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In quantum theory every state can be diagonalized, i.e. decomposed as a convex combination of
perfectly distinguishable pure states. This feature is crucial for quantum statistical mechanics, as it
provides the foundation for the notions of majorization and entropy. A natural question then arises:
can we reconstruct these notions from purely operational axioms? We address this question in the
framework of general probabilistic theories, presenting a set of axioms that guarantee that every state
can be diagonalized. The first axiom is Causality, which ensures that the marginal of a bipartite state
is well defined. Then, Purity Preservation states that the set of pure transformations is closed under
composition. The third axiom is Purification, which allows to assign a pure state to the composition
of a system with its environment. Finally, we introduce the axiom of Pure Sharpness, stating that
for every system there exists at least one pure effect that occurs with unit probability on some state.
Using these axioms, we present a constructive method to decompose every given state into perfectly
distinguishable pure states.

1 Introduction

One of the possible routes to the foundations of quantum thermodynamics is provided by the theory of
majorization, used to define an ordering among states according to their degree of mixedness [48, 49, 50,
47, 24, 32, 28, 10]. The viability of this approach heavily relies on the Hilbert space framework, for it is
based on the fact that density operators can be diagonalized. Ideally, however, it would be desirable to
have an axiomatic foundation of quantum thermodynamics based on purely operational axioms.

The problem can be addressed in the framework of general probabilistic theories [29, 21, 8, 3, 13,
14, 7, 31, 30, 12]. The first step in this direction is to prove an operational version of the spectral
theorem from basic principles, showing that every state can be decomposed as a mixture of perfectly
distinguishable pure states. This will enable one to define the “eigenvalues” of states, which are at the root
of the notion of majorization. A diagonalization result was proven in the context of the axiomatization in
Ref. [14], although the proof therein used the full set of axioms implying quantum theory. In this paper
we derive the diagonalizability of states from a strictly weaker set of axioms, which is compatible with
quantum theory on real Hilbert spaces and, potentially, other generalizations of quantum theory [22, 23].
Our list includes three of the six axioms of Ref. [14] (Causality, Purity Preservation, and Purification)
plus one new axiom, which we name Pure Sharpness. Pure Sharpness stipulates that every physical
system has at least one pure effect occurring with unit probability on some state. Such a pure effect can
be seen as part of a yes-no test designed to check an elementary property, in the sense of Piron [40].
In these terms, Pure Sharpness requires that for every system there exists at least one property, and at
least one state that has such a property. Note that none of our axioms assumes that there exist perfectly
distinguishable states. A priori, the general probabilistic theories considered here may not contain any
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pair of perfectly distinguishable states—operationally, this would mean that no system described by the
theory can be used to transmit a classical bit with zero error. The existence of perfectly distinguishable
states, and the fact that every state can be broken down into a mixture of perfectly distinguishable states
is a non-trivial consequence of the axioms.

Note that the presence of Purification among the axioms excludes from the start the case of classical
probability theory. Indeed, the aim of our work is not to provide the most general conditions for the
diagonalization of states, but rather to derive diagonalization as a first step towards an axiomatic found-
ation of quantum thermodynamics. From this points of view, Purification is almost a mandatory choice:
a standard thermodynamic procedure is to consider an open system in interaction with its environment,
in such a way that the two together form an isolated system. Purification guarantees that one can asso-
ciate a pure state with the composite system and that the overall evolution of system and environment
can be treated as reversible. In this way, thermodynamics is reconciled with the paradigm of reversible
dynamics at the fundamental level. In the concrete Hilbert space setting, the purified view of quantum
thermodynamics was adopted in a number of works aimed at deriving the microcanonical and canon-
ical ensembles [34, 26, 41, 27, 25, 36, 9], an idea that has been recently explored also in hypothetical
post-quantum scenarios [35, 37].

The paper is structured as follows: in section 2 we introduce the basic framework. The four axioms
for diagonalizing states are presented in section 3 and their consequences are examined in section 4.
Section 5 contains the main result, namely the diagonalization theorem. The conclusions are drawn in
section 6.

2 Framework

The present analysis is carried out in the framework of general probabilistic theories, adopting the specific
variant of Refs. [13, 14, 12], known as the framework of operational-probabilistic theories (OPTs). OPTs
arise from the marriage of the graphical language of symmetric monoidal categories [1, 2, 19, 20, 43]
with the toolbox of probability theory.

Physical processes can be combined in sequence or in parallel, giving rise to circuits like the follow-
ing

ρ

A A A′ A ′ A′′ a

B B B′ b
.

