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Motivation

I Quantum theory offers dramatic new advantages for various
information theoretic tasks

I What broad relationships exist between physical principles and
information theoretic advantages?



Motivation

I Much progress has already been made in understanding
connections between physical principles and some tasks

I Insights resulted in device independent cryptography,
connection between non-locality and communication
complexity, etc...



Motivation

I Relatively little has been learned about the connection
between physical principles and computation

I We consider computation in a framework suitable for
describing arbitrary operational theories



Motivation

I An operational theory specifies a set of laboratory devices that
can be connected together in different ways, and assigns
probabilities to experimental outcomes.



Outline

I Introduce problem

I Framework for operationally-defined theories

I Computational model and results



The problem

I Class of problems efficiently solvable by quantum theory is BQP

I BQP ⊆ AWPP ⊆ PP ⊆ PSPACE



The problem

I PP contains all problems that can be solved by a classical random
computer that must get the answer right with probability > 1/2

I PSPACE contains all problems that can be solved by a classical
computer using a polynomial amount of memory



The problem

Problem : What is the minimal set of physical principles such that
efficient computation in an operational theory satisfies this
inclusion?



Introduction to framework

We work in the circuit framework developed by Hardy and
Chiribella, D’Ariano and Perinotti.



Introduction to framework

I Tests are the primitive notions of operational theories

I Represent one use of a physical device with input/output ports
and a classical pointer



Introduction to framework

I When a physical device is used, the pointer ends up in one of a
number of outcomes i ∈ X . This tells us some event has occurred

I A test is a collection of events {Ei}i∈X



Introductions to framework

I Physical systems can be thought of as passing through the input
and output ports of tests

I Systems labelled by A,B,C , . . .



Diagrams

We can represent a test diagrammatically as follows:

{Ei}i∈XA B



Diagrams

We represent a specific event diagrammatically as:

EiA B



Diagrams

Test with no inputs prepares a system

Ei A



Diagrams

Tests with no outputs measures a system

EiA



Composing tests

Tests can be composed sequentially:

{Ei}i∈X {Dj}j∈YA B C



Composing tests

and in parallel:

{Ei}i∈XA B

{Dj}j∈YC D



Circuits

In an operational theory, one can draw circuits representing the
connections of physical devices in an experiment:

{Ej}
{σi}

C

A B {λk}



Circuits

and circuit outcomes representing which specific events took place
in said experiment:

Ej
σi

C

A B λk



Probabilistic part

We demand that closed circuits give probabilities:

P(i , j) := σi A λj



Linear structure

Probabilistic structure imposes linear structure:

Ej
σi

vector
v

matrix
M

vector
w

λk

P(i , j , k) = v .M.w



Tomographic locality

I Every transformation from A to B induces a linear map between
the corresponding vectors

I If a transformation from A to B acts on one half of a system AC,
there may be no simple way to relate the linear map AC→ BC to
the action of the transformation when it is applied to a system A
on its own



Tomographic locality

A theory satisfies tomographic locality if every transformation
can be fully characterised by local process tomography

T

σ1r1

Am

σmrm

A1......

B1

Bn

......

λ1t1

λmtn



Tomographic locality

Vector space tensor product:

Ej
σi

C

A B λk

v .M.w = v .(G ⊗ I).w



Tomographic locality

Assumption: Tomographic locality is satisfied



Causality

I An operational theory is causal if the probability of a preparation
is independent of the choice of which measurement follows the
preparation

I For all {(λj |}j and {(θk |}k we have∑
j

(λj |σi ) =
∑
k

(θk |σi )



Causality

I Causal = ‘no signalling from the future’

I Nothing obviously pathological about theories without causality



Causality

We will not assume all theories are casual



Computation

I Can draw circuits of experimental set-up and the specific events
that took place in runs of the experiment.

I What do we need for these circuits to be a meaningful model of
computation?

I Need to define uniform family of circuits for operational theories.



Uniform circuits

I In quantum/classical circuit model, a circuit family {Cn} is
indexed by input system size n.

I Each Cn built by composing a polynomial number of gates.

I ‘Classical description’ of Cn can be efficiently computed



Uniform circuits

I In generalised circuit model, the entire circuit encodes the
problem instance

I Circuit family {Cx}, for x a classical string

I Each circuit is build with a polynomial number of gates from a
(finite) gate set G



Uniform circuits

I Given the matrix M representing (a particular outcome of) a gate
in G, can approximate its entries efficiently

I Classical description of Cx can be computed efficiently



Acceptance criterion

I In quantum computation, all gates are deterministic and all
measurements can be postponed until end

I Accepts an input if measurement of first outcome qubit is |0〉

I In an arbitrary operational theory this may not be the case, need
more general acceptance criterion



Acceptance criterion

Construct circuit:

{T 3
r3}

{T 4
r4}

{T 5
r5}

{T 6
r6}

{σr1}

C
{ρr2}

A D F

GE

B
{λr7}

{χr8}

Outcome:

P(r1, . . . , r8) = (χr8 |(λr7 |
(
T 6
r6 ⊗ T 5

r5

)
T 4
r4

(
T 3
r3 ⊗ IC

)
|ρr2)|σr1).



