From the Kochen-Specker theorem to noncontextuality
inequalities without assuming determinism

Ravi Kunjwal Robert W. Spekkens
The Institute of Mathematical Sciences, Perimeter Institute for Theoretical Physics,
Chennai, TN, India Waterloo, ON, Canada
rkunj@imsc.res.in rspekkens@perimeterinstitute.ca

We propose a general technique to go from a proof of the Kochen-Specker theorem, which is a
statement about quantum theory, to a noncontextuality inequality that applies to any operational
theory, even a nonquantum one.

Motivation: The Kochen-Specker (KS) theorem [1]] stands out as a fundamental result about the
impossibility of embedding the predictions of quantum mechanics in an underlying ontological model
that satisfies a property we term KS-noncontextuality: namely, that an ontic state assigns a deterministic
outcome to a projector, independent of the particular measurement basis (the context) this projector may
appear in. Experimental testability of the KS theorem has been a subject of intense debate in the past [2].

We begin by outlining some obstacles to such a test. First of all, there is the problem that the stan-
dard notion of KS-noncontextuality holds only for projective measurements, and hence makes explicit
reference to the formalism of quantum theory. If one seeks to implement a direct experimental test of
whether nature admits of a noncontextual model, without presuming quantum theory, one must opera-
tionalize the notion of KS-noncontextuality. Second, there is the problem that even if one has such an
operationalized notion, if it continues to apply only to measurements which are perfectly predictable on
some preparations (the analogue of projective quantum measurements in a general operational theory)
then it is still not applicable to any real experiment because no realistic measurement ever achieves the
ideal of perfect predictability on any preparation.

It follows that any experimental test based on the notion of KS-noncontextuality will fall short of
the benchmark that is set by another fundamental test of nonclassicality, namely, the violation of a Bell
inequality [3, 4} [5]. Violating a Bell inequality allows one to infer that whatever operational theory
governs the experiment, it does not admit of an ontological model that satisfies local causality. A notion
of noncontextuality, like local causality, is an assumption that is meant to capture the spirit of classicality,
but unlike local causality (which can only be applied to space-like separated systems), it is meant to apply
in any experimental scenario. What one requires is a notion of noncontextuality that can be subjected to
a direct experimental test, just as one can do for the hypothesis of local causality.

We use the generalization of KS-noncontextuality to the notion of noncontextuality for arbitrary
operational theories proposed in Ref. [6]. This generalization views noncontextuality as a Leibnizian
primitive, the (ontological) identity of (operational) indiscernables: if two experimental procedures are
statistically indistinguishable at the operational level, then they must also be statistically indistinguish-
able at the ontological level. We term this property universal noncontextuality—universal in the sense
that it applies to all experimental procedures, whether they correspond to preparations, transformations,
or measurements. In particular, for preparation and measurement procedures, the corresponding notions
of noncontextuality are preparation noncontextuality and measurement noncontextuality, respectively.
We use these two notions to obtain a noncontextuality inequality based on the KS-uncolourable hyper-
graph of Fig. [l which was originally devised in Ref. [7] as a so-called “state-independent” proof of the
KS theorem.
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Figure 1: The 18 ray proof of the KS theorem from Ref. [[7].

Operational theory and its ontological model: An operational theory is specified by (£, .4, p),
where & is the set of preparation procedures, . is the set of measurement procedures, and p(k|M,P) €
[0, 1] denotes the probability that outcome k € .#” occurs on implementing measurement procedure M €
A following a preparation procedure P € & on a system.

An ontological model (A,u,&) of an operational theory (Z2,.# ,p) posits an ontic state space A
such that a preparation procedure P is represented by a normalized distribution over A, w(A|P) € [0, 1]
(A € A)such that Y3 o u(A|P) = 1 for all P € £, and the probability of occurrence of a measurement
outcome [k|M] for a given A € A is specified by & (k|M,A) € [0, 1], where the measurement outcomes are
assumed to be discrete. The following condition of empirical adequacy prescribes how the operational
theory and its ontological model fit together:

p(k|p,P) =Y E(k|M,A)u(A|P). (D
AEA

Operational equivalence: Two preparation procedures, P and P, are said to be operationally equivalent
(denoted P ~ P’) if no measurement procedure M € .# (with outcome set .#") yields different statistics
for them, i.e.,

