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Introduction

In quantum protocols, information flow is topological.

This perspective was emphasized by Abramsky and Coecke, with
the following account of quantum teleportation in terms of the
topology of 1-dimensional manifolds:

∼

In this talk we develop this significantly:
I Topological account extended from fragments to entire protocols,

including relevant classical information and ‘branching’.
I Higher 2-categorical syntax replaces a 1-categorical one.
I Underlying explanatory model in terms of information transfer

between quantum systems.
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Formal Algorithms
A formal protocol consists of the following components:
I Regions representing classical information
I Lines representing quantum systems
I Vertices representing quantum dynamics

A formal algorithm is an equation between formal protocols with
the same input and output types.

= =

Teleportation / E.S. Complementarity

= =

Dense coding Interlaced teleportation

Use 2-category theory, an algebraic setting for 2d composition.
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Graphical Calculus

Perform a measurement

Undo classical correlations
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Extract a copy of the classical data

Compare quantum data with
classical data (postselecting)
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Graphical Calculus

Create uniform classical data

Forget classical data



Graphical Calculus

f Perform a controlled operation



Deformations

If the diagrams for any two protocols are homotopic relevant to
the fixed boundary, then they will always give rise to the same
quantum information flow, and we consider them to be equal.

=

This is a manifestation of the topological nature of quantum
information.
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Implementation

To implement a formal algorithm is to find a solution for it in a
particular target 2-category.

Not all formal algorithms are implementable, and implementability
will depend on the choice of target.

For implementations in standard quantum physics, the correct
target is the 2-category 2Hilb of 2–Hilbert spaces due to Baez:
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C
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T U
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Impossible Algorithms
An ‘impossible algorithm’ is a formal algorithm which has no
quantum implementation. Sometimes our quantum intuition tells
us why. For example, it’s reassuring that this algorithm is impossible:

=

However, some impossible algorithms look quite reasonable!

=

This cannot be implemented in quantum mechanics (Brendan Fong).
Why? The reason must be topological.
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Possible Algorithms

There are also novel implementable algorithms that can be
described using this framework.

An example is three-stage teleportation:

=

Measurement basis constructed using a tetrahedron inscribed
within the Bloch sphere:

|0〉〈0|

|1〉〈1|
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What’s Going On?

Begin with a pure state
φ ∈ H.

This lives in Hilb, the category of Hilbert spaces and linear maps.

After a two-outcome measurement, obtain

(P1φ)⊕ (P2φ) ∈ H ⊕H.

Future unitary dynamics cannot mix these components.
The relevant category is now Hilb⊕Hilb.

In general, will need to access Hilb⊕n to describe a given protocol.
These are called 2–Hilbert spaces, and they form a 2-category.
Makes sense to use this to encode quantum algorithms.

I argue that 2–Hilbert spaces are fundamental, and need to be
taken seriously to properly understand quantum theory.
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Future Directions
I Implementability is a topological invariant of a formal

algorithm. Can we compute it directly?

I For the impossible algorithms: why are they impossible?
What does this tell us about QM? Would QM break down if
they could be implemented?

I Can we find a broad class of novel implementable
protocols? How can these be implemented physically?

I Can we treat more general sorts of algorithms
(e.g. Deutsch-Josza) using this formalism?

I Investigate connections with closely-related areas:
I Group representation theory
I Linear logic
I Combinatorics
I Topological quantum computing

Thanks for listening!
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