Operational axioms for diagonalizing states

Giulio Chiribella Carlo Maria Scandolo

Institute for Interdisciplinary Information Sciences, Tsinghua University

QPL 2015, 07/16/2015
The importance of thermodynamics

- Thermodynamics has applications in several branches of science.
The importance of thermodynamics

- Thermodynamics has applications in several branches of science.
- It gave rise to foundational puzzles, related to irreversibility.

Figure: Maxwell’s demon. Source: wikimedia commons
The need for an information-theoretic foundation of thermodynamics

- In classical thermodynamics, microscopic dynamics is fundamentally reversible.
The need for an information-theoretic foundation of thermodynamics

- In classical thermodynamics, microscopic dynamics is fundamentally reversible.
- It’d be desirable to reconcile thermodynamic irreversibility with reversibility at the fundamental level.
In classical thermodynamics, microscopic dynamics is fundamentally reversible.

It’d be desirable to reconcile thermodynamic irreversibility with reversibility at the fundamental level.

Important for nanotechnology: systems at the nanoscale.
The need for an information-theoretic foundation of thermodynamics

- In classical thermodynamics, microscopic dynamics is fundamentally reversible.
- It’d be desirable to reconcile thermodynamic irreversibility with reversibility at the fundamental level.
- Important for nanotechnology: systems at the nanoscale.
- Relationship between thermodynamics and information theory (Landauer, etc.)
The need for an information-theoretic foundation of thermodynamics

- In classical thermodynamics, microscopic dynamics is fundamentally reversible.
- It’d be desirable to reconcile thermodynamic irreversibility with reversibility at the fundamental level.
- Important for nanotechnology: systems at the nanoscale.
- Relationship between thermodynamics and information theory (Landauer, etc.)

Need for information-theoretic principles!

Method

Thermodynamics in GPTs!
The tool of majorization

Majorization has featured in several works on quantum thermodynamics.
The tool of majorization

Majorization has featured in several works on quantum thermodynamics.

Majorization

Let $\mathbf{p}, \mathbf{p}' \in \mathbb{R}^n$ be two probability distributions. We say that \mathbf{p} is majorized by \mathbf{p}' ($\mathbf{p} \preceq \mathbf{p}'$) if

$$
\sum_{i=1}^{k} p[i] \leq \sum_{i=1}^{k} p'[i] \quad \text{for } i = 1, \ldots, n-1,
$$

where $p[i]$ is the i-th entry of the decreasing rearrangement of \mathbf{p}.

It gives a preorder of quantum states based on their eigenvalues.
The tool of majorization

Majorization has featured in several works on quantum thermodynamics.

Majorization

Let $p, p' \in \mathbb{R}^n$ be two probability distributions. We say that p is *majorized* by p' ($p \preceq p'$) if

$$
\sum_{i=1}^{k} p[i] \leq \sum_{i=1}^{k} p'[i] \quad \text{for } i = 1, \ldots, n - 1,
$$

where $p[i]$ is the i-th entry of the decreasing rearrangement of p.

It gives a preorder of quantum states based on their eigenvalues.
We want to export the tool of majorization to GPTs.
We want to export the tool of majorization to GPTs.
From majorization we get entropies as Schur-concave functions.
We want to export the tool of majorization to GPTs. From majorization we get entropies as Schur-concave functions.

We need to define the “eigenvalues” of states even in GPTs (cf. [Chiribella et al. ’11]).
We want to export the tool of majorization to GPTs.

From majorization we get entropies as Schur-concave functions.

We need to define the “eigenvalues” of states even in GPTs (cf. [Chiribella et al. ’11]).