VM € M Nk e X : p(k|M,P) = p(k|M,P"). )

Two measurement events, [k|M] and [k|M'] (where M and M’ are measurement procedures with outcome
set " each, k € %), are said to be operationally equivalent (denoted [k|M] ~ [k|M]) if no preparation
procedure yields different statistics for them, i.e.,

VP e 2 p(kM,P) = p(k|M',P). 3)

Noncontextuality: Preparation noncontextuality is the following assumption on the ontological model
of an operational theory:
P~P = pu(A|P)=u(A|P) VA eA. 4)

Measurement noncontextuality is the assumption that
(K|M] =~ [k|M') = & (KIM,A) = E(KIM',A) VA € A. 5)

Our noncontextuality inequality: We consider 9 measurements {Mi}?:l with 4 outcomes k €
{1,2,3,4} each. The 36 measurement events {[k|M;]:i € {1,...,9},k € {1,...,4}} are assumed to
satisfy 18 operational equivalence relations, illustrated in Fig. 2] This leaves us with 18 equivalence
classes of measurement events. We also consider 36 preparations, {P; :i € {1,...,9},k € {1,...,4}},
associated to the corresponding measurement events. The quantity of interest to us is p(k|M;, P, ), the
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Figure 2: Operational equivalences between measurement events.
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Figure 3: Operational equivalences between preparation procedures

probability that the measurement event [k|M;] occurs when measurement M; follows a preparation P, ;
(ave)

on the system. We also define 9 effective preparations, denoted {Pl.(ave)}?: |» where P, is obtained by
sampling k € {1,...,4} uniformly at random, and then implementing P, ;. These 9 effective preparations

are assumed to be operationally equivalent to each other: P{™® ~ p{™¢) ~ ploe) ~ plave) o, pave)

Péave) o~ P7(ave) o~ P(ave) o~ Péave), as depicted in Fig. [3| The quantity that our inequality bounds is the
average predictablhty of the measurement events with respect to the corresponding preparations:

1

9 4
A=22) Y p(kIMi, ). (6)

i=1k=1

Given the operational equivalences in Figs.[2]and[3] it can be shown that the assumption of noncontextu-
ality implies the following constraint on A:

A

IA
N

(7

Discussion: In the accompanying paper [10], we also show how our noncontextuality inequality
compares with an earlier proposal [8] for an experimentally testable inequality based on the construction
of Ref. [[7]. We argue that the inequality of Ref. [§] is not well-motivated and that its violation cannot be
interpreted as revealing any interesting notion of nonclassicality in nature. Our inequality, on the other
hand, is proven to provide a test of universal noncontextuality that is robust to noise.
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Recall that the assumption of KS-noncontetuality incorporates an assumption of outcome determin-
ism for sharp (i.e. projective) measurements. As argued elsewhere [[6], as well as in the paper accom-
panying this submission [10], for ontological models of quantum theory, outcome determinism can be
justified for sharp measurements, once preparation noncontextuality is assumed. However, generalizing
this argument to the case of an arbitrary operational theory is problematic. For one, it requires a gener-
alization of the notion of a sharp measurement, and it is not clear which of the many ways of achieving
this generalization is appropriate (see [9] for examples of such generalizations). More importantly, even
if one settles upon some choice, the requirement that the operational theory must include such measure-
ments limits the scope of theories for which the notion of KS-noncontextuality is applicable. We circum-
vent this problem by demonstrating that operational equivalences and universal noncontextuality imply
a restriction on the extent to which measurements can be presumed to be outcome-indeterministic in the
ontological model, and this in turn implies a bound on the average predictability of the measurements,
regardless of whether they are sharp or not. This allows us to obtain a noncontextuality inequality that
makes sense for any operational theory without requiring a distinction between sharp and unsharp mea-
surements in the theory. In particular, for the case of quantum theory where the sharp/unsharp distinction
refers to projective/nonprojective measurements, our noncontextuality inequality also makes sense for
nonprojective measurements, something that the traditional KS-noncontextuality inequalities fail to do.
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