Here, A, A′, A′′, B, B′ are systems, ρ is a bipartite state, A , A ′ and B are transformations, a and
b are effects. Circuits with no external wires, like the one in the above example, are associated with
probabilities. We denote by
• St(A) the set of states of system A

• Eff (A) the set of effects on A

• Transf (A,B) the set of transformations from A to B

• A⊗B the composition of systems A and B.

• A ⊗B the parallel composition of the transformations A and B.
A particular system is the trivial system I (mathematically, the unit of the tensor product); states (resp.
effects) are transformations with the trivial system as input (resp. output). We will often make use of the
short-hand notation (a|ρ) to mean

(a|ρ) := ρ A a .
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We identify the scalar (a|ρ) with a real number in the interval [0,1], representing the probability of a
joint occurrence of the state ρ and the effect a in a circuit. The fact that scalars are real numbers induces
a notion of sum for transformations.

A test from A to B is a collection of transformations {Mi}i∈X from A to B, which can occur in
an experiment with outcomes in X. If B is the trivial system, we have an observation-test, which is a
collection of effects. If X contains a single outcome, we say that the test is deterministic.

We will refer to deterministic transformations as channels. Following the most recent version of
the formalism [12], we assume as part of the framework that every test arises from an observation-test
performed on one of the outputs of a channel. The motivation for such assumption is the idea that
the readout of the outcome could be interpreted physically as a measurement allowed by the theory.
Precisely, the assumption is the following.

Assumption 1 (Physicalization of readout). For every pair of systems A, B, and every test {Mi}i∈X from
A to B, there exist a system C, a transformation M ∈Transf (A,B⊗C), and an observation-test {ci}i∈X

such that
A Mi

B =
A

M

B

C ci
∀i ∈ X.

A channel U from A to B is called reversible if there exists another channel U −1 from B to A such
that U −1U = IA and U U −1 = IB, where IS is the identity channel on a generic system S. A state
χ ∈ St(A) is called invariant if U χ = χ , for every reversible channel U . If there exists a reversible
channel transforming A into B, we say that A and B are operationally equivalent, denoted by A ' B.
The composition of systems is required to be symmetric, meaning that A⊗B' B⊗A.

The pairing between states and effects leads naturally to a notion of norm. We define the norm of
a state ρ as ‖ρ‖ := supa∈Eff(A) (a|ρ). The set of normalized (i.e. with unit norm) states of A will be
denoted by St1 (A). Similarly, the norm of an effect a is defined as ‖a‖ := supρ∈St(A) (a|ρ). The set of
normalized effects of system A will be denoted by Eff1 (A).

The probabilistic structure also offers an easy way to define pure transformations. The definition
is based on the notion of coarse-graining, i.e. the operation of joining two or more outcomes of a test
into a single outcome. More precisely, a test {Ci}i∈X is a coarse-graining of the test

{
D j
}

j∈Y
if there

is a partition {Yi}i∈X of Y such that Ci = ∑ j∈Yi D j for every i ∈ X. In this case, we say that
{
D j
}

j∈Y

is a refinement of {Ci}i∈X. The refinement of a given transformation is defined via the refinement of a
test: if

{
D j
}

j∈Y
is a refinement of {Ci}i∈X, then the transformations

{
D j
}

j∈Yi
are a refinement of the

transformation Ci.
A transformation C ∈ Transf(A,B) is called pure if it has only trivial refinements, namely for every

refinement
{
D j
}

one has D j = p jC , where
{

p j
}

is a probability distribution. Pure transformations
are those for which the experimenter has maximal information about the evolution of the system. We
denote the set of pure transformations from A to B as PurTransf (A,B). In the special case of states
(resp. effects) of system A we use the notation PurSt(A) (resp. PurEff (A)). The set of normalized pure
states (resp. effects) of A will be denoted by PurSt1 (A) (resp. PurEff1 (A)). As usual, non-pure states
are called mixed.

Definition 1. Let ρ be a normalized state. We say that a state σ is compatible with ρ if we can write
ρ = pσ +(1− p)τ , where p ∈ (0,1] and τ is another state.

It is clear that no states are compatible with a pure state, except the pure state itself.

Definition 2. We say that two transformations A ,A ′ ∈ Transf (A,B) are equal upon input of the state
ρ ∈ St1 (A) if A σ = A ′σ for every state σ compatible with ρ . In this case we will write A =ρ A ′.
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Our analysis will be in finite dimension, meaning that the vector space spanned by states is finite-
dimensional.

