum observables. In: ICALP’08.
arXiv:0906.4725

















A UNIVERSAL LANGUAGE



THM (Phased Z/X-calc.). Any f : Cn → Cm decom-
poses in complementary “phased” 3-spiders:

α α

These phases arise as an Abelian group structure that
comes with the spiders for purely abstract reasons, where
inverses are the abstract conjugates.

These phases ‘add’ when spiders fuse, which can be
described as families of ‘group-decorated’ spiders.

Coecke & Ross Duncan (2008) Interacting quantum observables. In: ICALP’08.
Extended version: arXiv:0906.4725



— applications to QC models —
Translation to circuits, required resources and deter-
minism in measurement based quantum computations:

Example 18. The ubiquitous CNOT operation can be computed by the pattern
P = X3

4Z2
4Z2

1M0
3 M0

2 E13E23E34N3N4 [5]. This yields the diagram,

DP =

H

H

H

π, {3}

π, {2}

π, {2}

π, {3}π, {2}

,

where each qubit is represented by a vertical “path” from top to bottom, with
qubit 1 the leftmost, and qubit 4 is the rightmost.

By virtue of the soundness of R and Proposition 10, if DP can be rewritten
to a circuit-like diagram without any conditional operations, then the rewrite
sequence constitutes a proof that the pattern computes the same operation as
the derived circuit.

Example 19. Returning to the CNOT pattern of Example 18, there is a rewrite
sequence, the key steps of which are shown below, which reduces the DP to
the unconditional circuit-like pattern for CNOT introduced in Example 7. This
proves two things: firstly that P indeed computes the CNOT unitary, and that
the pattern P is deterministic.

H

H

H

π, {3}

π, {2}

π, {2}

π, {3}π, {2}

∗!
H

H

H

π, {3}

π, {2}

π, {2}
π, {2} π, {3}

∗! H

H

H

π, {3}
π, {3}

π, {2}

π, {2}

π, {2}

∗!
π, {2}

π, {2}
π, {2}

∗!
π, {2}π, {2}

π, {2} π, {2}
∗!

One can clearly see in this example how the non-determinism introduced by
measurements is corrected by conditional operations later in the pattern. The
possibility of performing such corrections depends on the geometry of the pat-
tern, the entanglement graph implicitly defined by the pattern.

Definition 20. Let P be a pattern; the geometry of P is an open graph γ(P) =
(G, I,O) whose vertices are the qubits of P and where i ∼ j iff Eij occurs in the
command sequence of P.

Definition 21. Given a geometry Γ = ((V,E), I, O) we can define a diagram
DΓ = ((VD, ED), ID, OD) as follows:

Ross Duncan & Simon Perdrix (2010) Rewriting measurement-based quantum
computations with generalised flow. ICALP’10.

Similar stuff for TMBQC (Clare Horsman NJP’11):



— applications to quantum foundations —

Toy qubits vs. true quantum theory in one language:

Spekkens’ qubit QM
stabilizer qubit QM

=
Z2 × Z2

Z4
=

local
non-local

Coecke, Bill Edwards & Robert W. Spekkens (2010) Phase groups and the
origin of non-locality for qubits. QPL’10 arXiv:1003.5005



— applications to quantum foundations —

Toy qubits vs. true quantum theory in one language:

Spekkens’ qubit QM
stabilizer qubit QM

=
Z2 × Z2

Z4
=

local
non-local

Coecke, Bill Edwards & Robert W. Spekkens (2010) Phase groups and the
origin of non-locality for qubits. QPL’10 arXiv:1003.5005

Generalized Mermin arg.⇔ strong complementarity

Coecke, Duncan, Kissinger & Quanlong Wang (2012) Strong complementarity
and non-locality in categorical quantum mechanics. LiCS’12. arXiv:1203.4988



— multipartite entanglement structure —

Tripartite SLOCC-classes as comm. Frobenius algs:

GHZ = |000〉 + |111〉
W = |001〉 + |010〉 + |100〉 =

‘special’ CFAs
‘anti-special’ CFAs

=

=

=

=
×
+

⇒ distributivity

Coecke & Aleks Kissinger (2010) The compositional structure of multipartite
quantum entanglement. ICALP’10. arXiv:1002.2540



— GHZ-spiders —

Data: 
m︷ ︸︸ ︷
....

....

︸ ︷︷ ︸
n

∣∣ n,m ∈ N


Rules:

m+m′−k︷ ︸︸ ︷
........

....

....

....

︸ ︷︷ ︸
n+n′−k

=

m+m′−k︷ ︸︸ ︷
....

....

︸ ︷︷ ︸
n+n′−k



— W-spiders —

Data: 
m︷ ︸︸ ︷
....

....

︸ ︷︷ ︸
n

, ,
∣∣ n,m ∈ N


Rules:

m+m′−1︷ ︸︸ ︷
........

.... ....

︸ ︷︷ ︸
n+n′−1

=

m+m′−1︷ ︸︸ ︷
....

....

︸ ︷︷ ︸
n+n′−1



— W-spiders —

Data: 
m︷ ︸︸ ︷
....

....

︸ ︷︷ ︸
n

, ,
∣∣ n,m ∈ N


Rules:

m+m′−2︷ ︸︸ ︷
........

.... ....

︸ ︷︷ ︸
n+n′−2

=

m+m′−2︷ ︸︸ ︷
....

....︸ ︷︷ ︸
n+n′−2



— automation —

Stages:

• Automated reasoning — quantomatic

• Automated theory generation — quantocosy

• Automated theorem extraction — ???



— automated quantum reasoning —

Duncan, Soloviev, Kissinger, Merry, Dixon