Cf. also the next talk by Barnum et al.! (from a different angle)
Section 1

Framework and axioms
OPTs

We use a specific variant of GPTs, known as OPTs (operational-probabilistic theories).
[Chiribella et al. ’10, Chiribella et al. ’11]
We use a specific variant of GPTs, known as OPTs (operational-probabilistic theories).
[Chiribella et al. ’10, Chiribella et al. ’11]
Circuits such as

- ρ is a state (a transformation with no input)
- a and b are effects (transformations with no output)
A transformation $\mathcal{U} : A \rightarrow B$ is called reversible if there exists a transformation $\mathcal{U}^{-1} : B \rightarrow A$ such that $\mathcal{U}^{-1}\mathcal{U} = \mathcal{I}_A$, and $\mathcal{U}\mathcal{U}^{-1} = \mathcal{I}_B$, where \mathcal{I}_S is the identity on system S.

\[
\begin{align*}
\begin{array}{ccc}
A & \xrightarrow{\mathcal{U}} & B \\
& \xrightarrow{\mathcal{U}^{-1}} & A \\
\end{array}
& =
\begin{array}{c}
A
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{ccc}
B & \xrightarrow{\mathcal{U}^{-1}} & A \\
& \xrightarrow{\mathcal{U}} & B \\
\end{array}
& =
\begin{array}{c}
B
\end{array}
\end{align*}
\]
Circuits with no external wires represent probabilities

\[(a_i | \rho_j) := \rho_j A a_i = p_{ij} \in [0, 1].\]
Circuits with no external wires represent probabilities

\[(a_i|\rho_j) := \rho_j \stackrel{A}{\longrightarrow} a_i = p_{ij} \in [0, 1].\]

This induces a sum for transformations.
Probabilistic structure & purity

- Circuits with no external wires represent probabilities

\[(a_i | \rho_j) := \rho_j \xrightarrow{A} a_i = p_{ij} \in [0, 1].\]

- This induces a sum for transformations.
- We define real vector spaces spanned by states and effects. We assume they are finite-dimensional.
Circuits with no external wires represent **probabilities**

\[(a_i|\rho_j) := \text{A} = p_{ij} \in [0, 1].\]

- This induces a sum for transformations.
- We define real vector spaces spanned by states and effects. We assume they are **finite-dimensional**.
- We can define coarse-graining and purity.

Purity

A transformation \(T\) is **pure** if \(T = \sum_i T_i\) implies \(T_i = p_i T\), where \(\{p_i\}\) is a probability distribution.
Purity Preservation

Purity Preservation [Chiribella & Scandolo ’15a]
The sequential and parallel composition of pure transformations is a pure transformation.
Purity Preservation [Chiribella & Scandolo ’15a]

The sequential and parallel composition of pure transformations is a pure transformation.

- The product of two pure states is pure.
Purity Preservation [Chiribella & Scandolo ’15a]

The sequential and parallel composition of pure transformations is a pure transformation.

- The product of two pure states is pure.
- Without Purity Preservation, we may have a “non-local” loss of information when composing transformations.
Causality [Chiribella et al. ’10, Chiribella et al. ’11]

The outcome probabilities of present experiments are not affected by the choice of future measurements.
Causality [Chiribella et al. ’10, Chiribella et al. ’11]

The outcome probabilities of present experiments are not affected by the choice of future measurements.

- Equivalently, for every system A there is a unique deterministic effect Tr_A.
Causality [Chiribella et al. ’10, Chiribella et al. ’11]

The outcome probabilities of present experiments are not affected by the choice of future measurements.

- Equivalently, for every system A there is a *unique* deterministic effect Tr_A.
- We can use Tr to define the *marginals* of bipartite states:

$$
\rho_A := \text{Tr}_B \rho_{AB} = \rho
$$

Important in thermodynamics: we need to restrict ourselves to subsystems!
Purification
[Chiribella et al. ’10, Chiribella et al. ’11]

Every state ρ_A can be purified: there exists a pure state Ψ_{AB} such that $\rho_A = \Psi_{A}^{T_B}$.

Different purifications of the same state differ by a reversible transformation on the purifying system: $\Psi_{AB}^{T_B} = \Psi_{AB}'^{T_B} \Rightarrow \rho_A = \rho_A'$.
Every state ρ_A can be purified: there exists a pure state Ψ_{AB} such that

\[\rho_A = \Psi_{AB} \text{Tr}. \]
Every state ρ_A can be purified: there exists a pure state Ψ_{AB} such that

$$\rho_A = \Psi_{AB} \text{ Tr}.$$

Different purifications of the same state differ by a reversible transformation on the purifying system:
Why Purification?

