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Quantum state engineering and quantum computation rely on procedures that, up to some fidelity,
prepare a quantum object in a pure state. If the object is initially in a statistical mixture, then this
increases the largest eigenvalue of its probability spectrum. We refer to this as probabilistic infor-
mation erasure. Such processes are said to occur within Landauer’s framework if they rely on an
interaction between the object and a thermal reservoir. Landauer’s principle dictates that this must
dissipate a minimum quantity of energy as heat, proportional to the entropy reduction that is incurred
by the object, to the thermal reservoir. However, this lower bound is only reachable for some physi-
cal context, i.e, for a specific reservoir etc. To determine the achievable minimal heat dissipation of
min-entropy reduction within a given physical context, we must explicitly optimise over all possible
unitary operators that act on the composite system of object and reservoir. In this paper we charac-
terise the equivalence class of such optimal unitary operators, using tools from majorisation theory,
when we are restricted to finite dimensional Hilbert spaces.

1 Introduction

1.1 Information erasure and thermodynamics

In his attempt to exorcise Maxwell’s demon [18, 16], Leo Szilard [26] conceived of an engine composed
of a box that is in thermal contact with a reservoir at temperature T , and contains a single gas particle.
By placing a partition in the middle of the box and determining on which side of this the particle is
located, the Maxwellian demon can attach to said partition a weight-and-pulley system so that, as the gas
expands, the weight is elevated. By ensuring that the partition moves without friction, and continuously
adjusting the weight to make the process quasi-static, one may fully convert kBT log(2) units of heat
energy from the gas into work. Here, kB is Boltzmann’s constant and log(·) is the natural logarithm. In
order to save the second law of thermodynamics the engine must dissipate at least kBT log(2) units of
energy to the thermal reservoir as heat. While it was initially believed that this heat dissipation is due to
the measurement act by the Maxwellian demon, following the work of Landauer, Penrose, and Bennet
[14, 19, 2, 3] the responsible process was identified as the erasure of information in the demon’s memory
– the logically irreversible process of assigning a prescribed value to the memory, irrespective of its prior
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state. That the minimum heat dissipation required to erase one bit of information cannot be any smaller
than kBT log(2) is commonly known as Landauer’s principle, and said minimum quantity as Landauer’s
limit. In general, Landauer’s principle may be encapsulated by the Clausius inequality

∆Q > kBT ∆S, (1)

where ∆Q is the heat dissipation to the thermal reservoir and ∆S is the entropy reduction in the ob-
ject.

1.2 A quantum mechanical Landauer’s principle

While thermodynamics is a phenomenological theory of macroscopic physics, statistical mechanics at-
tempts to provide a microscopic picture in accordance with the known laws of motion. As the statistical
postulate [12, 13] is distinct from the dynamical theory, statistical mechanics can be either classical or
quantum. Indeed, recent years have been witness to a growing interest in thermodynamics and statistical
mechanics in the quantum regime. This has included attempts to consider Landauer’s principle quantum
mechanically [21, 10, 8, 6, 25, 9, 11]. Most notable among such efforts is that of Reeb and Wolf [23],
who provide a fully quantum statistical mechanical derivation of Landauer’s principle by considering
the process of reducing the entropy of a quantum object by its joint unitary evolution with a thermal
reservoir. The only assumptions here are that, initially, the reservoir is in thermal equilibrium and hence
described by the canonical distribution, and that the two systems are uncorrelated. For a reservoir with a
Hilbert space of finite dimension dR , they arrive at an improved version of Landauer’s inequality

∆Q > kBT
(

∆S+
2(∆S)2

log2(dR−1)+4

)
. (2)

Moreover they demonstrate that, because unitary evolution does not change the rank of a density operator,
a finite-dimensional reservoir can be used to fully purify an object if either the temperature is at absolute
zero or the reservoir Hamiltonian is unbounded, with some of its eigenvalues being formally infinite; the
latter case would result in an infinitely large ∆Q. If the reservoir’s dimension is countably infinite, with
infinitely many eigenvalues of its Hamiltonian being formally infinite also, one may always prepare the
object in a pure state with a finite heat dissipation. This heat production in the reservoir can then be made
arbitrarily close to kBT ∆S by engineering the spectrum of the reservoir Hamiltonian.

1.3 The need for a context-dependent Landauer’s principle

The study in [23] provides a lower bound of energy transferred to the thermal reservoir as heat dissipa-
tion, given that the object’s entropy decreases by ∆S and that the reservoir’s Hilbert space dimension is
dR . The crucial point however is that this lower bound can be obtained for some physical context, but
not all of them. By physical context, we mean the tuple (HO ,ρO ,HR ,HR ,T ). Here HO and ρO are
respectively the Hilbert space and state of the object, while HR , HR , and T are respectively the Hilbert
space, Hamiltonian, and temperature of the reservoir. The lower bound of Eq. (2) is achieved, by a swap
map, when the Hilbert spaces of object and reservoir have the same dimension dR and for a specific ρO ,
HR and T . Conversely, for a given physical context such inequalities prove less instructive. Indeed, if it
is impossible to achieve the lower bound of Eq. (2) in a given experimental setup, in what sense can we
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consider this as the lowest possible heat dissipation due to information erasure? In this study, therefore,
we aim to approach the problem of information erasure from the dual perspective: given a physical con-
text, what is the minimum heat that must be dissipated in order to achieve a certain level of information
erasure. This context-dependent Landauer’s principle will be characterised by the equivalence class of
unitary operators that achieve our task. Of course, this first requires a re-examination of what exactly we
mean by information erasure.

