
Submitted to:
QPL 2015

c© M. Rennela & S. Staton
This work is licensed under the
Creative Commons Attribution License.

Complete positivity and natural representation of quantum
computations

Mathys Rennela
Institute for Computing and Information Sciences (iCIS)

Radboud University
Nijmegen, The Netherlands

Sam Staton
Department of Computer Science

Oxford University
Oxford, United Kingdom

Full article submitted elsewhere, preprint:
http://www.mathysrennela.nl/papers/cp-natural-rep.pdf

The referenced article is about semantic models of quantum computation. In common with other
approaches to programming language semantics [Win93], the general idea is to interpret a type A as a
space JAK of observations about A. One interprets a computation x : A ` t : B, that produces a term t of
type B but depends on a term x of type A, as a predicate transformer JBK→ JAK which maps a predicate
on B to its weakest precondition (See e.g. [DP06, Ren13, Cho14]).

In more detail, one interprets a type A as a C*-algebra of operators JAK, and the computations describe
maps between C*-algebras that are in particular positive: it is actually only the positive elements of the
algebra that describe the observables, and these must be preserved by predicate transformers. In fact, they
should be completely positive. Informally this means that one can run the computation on a subsystem of
a bigger system; for example, we could adjoin an extra qubit to the system and still run the computation.
More formally it means that not only does the map JtK : JBK→ JAK preserve positive elements, but also
idJqubitK⊗JtK : JqubitK⊗ JBK→ JqubitK⊗ JAK preserves positive elements.

The first contribution of this paper is a technique for building representations of quantum computation
in terms of completely positive maps. In the second half of the paper we demonstrate our technique by
making some first steps in the development of a ‘quantum domain theory’.

A technique for building representations. A representation is a full and faithful functor F : C→ R,
that is, a functor for which each function FA,B : C(A,B)→ R(F(A),F(B)) is a bijection.

From a programming language perspective, where objects interpret types and morphisms interpret
programs, a representation gives two things. Firstly, it gives a way of interpreting types as different
mathematical structures, which can be illuminating or convenient, while retaining essentially the same
range of interpretable programs. Secondly, since the category R may be bigger than C, it gives the chance
to have more structure without altering the interpretation of programs at existing types.

There are several existing representations which allow us to understand and analyze quantum com-
putations in terms of different structures, such as convex sets (e.g. [JWW15]), domains (e.g. [Ren14]),
partial monoids and effect algebras (e.g. [Jac12]). However, many of these representations are valid for
positive maps but not for completely positive maps, and so they do not fully capture quantum computa-
tion.

Our contribution is a general method for extending these representations to completely positive maps,
widely accepted as a model of first-order quantum computation (e.g. [Sel04, DP06, Ren14, Cho14,
Sta15]).
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2 Complete positivity and natural representation of quantum computations

The method allows us to convert a full and faithful functor

(positive maps)−→ R

(where R is an arbitrary category) into a full and faithful functor

(completely positive maps)−→ [N,R]

where N is a category whose objects are natural numbers n and maps n→m are n×m complex matrices,
composed by matrix multiplication. The category [N,R] is the category of functors (N→R) and natural
transformations between them.

We first consider a functor

M : (C*-algebras and completely positive maps)→ [N, (C*-algebras and positive maps)]

where M(A)(n) is the C*-algebra of n×n matrices in A, that is, an entanglement of an n-level quantum
system with A.

This will lead us to our first main result:

Theorem. The functor M is full and faithful: completely positive maps are in natural bijection with
families of positive maps.

(Faithfulness is immediate. Fullness is more involved, since one must show that every natural family
of positive maps is completely determined by a single completely positive map.)

As a corollary, we exhibit full and faithful representations of the following forms:

(completely positive maps) → [N, (cones and affine maps)]
(completely positive maps) → [N, (convex sets and affine maps)]
(completely positive maps) → [N, (effect modules and effect modules homomorphisms)]

Towards a quantum domain theory. In the second part of the paper we demonstrate our technique
by making some first steps in the development of a ‘quantum domain theory’, in which Scott-continuous
functions are replaced by Scott-continuous natural transformations. The ultimate goal in this line of
work is to analyze all kinds of quantum programming with recursive types by solving domain equations
involving qubits. For example, one should expect a solution A to the equation

A = (qubit⊗A)⊥

which would be a type of infinite streams of qubits. In this paper we exhibit (for the first time) a domain
theory that supports qubits and lifting.

For the reader familiar with semantics of programming languages, we recall basic ideas for the
semantics of quantum programming languages in W*-algebras, which are C*-algebras with interesting
domain-theoretic properties. A type A is interpreted as a W*-algebra JAK. A terminating computation-
in-context x1 : A1, . . . ,xn : An ` t : B is interpreted as a completely positive unital map (or CPU-map)
B→

⊗
i Ai, transforming observations about the result type to observations about the input types.

Let JqubitK = M2, and consider C be the tensor unit. A computation ` t : qubit that generates a qubit
with no inputs is interpreted as a state, i.e. a CPU-map M2→ C.
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We begin with the observation that taking states of a W*-algebra yields a representation of positive
maps in terms of affine maps between convex sets. We use this to build a representation

(W*-algebras and completely positive maps)−→ [N, (convex sets and affine maps)]

We can now extend the representation with domain theoretic structure, by replacing convex sets with
directed complete convex sets. Thus ‘quantum domains’ are defined to be functors

N→ (convex dcpos and affine continuous maps).

and quantum computations are interpreted as affine Scott-continuous natural transformations between
quantum domains. We show that the category of quantum domains supports various constructions, in-
cluding tensor with quantum data and lifting.
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