- It reconciles partial information and irreversibility with a picture where everything is **pure** and **reversible**.
Why Purification?

- It reconciles partial information and irreversibility with a picture where everything is pure and reversible.
- Dilation and extension theorems can be reconstructed from it [Chiribella et al. ’10].
Why Purification?

- It reconciles partial information and irreversibility with a picture where everything is **pure and reversible**.
- **Dilation** and **extension** theorems can be reconstructed from it [Chiribella et al. ’10].
- It provides a **formal justification** of the thermodynamic procedure of enlarging a system to deal with an **isolated** system.
Why Purification?

- It reconciles partial information and irreversibility with a picture where everything is pure and reversible.
- Dilation and extension theorems can be reconstructed from it [Chiribella et al. ’10].
- It provides a formal justification of the thermodynamic procedure of enlarging a system to deal with an isolated system.

Purification is a good starting point for a theory of thermodynamics.
Pure Sharpness

For every system, there exists at least one pure effect a that occurs with probability 1 on some state ρ.
Pure Sharpness

For every system, there exists at least one pure effect a that occurs with probability 1 on some state ρ.

- We can think of a as part of a yes/no test to check an elementary property of the system.
Pure Sharpness

For every system, there exists at least one pure effect \(a \) that occurs with probability 1 on some state \(\rho \).

- We can think of \(a \) as part of a yes/no test to check an elementary property of the system.
- Pure Sharpness ensures that every system has an elementary property.
Duality pure states-pure effects: for every pure state α there is a unique pure effect α^\dagger such that $(\alpha^\dagger|\alpha) = 1$.
Duality pure states-pure effects: for every pure state α there is a unique pure effect α^\dagger such that $(\alpha^\dagger|\alpha) = 1$.

Existence of perfectly distinguishable (pure) states.

Perfectly distinguishable states

The states $\{\rho_i\}_{i \in X}$ are said perfectly distinguishable if there exists a measurement $\{a_j\}_{j \in X}$ such that $(a_j|\rho_i) = \delta_{ij}$.
Section 2

Diagonalization
Diagonalizing states

Diagonalization

A diagonalization of a state ρ is a convex decomposition of ρ into perfectly distinguishable pure states.

$$\rho = \sum_i p_i \alpha_i$$

The p_i’s are called eigenvalues of the diagonalization.
Diagonalizing states

Diagonalization

A diagonalization of a state ρ is a convex decomposition of ρ into perfectly distinguishable pure states.

$$\rho = \sum_i p_i \alpha_i$$

The p_i’s are called eigenvalues of the diagonalization.

Define

$$p_* := \max_{\alpha \text{ pure}} \{ p \in (0, 1] : \rho = p\alpha + (1-p)\sigma \}.$$
A diagonalization of a state ρ is a convex decomposition of ρ into perfectly distinguishable pure states.

$$\rho = \sum_{i} p_i \alpha_i$$

The p_i's are called eigenvalues of the diagonalization.

- Define

$$p_* := \max_{\alpha \text{ pure}} \{ p \in (0, 1] : \rho = p\alpha + (1 - p)\sigma \}.$$

- We have $(\alpha^\dagger|\rho) = p_*$, whence $(\alpha^\dagger|\sigma) = 0$, and $(\alpha^\dagger|\psi) = 0$ for any pure state ψ contained in σ.
The diagonalization algorithm

Consider a state ρ.

1. Determine $p_1^* =: q_1$ and find $\alpha_1 =: \alpha_1^{\text{pure}}$, such that $\rho = q_1 \alpha_1 + (1 - q_1) \sigma_1$.

2. Repeat the same procedure for σ_1: find the maximum probability q_2 such that $\sigma_1 = q_2 \alpha_2 + (1 - q_2) \sigma_2$, with $\alpha_2 = \alpha_2^{\text{pure}}$.

3. Iterate the procedure. At the end, $\rho = \sum_{i=1}^{n} p_i \alpha_i$, where $p_1 = q_1$, and $p_i = q_i \prod_{j < i} (1 - q_j)$ for $i > 1$.

$(\alpha_i | \alpha_j) = 0$ for $j > i$.