1.4 Information erasure: pure state preparation and entropy reduction

Although erasing the information of an object leads to a reduction of its entropy, the two processes are
not quantitatively the same. In quantum mechanics, erasure takes the form of pure state preparation;
just as in classical mechanics erasure involves the many-to-one mapping on the information bearing
degrees of freedom, then in quantum mechanics this translates naturally as the irreversible process of
preparing the object in a pure state. If we wish to maximise the probability of preparing an object in a
pure state, in general we need not minimise its entropy to do so; the only cases where the two coincide
are when the object has a two-dimensional Hilbert space, or where we are able to fully purify the object
and thereby take its entropy to zero. Consequently, our desired task can be stated as the minimisation
of heat dissipation given probabilistic information erasure – that is to say, of minimising the amount
of energy transferred to the thermal reservoir as heat if we require that the probability of preparing the
object in a specific pure state |ϕ1〉 be no smaller than pmax

ϕ1
− δ . Here pmax

ϕ1
is the maximum probability

of information erasure that is permissible by the physical context, and δ > 0 the error. We will refer to
the equivalence class of unitary operators that achieve this as [Uopt(δ )].

1.5 Layout of paper

In Sec. (2) we shall introduce the mathematical concepts, and notation, used throughout the paper. In
Sec. (3) we shall characterise the equivalence class of unitary operators acting on the composite system
of object and reservoir, as a result of which the object undergoes probabilistic information erasure and,
given this, the reservoir gains the minimal quantity of heat. Here, we operate within the framework of
Landauer: namely, that the object and reservoir are initially uncorrelated and where the composite system
evolves unitarily. We demonstrate the tradeoff between probability of information erasure and minimal
heat dissipation; an increase in probability of preparing the object in a defined pure state is accompanied
by an increase in the minimal heat that must be dissipated to the thermal reservoir.

2 Mathematical prerequisites and notation

2.1 Majorisation theory

Here we shall introduce some useful concepts from the theory of majorisation [15]. Given a set of real
numbers aaa = {ai}i, where i belongs to an index set I ⊆N, we may construct the ordered sets aaa↑ := {a↑i }i

and aaa↓ := {a↓i }i by permuting the elements in aaa. The non-decreasing set aaa↑ is defined such that for all
i, j ∈ I where i < j, we have a↑i 6 a↑j . Conversely the non-increasing set aaa↓ is defined such that for all
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i, j ∈ I where i < j, we have a↓i > a↓j . The set aaa is said to be weakly majorised by bbb from below, denoted

aaa≺w bbb, if and only if for every k ∈ I, ∑
k
i=1 b↓i > ∑

k
i=1 a↓i . Conversely, aaa is said to be weakly majorised by

bbb from above, denoted aaa ≺w bbb, if and only if for every k ∈ I, ∑
k
i=1 a↑i > ∑

k
i=1 b↑i . The stronger condition

of aaa being majorised by bbb, denoted aaa ≺ bbb, is satisfied if both aaa ≺w bbb and aaa ≺w bbb (or alternatively, if
∑i ai = ∑i bi). A sufficient condition for aaa≺w bbb is if for all i, a↓i 6 b↓i . We now introduce a theorem that
will be central to many results in the paper.

Theorem 2.1.1. For two sets of real numbers aaa and bbb, of the same cardinality N, their dot-product obeys
the relation

aaa↓ ·bbb↑ ≺w aaa ·bbb≺w aaa↓ ·bbb↓.

For a proof we refer to Theorem II.4.2 in [4]. This leads to the simple corollary:

Corollary 2.1.1. Consider the sets {aaa111,aaa222} and {bbb111,bbb222}, such that aaa111 ≺ aaa222 and bbb111 ≺ bbb222. It follows from
Theorem 2.1.1 that aaa↓111 ·bbb

↓
111 ≺w aaa↓222 ·bbb

↓
222, and aaa↓222 ·bbb

↑
222 ≺w aaa↓111 ·bbb

↑
111.

2.2 Finite-dimensional quantum mechanics

A Hilbert space H of finite dimension d is isomorphic to Cd , which we denote as H ' Cd . We define
L (H ) as the space of linear operators on Hilbert space H , Ls(H ) the subspace of self-adjoint opera-
tors, and S (H ) the subspace of positive operators of unit trace – namely, the state space on H . The en-
tropy of a state ρ ∈S (H ) is given by the von Neumann entropy defined as S(ρ) :=−tr[ρ log(ρ)]. The
entropy of ρ ∈S (H ), relative to σ ∈S (H ), is given by the relative entropy S(ρ‖σ) := tr[ρ(log(ρ)−
log(σ))]. The mutual information between two quantum systems A and B, with Hilbert spaces HA and
HB respectively, is defined as I(A : B)ρ := S(ρA)+S(ρB)−S(ρ). Here ρ ∈S (HA⊗HB) is the state of
the composite system, and ρA := trB[ρ] ∈S (HA) and ρB := trA[ρ] ∈S (HB) the marginal states of the
two subsystems, given by the partial trace.