Acceptance criterion

I Partition outcome set of entire circuit into two Z = Zacc ∪ Zrej :

a(z) =

{
0, if z ∈ Zacc

1, if z ∈ Zrej

I Demand that a(.) is computable by classical poly-time Turing
machine



Acceptance criterion

Probability to accept input x is then

Px(accept) =
∑

z|a(z)=0

P(z),

sum ranges over all possible outcome strings of the circuit Cx



BGP

For an operational theory G, a language L is in the class BGP if
there exists a poly-sized uniform family of circuits in G, and an
efficient acceptance criterion, such that

1. x ∈ L is accepted with probability at least 2
3 .

2. x /∈ L is accepted with probability at most 1
3 .



Upper bounds

Theorem
For any operational theory G that satisfies tomographic locality, we
have

BGP ⊆ AWPP ⊆ PP ⊆ PSPACE



Role of assumptions

1. Linear structure: arises from the requirement that a physical
theory should be able to give probabilistic predictions about the
occurrence of possible outcomes

2. Tomographic locality: ability to efficiently compute the entries
of matrices representing transformations applied in parallel



A question

I Best upper bounds on BQP follow from very mild assumptions
and don’t exploit any uniquely quantum features (don’t even need
a notion of causality!)

I Can we do better?



Further questions

I Can quantum theory simulate computation in any any
operationally-defined theory? If so, could provide explanation of
quantum speed-up

I Certain situations in which quantum theory is provably optimal for
computational in this landscape of operationally-defined theories



Post-selection

I Aaronson has introduced the notion of post-selected quantum
circuits

I Quantum circuits with a ‘post-selected’ register. Only those runs
of the computation for which a measurement of the post-selected
qubit yields 0 are considered.



Post-selection

I Aaronson has shown that PostBQP = PP

I Thus a quantum computer with post-selection can simulate
computation in any other generalised probabilistic theory



Post-selection

I Can also define generalised circuits with post-selection

I Here we can post-select on any (efficiently computable) subset of
the circuit outcomes



Post-selection

Theorem
For any tomographically local theory G, we have

PostBGP ⊆ PP = PostBQP

In a world with post-selection, quantum theory is optimal for
computation in the space of all (tomographically local) operational
theories



Conclusion

I Defined the class of problems that can be efficiently solved by an
arbitrary operationally-defined theory

I Theories satisfying tomographic locality satisfy the best known
quantum bounds

I In a world with post-selection, quantum theory is optimal for
computation in the space of all theories satisfying tomographic
locality



Outlook

I Even though we have not assumed the causality principle, the
gates in our circuits appear in a fixed structure

I Investigate the computational power of theories in which there is
no definite structure?



Further questions

I Does there exist an operationally-defined theory that can simulate
quantum computation?

I If so, could compare to quantum theory in the hope of learning
why quantum theory isn’t that way



Thank you!



Post-selection

I Can we view PostBGP ⊆ PostBQP as evidence that quantum
theory on its own is optimal (or at least powerful) for computation
in the space of general theories?

I Caution is needed



Post-selection

I Consider the ‘one clean qubit model’ DQC

I Restricted form of quantum computation where input to circuit is
one pure qubit with as many maximally mixed qubits as desired



Post-selection

I Under reasonable assumptions DQC ( BQP

I But PostDQP = PostBQP



Post-selection

I So while PostBQP ⊆ PostDQP

I Under reasonable assumptions it is not the case that
BQP ⊆ DQP



Further results

I Non-trivial reversible transformations imply BPP ⊆ BGP for
non-classical G

I Generalised probabilistic oracle hard to define, but can define
‘classical oracle’ in causal theory

I ‘Classical oracle’ separation result: ∃A such that, for all causal
theories, NPA * BGPA

cl



Proof sketch of PSPACE

I Consider a general circuit Cx , with q(|x |) gates from G

I Tensoring these gates with identity transformations on systems on
which they do not act, and padding them with rows and columns
of zeros, results in a sequence of square matrices M rq ,q, . . . ,M r1,1

I M rn,n is the matrix representing the r thn outcome of the nth gate



Proof sketch of PSPACE

I The matrix entries of gates from G can be efficiently computed

I Tomographic locality implies that entries of M rn,n can also be
efficiently computed



Proof sketch of PSPACE

The probability for outcome z = r1 . . . rq, is given by

bT .M rq ,q · · ·M r2,2M r1,1.b =
∑

{i1,...,iq−1}

M
rq ,q
1iq−1
· · ·M r2,2

i2i1
M r1,1

i11

where b is the vector b = (1, 0, . . . , 0)



Proof sketch of PSPACE

I Exponentially long sum, but each entry is a product of
polynomially many terms.

I Each term in sum can be efficiently calculated

I Entire sum can be calculated in polynomial space, as individual
terms can be erased after being added to running total.