3 Axioms

Here we present our four axioms for diagonalizing states. As a first axiom, we assume Causality, which
forbids signalling from the future to the past:
Axiom 1 (Causality [13, 14]). The outcome probabilities of a test do not depend on the choice of other
tests performed later in the circuit.

Causality is equivalent to the requirement that, for every system A, there exists a unique deterministic
effect TrA on A. Thanks to that, it is possible to define the marginal state of a bipartite state ρAB on system
A as ρA := TrBρAB. In a theory satisfying Causality, the norm of a state ρ is simply given by ‖ρ‖= Trρ .
Moreover, observation-tests are normalized in the following way (see corollary 3 of Ref. [13]):
Proposition 1. In a causal theory, if {a}i∈X is an observation-test, then ∑i∈X ai = Tr.

The second axiom in our list is Purity Preservation:
Axiom 2 (Purity Preservation1 [21, 14, 16]). Sequential and parallel compositions of pure transforma-
tions are pure transformations.

We consider Purity Preservation as a most fundamental requirement. Considering the theory as an
algorithm to make deductions about physical processes, Purity Preservation ensures that, when presented
with maximal information about two processes, the algorithm outputs maximal information about their
composition [16].

The third axiom is Purification. This axiom characterizes the physical theories admitting a descrip-
tion where all deterministic processes are pure and reversible at a fundamental level. Essentially, Purific-
ation expresses a strengthened version of the principle of conservation of information [15, 16]. Specific-
ally, we say that a state ρ ∈ St1 (A) can be purified if there exists a pure state Ψ ∈ PurSt(A⊗B) that has
ρ as its marginal on system A. In this case, we call Ψ a purification of ρ . The axiom is as follows:
Axiom 3 (Purification [13]). Every state can be purified and two purifications with the same purifying
system differ by a reversible channel on the purifying system.

Technically, the second part of the axiom states that, if Ψ,Ψ′ ∈PurSt1 (A⊗B) are such that TrBΨAB =
TrBΨ′AB, then Ψ′AB = (IA⊗UB)ΨAB, where UB is a reversible channel on B.

In quantum theory, the validity of Purification lies at the foundation of all dilation theorems, such
Stinespring’s [46], Naimark’s [39], and Ozawa’s [38]. In the finite dimensional setting, these theorems
have been reconstructed axiomatically in [13].

Finally, we introduce a new axiom, which we name Pure Sharpness. This axiom ensures that there
exists at least one elementary property associated with every system:
Axiom 4 (Pure Sharpness). For every system A, there exists at least one pure effect a ∈ PurEff (A) that
occurs with probability 1 on some state.

Pure Sharpness is reminiscent of the Sharpness axiom used in Hardy’s 2011 axiomatization [31],
which requires a one to one correspondence between pure states and effects that distinguish maximal
sets of states.

1The name and the formulation of the axiom adopted here are the same as in Ref. [16]. The original axiom was called
Atomicity of Composition [21] and involved only sequential composition. Extending the axiom to parallel composition is
important for our purposes, because it guarantees that the product of two pure states is pure. In the axiomatization of Ref. [14]
this property was a consequence of the Local Tomography axiom, which, instead, is not assumed here.
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4 Consequences of the axioms

4.1 Consequences of Causality, Purity Preservation, and Purification

Here we list a few consequences of the first three axioms, which will become useful later. The first
follows from Purification:

Theorem 1 (Steering property). Let ρ ∈ St1 (A) and let Ψ∈ PurSt1 (A⊗B) be a purification of ρ . Then
σ is compatible with ρ if and only if there exist an effect bσ on the purifying system B and a non-zero
probability p such that

p σ A = Ψ

A

B bσ

.

Proof. The proof follows the same lines of theorem 6 and corollary 9 in Ref. [13], with the only differ-
ence that here we do not assume the existence of distinguishable states. In its place, we use the frame-
work assumption 1, which guarantees that the outcome of every test can be read out from a physical
system.

Moreover, Purification implies that reversible channels act transitively on the set of pure states (see
lemma 20 in Ref. [13]):

Proposition 2. For any pair of pure states ψ,ψ ′ ∈ PurSt1 (A) there exists a reversible channel U on A
such that ψ ′ = U ψ .

As a consequence, every system possesses one invariant state (see corollary 34 of Ref. [13]):

Proposition 3. For every system A, there exists a unique invariant state χA.