3 Information erasure within Landauer’s framework

3.1 The setup

We consider a system composed of an object, O , with Hilbert space HO ' CdO and reservoir, R,
with Hilbert space HR ' CdR . Let the Hamiltonian of the reservoir be the self-adjoint operator HR ∈
Ls(HR) given in diagonal form as HR = ∑

dR
m=1 λ

↑
m|ξm〉〈ξm|, where λλλ

↑ := {λ ↑m}m is a non-decreasing set
of energy eigenvalues. Similarly, the object Hamiltonian is denoted HO ∈Ls(HO). Let the initial state
of the system be given as ρ = ρO ⊗ ρR(β ), where ρO ∈ S (HO) and ρR(β ) ∈ S (HR). We define
ρO := ∑

dO
l=1 o↓l |ϕl〉〈ϕl| and ρR(β ) := e−βHR/tr[e−βHR ] ≡ ∑

dR
m=1 r↓m|ξm〉〈ξm|, such that ooo↓ := {o↓l }l and

rrr↓ := {r↓m}m are non-increasing probability sets. These representations are unique if and only if there are
no degeneracies in the probability distributions. Here, ρR(β ) is referred to as the thermal state of the
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reservoir, at the inverse temperature β := (kBT )−1 ∈ (0,∞). For simplicity, we write the initial state ρ in
the equivalent form

ρ =
dO

∑
l=1

dR

∑
m=1

o↓l r↓m|ϕl〉〈ϕl|⊗ |ξm〉〈ξm| ≡
dOdR

∑
n=1

p↓n|ψn〉〈ψn|, (3)

where the non-increasing set ppp↓ := {p↓n}n is the ordered permutation of {o↓l r↓m}l,m, and {|ψn〉 ∈HO ⊗
HR}n the associated permutation of {|ϕl〉⊗|ξm〉}l,m. Assuming the total system is closed, it will evolve
according to a unitary operator U ∈L (HO ⊗HR) to give the final state

ρ
′ :=UρU† =

dOdR

∑
n=1

p↓nU |ψn〉〈ψn|U†. (4)

The marginal states of ρ ′ are ρ ′O := trR [ρ ′] and ρ ′R := trO [ρ ′]. We define the reduction in entropy of O
as ∆S := S(ρO)−S(ρ ′O). The total average energy consumption of the erasure protocol is

∆E := tr[(HO +HR)(ρ ′−ρ)] = tr[HO(ρ
′
O −ρO)]+ tr[HR(ρ ′R−ρR(β )],

= ∆W +∆Q. (5)

A positive ∆E implies that the process requires energy from a power supply, or battery. Conversely, a
negative ∆E implies that the process produces energy that can, in turn, be stored in said battery. Here,
∆W is the energy change in the object, and ∆Q the energy change in the reservoir. As shown in [7, 23],
these terms can also be written as

β∆W = S(ρ ′O‖ρO(β ))−S(ρO‖ρO(β ))−∆S, (6)

β∆Q = ∆S+ I(O : R)ρ ′+S(ρ ′R‖ρR(β )). (7)

As we are only interested in cases where ∆S is positive, we can infer from the non-negativity of the
relative entropy and mutual information that ∆Q is always positive for information erasure, even though
∆W may be negative. By construction the reservoir is a system which, after its utility in the erasure
process, remains maximally passive and the energy stored therein cannot be used to do work afterwards.
It is in this sense that we may interpret ∆Q as heat [22, 24]. As such, minimising ∆Q in an erasure
protocol is tantamount to minimising the waste of potential energy – that is to say, the energy stored in
the battery in addition to the free energy of the object. Of course, a finite-dimensional reservoir will not
in general remain in a thermal state after its joint evolution with the object.

3.2 Maximising the probability of information erasure

As the pure state we wish to prepare the object in is arbitrary up to local unitary operations, for simplicity
we choose this to be |ϕ1〉. The probability of finding ρ ′O in the state |ϕ1〉 is defined as

p(ϕ1|ρ ′O) := 〈ϕ1|ρ ′O |ϕ1〉=
dOdR

∑
n=1

p↓n〈ψn|U†(|ϕ1〉〈ϕ1|⊗1R)U |ψn〉,

=
dOdR

∑
n=1

p↓ngn(U)≡ ppp↓ ·ggg(((UUU))), (8)
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where ggg(((UUU))) is a vector of objects gn(U) := 〈ψn|U†(|ϕ1〉〈ϕ1|⊗1R)U |ψn〉.

Lemma 3.2.1. The maximum probability of information erasure is pmax
ϕ1

= ∑
dR
m=1 p↓m. The equivalence

class of unitary operators that achieve this, denoted [Ug
maj], is characterised by the rule

for all m ∈ {1, . . . ,dR} , Ug
maj |ψm〉= |ϕ1〉⊗

∣∣ξ ′m〉 ,
where {|ξ ′m〉}m is an arbitrary orthonormal basis in HR .