G. Chiribella, C. M. Scandolo, Operational axioms for diagonalizing states
The diagonalization algorithm

Consider a state ρ.

1. Determine $p^*_1 = q_1$ and find $\alpha = \alpha_1$ pure, such that

$$\rho = q_1 \alpha_1 + (1 - q_1) \sigma_1.$$
The diagonalization algorithm

Consider a state ρ.

1. Determine $p_* =: q_1$ and find $\alpha =: \alpha_1$ pure, such that
 $$\rho = q_1 \alpha_1 + (1 - q_1) \sigma_1.$$

2. Repeat the same procedure for σ_1: find the maximum probability q_2 such that
 $$\sigma_1 = q_2 \alpha_2 + (1 - q_2) \sigma_2,$$
 with α_2 pure.
The diagonalization algorithm

Consider a state ρ.

1. Determine $p_\star =: q_1$ and find $\alpha =: \alpha_1$ \textit{pure}, such that
 \[\rho = q_1 \alpha_1 + (1 - q_1) \sigma_1. \]
2. Repeat the same procedure for σ_1: find the maximum probability q_2 such that $\sigma_1 = q_2 \alpha_2 + (1 - q_2) \sigma_2$, with α_2 \textit{pure}.
3. Iterate the procedure.
The diagonalization algorithm

Consider a state ρ.

1. Determine $p_* =: q_1$ and find $\alpha =: \alpha_1$ pure, such that $\rho = q_1 \alpha_1 + (1 - q_1) \sigma_1$.

2. Repeat the same procedure for σ_1: find the maximum probability q_2 such that $\sigma_1 = q_2 \alpha_2 + (1 - q_2) \sigma_2$, with α_2 pure.

3. Iterate the procedure.

At the end, $\rho = \sum_{i=1}^{n} p_i \alpha_i$, where
The diagonalization algorithm

Consider a state ρ.

1. Determine $p_* =: q_1$ and find $\alpha =: \alpha_1 \text{ pure}$, such that
 \[\rho = q_1 \alpha_1 + (1 - q_1) \sigma_1. \]

2. Repeat the same procedure for σ_1: find the maximum probability q_2 such that $\sigma_1 = q_2 \alpha_2 + (1 - q_2) \sigma_2$, with $\alpha_2 \text{ pure}$.

3. Iterate the procedure.

At the end, $\rho = \sum_{i=1}^{n} p_i \alpha_i$, where

- $p_1 := q_1$, and $p_i := q_i \prod_{j<i} (1 - q_j)$ for $i > 1$.

G. Chiribella, C. M. Scandolo
Operational axioms for diagonalizing states
The diagonalization algorithm

Consider a state ρ.

1. Determine $p_\ast =: q_1$ and find $\alpha =: \alpha_1$ pure, such that
 $$\rho = q_1 \alpha_1 + (1 - q_1) \sigma_1.$$

2. Repeat the same procedure for σ_1: find the maximum probability q_2 such that $\sigma_1 = q_2 \alpha_2 + (1 - q_2) \sigma_2$, with α_2 pure.

3. Iterate the procedure.

At the end, $\rho = \sum_{i=1}^{n} p_i \alpha_i$, where

- $p_1 := q_1$, and $p_i := q_i \prod_{j<i} (1 - q_j)$ for $i > 1$.
- $(\alpha_i^\dagger | \alpha_j) = 0$ for $j > i$
We want to prove the α_i’s are perfectly distinguishable.
We want to prove the α_i’s are perfectly distinguishable.

Preliminary result (from Purification) [Chiribella et al. ’11]

We can associate a test $\{A_i\}_{i \in X}$ made of transformations with a measurement $\{a_i\}_{i \in X}$ made of effects, where the A_i’s occur with the same probability as the a_i’s. Moreover, if $\langle a | \rho \rangle = 1$, then the associated transformation A doesn’t disturb ρ.
We want to prove the α_i’s are perfectly distinguishable.

Preliminary result (from Purification) [Chiribella et al. ’11]

We can associate a test $\{A_i\}_{i \in X}$ made of transformations with a measurement $\{a_i\}_{i \in X}$ made of effects, where the A_i’s occur with the same probability as the a_i’s.