Also, transitivity implies that the set of pure states is compact for every system (see corollary 32 of
Ref. [13]). This property is generally a non-trivial property—cf. Ref. [4] for a counterexample of a state
space with a non-closed set of pure states.

Finally, combining Purification with Purity Preservation one obtains the following properties [14]:

Proposition 4. For every observation-test {ai}i∈X on A, there is a system B and a test {Ai}i∈X ⊂
Transf (A,B) such that every Ai is pure and ai = TrBAi.

Proposition 5. Let a be an effect such that (a|ρ) = 1, for some ρ ∈ St1 (A). Then there exists a trans-
formation T on A such that a = TrT and T =ρ I , where I is the identity.

4.2 Consequences of all the axioms

In quantum theory, diagonalizing a state means decomposing it as a convex combination of orthogonal
pure states, i.e. pure states that can be perfectly distinguished by a measurement.

In a general theory, perfectly distinguishable states are defined as follows:

Definition 3. The normalized states {ρi} are perfectly distinguishable if there exists an observation-test{
a j
}

such that (a j|ρi) = δi j.

Suppose we know that (a|ρ) = 1, where a is a pure effect. Then, we can conclude that the state ρ

must be pure (see lemma 26 and theorem 7 of Ref. [14] for the proof idea):

Proposition 6. Let a ∈ PurEff1 (A). Then, there exists a pure state α ∈ PurSt(A) such that (a|α) = 1.
Furthermore, for every ρ ∈ St(A), if (a|ρ) = 1, then ρ = α .
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Combining the above result with our Pure Sharpness axiom, we derive the following

Proposition 7. For every pure state α ∈ PurSt(A), there exists at least one pure effect a ∈ PurEff (A)
such that (a|α) = 1.

Proof. By Pure Sharpness, there exists at least one pure effect a0 such that (a0|α0) = 1 for some state
α0. By proposition 6, α0 is pure. Now, for a generic pure state α , by transitivity, there is a reversible
channel U such that α = U α0. Hence, the effect a := a0U −1 is pure and (a|α) = 1.

Now we prove an important theorem, which lies at the core of our procedure for diagonalizing states.

Theorem 2. Let ρA be a normalized state of system A and let p∗ be the probability defined as2

p∗ := max
α∈PurSt1(A)

{p ∈ [0,1] : ρA = pα +(1− p)σ ,σ ∈ St1 (A)} .

Let ΨAB be a purification of ρA and let ρ̃ ∈ St1 (B) be the complementary state of ρA, namely ρ̃B :=
TrAΨAB. Then, there exists a pure state β ∈ PurSt(B) such that ρ̃B = p∗β +(1− p∗)τ for some state
τ ∈ St(B).

Proof. By hypothesis, one can write ρA = p∗α +(1− p∗)σ , where α is a pure state and σ is possibly
mixed. Let us purify ρA, and let ΨAB be one of its purifications. According to the steering property, there
exists an effect b that prepares α with probability p∗, namely

Ψ

A

B b
= p∗ α A . (1)

Let a be a pure effect such that (a|α) = 1 (such an effect exists by proposition 7). Applying a on both
sides of Eq. (1), we get

Ψ

A a

B b
= p∗ .

On the other hand, applying a to the state ΨAB we obtain

Ψ

A a
B

= q β
B , (2)

where q ∈ [0,1] and β is a pure state (due to Purity Preservation). Now if we apply b, we have

Ψ

A a

B b
= p∗ = q β

B b .

Since (b|β ) ∈ [0,1], we must have q ≥ p∗. We now prove that, in fact, equality holds. Let b̃ be a pure
effect such that

(
b̃|β
)
= 1. Applying b̃ on both sides of Eq. (2), we obtain

Ψ

A a

B
b̃

= q

2Note that the maximum is well defined because the set of pure states is compact, thanks to transitivity.
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By Purity Preservation, b̃ will induce a pure state on system A, namely

q = Ψ

A a

B
b̃

= p̃ α̃
A a ,

where p̃ ∈ [0,1]. From the above equation, we have the inequality q ≤ p̃. Since by definition we have
p̃ ≤ p∗, we finally get the chain of inequalities p∗ ≤ q ≤ p̃ ≤ p∗, whence p∗ = q = p̃. Hence, Eq. (2)
implies that the pure state β can arise with probability p∗ in a convex decomposition of the state ρ̃B.

A similar proof was used in lemma 30 of Ref. [14] in the special case where ρ is the invariant state,
and with stronger assumptions, i.e. Ideal Compression, which is not assumed here.