Proof. By Theorem 2.1.1 we know that ppp↓ · ggg(((UUU))) ≺w ppp↓ · ggg↓(((UUU))). Let Ug
maj be a member of an equiv-

alence class of unitary operators such that ggg(((UUUggg
maj))) = ggg↓(((UUUggg

maj))) and ggg↓(((UUU))) ≺ ggg↓(((UUUggg
maj))) for all U ∈

L (HO ⊗HR). Therefore, by Corollary 2.1.1 we get ppp↓ ·ggg↓(((UUU)))≺w ppp↓ ·ggg↓(((UUUggg
maj))), and hence p(ϕ1|ρ ′O)

is maximised by Ug
maj. Because gn(U) ∈ [0,1] for all n, and ∑n gn(U) = dR , the first dR elements in

ggg↓(((UUUggg
maj))) must be one, and the rest zero.

The fact that pmax
ϕ1

in general cannot be brought to unity has been reported in [23, 27, 1, 29]. A necessary
and sufficient condition for pmax

ϕ1
to be greater than p(ϕ1|ρO) := o↓1 is that o↓2r↓1 be greater than o↓1r↓dR

. Oth-

erwise, we would have pmax
ϕ1

= ∑
dR
m=1 o↓1r↓m = o↓1. This implies that for probabilistic information erasure,

we require that

o↓1
o↓2

<
r↓1

r↓dR

= eβ (λ ↑dR
−λ
↑
1 ) 6 e2β‖HR‖. (9)

Similar arguments were made in [23], although there the focus was on providing a bound on the smallest
eigenvalue of ρ ′O that could be obtained. The more pure the initial state of the object is, therefore, the
larger λ

↑
dR
−λ

↑
1 must be to further purify it. Of course if the object is maximally mixed then, so long as

HR is not proportional to 1, we may increase its purity by some degree, small though it may be.

3.3 Minimising the heat dissipation

We may always write the post-transformation marginal state of the reservoir as

ρ
′
R =

dR

∑
m=1

r′↓m(U)|ξ ′m〉〈ξ ′m|, (10)

with rrr′′′↓(((UUU))) := {r′↓m(U)}m a non-increasing set of probabilities and {|ξ ′m〉}m an arbitrary orthonormal
basis in HR . Because ρR(β ) is fixed, minimising ∆Q is achieved by minimising the average energy of
this state, given as

tr[HRρ
′
R ] =

dR

∑
m=1

r′↓m(U)〈ξ ′m|HR |ξ ′m〉 ≡ rrr′′′↓(((UUU))) ·λλλ ′′′, (11)

where λλλ
′′′ is a set of objects λ ′m := 〈ξ ′m|HR |ξ ′m〉. To determine how ∆Q can be minimised, we first provide

a recursive proof to show that the set of eigenvalues λλλ majorises all possible λλλ
′′′.
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Lemma 3.3.1. λλλ
′′′ ≺ λλλ for all orthonormal bases {|ξ ′m〉 ∈HR}m.

Proof. To show this, it is sufficient to show that ∑m λm = ∑m λ ′m and λ ′ ≺w λ for all {|ξ ′m〉}m. The
first condition is trivial, as ∑m λ ′m = tr[HR ] and is independent of {|ξ ′m〉}m. To show that λ ′ ≺w λ , it is
sufficient to prove that for all m and {|ξ ′m〉}m, λ

↑
m 6 λ

′↑
m . This can be done by showing that the minimal

value attainable by λ ′1 is λ1 and, given this constraint, the minimal value attainable by λ ′2 is λ2, and so
on. One may always write |ξ ′m〉= αm |ξm〉+βm

∣∣ξ⊥m 〉 where
∣∣ξ⊥m 〉 is the orthogonal complement to |ξm〉

in HR . Consequently, we have λ ′m = |αm|2〈ξm|HR |ξm〉+ |βm|2〈ξ⊥m |HR |ξ⊥m 〉. It follows from the Ky Fan
principle [4] that 〈ξ⊥1 |HR |ξ⊥1 〉> 〈ξ1|HR |ξ1〉=: λ1. Therefore we know that λ ′1 is minimised by setting
|α1|2 = 1. In the next step, the fact that 〈ξ ′1|ξ ′2〉= 0 and that our previous step sets |ξ ′1〉= |ξ1〉 implies that
〈ξ1|ξ⊥2 〉= 0. This in turn implies that 〈ξ⊥2 |HR |ξ⊥2 〉> 〈ξ2|HR |ξ2〉=: λ2, so that 〈ξ ′2|HR |ξ ′2〉 is minimised
by setting |α2|2 = 1. This argument can be made recursively for all m.

Now we are able to characterise the equivalence class of unitary operators that minimise ∆Q.

Lemma 3.3.2. ∆Q is minimised by the equivalence class of unitary operators [U f
maj] characterised by

the rule

for all m ∈ {1, . . . ,dR} and n ∈ {(m−1)dO +1, . . . ,mdO} , U f
maj |ψn〉= |ϕm

l 〉⊗ |ξm〉 ,

with the set {
∣∣ϕm

l

〉
|l ∈ {1, . . . ,dO}} forming an orthonormal basis in HO for each m.

