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Applying ideas from monadic dynamics to the well-established framework of categorical quantum
mechanics, we provide a novel toolbox for the simulation of finite-dimensional quantum dynamics.
We use strongly complementary structures to give a graphical characterisation of quantum clocks,
their action on systems and the relevant energy observables, and we proceed to formalise the con-
nection between unitary dynamics and projection-valued spectra. We identify the Weyl canonical
commutation relations in the axioms of strong complementarity, and conclude the existence of a
dual pair of time/energy observables for finite-dimensional quantum clocks, with the relevant un-
certainty principle given by mutual unbias of the corresponding orthonormal bases. We show that
Schrödinger’s equation can be abstractly formulated as characterising the Fourier transforms of cer-
tain Eilenberg-Moore morphisms from a quantum clock to a quantum dynamical system, and we
use this to obtain a generalised version of the Feynman’s clock construction. We tackle the issue of
synchronism of clocks and systems, prove conservation of total energy and give conditions for the
existence of an internal time observable for a quantum dynamical system. Finally, we identify our
treatment as part of a more general theory of simulated symmetries of quantum systems (of which
our clock actions are a special case) and their conservation laws (of which energy is a special case).
This is a summary of [10]. The technical details on representation theory in Categorical Quantum
Mechanics, used throughout this work, are collected in the companion paper [12].

1 Background

The Categorical Quantum Mechanics (CQM) programme [1] [13] [2] [4] is concerned with the under-
standing, through the language of category theory, of the structural and operational features of quantum
theory. The sequential and parallel aspects of quantum processes are captured by the compositional and
symmetric monoidal structures of the category fdHilb of finite-dimensional Hilbert spaces and linear
maps. State/operator duality, corresponding to the Shrödinger/Heisemberg picture duality in quantum
dynamics, finds its categorical formulation in the †-compact structure of fdHilb.

The investigation of classical-quantum duality goes through the definition of classical structures [5]
[6], i.e. special commutative †-Frobenius algebras. Shown to correspond to orthonormal bases in fdHilb,
classical structures are key to the operational characterisation of quantum measurements, controlled oper-
ations and completely positive maps. Interaction between different classical structures can be understood
by introducing requirements of coherence, complementarity (a.k.a. Hopf law) and strong complemen-
tarity (a.k.a. bialgebra equations): strongly complementary structures play a fundamental role in the
formulation of non-locality [3], and are exactly classified by finite abelian groups [14].

The categorical approach to theories of physical systems and transformations is perhaps best argued
in [7] and the collected works [13] [2], and it provides the starting point for the formulation of the
monadic dynamics framework [11]. In the same spirit of physical simulation as [8] [9], the framework
aims at a categorical formulation of the operational aspects of dynamics, internalising notions of time
via simulation by physical systems (a.k.a. clocks); dynamical systems are identified as the objects of the
Eilenberg-Moore category for a certain monad encoding the dynamical structure of the clock.
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In the context of quantum theory, this idea yields a quantum clock similar to that presented in [8], with
complex unitary representations of finite groups giving the quantum dynamical systems. Furthermore,
monadic dynamics can be used to model quantum circuits, and yield the Feynman’s clock construction
as a corollary: the construction, originally introduced in [8] and recently revisited in [15], plays a central
role in simulated quantum dynamics, as it provides a way of computing whole histories of states in
quantum circuits by finding the ground states of a certain Hamiltonian.

2 Summary of the work

Categorical Quantum Mechanics aspires to be the formalism of choice for the description of quantum
algorithms (see, for example, the work in [16]), but currently lacks adequate tools for the description of
the dynamical aspects of quantum mechanics. The main aim of this paper is to cover this gap, opening
the way for a systematic application of the framework to the field of simulated quantum dynamics.

We introduce quantum clocks in the CQM formalism, encoding their time translation group in a
strongly complementary pair of classical structures, and proceed to define quantum dynamical systems
governed (or simulated) by them, in the form of Eilenberg-Moore algebras. We identify the classical
structures of the strongly complementary pair as the non-degenerate observables for the time states and
the energy levels of the clock. Using the duality between unitary dynamics and observables, we define
Hamiltonians (which are coalgebraic objects) as the adjoints of unitary dynamics (which are algebraic
objects). We provide the Fourier transform and prove that the eigenvalues of the Hamiltonians find their
natural environment in the Pontryagin dual of the time translation group (its group of multiplicative char-
acters). We give the proof of Von Neumann’s mean ergodic theorem within the framework, identifying
time-averages for the evolution of a quantum dynamical system with ground states of the Hamiltonian.

We prove that strong complementarity is the same as canonical commutation, in the sense of the
Weyl CCRs, and we conclude that clocks necessarily possess a conjugate pair of time/energy observ-
ables. Using demolition measurements, we prove the time/energy uncertainty principle as a consequence
of complementarity. We give a categorical definition of Schrödinger’s equation as the energy perspective
on the defining equation for Eilenberg-Moore morphisms. We identify quantum circuits as certain com-
posite quantum dynamical systems, define stationary flows of states through them and prove the validity
of the Feynman’s clock construction within our framework.

We define synchronisation of quantum clocks with quantum dynamical systems (the “real world”
counterpart for the quantum dynamics defined in this work), and show how “forgetting” a clock induces
a conserved total energy for the remaining synchronised systems. We define internal time observables
and give necessary and sufficient conditions for their existence. We also give conditions under which a
system in a synchronised family can be turned into a clock governing all the other systems.

Finally, we prove a finite-dimensional analogue to Stone’s Theorem on 1-parameter unitary groups
(the result traditionally linking continuous-time dynamics to Hamiltonians and energy) that applies to
our case. We briefly revisit this work in the light of a more general theory of symmetries of quantum
systems, and explain how such a generalisation could be achieved in the framework of CQM.
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