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We introduce quantum Latin squares, combinatorial quantum objects which generalize classical Latin
squares. We show that quantum Latin squares can be seen as weakened versions of mutually-unbiased
bases (MUBs). Our main results use quantum Latin squares to give a new construction of unitary error
bases (UEBs), basic structures in quantum information which lie at the heart of procedures such as
teleportation, dense coding and error correction.

This is an extended abstract for arXiv:1504.02715

1 Quantum Latin squares

We begin with the definition of a quantum Latin square.

Definition 1. A quantum Latin square of order n is an n-by-n array of elements of the Hilbert space Cn,
such that every row and every column is an orthonormal basis.

Example 2. Here is a quantum Latin square given in terms of the computational basis elements
{|0〉, |1〉, |2〉, |3〉} ⊂ C4:

|0〉 |1〉 |2〉 |3〉
1√
2
(|1〉− |2〉) 1√

5
(i|0〉+2|3〉) 1√

5
(2|0〉+ i|3〉) 1√

2
(|1〉+ |2〉)

1√
2
(|1〉+ |2〉) 1√

5
(2|0〉+ i|3〉) 1√

5
(i|0〉+2|3〉) 1√

2
(|1〉− |2〉)

|3〉 |2〉 |1〉 |0〉

It can readily be checked that along each row, and along each column, the elements form an orthonormal
basis for C4. We can compare this to the classical notion of Latin square [6].

Definition 3. A classical Latin square of order n is an n-by-n array of integers in the range {0, . . . ,n−1},
such that every row and column contains each number exactly once.

By interpreting a number k ∈ {0, . . . ,n−1} as a computational basis element |k〉 ∈Cn, we can turn an array
of numbers into an array of Hilbert space elements:

3 1 0 2

1 0 2 3

2 3 1 0

0 2 3 1

 

|3〉 |1〉 |0〉 |2〉

|1〉 |0〉 |2〉 |3〉

|2〉 |3〉 |1〉 |0〉

|0〉 |2〉 |3〉 |1〉

(1)

It is easy to see that the original array of numbers is a classical Latin square if and only if the corresponding
grid of Hilbert space elements is a quantum Latin square. However, as Example 2 makes clear, not every
quantum Latin square is of this form.
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2 Quantum Latin squares and unitary error bases

Quantum Latin squares have an elegant description in terms of categorical quantum mechanics [1, 2, 5,
11], a research programme in which techniques of monoidal category theory are used to understand quantum
computational phenomena. For this theorem, note that an n-by-n grid of elements of Cn corresponds exactly
to a linear map Cn⊗Cn→Cn, which acts on |i〉⊗| j〉 to give the grid element in the ith row and jth column.
This theorem will be included in a future version of our main paper.

Theorem 4. In FHilb, a linear map :Cn⊗Cn→Cn gives a quantum Latin square just when the following
morphisms are both unitary, where the black vertex is the canonical classical structure on Cn:

(2)

Proof sketch. By expanding the black vertex as a sum over its classical points, we see these composites are
unitary just when the following morphisms are unitary for all i indexing the computational basis states:

Ui :=
i

Vi :=
i

(3)

Encode the map as an n-by-n grid of elements of Cn. Then the ith row of this grid gives the columns of
Ui, and the ith column of this grid gives the columns of Vi. So then the matrices Ui and Vi will be unitary
just when the rows and columns of the grid form orthonormal bases, which is precisely the quantum Latin
square condition.

Note that we do not require the white vertex to satisfy any additional axioms; in particular, it is not
necessarily an algebra. In [14], it was shown that the basis defined by two commutative dagger-Frobenius
structures in FHilb are mutually unbiased precisely when the composites (2) are unitary, up to a scalar
factor. Hence we see that quantum Latin squares are a weak form of unbiased basis.

2 Outline of main results

The main results of our paper are on using quantum Latin squares to construct unitary error bases
(UEBs) [9], also known as unitary operator bases. These are basic structures in quantum information which
play a central role in quantum teleportation [4], dense coding [8] and error correction [12]. Construction
techniques for UEBs have been widely studied [7, 9, 10, 13]. We propose a new method for construction of
UEBs:

• Quantum shift-and-multiply method (QSM). Requires a quantum Latin square and a family of
Hadamard matrices.1 (See paper Definition 17.)

We compare this to the other methods that have been proposed in the literature:

• Shift-and-multiply method (SM). Requires a classical Latin square and a family of Hadamard
matrices. (See paper Definition 20.)

• Hadamard method (HAD). Requires a pair of MUBs. (See paper Definition 32.)

1A Hadamard matrix is a unitary matrix whose entries have constant norm. It is mathematically equivalent to the data for a pair
of MUBs.
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• Algebraic method (ALG). Requires a finite group equipped with a projective representation, satisfying
certain properties. (See paper Definition 41.)

Our theorems concern the relationships between these constructions. We prove that QSM contains SM and
HAD as special cases. We also use QSM to construct a concrete unitary error basis M , and prove that it is
not equivalent to one arising from SM, HAD or ALG. The relationships between these constructions, up to
a standard notion of equivalence of UEBs, are indicated by the following Venn diagram:

QSM

UEB

ALG

SM HAD M
(4)

Our work strongly extends previous results, in an area that has not seen progress since 2003 [9]. But there is
much still to be settled: in particular, we do not know whether ALG is a subset of QSM, or whether QSM
equals UEB.

There are interesting connections between MUBs, unitary error bases and quantum Latin squares. Our
main result is that UEBs can be built from quantum Latin squares. We noted above that quantum Latin
squares are weak forms of MUBs. Also, it has been shown MUBs can be extracted from a UEB [3]. So
quantum Latin squares arise from MUBs, which arise from UEBs, which arise from quantum Latin squares;
an interesting tapestry of results for which we currently lack a good intuition.

Acknowledgements. The authors are grateful to Dominic Verdon for useful discussions, and to the EPSRC
for financial support.
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