Proof. By Corollary 2.1.1 and Lemma 3.3.1, rrr′′′↓(((UUU))) ·λλλ ↑ ≺w rrr′′′↓(((UUU))) ·λλλ ′′′. Therefore tr[HRρ ′R ] is minimal
when for all m, |ξ ′m〉= |ξm〉. In such a case, we have

r′↓m(U) := 〈ξm|ρ ′R |ξm〉=
dOdR

∑
n=1

p↓n〈ψn|U†(1O ⊗|ξm〉〈ξm|)U |ψn〉,

=
dOdR

∑
n=1

p↓n fn(U,m) = ppp↓ · fff (((UUU ,,,mmm))), (12)

where fff (((UUU ,,,mmm))) is a set of objects fn(U,m) := 〈ψn|U†(1O ⊗|ξm〉〈ξm|)U |ψn〉. Let U f
maj be a member of

the equivalence class of unitary operators such that rrr′′′↓(((UUU)))≺ rrr′′′↓(((UUU fff
maj))) for all U ∈L (HO ⊗HR). By

Corollary 2.1.1 it would then follow that rrr′′′↓(((UUU fff
maj))) · λλλ

↑ ≺w rrr′′′↓(((UUU))) · λλλ ↑, resulting in the minimisation

of tr[Hρ ′R ] and hence ∆Q. To find rrr′′′↓(((UUU fff
maj))), we first need to maximise r′↓1 (U) and then, given this

constraint, maximise r′↓2 (U), and so on. This, in turn, is achieved by choosing U f
maj so that fff (((UUU fff

maj,,,111))) =

fff ↓(((UUU fff
maj,,,111))) and fff ↓(((UUU fff

maj,,,111))) � fff ↓(((UUU ,,,111))) for all U . Note that for each m, fn(U,m) ∈ [0,1] for all n,

and ∑n fn(U,m) = dO . Hence, the first dO entries of fff ↓(((UUU fff
maj,,,111))) are taken to one and the rest to zero.

Because of the constraint posed by the orthogonality of the vectors {U |ψn〉}n, however, the first dO

elements of fff (((UUU fff
maj,,,222))) must be zero, and to maximise r′↓2 (U) the best we can do is to only take the

second dO entries of fff (((UUU fff
maj,,,222))) to one, with the rest being zero. This argument is then made recursively

for all m.
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3.4 Minimal heat dissipation conditional on maximising the probability of information
erasure

It should now be clear that the two objectives of maximising the probability of information erasure,
and minimising the heat dissipation, cannot be achieved simultaneously: [Ug

maj]∩ [U f
maj] = { /0}. The

two tasks are in some sense complementary, and there will be a tradeoff between them. Here, we shall
prioritise; a unitary operator will be chosen such that it maximises the probability of information erasure
and, given this constraint, minimises the heat dissipation. In other words, we find the equivalence class
of unitary operators [Uopt(0)] ⊂ [Ug

maj] that minimise ∆Q. The purpose of the zero in parentheses will
become apparent in Sec. (3.5). To this end we first divide the set of probabilities ppp↓ to form the non-
increasing set of cardinality dR , denoted Π

↓
0, and the non-increasing sets of cardinality dO −1, denoted

{Π↓m|m ∈ {1, . . . ,dR}}, defined as

Π
↓
0 := {p↓m|m ∈ {1, . . . ,dR}},

Π
↓
m>1 := {p↓dR+(m−1)(dO−1)+l|l ∈ {1, . . . ,dO −1}}. (13)

We refer to the mth element of Π
↓
0 as Π

↓
0(m), and the lth element of Π

↓
m>1 as Π

↓
m>1(l).

Theorem 3.4.1. The equivalence class of unitary operators that maximise the probability of informa-
tion erasure and, given this constraint, minimise the heat dissipation, is denoted as [Uopt(0)]. This is
characterised by the rules

Uopt(0) :

{
|ψn〉 7→ |ϕ1〉⊗ |ξm〉 if p↓n = Π

↓
0(m),

|ψn〉 7→
∣∣ϕm

l

〉
⊗|ξm〉 if p↓n = Π

↓
m(l) and m > 1,

where, for all m, each member of the orthonormal set {
∣∣ϕm

l

〉
}l is orthogonal to |ϕ1〉.

Proof. The first line conforms with the conditions imposed by Lemma 3.2.1 and, as such, results in
p(ϕ1|ρ ′O) = pmax

ϕ1
. However, here we are restricted to the case |ξ ′m〉= |ξm〉 for all m, thereby minimising

the contribution to heat dissipation by Corollary 2.1.1 and Lemma 3.3.1. The second line, by virtue of
not affecting p(ϕ1|ρ ′O), is evidently allowed for a unitary operator in the equivalence class [Ug

maj]. This
rule takes the dR largest remaining probabilities to states

∣∣ϕ1
l

〉
⊗|ξ1〉, thereby maximising the probability

associated with |ξ1〉, and so on for the other states |ξm〉. By the same line of reasoning as in Lemma 3.3.2,
therefore, the contribution to heat dissipation from this line is minimal.