The effect b that prepares α with probability p∗ can always be taken to be pure. Indeed, b̃ is a pure
effect that prepares the pure state α̃ on A with probability p̃. But since p̃= p∗, then (a|α̃) = 1. Therefore,
by proposition 6, α̃ = α . This shows that α can always be prepared with probability p∗ by using a pure
effect on B.

Now we are ready to prove the uniqueness of the pure effect associated with a pure state. The proof
is identical to the that of theorem 8 of Ref. [14], even though we are assuming fewer axioms. In the proof
the following lemma is necessary (see lemma 29 of Ref. [14]).

Lemma 1. Let χ be the invariant state of system A and let α be a normalized pure state. Then

pmax := pα = max{p : ∃σ ,χ = pα +(1− p)σ}

does not depend on α .

Proposition 8. For every normalized pure state α there exists a unique pure effect a such that (a|α) = 1.

We are able to establish a bijective correspondence between normalized pure states and normalized
pure effects. As a result, we obtain the following corollary (cf. corollary 13 of Ref. [14]).

Corollary 1. For every pair of a,a′ ∈ PurEff1 (A), there exists a reversible channel U on A such that
a′ = aU .

5 Diagonalization of states

A diagonalization of ρ is a convex decomposition of ρ into perfectly distinguishable pure states. .The
probabilities in such a convex decomposition will be called the eigenvalues of ρ . By Carathéodory’s
theorem [11, 45], we know that every diagonalization of ρ ∈ St1 (A) can have at most DA + 1 terms,
where DA is the dimension of the vector space spanned by the state space St(A) (see Ref. [13]).

Here we are not postulating the existence of perfectly distinguishable pure states, but this will be a
result of the present set of axioms (see corollary 2).

The starting point for diagonalization is the following

Proposition 9. Consider ρ = p∗α +(1− p∗)σ , where p∗ is defined in theorem 2, and let a be the pure
effect associated with α . Then (a|ρ) = p∗.

Proof. Let ΨAB be a purification of ρ . Then, the proof of theorem 2 yields the following equality

Ψ

A a
B

= p∗ β
B
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Applying the deterministic effect on both sides of the above equation, we obtain

p∗ = p∗ β
B Tr = Ψ

A a

B Tr
= ρ A a .

This shows that (a|ρ) = p∗.

The following proposition enables us to define p∗ in an alternative way starting from measurements.
Proposition 10. Let ρ ∈ St1 (A). Define p∗ := maxa∈PurEff1(A) (a|ρ). Then p∗ = p∗.

Proof. By proposition 9, clearly one has p∗ ≥ p∗. Suppose that p∗ > p∗. Since p∗ is the maximum, it is
achieved by some a′ ∈ PurEff1 (A). Therefore,

p∗ = ρ A a′ = Ψ

A a′

B Tr
, (3)

where ΨAB is a purification of ρ . Now, a′ prepares a pure state β ′ on B with probability λ . If we take
the pure effect b′ associated with β ′, we have, recalling Eq. (3),

p∗ = Ψ

A a′

B Tr
= λ β ′ B Tr =

= λ β ′ B b′ = Ψ

A a′

B b′
,

which means

Ψ

A a′

B b′
= p∗.

Now, b′ prepares a pure state α ′ on A with probability q such that

p∗ = Ψ

A a′

B b′
= q α ′ A a′ .

This implies q ≥ p∗ > p∗. Therefore q > p∗, and the pure state α ′ arises in a convex decomposition of
ρ with a weight q strictly greater than p∗. This contradicts the fact that p∗ is the maximum weight for a
pure state, whence in fact p∗ = p∗.

The result expressed in proposition 9 has important consequences about diagonalization. Since
(a|ρ) = p∗, if ρ = p∗α +(1− p∗)σ , then (a|σ) = 0, provided3 p∗ 6= 1. Besides, if (a|σ) = 0, then
(a|τ) = 0 for any state τ compatible with σ . As a consequence, we have the following important corol-
lary, which guarantees the existence of perfectly distinguishable pure states.
Corollary 2. Every pure state is perfectly distinguishable from some other pure state.

Proof. Let us consider the invariant state χ . For every normalized pure state α , we have χ = pmaxα +
(1− pmax)σ (see lemma 1), where σ is another normalized state. By proposition 9, if a is the pure effect
associated with α , then (a|σ) = 0. If σ is pure, then α is perfectly distinguishable from σ by means of
the observation-test {a,Tr−a}. If σ is mixed, than (a|ψ) = 0 for every pure state ψ compatible with σ .
Therefore α is perfectly distinguishable from ψ again via the observation-test {a,Tr−a}.