Moreover, if $(a|\rho) = 1$, then the associated transformation A doesn’t disturb ρ.

Effects destroy a system, but we can iterate the perfectly distinguishing test by using transformations!
Proving the α_i's are perfectly distinguishable

Consider the pure states $\{\alpha_i\}_{i=1}^n$, with $\left(\alpha_i^\dagger|\alpha_j\right) = 0$ for $j > i$.
Proving the α_i’s are perfectly distinguishable

Consider the pure states $\{\alpha_i\}_{i=1}^n$, with $(\alpha_i^\dagger|\alpha_j) = 0$ for $j > i$.

1. Consider the measurement $\{\alpha_1^\dagger, \text{Tr} - \alpha_1^\dagger\}$. Apply the associated test $\{A_1, A_1^\perp\}$. If A_1 occurs, the state is α_1. If not, the state is one of the others.
Proving the α_i’s are perfectly distinguishable

Consider the pure states $\{\alpha_i\}_{i=1}^n$, with $(\alpha_i^\dagger | \alpha_j) = 0$ for $j > i$.

1. Consider the measurement $\{\alpha_1^\dagger, \text{Tr} - \alpha_1^\dagger\}$. Apply the associated test $\{A_1, A_1^\perp\}$. If A_1 occurs, the state is α_1. If not, the state is one of the others.

2. Consider $\rho_1 = \frac{1}{n-1} \sum_{i=2}^n \alpha_i$. Since $\left(\text{Tr} - \alpha_1^\dagger | \rho_1\right) = 1$, A_1^\perp does not disturb the states $\{\alpha_i\}_{i=2}^n$. Now repeat the procedure with the measurement $\{\alpha_2^\dagger, \text{Tr} - \alpha_2^\dagger\}$ and the remaining states.
Proving the α_i’s are perfectly distinguishable

Consider the pure states $\{\alpha_i\}_{i=1}^n$, with $(\alpha_i^\dagger | \alpha_j) = 0$ for $j > i$.

1. Consider the measurement $\{\alpha_1^\dagger, \text{Tr} - \alpha_1^\dagger\}$. Apply the associated test $\{A_1, A_1^\perp\}$. If A_1 occurs, the state is α_1. If not, the state is one of the others.

2. Consider $\rho_1 = \frac{1}{n-1} \sum_{i=2}^n \alpha_i$. Since $(\text{Tr} - \alpha_1^\dagger | \rho_1) = 1$, A_1^\perp does not disturb the states $\{\alpha_i\}_{i=2}^n$. Now repeat the procedure with the measurement $\{\alpha_2^\dagger, \text{Tr} - \alpha_2^\dagger\}$ and the remaining states.

In the end, we’re able to identity the state with certainty! The α_i’s are perfectly distinguishable!
Conclusions and further developments

- With Purity Preservation, Causality, Purification and Pure Sharpness we’ve managed to diagonalize states.
Conclusions and further developments

- With Purity Preservation, Causality, Purification and Pure Sharpness we’ve managed to diagonalize states.
- All diagonalizations of a given state have the same eigenvalues (forthcoming paper with G. Chiribella).
Conclusions and further developments

- With Purity Preservation, Causality, Purification and Pure Sharpness we’ve managed to diagonalize states.
- All diagonalizations of a given state have the same eigenvalues (forthcoming paper with G. Chiribella).
- We can define majorization and Schur-concave functions (entropies!) [Scandolo ’14]
Conclusions and further developments

- With Purity Preservation, Causality, Purification and Pure Sharpness we’ve managed to diagonalize states.
- All diagonalizations of a given state have the same eigenvalues ([forthcoming paper with G. Chiribella]).
- We can define majorization and Schur-concave functions (entropies!) [Scandolo ’14]
- Adding the requirement that reversible transformations act transitively on maximal sets of perfectly distinguishable pure states (cf. [Barnum et al. ’14]), the preorder of states given by majorization is equivalent to the one given by random reversible transformations in the GPT-version of the resource theory of purity. [Chiribella & Scandolo ’15b]
References

G Chiribella, CMS, EPJ Web of Conferences 95, 03003 (2015).