We now make the following observations:

(a) If we choose
∣∣ϕm

l

〉
= |ϕl+1〉 for all m, and such that {|ϕl〉}l are the eigenvectors of the object Hamil-

tonian HO in increasing order of energy, then Uopt(0) would also ensure that the purification to the
ground state |ϕ1〉 would be done in such a way that p(ϕi|ρ ′O) > p(ϕ j|ρ ′O) for all i < j; the object
is brought to a passive state, although in general with more energy than if it was “cooled” [22, 20].
We refer to this as passive information erasure, and the resultant equivalence class of unitary opera-
tors as [Up

opt(0)]. These unitary operators will result in the smallest possible ∆E, conditional on first
maximising the probability of information erasure, and then minimising the heat dissipation; that is
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to say, [Up
opt(0)] minimises ∆W for all unitary operators in the equivalence class [Uopt(0)]. The state

ρ ′ =Up
opt(0)ρUp

opt(0)
† for such a case is depicted in matrix representation in Fig. (2).

(b) Since the desired task is the maximisation of p(ϕ1|ρ ′O), we need not maximise ∆S because this will
lead to a greater amount of heat dissipation than necessary, as per Eq. (7). The only cases where
maximisation of p(ϕ1|ρ ′O) necessarily leads to the maximisation of ∆S are when: (i) pmax

ϕ1
= 1; and

(ii) where HO ' C2. In case (i) the entropy of the object is brought to zero, so ∆S is trivially
maximised. In case (ii), we note that if ooo↓111 � ooo↓222, where ooo↓111 and ooo↓222 are the probability spectra of
ρ1

O and ρ2
O respectively, then S(ρ1

O) 6 S(ρ2
O). If we maximise p(ϕ1|ρ ′O) in the case of O being a

two-level system, this will necessarily minimise p(ϕ2|ρ ′O). This in turn will result in the probability
spectrum of ρ ′O to majorise all possible spectra. Consequently, this will minimise S(ρ ′O) and hence
maximise ∆S.

However, one can always say that maximising the probability of information erasure requires that
we maximise the increase in min-entropy, Smin, defined as

Smin(ρ) := min
i
{− log(pi)}, (14)

where {pi}i is the probability spectrum of ρ [28]. The min-entropy is clearly given by the largest
probability, and to maximise its increase, we must maximise the largest probability of the system;
this is the definition of maximising the probability of information erasure.

(c) The only instance where HO 'HR 'Cd , and Up
opt(0) for passive, maximally probable information

erasure is a swap operation, is when d = 2. For larger dimensions, this is no longer the case.

(d) It is evident that the spectrum of ρ ′R is is non-decreasing with respect to the energy levels of its
Hamiltonian, but that its spectrum is majorised by that of ρR(β ). As such, by Corollary 2.1.1,
∆Q > 0. This conforms with Landauer’s principle that information erasure must dissipate heat.

3.5 The tradeoff between probability of information erasure and minimal heat dissipa-
tion

It may be the case that one does not need to maximise the probability of information erasure, but simply
requires that p(ϕ1|ρ ′O) > pmax

ϕ1
− δ , with the error δ ∈ [0, pmax

ϕ1
− o↓1]. The question would therefore

be: how will the minimal achievable ∆Q be affected by varying δ , and how may we characterise the
equivalence class of unitary operators [Up

opt(δ )] in such a case? The answer for the extremal cases is
trivial; when δ = pmax

ϕ1
− o↓1, then [Up

opt(δ )] = 1 and ∆Q = 0, while [Up
opt(δ )] for δ = 0 reduces to the

case discussed in Sec. (3.4), wherein ∆Q > 0. To answer the question for the intermediate values of δ ,
we first make the following observations:

(a) For any value of ∆Q, p(ϕ1|ρ ′O) is maximised when the eigenvectors of ρ ′O that have support on
|ϕ1〉 are given by the set {|ϕl〉}l . This follows from Corollary 2.1.1, which implies that p(ϕ1|ρ ′O) =
∑l o

′↓
l |〈ϕ1|ϕ ′l 〉|2 6 o

′↓
1 , where ρ ′O = ∑l o

′↓
l |ϕ ′l 〉〈ϕ ′l |.

(b) For any value of p(ϕ1|ρ ′O), ∆Q is minimised when the eigenvectors of ρ ′R are given by the set
{|ξm〉}m. This follows from Lemma 3.3.1.
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Observations (a) and (b), together, show that the optimal case will require that, for all n, U |ψn〉 =
∑l
√

γn
l |ϕl〉⊗

∣∣ξ n
l

〉
. Here γn

l > 0 are the Schmidt coefficients, and
∣∣ξ n

l

〉
= eiφ

n
l σn |ξl〉 with σn a permuta-

tion on the set {|ξl〉}l and φ n
l ∈ [0,2π) a phase.

Consider now the following algorithm for sequential swaps within 2-dimensional subspaces of HO ⊗
HR .

Sequential swap algorithm

Step (1): Denote the probability of state |ϕl〉⊗ |ξm〉 as pl,m. Set i = 2 and m = dR .