3If p∗ = 1, then ρ is pure, and we are done. Therefore, without loss of generality we can assume p∗ 6= 1.
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5.1 The diagonalization theorem

We devise the following procedure for diagonalizing any state ρ .

1. Once we have determined p∗ =: q1 and we have found α =: α1 such that ρ = q1α1 +(1−q1)σ1,
we repeat the same procedure for the state σ1.

2. We find q2, the maximum weight such that we can write σ1 = q2α2 +(1−q2)σ2, where α2 is a
pure state and σ2 is another state; and so on.

This process will end sooner or later when we find that the remaining state σi is pure. At each step i,
αi is perfectly distinguishable from σi and therefore it is perfectly distinguishable from each of the pure
states compatible with σi.

At the end of this procedure, we can write ρ as ρ = ∑i piαi, where p1 := q1 and pi := qi ∏ j<i (1−q j)
for i > 1. Here, by construction, pi ≥ pi+1 for every i, and (ai|α j) = 0 for every j > i, where ai is the
pure effect associated with αi.

We claim that all the αi’s are perfectly distinguishable. Suppose somebody prepares a normalized
pure state taken from the set {αi}n

i=1, and we know that, for every pure state αi, (ai|α j) = 0 for every
j > i, where ai is the pure effect associated with αi. Are we able to distinguish the pure states perfectly,
namely to identify with certainty which state has been prepared?

The answer is affirmative. To construct the distinguishing protocol, the key idea is to switch from
pure effects to pure transformations that occur with the same probability as the effects, according to
proposition 4. We are interested in transformations rather than in effects because we want a procedure
that can be iterated, and using effects would mean destroying the system under concern. We act as
follows.

1. Let us consider the observation-test {a1,Tr−a1}, which perfectly distinguishes α1 from the other
pure states, and we apply the associated test

{
A1,A ⊥

1
}

, according to proposition 4. If A1 occurs,
we conclude that the state is α1. If not, the state is one of the others. Consider ρ1 =

1
n−1 ∑

n
i=2 αi.

Since (Tr−a1|ρ1) = 1, because (a1|α1) = 1, A ⊥
1 leaves all the pure states {αi}n

i=2 invariant,
according to proposition 5. Now we can repeat the test.

2. This time we consider the observation-test {a2,Tr−a2}, which perfectly distinguishes α2 from
the remaining states {αi}n

i=3, and we apply the associated test
{
A2,A ⊥

2
}

. If A2 happens, the state
is α2. If not, we consider ρ2 =

1
n−2 ∑

n
i=3 αi. Since (Tr−a2|ρ2) = 1, then A ⊥

2 leaves all the pure
states {αi}n

i=3 invariant. Now we repeat the procedure again.

In this way, by iterating the procedure several times, we are able to identify the state with certainty.
Therefore, our procedure is a way to write every state as a convex combination of perfectly distin-

guishable pure states.

6 Conclusions

In this work we derived the diagonalization of states from four basic operational axioms: Causality,
Purity Preservation, Purification, and Pure Sharpness. Our result has several applications: first of all,
it allows one to import all the known consequences of diagonalization in the axiomatic context, such
as those presented in Ref. [6], where diagonalization is assumed as Axiom 1. For example, combining
our axioms with Hardy’s Permutability axiom we obtain that all set of perfectly distinguishable pure
states of the same cardinality can be converted into one another by reversible channels. Then, applying
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Proposition 3 of Ref. [6] we obtain that the state space is self-dual—a property that plays an important
role in the reconstruction of quantum theory [5].

Another important application of our result is the axiomatic reconstruction of (quantum) thermody-
namics. In a previous work [17], we defined a set of thermodynamic transformations in the operational
framework, establishing a duality between the resource theory of entanglement and a resource theory of
purity defined in terms of random-reversible transformations. A natural application of the diagonaliza-
tion theorem is the formulation of a majorization criterion capable to detect whether a thermodynamic
transition is possible or not, and to establish quantitative measures of mixedness [42, 18]. Such an ap-
plication contributes also to the difficult problem of finding axioms that imply well-behaved notions of
entropy in general probabilistic theories [4, 44, 33] and, therefore, to the development of an axiomatic
approach to information theory—specifically including data compression and transmission over noisy
channels.
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