Step (2): Sequentially swap |ϕ1〉⊗ |ξi〉 with the vectors {|ϕl〉⊗ |ξm〉}l , with l running from dO down
through to 2, only if p1,i < pl,m.

Step (3): If m > 1, set m = m−1 and go back to Step (2). Else, proceed to Step (4).

Step (4): If i < dR , set i = i+1, m = dR , and go back to Step (2). Else, terminate.

We first wish to show that the sequence of unitary operators produced by this algorithm will give
{U p

opt(δ
↓
j )} j for a discrete, non-increasing sequence of errors δδδ

↓, and that this will be accompanied
by a non-decreasing sequence of heat ∆∆∆QQQ↑.

Lemma 3.5.1. The sequential swap algorithm produces a non-increasing sequence of errors, δδδ
↓ :=

{δ ↓j } j, commensurate with a non-decreasing sequence of heat, ∆∆∆QQQ↑ := {∆Q↑j} j, such that the resultant
state ρ ′O is always passive.

Proof. For every iteration of Step (2), each swap operation increases p(ϕ1|ρ ′O), so we obtain the non-
increasing sequence of errors δδδ

↓ by construction. Furthermore, each swap increases p(ξi|ρ ′R), while
decreasing p(ξm|ρ ′R). To show that this always leads to an increase in heat by Corollary 2.1.1, we must
show that, for each swap, i > m. Every swap in each iteration of Step (2) effects a permutation on the
set {p1,i, p2,m, . . . , pdO ,m}. Initially, p1,i = o↓1r↓i . We note that if o↓1r↓i < o↓l r↓m with l > 2, then by necessity
i > m. As such, the swaps for the first iteration of Step (2), that involve state |ϕ1〉⊗ |ξ2〉 and lead to a
permutation in {p1,2, p2,1, . . . , pdO ,1}, result in a decrease in p(ξ1|ρ ′R) and an increase in p(ξ2|ρ ′R), which
indeed leads to a non-decreasing sequence of heat. And so on recursively for all i. To show that ρ ′O is
always passive, we need to show that after each swap, ∑m pi,m > ∑m p j,m for all i < j. This follows from
the fact that {pi,m}i are always in non-increasing order, and that {pi,m}i>2 > {pi,m′}i>2 if m < m′.

Now, we wish to show that the non-decreasing sequence of heat ∆∆∆QQQ↑ is optimal for the associated non-
increasing sequence of errors δδδ

↓.

Theorem 3.5.1. If an error δ can be achieved using the sequential swap algorithm, the consequent
heat dissipation will be optimal. Achieving the same δ with the presence of entanglement in the vectors
{U |ψn〉}n will either increase ∆Q, make ρ ′O less passive, or both.

Proof. By Corollary 2.1.1, Lemma 3.3.1 and Lemma 3.5.1, the heat dissipation due to the sequential
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swap algorithm is minimal if we are restricted to swap operations. If we are not restricted to performing
swap operations, we could also achieve the same error δ by allowing for entanglement in the vectors
{U |ψn〉}n. To show that this will result in a greater amount of heat dissipation, it is sufficient to show
that doing so would increase pi,m and decrease pi,m′ , where m > m′. Likewise, we may show that this
would make ρ ′O less passive by demonstrating that the process would increase pi,m and decrease p j,m,
where i > j.

Start with ρ = U p
opt(0)ρU p

opt(0)
†, with p jmax

1,dR
= p↓dR

, and p jmax
2,1 = p↓dR+1. Here we have δ

↓
jmax

= 0. The

first step of the sequential swap algorithm, run backwards, gives us p jmax−1
1,dR

= p↓dR+1 and p jmax−1
2,1 = p↓dR

,

with δ
↓
jmax−1 = p↓dR

− p↓dR+1. All other values are the same as before. Now instead have U |ψdR
〉 =

√
γ |ϕ1〉⊗|ξdR

〉+
√

1− γ |ϕi〉⊗|ξm〉 and U
∣∣ψdR+(m−1)dO+i

〉
=
√

1− γ |ϕ1〉⊗|ξdR
〉−√γ |ϕi〉⊗|ξm〉, with

all other U |ψn〉 defined by U p
opt(0). With some choice of γ, i,m, we can obtain p1,dR

= γ p↓dR
+ (1−

γ)p↓dR+(m−1)dO+i = p↓dR+1 and hence the same value of δ
↓
jmax−1. This, however, will lead to p2,1 = p↓dR+1 6

p jmax−1
2,1 and pi,m = (1− γ)p↓dR

+ γ p↓dR+(m−1)dO+i > p jmax−1
i,m . If i = 2 and m > 2, this will result in a larger

∆Q than ∆Q↑jmax−1. Conversely, if m = 1 and i > 3, this will make ρO less passive than with the sequential
swap algorithm. If both i > 3 and m > 2, then both ∆Q will be larger and ρ ′O less passive. The same line
of reasoning would apply for entanglement of higher Schmidt-rank.

Fig. (3) depicts this process for the case where HO 'HR ' C3, with ρO = 1
31O . Here the diagonal

entries of the density operator ρ ′ are shown in each column, with the first column from the right rep-
resenting the initial state, and the final column representing the case of passive, maximally probable
information erasure. The algorithm for reducing error by increasing heat moves from right to left, as
shown by the arrows. The elements surrounded by dashed circles, and coloured in red, are those which
must be swapped to decrease δ , with the resultant diagonal elements of the new state shown to the
left.

To allow for a continuous change in δ , we need to generalise the swap operation to an entangling swap.
That is to say, for the vectors |ϕ1〉⊗|ξi〉 and |ϕl〉⊗|ξm〉, and the real number γ ∈ [0,1], we define

SWγ :

{
|ϕ1〉⊗ |ξi〉 7→

√
1− γ |ϕ1〉⊗ |ξi〉+

√
γ |ϕl〉⊗ |ξm〉 ,

|ϕl〉⊗ |ξm〉 7→
√

γ |ϕ1〉⊗ |ξi〉−
√

1− γ |ϕl〉⊗ |ξm〉 .
(15)

Therefore, SW0 = 1 and as γ → 1, SWγ converges to the swap operation. Hence, for any error δ ∈
(δ ↓j ,δ

↓
j+1), the optimal unitary operator U p

opt(δ ) would be given by following the algorithm for discrete

errors up to δ
↓
j , and then replacing the swap operation which would give the error δ

↓
j+1 with the entangling

swap operation defined above. This will ensure for a continuous decrease in δ and a continuous increase
in ∆Q.

4 Conclusions

In quantum mechanics, information erasure is the irreversible process of preparing an object in a pre-
defined pure state; the probability of information erasure is defined as the probability of measuring the
object to be in said state, subsequent to the process of information erasure. Landauer’s framework for
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information erasure consists of an object of information erasure, and a reservoir prepared in a thermal
state, which are initially uncorrelated. The erasure process is then implemented by an appropriate choice
of a global unitary operator acting on the composite system. Landauer’s principle states that some phys-
ical context exists in which an entropy reduction of ∆S in an object will cost kBT ∆S units of energy as
heat dissipation to the thermal reservoir – this theoretical limit is referred to as Landauer’s limit. The
physical context of information erasure is described by the Hamiltonian and temperature of the thermal
reservoir, as well as the initial state of the object of information erasure. For most physical contexts,
however, not only will the heat dissipation be generally greater than Landauer’s limit, but not all values
of ∆S may even be realisable.

To this end we have developed a context-dependent, dynamical variant of Landauer’s principle. We used
techniques from majorisation theory to characterise the equivalence class of unitary operators that bring
the probability of information erasure to a desired value and minimise the consequent heat dissipation
to the thermal reservoir. We demonstrated that there is a tradeoff between the probability of information
erasure and the minimal heat dissipation, with a continuous increase in one being accompanied by a
continuous increase in the other. Furthermore, we showed that except for the cases where the object is
a two-level system, or when we are able to fully erase the object’s information, we may maximise the
probability of information erasure without also minimising the object’s entropy; this allows for a more
energy-efficient procedure for information erasure.

The primary question we have not addressed in this study, and shall leave for future work, is the inclu-
sion of time-dynamics into what we consider as the physical context; the optimal unitary operator for
information erasure is considered here as a bijection between orthonormal basis sets. In most realistic
settings, however, one is restricted in the Hamiltonians they can establish between the object and reser-
voir. As such, the optimal unitary operator may not always be reachable, resulting in a smaller maximal
probability of information erasure, a larger minimal heat dissipation, or both. Furthermore, an interesting
question to address is the number of times that we must switch between the Hamiltonians, that gener-
ate the unitary group, in order to obtain the optimal unitary operator, and how this would scale with the
reservoir’s dimension. This would provide a link between this work and the third law of thermodynamics
[17] from a control-theoretic [5] viewpoint.
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A Figures

Figure 1: The object O with Hilbert space HO 'CdO and thermal reservoir R with Hilbert space HR 'CdR . The
eigenbasis of the reservoir Hamiltonian HR is {|ξm〉}m, with the vector numbering being in order of increasing energy. The

eigenbasis with respect to which the object is initially diagonal is {|ϕn〉}n.
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Figure 2: (Colour online) (a) The partitioning of ppp↓, the decreasing set of eigenvalues of ρ , into the sets Π
↓
0 and Π

↓
m>1. (b)

The density operator ρ ′ :=Up
opt(0)ρUp

opt(0)
†, in matrix representation, where Up

opt(0) is the optimal unitary operator for
passive, maximally probable information erasure. The post-transformation marginal state of the object, ρ ′O , is the most

passive, given the constraints: (i) p(ϕ1|ρ ′O ) = pmax
ϕ1

; and (ii) ∆Q is minimal given (i).

Figure 3: (Colour online) The diagonal elements of ρ ′ :=Up
opt(δ )ρUp

opt(δ )
†, for ρ = 1

31O ⊗ρR(β ), resulting in
p(ϕ1|ρ ′O ) = pmax

ϕ1
−δ , where ∆Q is minimised and ρ ′O is as passive as possible given this constraint. Here HO 'HR 'C3,

and {δ ↓j } j is a non-increasing sequence of errors. The elements inside a dashed circle (red online) are those which must be

swapped to move from δ
↓
j to δ

↓
j+1.
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